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Abstract. MLm
n of monadic m-generalized �Lukasiewicz algebras of order n (or MLm

n -

algebras), namely a generalization of monadic n-valued �Lukasiewicz algebras. In this arti-

cle, we determine the congruences and we characterized the subdirectly irreducible MLm
n -

algebras. From this last result we proved that MLm
n is a discriminator variety and as a

consequence we characterized the principal congruences. In the last part of this paper we

find an immersion of these algebras in a functional algebra and we proved that in the finite

case they are isomorphic. This last result allows to show a new functional representation

for monadic n-valued �Lukasiewicz algebras. Finally, we define the notions of MLm
n -algebra

of fractions and maximal algebra of fractions and we prove the existence of a maximal

MLm
n -algebra of fractions for an MLm

n -algebra.
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1. Introduction and Preliminaries

In 1971, Georgescu and Vraciu [17] in a very interesting paper introduced
monadic n-valued �Lukasiewicz algebras and studied their relationship with
monadic Boolean algebras. From the results obtained by these authors, a
functional representation theorem for these algebras is deduced without fol-
lowing Halmos’s reasoning [18]. These algebras were extensively studied in
[4,12,13,19] to mention a few.

On the other hand, in 2001, Almada and Vaz de Carvalho [1] considered a
generalization of �Lukasiewicz algebras of order n (or Ln-algebras) and they
introduced the variety Lm

n of m-generalized �Lukasiewicz algebras of order n
in the following way.

An m–generalized �Lukasiewicz algebra of order n (or Lm
n –algebra) is

an algebra 〈L,∨,∧, f, {Di}1≤i≤n−1, 0, 1〉 of type (2, 2, 1, {1i}1≤i≤n−1, 0, 0)
which satisfies the following conditions:
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(GL1) 〈L,∨,∧, f, 0, 1〉 is a bounded distributive lattice where f is a dual
endomorphism satisfying the identity f2mx = x,

(GL2) Di(x∧ y) = Dix∧Diy, 1 ≤ i ≤ n− 1, where z denotes the element
m−1∨

p=0
f2pz,

(GL3) Dix ∧ Djx = Djx, 1 ≤ i ≤ j ≤ n − 1,

(GL4) Dix ∨ fDix = 1, 1 ≤ i ≤ n − 1,

(GL5) Difx = fDn−ix, 1 ≤ i ≤ n − 1,

(GL6) DiDjx = Djx, 1 ≤ i, j ≤ n − 1,

(GL7) x ∨ D1x = D1x,

(GL8) Dix = Dix, 1 ≤ i ≤ n − 1,

(GL9) (x ∧ fx) ∨ y ∨ fy = y ∨ fy,

(GL10) x ≤ y ∨ fDiy ∨ Di+1x, 1 ≤ i ≤ n − 2.

In every Lm
n -algebra the identities listed below are also verified [1,14] and

they will be use throughout this paper.

Proposition 1.1. Let A ∈ Lm
n . Then it holds:

(GL11) Di(x ∨ y) = Di(x) ∨ Di(y), 1 ≤ i ≤ n − 1,

(GL12) f2(Di(x)) = Di(x), 1 ≤ i ≤ n − 1,

(GL13) Di(x) ∧ f(Di(x)) = 0, 1 ≤ i ≤ n − 1,

(GL14) f(x) ∨ D1(x) = 1,

(GL15) f(x) ∧ Dn−1(x) = 0,

(GL16) x ∧ Dn−1(x) = Dn−1(x),

(GL17) Di(0) = 0, 1 ≤ i ≤ n − 1,

(GL18) Di(1) = 1, 1 ≤ i ≤ n − 1.

(GL19) f2x = x,

(GL20) fx = fx,

(GL21) f2x = ffx,

(GL22) x ≤ y implies x ≤ y,

(GL23) x ∨ y = x ∨ y,

(GL24) x ∧ y = x ∧ y.
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(GL25) x = x, where z denotes the element
m−1∧

p=0
f2pz,

(GL26) Dix = Dix = Dix, 1 ≤ i ≤ n − 1,

(GL27) Dix = Diy for all i, 1 ≤ i ≤ n − 1 imply x = y.

From the above results is simple to verify that the operators Di do not
distribute with the infimum and the negation does not commute with them.
However, we will see that it is possible to define a quantifier on these algebra
such that they constitute a generalization of monadic n-valued Lukasiewicz
algebras.

Remark 1.1. Let A ∈ Lm
n . The set S(A) = {x ∈ A : f2(x) = x} plays

an important role in the study of these algebras. In particular, S(A) is a
subalgebra of A and it is the greatest subalgebra of A that belongs to the
variety of Ln-algebras. Let us observe that for all x ∈ A, both x and x
belong to S(A) and x ≤ x ≤ x. Obviously, x ∈ S(A) if and only if x = x (if
and only if x = x). [1, Proposition 2.2].

Remark 1.2. In [1] T. Almada and J. Vaz de Carvalho determine that
the variety Lm

n is semisimple and locally finite, then we conclude that all
Lm

n -algebra is a Heyting algebra. On the other hand, A. Iorgulescu in [22],
after surveying chronologically several algebras related to logic, she rede-
fined them as particular cases of BCK-algebras (see also [20,21]). Thus, she
showed that Hilbert algebras are positive implicative BCK-algebras. Hence,
from the above results and taking into account that the implicative reduct
of a Heyting algebra is a Hilbert algebra, it follows that every Lm

n -algebra
is a positive implicative BCK-algebra.

2. Monadic m-Generalized �Lukasiewicz Algebras of Order n

The class of algebras which is of our concern now, rises from m-generalized
�Lukasiewicz algebras of order n endowed with a unary operation which ve-
rifies certain properties.

Definition 2.1. Let L ∈ Lm
n . An existential quantifier on L is a mapping

∃ : L → L which verifies the identities:

(E1) ∃ 0 = 0,

(E2) x ∧ ∃x = x,

(E3) ∃(x ∧ ∃y) = ∃x ∧ ∃y,
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(E4) ∃Di(x) = Di(∃x) for all i, 1 ≤ i ≤ n − 1,

(E5) ∃f2m−1∃x = f2m−1∃x.

Definition 2.2. Let L ∈ Lm
n . A universal quantifier on L is a mapping

∀ : L → L verifying the following conditions:

(U1) ∀ 1 = 1,

(U2) ∀x = ∀x ∧ x,

(U3) ∀(x ∨ ∀y) = ∀x ∨ ∀y,

(U4) ∀Di(x) = Di(∀x) for all i, 1 ≤ i ≤ n − 1,

(U5) ∀f2m−1∀x = f2m−1∀x.

