

MICHAEL KAMINSKI**G Extend[i](http://orcid.org/0000-0002-9848-4191)ng the Lambek Calculus with Classical Negation**

Abstract. We present an axiomatization of the non-associative Lambek calculus extended with classical negation for which the frame semantics with the classical interpretation of negation is sound and complete.

Keywords: Lambek calculus, Classical negation, Frame semantics, Sequent calculus.

1. Introduction

This paper deals with the extension of the non-associative Lambek calculus *NL* [\[6](#page-22-0)] with *classical* negation. Namely, what axioms and rules of inference should be added to *NL* to obtain sound and complete frame (ternary relational) semantics (see [\[3\]](#page-22-1)) with the classical interpretation of negation. That is, a world satisfies the negation of a formula if and only if it does not satisfy the formula itself.

A number of extensions of *NL* with negation are known from the literature. However, all of them do not comply with the above semantical approach.

• The extension of **NL** with De Morgan negation in [\[1](#page-22-2)] defined by the axioms

and denoted by *NLN* , is too weak. This is because the valid in the above mentioned semantics sequent (in which, as usual, \neg has the highest preference)

Presented by **Heinrich Wansing**; *Received* December 30, 2019

$$
(\neg A/B) \cdot B \to \neg (A/B) \cdot B \tag{1}
$$

is not derivable in that extension, see Examples [2](#page-3-0) and [3](#page-4-0) in the end of Section [4.](#page-3-1)

- The classical non-associative Lambek calculus *CNL* in [\[2\]](#page-22-3) is too strong, because the sequents $\neg A/B \rightarrow A\rightarrow B$ and $A\rightarrow B \rightarrow \neg A/B$ are derivable in *CNL*, but are not valid.
- The non-associative Lambek calculus with negation and connexive implication in [\[8\]](#page-22-4) is also too strong, because the sequents

1.
$$
\neg(A \setminus B) \rightarrow A \setminus \neg B
$$
 2. $A \setminus \neg B \rightarrow \neg(A \setminus B)$
3. $\neg(A/B) \rightarrow \neg A/B$ 4. $\neg A/B \rightarrow \neg(A/B)$

are derivable in this calculus, but are not valid.

In this paper we present an axiomatization of *NL* extended with negation for which the frame semantics with the classical interpretation of negation is sound and complete. It should be noted however, that our sequent calculus, denoted NLN^+ , is more expressive. Namely, sequents are expressions of the form $\Gamma \to \Delta$, where Γ and Δ are *finite sets* of formulas constructed from propositional variables by means of the Lambek connectives and negation. Such sequents implicitly contain one external conjunction of the elements of Γ and one external disjunction of the elements of $Δ$.

The calculus NLN^+ is tightly related to PNL —the Lambek calculus extended with classical propositional logic, see [\[4](#page-22-5)]. The *PNL* counterpart of an NLN^+ -sequent $\Gamma \to \Delta$ is the *PNL*-formula $\bigwedge_{\alpha \in \Gamma} C \supset \bigvee_{\alpha \in \Gamma} C$ *C*∈Γ *C*∈Δ C. Obviously, they are equivalent with respect to the ternary relational semantics, and it follows from the completeness theorem for NLN^+ (Theorem [30\)](#page-18-0) that NLN^+ corresponds to a conservative fragment of *PNL*. However, an axiomatization of NLN^+ in its own language is not trivial at all: it involves rather complicated rules in the style of resolution calculus.

The paper is organized as follows. In Sections [2](#page-2-0) and [3](#page-2-1) we recall *NL* and its frame semantics. In Section [4](#page-3-1) we state how, in our opinion, the classical negation should behave and present two motivating examples. Then, in Sec-tion [5,](#page-4-1) we recall the definition of **PNL**, define our sequent calculus NLN^+ for the extension of *NL* with classical negation, and prove the soundness theorem. The completeness theorem for NLN^+ is proved in Section [6.](#page-12-0) Fi-nally, in Section [7,](#page-19-0) we replace some of the inference rules of NLN^+ with their equivalent alternatives.

2. The Non-associative Lambek Calculus

The language of the non-associative Lambek calculus *NL* [\[6](#page-22-0)] consists of propositional variables (atomic formulas) and the Lambek connectives \cdot, \cdot, \cdot and /. Expressions of the form $A \to B$, where A and B are formulas, are called sequents.

The axioms of **NL** are sequents of the form

$$
C \to C
$$

and the rules of inference are

(a)
$$
\frac{A \cdot B \to C}{B \to A \setminus C}
$$
 \t\t (b) $\frac{B \to A \setminus C}{A \cdot B \to C}$ \t\t (2)

(a)
$$
\frac{A \cdot B \to C}{A \to C/B}
$$
 (b) $\frac{A \to C/B}{A \cdot B \to C}$ (3)

and

$$
\frac{A \to B \qquad B \to C}{A \to C}
$$

The Pentus interpretation $\llbracket A \rrbracket$ of a formula A in the free group generated by propositional variables is as follows, see [\[7](#page-22-6), Section 2.1].

- If A is a propositional variable, then $[[A]] = A;$
- $[A \cdot B] = [A] [B], [A \setminus B] = [A]^{-1} [B],$ and $[A/B] = [A] [B]^{-1}$.

PROPOSITION 1. [\[7](#page-22-6), Lemma 2.3] $If \vdash_{NL} A \rightarrow B$, then $\llbracket A \rrbracket = \llbracket B \rrbracket$.

Actually, [\[7](#page-22-6), Lemma 2.3] deals with the *associative* Lambek calculus that is stronger than *NL*.

3. The Frame Semantics of *NL*

The semantics of *NL* we consider here is the frame (or ternary relational) semantics from [\[3](#page-22-1)]. Namely, an *interpretation* is a triple $\mathfrak{I} = \langle W, R, V \rangle$, where W is a set of (possible) worlds, R is a ternary (accessibility) relation on W , and V is a (valuation) function from W into sets of propositional variables.

The satisfiability relation \models between worlds in W and formulas is defined as follows. Let $u \in W$.

- If A is a propositional variable, then $\mathfrak{I}, u \models A$, if $A \in V(u)$;
- $\Im, u \models A \cdot B$, if there are $v, w \in W$ such that $R(u, v, w)$ and the following holds: $\mathfrak{I}, v \models A$ and $\mathfrak{I}, w \models B;$
- $\Im, u \models A \backslash B$, if for all $v, w \in W$ such that $R(v, w, u)$ the following holds: $\mathfrak{I}, w \models A$ implies $\mathfrak{I}, v \models B;$
- $\Im, u \models A/B$, if for all $v, w \in W$ such that $R(w, u, v)$ the following holds: $\mathfrak{I}, v \models B$ implies $\mathfrak{I}, w \models A$; and
- $\mathfrak{I}, u \models A \rightarrow B$, if $\mathfrak{I}, u \models A$ implies $\mathfrak{I}, u \models B$.

A formula A (a sequent $A \to B$) is *satisfiable*, if $\mathfrak{I}, u \models A$ (respectively, $\mathfrak{I}, u \models A \rightarrow B$, for some interpretation $\mathfrak{I} = \langle W, R, V \rangle$ and some $u \in W$. Also, we say that $\mathfrak I$ satisfies a formula A (a sequent $A \to B$), denoted $\mathfrak I \models A$ (respectively, $\mathfrak{I} \models A \rightarrow B$), if $\mathfrak{I}, u \models A$ (respectively, $\mathfrak{I}, u \models A \rightarrow B$), for all $u \in W$, and we say that $\mathfrak I$ satisfies a set of formulas Γ (a set of sequents **Σ**), denoted $\mathfrak{I} \models \Gamma$ (respectively, $\mathfrak{I} \models \Sigma$), if \mathfrak{I} satisfies all formulas in Γ (respectively, $\mathfrak I$ satisfies all sequents in Σ).