Propositions 2.1 and 2.3 summarize the most important properties of
both existential and universal quantifiers in Lm

n -algebras which are necessary
for further development.

Proposition 2.1. Let L ∈ Lm
n and ∃ be an existential quantifier on L.

Then the following properties are satisfied:

(E6) ∃1 = 1,

(E7) ∃∃x = ∃x,

(E8) x ≤ y implies ∃x ≤ ∃y,

(E9) ∃(∃x ∧ ∃y) = ∃x ∧ ∃y,

(E10) x ∈ ∃L if and only if ∃x = x,

(E11) x ∈ ∃L implies f2m−jx ∈ ∃L, for all j, 1 ≤ j ≤ 2m,

(E12) x, y ∈ ∃L imply x ∨ y ∈ ∃L,

(E13) ∃(x ∨ y) = ∃x ∨ ∃y,

(E14) ∃L � L,

(E15) x ∈ B(S(L)) implies ∃x ∈ B(S(L)),

(E16) x ∈ S(L) implies ∃x ∈ S(L),

(E17) S(∃L) = ∃S(L).

Proof. We only prove (E11), (E12), (E16) and (E17).
(E11): By the hypothesis, (E10) and (E5) we have that f2m−1x ∈ ∃L.

This assertion and (E5) imply that f2m−2x = f2m−1f2m−1x ∈ ∃L. Hence,
following an analogous reasoning we conclude that f2m−jx ∈ ∃L, for all j,
1 ≤ j ≤ 2m.
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(E12): Let x, y ∈ ∃L. Then, by (E10) and (E5) it follows that f2m−1(x)∧
f2m−1(y) ∈ ∃L. So, by (E3) and (E11) we have that x ∨ y = f(f2m−1(x) ∧
f2m−1(y)) ∈ ∃L.

(E16): Let us suppose that ∃x /∈ S(L). Hence, there is y ∈ L \ S(L)
such that y = ∃x. By the hypothesis and (E2) we have that x < f2y which
implies that x ≤ y. From this assertion and (E8) we infer that ∃x ≤ ∃y. On
the other hand, by (E14) and the fact that y ∈ ∃L we conclude that ∃y = y.
Therefore, y < y which is a contradiction.

(E17): Let x ∈ ∃S(L). Hence, there is y ∈ S(L) such that x = ∃y. Taking
into account (E16) we have that f2x = f2∃y = ∃y = x and so x ∈ S(∃L).
The converse follows immediately.

Next we show the relationship between existential and universal quanti-
fiers in Lm

n .

Proposition 2.2. Let L ∈ Lm
n . If ∃ is an existential quantifier on L, then

∀x = f2m−1∃fx is a universal quantifier.

Proof. We only prove (U4). Indeed, taking into account (GL5), (GL20),
(E4) and (E16) we have that: ∀Dix = f2m−1Dn−i∃fx = Dif

2m−1∃fx =
Di∀x.

Proposition 2.3. Let L ∈ Lm
n and ∀ be a universal quantifier on L. Then

the following properties hold:

(U6) ∀0 = 0,

(U7) ∀∀x = ∀x,

(U8) x ≤ y implies ∀x ≤ ∀y,

(U9) ∀(x ∧ y) = ∀x ∧ ∀y,

(U10) x ∈ ∀L if and only if x = ∀x,

(U11) x ∈ ∀L implies f2m−jx ∈ ∀L, for all j, 1 ≤ j ≤ 2m,

(U12) ∀L � L.

(U13) x ∈ S(L) implies ∀x ∈ S(L).

Proof. It is routine.

Proposition 2.4. Let L ∈ Lm
n . If ∀ is a universal quantifier on L, then

∃x = f∀f2m−1x is an existential quantifier.

Proof. Properties (E1)–(E3) and (E5) follow immediately. Therefore, it
only remains to prove (E4). Indeed, bearing in mind (GL5), (GL20) and (U4)
we have that ∃Dix = f∀f2m−1Dix = f∀Dn−if

2m−1x = f∀Dn−if2m−1x =
fDn−i∀f2m−1x = Dif∀f2m−1x = Di∃x.
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Definition 2.3. Let L ∈ Lm
n . A monadic m-generalized �Lukasiewicz alge-

bra of order n (or MLm
n -algebra ) is a pair (L,∃), where ∃ is an existential

quantifier on L or equivalently, is a pair (L,∀), where ∀ is a universal quan-
tifier on L.

In what follows we will denote by MLm
n the variety of MLm

n -algebras.
Some of the results on MLm

n -algebras given in this paper were commu-
nicated in the meeting indicated in [16].

Let us observe that by defining ∃x = x on every Lm
n -algebra L we have

that (L,∃) ∈ MLm
n . In Example 2.1 we show an MLm

n -algebra where the
quantifier is not the trivial one.

Example 2.1. Let us consider the L2
5-algebra L represented bellow and

where the operations f , Di, 1 ≤ i ≤ 4, ∃ and ∀ are defined as follows:

•

• •
•

• •

•

•

•
�

�
�
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�
�
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�

�
�

�
�

�
�

0

1

a b

c

d

j

e h

x 0 a b c d e h j 1
fx 1 h e j d a b c 0

D1x 0 1 1 1 1 1 1 1 1
D2x 0 1 1 0 1 1 1 1 1
D3x 0 0 0 0 0 1 1 1 1
D4x 0 0 0 0 0 0 0 0 1
∃x 0 d d c d j j j 1
∀x 0 c c c d d d j 1

Furthermore, in this case it holds that ∀x = f∃fx for all x ∈ L. However,
this is not true if we define ∃x = x = ∀x. Indeed, f∃fa = b �= a = ∀a.

Remark 2.1. Let L ∈ MLm
n . Bearing in mind the above results we can

assert that ∃ is an additional closure operator on L [3]. Furthermore, ML1
n

coincides with the variety of monadic n-valued �Lukasiewicz algebras.

Other properties of the quantifiers on MLm
n -algebras are indicated in

Proposition 2.5. The proof of them is an easy exercise.

Proposition 2.5. Let L be an MLm
n -algebra. Then the following properties

are satisfied:

(M1) ∀∃x = ∃x,
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(M2 ∃∀x = ∀x,

(M3) x = ∀x if and only if x = ∃x,

(M4) ∃(x ∧ ∀y) = ∃x ∧ ∀y,

(M5) ∀(x ∨ ∃y) = ∀x ∨ ∃y.

Proposition 2.6 determines the relationship between the existential quan-
tifiers and special subalgebras of Lm

n -algebras.

Proposition 2.6. Let L be an Lm
n -algebra.