Finally, a set of sequents Σ *semantically entails* a sequent $A \rightarrow B$, denoted $\Sigma \models A \rightarrow B$, if each interpretation satisfying Σ also satisfies $A \rightarrow B$.

This semantics is strongly sound and strongly complete for *NL*, i.e., for a set of sequents Σ , Σ \vdash $A \rightarrow B$ if and only if Σ \models $A \rightarrow B$, cf. [\[3](#page-22-1), Proposition 1].

4. Extending *NL* **with Classical Negation**

When extending *NL* with classical negation, one would expect the following extension of the frame semantics from Section [3](#page-2-1) to be (strongly) sound and (strongly) complete for the extended *NL*.

• $\mathfrak{I}, u \models \neg A$, if $\mathfrak{I}, u \not\models A$.

EXAMPLE 2. Sequent [\(1\)](#page-1-0) is valid, i.e., it is satisfied by all interpretations.

Indeed, let $\mathfrak{I} = \langle W, R, V \rangle$ be an interpretation, $u \in W$, and let $\mathfrak{I}, u \models$ $(\neg A/B) \cdot B$. That is, there are worlds $v, w \in W$ such that $R(u, v, w)$ and the following holds: $\mathfrak{I}, v \models \neg A/B$ and $\mathfrak{I}, w \models B$. Then, by definition,

$$
\mathfrak{I}, u \models \neg A \tag{4}
$$

Since $\mathfrak{I}, w \models B$ and $R(u, v, w)$, for $\mathfrak{I}, u \models \neg(A/B) \cdot B$ it suffices to show that $\mathfrak{I}, v \models \neg(A/B)$, that, by definition, is $\mathfrak{I}, v \not\models A/B$,

To show the latter, assume to the contrary that $\mathfrak{I}, v \models A/B$. Then, since $\mathfrak{I}, w \models B, \mathfrak{I}, u \models A$ in contradiction with [\(4\)](#page-3-2).

A possible candidate for such an extension is Buszkowski's *NLN* [\[1](#page-22-2)] defined in Section [1.](#page-0-0) Beside of being of interest in its own right, the *NLN* negation is motivated by extensions of categorial grammars. However, as shows the example below, this negation is too weak.

EXAMPLE 3. Sequent (1) is not derivable in NLN .^{[1](#page-4-2)} For the proof, we extend the Pentus interpretation from Section [2](#page-2-0) to negation by

$$
\bullet \ \llbracket \neg A \rrbracket = \llbracket A \rrbracket^{-1}.
$$

Then the proof of [\[7,](#page-22-6) Lemma 2.3] extends to the "associative extension" *LN* of *NLN* .

From this point, the proof of non-derivability of [\(1\)](#page-1-0) is immediate, because $\llbracket (\neg A/B) \cdot B \rrbracket = \llbracket A \rrbracket^{-1}$, whereas $\llbracket \neg (A/B) \cdot B \rrbracket = \llbracket B \rrbracket \llbracket A \rrbracket^{-1} \llbracket B \rrbracket$.

In Example 12 in Section [5](#page-4-1) we present a derivation of (1) in the calculus NLN^+ for which the frame semantics with the classical interpretation of negation is sound and complete.

5. The Calculi *PNL* **and** *NLN* **⁺**

The language of NLN^+ is the language of NLN augmented with \perp (*falsity*). The semantics of \perp is standard:

$$
\bullet\ \Im, u\not\models \bot
$$

and we abbreviate $\neg \bot$ as \top .

As we have already mentioned in the introduction, sequents of NLN^+ are of the form $\Gamma \to \Delta$, where Γ and Δ are finite sets of formulas and we naturally define the satisfiability relation for such sequents by

• $\mathfrak{I}, u \models \Gamma \rightarrow \Delta$, if $\mathfrak{I}, u \not\models A$, for some $A \in \Gamma$, or $\mathfrak{I}, u \models B$, for some $B \in \Delta$.