(a) A subset M of L is of the form M = ∃L where ∃ is an existential
quantifier, if and only if the following conditions hold:

(i) M is a Moore family of L,
(ii) M is a subalgebra of L,
(iii) for any a, b ∈ M , a ⇒ b exists in L and a ⇒ b ∈ M , where x ⇒ y

stands for the relative pseudocomplement of x with respect to y,
(iv) Di(

∧{z ∈ ∃L : x ≤ z}) =
∧{z ∈ ∃L : Dix ≤ z} for all i, 1 ≤ i ≤ n− 1.

(b) When this is the case, ∃ is uniquely determined by ∃x =
∧

{z ∈ M :
x ≤ z}.

Proof. Let ∃ be an existential quantifier on L and M = ∃L. Then [3,
Theorem 2.4.11]) implies (i) and (b). Besides (iv) follows from (E4). To
prove (ii) we use (E10), which shows that 0 ∈ ∃L by (E1) and 1 ∈ ∃L by
(E6), while if x, y ∈ ∃L then x∧y ∈ ∃L and x∨y ∈ ∃L follow from (E3) and
(E13) respectively. Furthermore, to prove (iii) suppose that x, y ∈ ∃L and
x ⇒ y ∈ L. Then taking into account (E10), (E3), the fact that x ⇒ y is the
relative pseudocomplement of x with respect to y, and (E8) we have that
x∧∃(x ⇒ y) = ∃x∧∃(x ⇒ y) = ∃(∃x∧(x ⇒ y)) = ∃(x∧(x ⇒ y)) ≤ ∃y = y.
From this last assertion and (E2) we conclude that x ⇒ y = ∃(x ⇒ y).

Conversely, suppose (i)–(iv) hold and define ∃ by (b). Then (E1) follows
from (ii) and (E4) from (iv) while ∃ is a closure operator by (i), therefore
(E2) also holds. This assertion implies that x∧∃y ≤ ∃x∧∃y. By virtue of (ii)
it results that ∃x∧∃y ∈ M . Hence, ∃(x∧∃y) ≤ ∃x∧∃y. On the other hand,
if k ∈ M verifies that x ∧ ∃y ≤ k, then x ≤ ∃y ⇒ k. Furthermore, from (iii)
we infer that ∃y ⇒ k ∈ M . Therefore, ∃x ≤ ∃y ⇒ k and so, ∃x ∧ ∃y ≤ k.
Thus, ∃x ∧ ∃y ≤ ∃(x ∧ ∃y) and consequently, we conclude that (E3) holds.
Finally, taking into account (ii) we have that f2m−1∃x ∈ M , Hence by (b)
∃f2m−1∃x ≤ f2m−1∃x, and so by (E2) we obtain (E5).
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3. Congruences and Subdirectly Irreducible MLmn-Algebras

Now, we will describe the congruence lattice of MLm
n -algebras taking into

account the results established in [11].
Let us recall that in any Lm

n -algebra L the congruences were characterized
by means of the m-filters of L, that is to say the filters F of L which verify
this condition: x ∈ F implies fD1fx ∈ F . In what follows, we will denote
by Fm(L) the set of all m-filters of L.

Definition 3.1. Let L ∈ MLm
n . An m-filter F of L is monadic (or M -filter)

if it verifies this condition: x ∈ F implies ∀x ∈ F .

We will denote by FM (L) the set of all monadic filters of L.

Theorem 3.1. Let (L,∃) be an MLm
n -algebra with more than one element.

Then

(i) Con(L) = {R(F ) : F ∈ FM (L)}, where R(F ) = {(x, y) ∈ L × L :
there exists w ∈ F such that x ∧ Dn−1w = y ∧ Dn−1w},

(ii) the lattices Con(L) and FM (L) are isomorphic considering the map-
pings θ −→ [1]θ and F −→ R(F ) which are mutually inverse, where
[x]θ stands for the equivalence class of x modulo θ.

Proof. It only remains to prove that if (x, y) ∈ R(F ) then (∃x,∃y) ∈ R(F ).
Suppose that there is w ∈ F such that x ∧ Dn−1w = y ∧ Dn−1w. Hence,
by (U8), (GL11), (GL8) and (U4) we have that x ∧ ∀Dn−1w = y ∧ ∀Dn−1w.
This assertion, (M4) and (U4) imply that ∃x ∧ Dn−1∀w = ∃y ∧ Dn−1∀w.
Furthermore, taking into account that w ≤ w and the fact that F is a
monadic filter of L we infer that w1 = ∀w ∈ F and so (∃x,∃y) ∈ R(F ),
which completes the proof.

Next, our attention is focused on characterizing subdirectly irreducible
MLm

n -algebras. To this end recall that a filter F of an MLm
n -algebra L is a

Stone filter of L if it verifies x ∈ F implies Dn−1x ∈ F [31, p 295]. We will
denote by FS(L) the set of all Stone filters of L. On the other hand, for each
(L,∃) ∈ MLm

n , let us consider the Lm
n -algebra ∃L, the monadic �Lukasiwicz

algebra of order n (S(L),∃) and the �Lukasiewicz algebra of order n ∃S(L).
Then by defining the mappings:

α1 : FM (L) → Fm(∃L), α1(F ) = F ∩ ∃L,
α2 : FM (L) → FMS(S(L)), α2(F ) = F ∩ S(L),
α3 : Fm(∃L) → FS(∃S(L)), α3(F ) = F ∩ ∃(S(L)),
α4 : FMS(S(L)) → FS(∃S(L)), α4(F ) = F ∩ ∃(S(L)),
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where FMS(S(L)) is the set of the monadic Stone filters of (S(L),∃), we
have the following result:

Theorem 3.2. Let L be an MLm
n -algebra. Then the mappings α1, α2, α3

and α4 are order isomorphisms where FM (L), Fm(∃L), FMS(S(L)) and
FS(∃S(L)) are ordered by set inclusion. Besides, α3 ◦ α1 = α4 ◦ α2.

Proof. From Remark 1.1, (E7), (E9) (E10), (E14), (E16),(E17), (U13), [11,
Proposition 2.12], [31, Proposition 3.5], [12, Corollary 3.3] and by applying
standard techniques we infer that αi, 1 ≤ i ≤ 4 are isomorphisms. Finally,
it is straightforward to show that α3 ◦ α1 = α4 ◦ α2.

Now, by Theorems 3.1 and 3.2 we are ready to characterize subdirectly
irreducible MLm

n -algebras as follows:

Theorem 3.3. Let (L,∃) ∈ MLm
n . Then the following conditions are equiv-

alent:

(i) (L,∃) is simple,

(ii) ∃L is a simple Lm
n –algebra,

(iii) ∃S(L) is a simple n-valued �Lukasiewicz algebra,

(iv) B(∃S(L)) = {0, 1}
(v) (L,∃) is subdirectly irreducible.

Remark 3.1. Example 2.1 and Theorem 3.3 allow us to assert that it is pos-
sible to define more than one existential quantifier on a simple Lm

n -algebra.
This shows a fundamental difference with simple Ln-algebras.

As a direct consequence of Theorem 3.3 and from well-know results of
universal algebra we conclude that

Corollary 3.1. Let MLm
n is semisimple.

In order to determine the principal congruences on MLm
n -algebras in a

simple way we will start by pointing out some results established in [31]
and [11], which will be fundamental in what follows. M. Sequeira obtained
some unpublished results in the context of congruences on algebras of certain
subvarieties of Ockham algebras some of which are Km,0. Bearing in mind
these notions J. Vaz de Carvalho [31] considered certain elements which we
will describe in what follows. Let L ∈ Lm

n and T = {0, 1, . . . , m − 1}. For
each z ∈ L and s ∈ {1, . . . , m} take

qsz =
∧

J ⊆ T
| J |= s

∨

j∈J

f2jz.
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where | X | means the cardinal number of the set X.
The same author asserted that it is straightforward to see the following

statements.

Lemma 3.1. [31] Let L ∈ Lm
n . Then it holds:

(i) qsz ∈ S(L), s ∈ {1, . . . ,m},
(ii) qsz ≤ qs+1z, s ∈ {1, . . . ,m − 1},
(iii) q1z = z and qmz = z,

(iv) z ∈ S(L) implies qsz = z, s ∈ {1, . . . , m},
(v) x ≤ z implies qsx ≤ qsz, s ∈ {1, . . . , m}.

On the other hand, in [11] we introduced a new binary operation on Lm
n -

algebras which we called weak implication as follows: x → y = D1fx ∨ y.
This implication allowed us to define an element which played a central role
to characterize the principal Lm

n -congruences. Let L ∈ Lm
n and a, b ∈ L.

Then

wa,b =
n−1∧

i=1

((Dia → Dib) ∧ (Dib → Dia)).

Lemma 3.2. Let L ∈ Lm
n and a, b ∈ L. Then the following properties are

satisfied:

(i) wa,b =
∧n−1

i=1 ((fDia ∧ fDib) ∨ (Dia ∧ Dib)),

(ii) Djwa,b = wa,b, for all j, 1 ≤ j ≤ n − 1,

(iii) wa,b ∈ S(L),

(iv) Dj(a ∧ wa,b) = Dj(b ∧ wa,b), for all j, 1 ≤ j ≤ n − 1,

(v) a ∧ ∧m
s=1 wqs(a∧b),qs(a∨b) = b ∧ ∧m

s=1 wqs(a∧b),qs(a∨b),

(vi) Dn−1

∧m
s=1 ∀wqs(a∧b),qs(a∨b) =

∧m
s=1 ∀wqs(a∧b),qs(a∨b).

Proof. From [11, Lemma 2.9] and [15, Proposition 1.3]) it follows (i)-(iv)
and (v) respectively.

(vi) Taking into account (U9), (i) in Lemma 3.1, (U4) and (GL2) we have
that Dn−1

∧m
s=1 ∀wqs(a∧b),qs(a∨b) = ∀∧m

s=1 Dn−1wqs(a∧b),qs(a∨b). Hence, by
(ii) and (U9) we conclude the proof.

Let L ∈ MLm
n and z ∈ L. We will denote by [z) the principal filter of L

generated by z (i.e.: [z) = {x ∈ L : z ≤ x}).
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Proposition 3.1. Let L ∈ MLm
n , k be a positive integer and aj , bj ∈ L,

1 ≤ j ≤ k. Then [
∧k

j=1 ∀waj ,bj ) is an M -filter of L.

Proof. It is a direct consequence of [11, Proposition 2.6], [11, Proposition
2.10], (U9) and (U7).

Now, Theorem 3.4 gives us a new characterization of simple MLm
n -alge-

bras.

Theorem 3.4. Let L ∈ MLm
n . Then the following conditions are equiva-

lent:

(i) L is simple,

(ii) wD1∀a,1 = 1 for all a ∈ L such that ∀a �= 0.

Proof. (i) ⇒ (ii): Let F = [wD1∀a,1). By Remark 1.1, items (iii) and
(ii) in Lemma 3.2, (U8) and (U4) it follows that F is an M -filter. Hence,
by Theorem 3.1 we have that R(F ) ∈ Con(L) and F = [1]R(F ) and so,
(wD1∀a,1, 1) ∈ R(F ). If wD1∀a,1 = 0 then D1∀a = 0 which implies by (GL7)
and (GL8) that ∀a = 0 and also that L/R(F ) = L × L. Since L is simple,
the only congruences on L are the trivial ones. Therefore, L/R(F ) = idL

and wD1∀a,1 = 1 for all a ∈ L such that ∀a �= 0.
(ii) ⇒ (i): Let θ ∈ Con(L), θ �= idL. Then, there are x, y ∈ L, x �= y such

that (x, y) ∈ θ = R([1]θ). By Theorem 3.1 it follows that there is v ∈ [1]θ and
x ∧ Dn−1∀v = y ∧ Dn−1∀v. These assertions and (GL18) imply that ∀v �= 1.
Hence, by (U10) and (U12) we have that ∀f∀v = f∀v �= 0 and so by the
hypothesis we conclude that wD1∀f∀v,1 = 1. On the other hand, taking into
account that (v, 1) ∈ θ we infer that (wD1∀f∀v,1, 0) ∈ θ. Therefore, (0, 1) ∈ θ
which implies that θ = L × L.

Next, we will apply the results we developed so far to show that MLm
n

is discriminator variety. Furthermore, we will determine the principal con-
gruences. It what follows, for each a, b ∈ L we will denote by θ(a, b) the
principal congruence generated by (a, b).

Recall that the ternary discriminator function t on a set A is defined by
the conditions:

t(x, y, z) =
{

z if x = y,
x otherwise.

A variety V is a discriminator variety, if it has a polynomial p that coin-
cides with the ternary discriminator function on each subdirectly irreducible
member of V; such a polynomial is called ternary discriminator polynomial
for V.
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Theorem 3.5. The variety MLm
n is a discriminator variety.