Satisfiability by an interpretation and semantical entailment extend to NLN^+ sequents in a straightforward manner.

In what follows we use the notation below.

Let Γ be a set of formulas and let C be a formula. We define the sets of formulas $C \cdot \Gamma$ and $\Gamma \cdot C$ by

$$
C\cdot \Gamma=\{C\cdot A: A\in \Gamma\}
$$

and

$$
\Gamma \cdot C = \{A \cdot C : A \in \Gamma\}
$$

¹The author is grateful to Wojciech Buszkowski for the proof.

and for two sets of formulas Γ' and Γ'' we define the set of formulas $\Gamma' \cdot \Gamma''$ by

 $\Gamma' \cdot \Gamma'' = \{A \cdot B : A \in \Gamma' \text{ and } B \in \Gamma''\}$

As usual, for a set of formulas

$$
\Theta_1 \cup \cdots \cup \Theta_m \cup \{C_1, \ldots, C_n\}
$$

we write

 $\Theta_1,\ldots,\Theta_m,C_1,\ldots,C_n$

possibly in a different order.

Finally, two- and one-sided many-formula resolutions [\(12\)](#page-8-0), [\(13\)](#page-8-1), and [\(14\)](#page-8-2) below employ the following notation. For a set of "resolution" formulas $\Theta = \{C_1, \ldots, C_n\}$ we denote by Θ^{\sim} the set of all sets of formulas of the form $\{\widetilde{C}_1,\ldots,\widetilde{C}_n\}$, where $\widetilde{C}_i \in \{\neg C_i, C_i\}$, $i = 1,\ldots,n$.

We precede the definition of NLN^+ with some motivating examples. These examples involve *PNL*—the Lambek calculus extended with classical propositional logic, see [\[4](#page-22-5)], that is tightly related to NLN^+ . The rules of inference of *PNL* are rules [\(2\)](#page-2-2) and [\(3\)](#page-2-2) of the nonassociative Lambek calculus *NL* (where \rightarrow is replaced by \supset) and *modus ponens*

$$
\frac{A, A \supset B}{B}
$$

and the axioms of *PNL* are the axioms of classical propositional calculus

$$
A \supset (B \supset A)
$$

\n
$$
(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))
$$

\n
$$
(\neg A \supset \neg B) \supset ((\neg A \supset B) \supset A)
$$

\n
$$
A \supset (B \supset (A \wedge B))
$$

\n
$$
(A \wedge B) \supset B
$$

\n
$$
A \supset (A \vee B)
$$

\n
$$
B \supset (A \vee B)
$$

\n
$$
(A \supset C) \supset ((B \supset C) \supset (A \vee B) \supset C))
$$

A (strongly) sound and (strongly) complete semantics of *PNL* results in extending the semantics of the Lambek connectives and negation with the ordinary semantics of ∨, ∧, and ⊃. Namely,

• $\mathfrak{I}, u \models A \lor B$, if $\mathfrak{I}, u \models A$ or $\mathfrak{I}, u \models B$;

- $\mathfrak{I}, u \models A \land B$, if $\mathfrak{I}, u \models A$ and $\mathfrak{I}, u \models B$; and
- $\mathfrak{I}, u \models A \supset B$, if $\mathfrak{I}, u \not\models A$ or $\mathfrak{I}, u \models B$.

Remark 4. As it has been already noted in the introduction, the *PNL* counterpart of an NLN^+ -sequent $\Gamma \to \Delta$ is the *PNL*-formula $\bigwedge_{G \subseteq \Gamma} C \supset$

C∈Γ \bigvee C. Obviously, they are semantically equivalent, and it follows from the *C*∈Δ completeness theorem for NLN^+ (Theorem [30](#page-18-0) in Section [6\)](#page-12-0) that NLN^+ corresponds to a (strongly) conservative fragment of *PNL*. Namely,

$$
\{\Gamma_i \to \Delta_i : i \in I\} \vdash_{\mathit{NLN}^+} \Gamma \to \Delta
$$

if and only if

$$
\left\{\bigwedge_{C \in \Gamma_i} C \supset \bigvee_{C \in \Delta_i} C : i \in I \right\} \vdash_{PNL} \bigwedge_{C \in \Gamma} C \supset \bigvee_{C \in \Delta} C
$$