Proof. Let p(x, y, z) = (
∧m

s=1 ∀wqs(x∧y),qs(x∨y)∧z)∨(f
∧m

s=1 ∀wqs(x∧y),qs(x∨
y) ∧ x). In view of the definition of wa,b for all a, b ∈ L, (GL13) and (U1)
we have that p(x, y, z) = z. On the other hand, by Lemma 3.2 (v) we infer
that x∧∧m

s=1 ∀wqs(x∧y),qs(x∨y) = y ∧∧m
s=1 ∀wqs(x∧y),qs(x∨y). Hence, if x �= y

we have that
∧m

s=1 ∀wqs(x∧y),qs(x∨y) �= 1. Furthermore, by Lemma 3.2 (iii)
and (M3) follow that

∧m
s=1 ∀wqs(x∧y),qs(x∨y) ∈ ∃S(L). From this assertion,

Lemma 3.2 (vi), the fact that ∃S(L) is an n-valued �Lukasiewicz algebra and
( [6, Theorem 1.9]) we conclude that

∧m
s=1 ∀wqs(x∧y),qs(x∨y) ∈ B(∃S(L)).

So, by Theorem 3.3 we have that
∧m

s=1 ∀wqs(x∧y),qs(x∨y) = 0. Therefore,
p(x, y, z) = x.

Corollary 3.2.

(i) MLm
n is arithmetic,

(ii) for each L ∈ MLm
n and a, b, c, d ∈ L, it is verified that (c, d) ∈ θ(a, b)

if and only if p(a, b, c) = p(a, b, d), i.e. MLm
n has equationally definable

principal congruences,

(iii) every principal congruence on L ∈ MLm
n is a factor congruence,

(iv) the principal congruences on L ∈ MLm
n form a sublattice of the lattice

Con(L),

(v) each compact congruence on L ∈ MLm
n is a principal congruence,

(vi) the congruences on each L ∈ MLm
n are regular, normal and filtral,

(vii) L ∈ MLm
n has the congruence extension property.

Lemma 3.3 will allow us to determine the principal congruences on MLm
n -

algebras.

Lemma 3.3. Let L ∈ MLm
n . Then

(i) θ(a, b) = θ(
∧m

s=1 ∀wqs(a∧b),qs(a∨b), 1),

(ii) [1]θ(a,b) = [
∧m

s=1 ∀wqs(a∧b),qs(a∨b)).

Proof. (i) Bearing in mind the definitions of qsz and wz,t with z, t ∈ L and
the fact that (a∧ b, a∨ b) ∈ θ(a, b) we infer that (

∧m
s=1 ∀wqs(a∧b),qs(a∨b), 1) ∈

θ(a, b). On the other hand, (a∧∧m
s=1 ∀wqs(a∧b),qs(a∨b), a) ∈ θ(

∧m
s=1 ∀wqs(a∧b),

qs(a∨b), 1) and (b ∧ ∧m
s=1 ∀wqs(a∧b),qs(a∨b), a) ∈ θ(

∧m
s=1 ∀wqs(a∧b),qs(a∨b), 1)

and so, from Lemma 3.2 (v) it results that θ(a, b) ∈ θ(
∧m

s=1 ∀wqs(a∧b),qs(a∨b),
1). Consequently (i) holds.

(ii) Let x ∈ [
∧m

s=1 ∀wqs(a∧b),qs(a∨b)). Hence, by Theorem 3.1 and (i) we
conclude that x ∈ [1]θ(a,b). On the other hand, let x ∈ [1]θ(a,b). By virtue
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of item (ii) in Corollary 3.2 we have that p(a, b, x) = p(a, b, 1) and so,
(
∧m

s=1 ∀wqs(a∧b),qs(a∨b)∧x)∨(f
∧m

s=1 ∀wqs(a∧b),qs(a∨b)∧a)=(
∧m

s=1 ∀wqs(a∧b),qs

(a∨b)∧1)∨(f
∧m

s=1 ∀wqs(a∧b),qs(a∨b)∧a). Hence, ((
∧m

s=1 ∀wqs(a∧b),qs(a∨b)∧x)∨
(f

∧m
s=1 ∀wqs(a∧b),qs(a∨b) ∧ a)) ∧ ∧m

s=1 ∀wqs(a∧b),qs(a∨b) = ((
∧m

s=1

∀wqs(a∧b),qs(a∨b )∧1)∨(f
∧m

s=1 ∀wqs(a∧b),qs(a∨b)∧a))∧∧m
s=1 ∀wqs(a∧b),qs(a∨b),

which implies by Lemma 3.2 (ii) and [6] that
∧m

s=1 ∀wqs(a∧b),qs(a∨b) ∧ x =
∧m

s=1 ∀wqs(a∧b),qs(a∨b) and so,
∧m

s=1 ∀wqs(a∧b),qs(a∨b) ≤ x. Therefore, [1]θ(a,b)

⊆ [
∧m

s=1 ∀wqs(a∧b),qs(a∨ b)).

Theorem 3.6. Let L ∈ MLm
n , and a, b ∈ L. Then θ(a, b) = {(x, y) ∈ L2 :

x ∧ ∧m
s=1 ∀wqs(a∧b),qs(a∨b) = y ∧ ∧m

s=1 ∀wqs(a∧b),qs(a∨b)}.

Proof. From Theorem 3.1 and (ii) in Lemma 3.3 we have that θ(a, b) =
R([1]θ(a,b)) = R([

∧m
s=1 ∀wqs(a∧b),qs(a∨b))) = {(x, y) ∈ L2 : x∧∧m

s=1 ∀wqs(a∧b),

qs(a∨b) = y ∧ ∧m
s=1 ∀wqs(a∧b),qs(a∨b)}.

4. Functional Representation for MLm
n -Algebras

Multipliers have been studied in different branches of mathematic, for exam-
ple in semilattices and lattices from the point of view of interior operators by
Szász [29], Szász and Szendrei [30] and Kolibiar [23], in semigroups by Pet-
rich [26] and Laca and Raeburn [24], in rings by M. Ashraf and A. Shakir
([2]), in f-rings by P. Colville, G. Davis, K. Keimel in [8], in lattices and
BCK-algebras by W. H. Cornish in [9,10], in subtraction algebras by Y. H.
Yon and K. H. Kim ([32]), and in implicative algebras by J. Cirulis ([7]).
On the other hand, in [16] we introduced the concept of multiplier in Lm

n -
algebras. In this section, we will extend these last results in order to get
a functional representation for monadic Lm

n -algebras, and in particular, for
monadic �Lukasiewicz algebras of order n.

Let L be an Lm
n -algebra and I ⊆ L. Recall that I is a 1-ideal of L if I is

an ideal of the lattice L which verifies the condition: x ∈ I implies D1x ∈ I
([16]).

Definition 4.1. Let L ∈ MLm
n . A non-empty set I of L is a q-ideal of L, if

I is a 1-ideal of L and verifies the following condition: x ∈ I implies ∃x ∈ I.