EXAMPLE 5. Let $\Theta = \{C_1, \ldots, C_n\}.$

- If $n = 0$, then $\Theta^{\sim} = {\emptyset}$,
- if $n = 1$, then $\Theta^{\sim} = {\{\{\neg C_1\}, \{C_1\}\}},$
- if $n = 2$, then $\Theta^{\sim} = \{\{\neg C_1, \neg C_2\}, \{C_1, \neg C_2\}, \{\neg C_1, C_2\}, \{C_1, C_2\}\}\$
- etc.

The **PNL** counterpart of a set of formulas $\{\widetilde{C}_1,\ldots,\widetilde{C}_n\} \in \Theta^{\sim}$ is the conjunction \bigwedge^n $\bigwedge_{i=1}^{\tilde{}} \tilde{C}_i$. Since *PNL*-formulas $\bigvee_{\tilde{\Theta} \in \Theta}$ Θ∈Θ∼
- \wedge *^C*∈Θ \widetilde{C} and $\bigwedge_{i=1}^n$ $\bigwedge_{i=1}^{\infty} (\neg C_i \vee C_i)$ are (semantically) equivalent, the former formula is equivalent to \top . Therefore, the "many-formula" resolution

$$
\frac{\{\widetilde{\Theta}, \Gamma \to \Delta : \widetilde{\Theta} \in \Theta^{\sim}\}}{\Gamma \to \Delta} \tag{5}
$$

is sound for the frame semantics.

EXAMPLE 6. If $\Theta \neq \emptyset$, then the **PNL**-formulas $\top \cdot \top$ and V Θ*,*Θ∈Θ[∼] \wedge *C'* ∈ Θ'
´'' ∈ ≙' $C' \cdot C''$ are equivalent, implying the "product" many-

 $C'' \in \Theta''$
formula resolution

$$
\frac{\{\Gamma, \Theta' \cdot \Theta'' \to \Delta : \Theta', \Theta'' \in \Theta^{\sim}\}}{\Gamma, \top \cdot \top \to \Delta}
$$
 (6)

The equivalence of $\top \cdot \top$ and $\bigvee_{\alpha \in \alpha}$ Θ*,*Θ∈Θ[∼] \wedge *C'* ∈ Θ'
^!' ∈ ϴ' $C'' \in \Theta''$
 $\cdot \cdot \cdot$ **1** $C' \cdot C''$ can be shown

(semantically in PNL) as follows. Example [5](#page-6-0) implies that $\top \cdot \top$ is equivalent to

$$
\left(\bigvee_{\Theta'\in\Theta\sim}\bigwedge_{C'\in\Theta'}C'\right)\cdot\left(\bigvee_{\Theta''\in\Theta\sim}\bigwedge_{C''\in\Theta''}C''\right)
$$

that, in turn, is equivalent to

$$
\bigvee_{\Theta',\Theta''\in\Theta^{\sim}}\left(\bigwedge_{C'\in\Theta'}C'\right)\cdot\left(\bigwedge_{C''\in\Theta''}C''\right)
$$

lies
$$
\bigvee_{C'\in\Theta\cap C''\subset\Theta'}\bigwedge_{C'\cdot C''\cdot C''}
$$

 \wedge *C'* ∈ Θ′
´'' ∈ ≙′

Θ*,*Θ∈Θ[∼]

and the latter implies \forall

$$
C'' \in \Theta''
$$
\nThe converse implication is trivial, because $C' \cdot C'' \supset \top \cdot \top$ is a valid formula.

At last, we are ready to define the calculus NLN^+ whose axioms are sequents

 \perp \rightarrow

and

$$
C \to C
$$

and the rules of inference are as follows.