Let us observe that {0} and L are q-ideals of L. In what follows we will
denote by Iq(L) the set of all q-ideals of L.

Example 4.1. Let L be the L2
3–algebra whose Hasse diagram and the ope-

rations are the following ones:
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x 0 a b c d e g h i j k m n 1
fx 1 n m k i j h g e d c a b 0

D1x 0 g g g g g g h 1 1 1 1 1 1
D2x 0 0 0 0 g g g h h h h 1 1 1
∃x 0 a b c d e g h i j k m n 1

Then we have that I = {0, a, b, c, d, e, g} is a proper q-ideal of L.

Lemma 4.1. Let L ∈ MLm
n and I ∈ Iq(L). If x ∈ I then ∃x ∈ I ∩ S(∃L).

Proof. From the hypothesis and Definition 4.1 follow that D1∃x ∈ I. Hence
from (Gl8) and (GL7) we have that ∃x ∈ I, which allows us to conclude the
proof.

Definition 4.2. Let L ∈ MLm
n and I ∈ Iq(L). A q-multiplier on L is a

map h : I → L, which verifies the following condition:
h(e ∧ x) = e ∧ h(x), for each e ∈ L and x ∈ I ∩ S(∃L).

Let L ∈ MLm
n . We will denote by M∃(I, L) the set of all q-multipliers

having domain I ∈ Iq(L) and by M∃(L) =
⋃

I∈Iq(L) M∃(I, L) the set of all
q-multipliers of L.

Remark 4.1. The maps 0,1 : L → L defined by 0(x) = 0 and 1(x) = x for
all x ∈ L are q-multipliers.

Lemma 4.2. Let L ∈ MLm
n and I ∈ Iq(L). If f : I → L is a q-multiplier of

L, then f(x) ≤ x ≤ ∃x for all x ∈ I.

Proof. Taking into account Definition 4.2, (E2) and Lemma 4.1 we have
that f(x) = f(x ∧ ∃x) = x ∧ f(∃x) ≤ x ≤ ∃x.

Lemma 4.3. Let L ∈ MLm
n and h, g ∈ M∃(I, L). If h(x) = g(x) for all

x ∈ I ∩ S(∃L), then h(x) = g(x) for all x ∈ I.

Proof. It follows by Lemma 4.1, Definition 4.2 and the hypothesis.
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Proposition 4.1. Let L ∈ MLm
n , a ∈ L and I ∈ Iq(L). Then, the map

ha : I → L defined by ha(x) = a ∧ x for every x ∈ I, is a q-multiplier of L.

Proof. It is routine.

The map ha defined in Proposition 4.1 is called principal q-multiplier.
Besides, if dom ha = L we will denote it by ht

a.

Definition 4.3. Let L ∈ MLm
n . A non-empty set R ⊆ L is regular, if for

all x, y ∈ L such that x ∧ r = y ∧ r for all r ∈ R, then x = y.

We will denote by R(L) = {R ⊆ L: R is a regular subset of L}. Let us
observe that ∃L ∈ R(L). More generally, every subset of L which contains
1 is regular.

Lemma 4.4. If R, T ∈ Iq(L) ∩ R(L), then R ∩ T ∈ Iq(L) ∩ R(L).

Proof. It is routine.

Proposition 4.2. Let L ∈ MLm
n and f1, f2 ∈ M∃(L) such that f1 : I1 → L

y f2 : I2 → L. Then, the operations defined as follows belong to M∃(L):

• f1 ∧ f2 : I1 ∩ I2 → L, (f1 ∧ f2)(x) = f1(x) ∧ f2(x),

• f1 ∨ f2 : I1 ∩ I2 → L, (f1 ∨ f2)(x) = f1(x) ∨ f2(x),

• f∗
j : Ij → L, f∗

j (x) = x ∧ Nfj(D1x), for all j = 1, 2,

• D̃ifj : Ij → L, D̃ifj(x) = x ∧ Difj(D1x), for all j = 1, 2,

• ∀̃fj : Ij → L, ∀̃fj(x) = x ∧ ∀fj(∃x), for all j = 1, 2.

Proof. Following an analogous reasoning to that of [16, Proposition 5], it
only remains to prove that ∀̃fj is a q-multiplier of L. Indeed, let e ∈ L and
x ∈ I ∩S(∃L), then by (E3) we deduce that ∀̃fj(e∧x) = e∧x∧∀fj(∃x∧∃e).
Taking into account that fj ∈ M∃(I, L) and (U9) we have that ∀̃fj(e ∧ x) =
e ∧ x ∧ ∃e ∧ ∀fj∃x. Thus, by (M1) we conclude the proof.

Proposition 4.3. Let 〈L,∨,∧, N, {Di}1≤i≤n−1, 0, 1〉 be an Lm
n -algebra.

Then 〈M∃R(L),∨,∧,∗ , {D̃i}1≤i≤n−1, ∀̃,0,1〉 is an MLm
n -algebra, where

M∃R(L) = {f ∈ M∃(L) : dom f ∈ qI1(L) ∩ R(L)} and the operations
are the ones defined in Proposition 4.2 and Remark 4.1.

Proof. Taking into account [16, Proposition 5], Proposition 4.2 and Lemma
4.4, it only remains to prove that ∀̃ verifies Definition 2.2. We only prove
(U3), (U4) and (U5).

(U3): For all f1, f2 ∈ M∃R(L) such that f1 : I1 → L, f2 : I2 → L and for
all x ∈ I1 ∩ I2, using in turn (E7), Lemma 4.2, (U9), (M1), (E2) and (U3)
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we have that

(∀̃(f1 ∨ ∀̃f2))(x) = x ∧ ∀(f1(∃x) ∨ (∃x ∧ ∀f2(∃x)))

= x ∧ ∀(∃x ∧ (f1(∃x) ∨ ∀f2(∃x)))

= x ∧ ∀(∃x) ∧ ∀(f1(∃x) ∨ ∀f2(∃x))

= x ∧ (∀f1(∃x) ∨ ∀f2(∃x))

= (∀̃f1)(x) ∨ (∀̃f2)(x).

(U4): For all f ∈ M∃R(L), f : I → L and for all x ∈ I ∩ S(∃L), taking
into account (U9), (M1) and (E2) we get

(∀̃D̃if)(x) = x ∧ ∀D̃if(∃x)

= x ∧ ∀(∃x ∧ Dif(D1(∃x)))

= x ∧ ∃x ∧ ∀Dif(D1(∃x))

= x ∧ Di∀f(D1(∃x)).