(a)
$$
\frac{A \cdot \Gamma \to C}{\Gamma \to A \setminus C}
$$
 \t\t (b) $\frac{B \to A \setminus C}{A \cdot B \to C}$ \t\t (7)

(a)
$$
\frac{\Gamma \cdot B \to C}{\Gamma \to C/B}
$$
 (b) $\frac{A \to C/B}{A \cdot B \to C}$ (8)

(a)
$$
\frac{\Gamma, C \to \Delta}{\Gamma \to \Delta, \neg C}
$$
 (b) $\frac{\Gamma \to \Delta, C}{\Gamma, \neg C \to \Delta}$ (9)

thinnings

(a)
$$
\frac{\Gamma \to \Delta}{\Gamma \to \Delta, C}
$$
 \t\t (b) $\frac{\Gamma \to \Delta}{\Gamma, C \to \Delta}$ \t\t (10)

mix

$$
\frac{\Gamma' \to \Delta', C \qquad \Gamma'', C \to \Delta''}{\Gamma', \Gamma'' \to \Delta', \Delta''}
$$
 (11)

two-sided many-formula resolution

$$
\frac{\Gamma \to \Delta, A \cdot B \quad \{\Theta', A \to A_{\Theta'} \quad \Theta'', B \to B_{\Theta''} \quad \Gamma, \{\Theta', A, A_{\Theta'}\} \cdot \{\Theta'', B, B_{\Theta''}\} \to \Delta \quad : \Theta', \Theta'' \in \Theta^{\sim}\}}{\Gamma \to \Delta}
$$
\n(12)

and two one-sided many-formula resolutions

$$
\frac{\{\Theta', A \to A_{\Theta'} \quad \{\Theta', A, A_{\Theta'}\} \cdot \Gamma'' \to C \; : \; \Theta' \in \Theta^{\sim}\}}{\Gamma'' \to A \backslash C} \tag{13}
$$

and

$$
\frac{\{\Theta'', B \to B_{\Theta''} \quad \Gamma' \cdot \{\Theta'', B, B_{\Theta''}\} \to C \; : \; \Theta'' \in \Theta^{\sim}\}}{\Gamma' \to C/B} \tag{14}
$$

Rule [\(12\)](#page-8-0) is read as follows: if the sequent $\Gamma \to \Delta$, $A \cdot B$ is derivable and, for a set of "resolution" formulas Θ and all pairs of sets $\Theta', \Theta'' \in \Theta^{\sim}$, there exist formulas $A_{\Theta'}$ and $B_{\Theta''}$ such that the sequents $\Theta', A \to A_{\Theta'}$, $\Theta'', B \to B_{\Theta''}$, and $\Gamma, {\Theta', A, A_{\Theta'}} \cdot {\Theta'', B, B_{\Theta''}} \to \Delta$ are derivable, then the sequent $\Gamma \to \Delta$ is derivable, and similarly for rules [\(13\)](#page-8-1) and [\(14\)](#page-8-2).

REMARK 7. It seems that the "auxiliary" formulas A_{Θ} and B_{Θ} " in the above rules are essential, because the rule

$$
\frac{\Theta' \to A_{\Theta'} \quad \Theta'' \to B_{\Theta''} \quad A_{\Theta'} \cdot B_{\Theta''} \to C}{\Theta' \cdot \Theta'' \to C}
$$

is not sound. In **PNL**, one obtains soundness by replacing A_{Θ} and B_{Θ} with \wedge *C*∈Θ C and Λ *C*∈Θ C, respectively. However, we do not have conjunctions in NLN^+ .

In fact, rules $(7)(a)$ $(7)(a)$ and $(8)(a)$ $(8)(a)$ are redundant, because they follow from (13) and (14) , respectively. Namely, $(7)(a)$ $(7)(a)$ follows from (13) with the empty Θ and $A_{\Theta'}$ being A. Then the first premise of [\(13\)](#page-8-1) is the axiom $A \to A$ and the other premise of [\(13\)](#page-8-1) is the the premise of $(7)(a)$ $(7)(a)$. The proof of $(8)(a)$ $(8)(a)$ from [\(14\)](#page-8-2) is symmetric. Nevertheless, we left those rules to emphasize the similarity with rules $(2)(a)$ $(2)(a)$ and $(3)(a)$ $(3)(a)$ of **NL**.