On the other hand, bearing in mind (GL2), (GL26), (GL6), (GL7) and
(E4) we have that

(D̃i∀̃f)(x) = x ∧ Di∀̃f(D1x)

= x ∧ Di(D1x ∧ ∀f(∃D1x))

= x ∧ DiD1x ∧ Di∀f(∃D1x)

= x ∧ Di∀f(∃D1x)

= x ∧ Di∀f(D1∃x).

From the above assertions it follows that (∀̃D̃if)(x) = (D̃i∀̃f)(x) for all
x ∈ I ∩ S(∃L). Hence, by Lemma 4.3, (∀̃D̃if)(x) = (D̃i∀̃f)(x) for all x ∈ I.

(U5): For all f ∈ M∃R(L), f : I → L and for all x ∈ I ∩ S(∃L), using
(U9), (M1), (E2), (E14), (M3), (U3), we have that

(∀̃(∀̃f)∗2m−1)(x) = x ∧ ∀(∀̃f)∗2m−1(∃x)

= x ∧ ∀(∃x ∧ N2m−1(∀̃f)(D1∃x))

= x ∧ ∀(∃x ∧ N2m−1(D1∃x ∧ ∀f(∃D1∃x))

= x ∧ ∀(∃x ∧ (N2m−1D1∃x ∨ N2m−1∀f(∃D1∃x))

= x ∧ ∀(N2m−1D1∃x ∨ N2m−1∀f(∃D1∃x))

= x ∧ ∀(∀N2m−1D1∃x ∨ N2m−1∀f(∃D1∃x))

= x ∧ (∀N2m−1D1∃x ∨ N2m−1∀f(∃D1∃x))

= x ∧ (N2m−1D1x ∨ N2m−1∀f(∃D1x))
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= x ∧ N2m−1(D1x ∧ ∀f(∃D1x))

= x ∧ N2m−1(∀̃f)(D1x)

= ((∀̃f)∗2m−1)(x), for allx ∈ I ∩ S(∃L).

Hence, by Lemma 4.3, (∀̃(∀̃f)∗2m−1)(x) = ((∀̃f)∗2m−1)(x) for all x ∈ I.

Now, in order to obtain a functional representation for monadic m-genera-
lized �Lukasiewicz algebras of order n we define a binary relation ρ on M∃R(L)
as follows:

(h1, h2) ∈ ρ ⇔ h1(x) = h2(x) for all x ∈ dom(h1) ∩ dom(h2).

Lemma 4.5. ρ is a congruence on the MLm
n -algebra M∃R(L).

Proof. It is routine.

Let h ∈ M∃R(L) with dom h = I. Then [I, h] and qLM denote the
congruence class of h relative to ρ and the quotient algebra M∃R(L)/ρ,
respectively.

Remark 4.2. Let L be an MLm
n -algebra and h ∈ M∃R(L) with dom h = I.

Let us observe that for all a ∈ L we have that [L, ht
a] = [I, ha].

Proposition 4.4. qLM is an MLm
n -algebra, where the operations are de-

fined for all [I1, h1], [I2, h2] ∈ qLM by:

• [I1, h1] ∨ [I2, h2] = [I1 ∩ I2, h1 ∨ h2],

• [I1, h1] ∧ [I2, h2] = [I1 ∩ I2, h1 ∧ h2],

• [I1, h1]∗ = [I1, h∗
1],

• D̃i[I1, h1] = [I1, D̃ih1] for each i, 1 ≤ i ≤ n − 1,

• ∀̃[I1, h1] = [I1, ∀̃h1],

• 0 = [L,0] y 1 = [L,1].

Proof. It follows from Proposition 4.3 and Lemma 4.5.

Theorem 4.1. Let L ∈ MLm
n and v : L → qLM be the function defined by

v(a) = [L, ht
a] for all a ∈ L. Then,

(i) v is a monomorphism in MLm
n ,

(ii) v(L) ∈ R(qLM).

Proof. (i) To prove de injectivity of v let us consider a, b ∈ L such that
v(a) = v(b). Hence, ht

a(x) = a ∧ x = b ∧ x = ht
b(x) for every x ∈ L.

Therefore, by choosing x = 1 we obtain that a = b. Now, following an
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analogous reasoning of [16, Lemma 20], we only show that v(∀a) = ∀̃(v(a))
to complete the proof. Taking into account (U9), (M1) and (E2) we infer
that (∀̃ht

a)(x) = x ∧ ∀ht
a(∃x) = x ∧ ∀(a ∧ ∃x) = x ∧ ∀a ∧ ∃x = x ∧ ∀a =

ht
∀a(x). Hence, from this last assertion, the definition of v and Proposition 4.4

we have that v(∀a) = [L, ht
∀a] = [L, ∀̃(ht

a)] = ∀̃[L, ht
a] = ∀̃(v(a)). (ii) Let

[I1, h1], [I2, h2] ∈ qLM and suppose that [L, ht
a] ∧ [I1, h1] = [L, ht

a] ∧ [I2, h2]
for all [L, ht

a] ∈ v(L). For each a ∈ L, there exists Ka ⊆ L∩ I1 ∩ I2 = I1 ∩ I2
such that ht

a(x)∧h1(x) = ht
a(x)∧h2(x) for every x ∈ Ka. Taking into account

Proposition 4.2, Proposition 4.1, (GL12) and (GL7) we have that ht
a(x) =

∨m−1
p=0 (x ∧ N2pht

a(D1x)) = x ∧ ∨m−1
p=0 N2pht

a(D1x) = x ∧ ∨m−1
p=0 N2p(D1x ∧

a) =
∨m−1

p=0 (x ∧ D1x ∧ N2pa) =
∨m−1

p=0 (x ∧ N2pa) = x ∧ ∨m−1
p=0 N2pa = x ∧ a.

From these assertions we infer that x ∧ a ∧ h1(x) = x ∧ a ∧ h2(x). This
equality and Lemma 4.2 imply that a ∧ h1(x) = a ∧ h2(x) for every a ∈ L.
Hence, taking into account that L ∈ R(L) we conclude that h1(x) = h2(x).

Remark 4.3. Finally, from Theorem 4.1 and Remark 2.1 we obtain a new
functional representation for monadic �Lukasiewicz algebras of order n, as
we previously announced.

Now our attention is focus on define the notions of MLm
n -algebra of frac-

tions and maximal algebra of fractions where the central role in these con-
structions is played by the concept of multiplier. Let us recall that the
concept of maximal lattice of fractions for a distributive lattice was defined
by Schmid in [28] taking as a guide-line the construction of a complete ring
of fractions by partial morphisms introduced by Lambek [25]. On the other
hand, it is worth mentioning that bearing in mind, that a large part of the
researches of the theory of localization and maximal algebras of fraction
in different classes of algebras reveal quite similar techniques and results,
S. Rudeanu in his important paper [27] gave a unifying approach able to
eliminate redundancies. Thus, we will define the following notion.

Definition 4.4. An MLm
n -algebra L′ is called an MLm

n -algebra of fractions
of L if it verifies the following conditions:

(i) L is an MLm
n -subalgebra of L′,

(ii) For every a′, b′, c′ ∈ L′, a′ �= b′ there is e ∈ L such that e ∧ a′ �= e ∧ b′

and ∃D1e ∧ c′ ∈ L.

We will write L � L′ to indicate that L′ is an MLm
n -algebra of fractions

for L.
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Lemma 4.6. Let L ∈ MLm
n and [I, g] ∈ qLM. Then I ⊆ {a ∈ L : ∃̃D̃1[L, ht

a]
∧ [I, g] ∈ v(L)}.
Proof. Using in turn Proposition 4.4, Lemma 4.2, Proposition 4.1, Lemma
4.3, Remark 4.2 and Theorem 4.1 we obtain the proof.

Lemma 4.7. Let L′ ∈ MLm
n , L � L′ and a′ ∈ L′. Then Ia′ = {x ∈ L :

∃D1x ∧ a′ ∈ L} ∈ Iq(L) ∩ R(L).

Proof. Let e ∈ Ia′ . Then by (GL6), (E14) and (E4) we have that ∃D1D1e∧
a′ ∈ L and so, ∃D1∃e ∧ a′ ∈ L . Therefore, Ia′ ∈ Iq(L). To prove that
Ia′ ∈ R(L) let x, y ∈ L such that x ∧ e = y ∧ e for all e ∈ Ia′ and suppose
that x �= y. Hence taking into account that L � L′, there is e1 ∈ Ia′ such that
x∧e1 �= y∧e1, which is a contradiction. Thus, we conclude that Ia′ ∈ R(L).

Lemma 4.8. For every [I, g], [J, s], [H, t] ∈ qLM, if [I, g] �= [J, s] then there
is ao ∈ L such that [I, g]∧ [L, ht

ao
] �= [J, s]∧ [L, ht

ao
] and ∃̃D̃1[L, ht

ao
]∧ [H, t] ∈

v(L).

Proof. Indeed, suppose that for all a ∈ L we have that [I, g] ∧ [L, ht
a] =

[J, s] ∧ [L, ht
a] and so, (ht

a ∧ g)(x) = (ht
a ∧ s)(x) for every x ∈ I ∩ J . Conse-

quently, a ∧ x ∧ g(x) = a ∧ x ∧ s(x). This statement and Lemma 4.2 imply
that a∧g(x) = a∧s(x) and taking into account that L ∈ R(L), we conclude
that g(x) = h(x) for every x ∈ I ∩ J . Therefore, [I, g] = [J, s] which is a
contradiction. On the other hand, as [H, t] ∈ LM by Lemma 4.6 we infer
that H ⊆ {a ∈ L : ∃̃D̃1[L, ht

a]∧ [H, t] ∈ vL(L)}. Hence, since ao ∈ L we have
that ∃̃D̃1[L, ht

ao
] ∧ [H, t] ∈ vL(L).

Now, we will prove that for finite MLm
n -algebras the function v is an

isomorphism.

Theorem 4.2. Let L be a finite MLm
n -algebra. Then v(L) = qLM.

Proof. Let [I, h] ∈ qLM. Since 0 = ∃̃D̃1[L, ht
0] = [L, ht

0] ∈ v(L) and
[I, h]∧ ∃̃D̃1[L, ht

0] = [L, ht
0], we have that B = {[L, ht

x] : [I, h]∧ ∃̃D̃1[L, ht
x] ∈

v(L)} �= ∅. From the hypothesis B is a finite set and so, it has last element
[L, ht

y].
Suppose that [I, h] ∨ ∃̃D̃1[L, ht

y] �= ∃̃D̃1[L, ht
y]. Then by Lemma 4.8 there

is a0 ∈ L such that [L, ht
a0

] ∧ ([I, h] ∨ ∃̃D̃1[L, ht
y]) �= [L, ht

a0
] ∧ ∃̃D̃1[L, ht

y]
and ∃̃D̃1[L, ht

ao
]∧ [I, h] ∈ vL(L). Hence, from the above assertions it follows

that [L, ht
ao

] ∈ B and so [L, ht
ao

] ≤ ∃̃D̃1[L, ht
y]. This statement implies that

[L, ht
a0

] = [L, ht
a0

] ∧ ([I, h] ∨ ∃̃D̃1[L, ht
y]) �= [L, ht

a0
], which is a contradiction.

Then, [I, h] = [I, h] ∧ ∃̃D̃1[L, ht
y] ∈ vL(L) and so qLM ⊆ v(L).
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Theorem 4.3. Let L ∈ MLm
n . Then LM verifies the following conditions:

(i) v(L) � qLM,

(ii) For every MLm
n -algebra L

′
such that L � L

′
, there exists an MLm

n -mo-
nomorphism u : L

′ → LM which induces the canonical monomorphism
vL of L into qLM.

Proof. (i) It follows immediately from Lemma 4.8.
(ii) By Lemma 4.7 for each a′ ∈ L′ we have that Ia′ ∈ Iq(L) ∩ R(L).

Hence, we define the multiplier ha′ : Ia′ → L by ha′(x) = a′ ∧ x and
u : L′ → LM by u(a′) = [Ia′ , ha′ ] for every a′ ∈ L′. Thus, we have that
[L, ht

a′ ] = [Ia′ , ha′ ] and u|L = vL. Then, following an analogous reasoning of
Theorem 4.1 we conclude that u is a monomorphism.

Theorem 4.3 provides the motivation for the following

Definition 4.5. For any MLm
n -algebra L, qLM is called a maximal MLm

n -
algebra of fractions of L.

Final Remarks As MLm
n -algebras for m = 1 coincide with monadic n-valued

�Lukasiewicz algebras, from Definition 4.5, we obtain the maximal algebra
of fractions for these last ones. Furthermore, if the quantifier is the trivial
one, some of the results that have been shown above coincide with those
established by D. Buşneag and F. Chirteş in [5] where they introduced the
concept of n–valued �Lukasiewicz algebra of fractions and proved the exis-
tence of the maximal one. Finally, for n = 2 and m = 1 we obtain a maximal
algebra of fractions for a monadic Boolean algebra.
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Universidad Nacional del Sur
Avda. Alem 1253
Bah́ıa Blanca
Argentina
gallardosss@gmail.com

A. Ziliani

Instituto de Matemática
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