Also, in view of [\(10\)](#page-7-1), we can, equivalently, replace mix with cut

$$
\frac{\Gamma \to \Delta, C \qquad \Gamma, C \to \Delta}{\Gamma \to \Delta}
$$

However, using mix reduces the size of the derivation trees in the subsequent Examples [10](#page-9-0) and [12](#page-10-0) and Proposition [18.](#page-12-1)

EXAMPLE 8. Rule [\(5\)](#page-6-1) is derivable in NLN^+ . The proof is by a straightforward induction on the number of formulas in Θ.

For the basis, the case of the empty Θ is immediate and for $\Theta = \{C_1\}$ we have

$$
\frac{\Gamma, C_1 \to \Delta}{\Gamma \to \Delta, \neg C_1} (9)(a) \qquad \Gamma, \neg C_1 \to \Delta
$$

$$
\Gamma \to \Delta
$$
 (11)

For the induction step, let Θ and Θ_n be $\{C_1,\ldots,C_n,C_{n+1}\}\$ and $\{C_1,\ldots,C_n\}$, respectively. Then, since each set of formulas in Θ^{\sim} is either of the form $Θ, C_{n+1}$ or of the form $Θ, ∎C_{n+1}$, where $Θ ∈ Θ_n[∼]$, we have

$$
\frac{\{\Theta, \Gamma, C_{n+1} \to \Delta : \Theta \in \Theta_n^{\sim}\}}{\Gamma, C_{n+1} \to \Delta} \text{ induction hypothesis} \qquad \frac{\{\Theta, \Gamma, \neg C_{n+1} \to \Delta : \Theta \in \Theta_n^{\sim}\}}{\Gamma, \neg C_{n+1} \to \Delta} \text{ induction hypothesis}
$$

EXAMPLE 9. The resolution (6) is derivable from two sided many-formula resolution [\(12\)](#page-8-0) by substituting

- $\Gamma, \top \cdot \top$ for Γ ,
- \top for both A and B, and
- \top for all $A_{\Theta'}$ and $B_{\Theta''}.$

Then

- the first premise $\Gamma, \top \cdot \top \rightarrow \Delta, \top \cdot \top$ of [\(12\)](#page-8-0) is derivable, by thinnings, from the axiom $\top \cdot \top \rightarrow \top \cdot \top;$
- the second and the third premises $\Theta', \top \to \top$ and $\Theta'', \top \to \top$ of [\(12\)](#page-8-0) are derivable, by thinnings, from the axiom $\top \to \top$; and
- the last premise Γ , $\{\Theta', \top, \top\} \cdot \{\Theta'', \top, \top\} \to \Delta$ of [\(12\)](#page-8-0) is derivable, also by thinnings, from the corresponding premise $\Gamma, \Theta' \cdot \Theta'' \to \Delta$ of [\(6\)](#page-6-2).

EXAMPLE 10. (Cf. $[4, \text{Example 6}]$ $[4, \text{Example 6}]$.) The following sequents are derivable in NLN^+ .

$$
(a) \perp \cdot B \to \qquad (b) \ A \cdot \perp \to
$$

We only derive sequent (a) . The derivation of sequent (b) is symmetric.

$$
\frac{\bot \to}{\bot \to \bot/B} (10)(a)
$$
\n
$$
\frac{\bot \to \bot/B}{\bot \cdot B \to \bot} (8)(b) \qquad \bot \to (11)
$$

In Example [12](#page-10-0) we show that sequent [\(1\)](#page-1-0) is derivable in NLN^+ . For this derivation we need the following derivable rules.

Proposition 11. *Rules*

(a)
$$
\frac{A \rightarrow \Delta'}{A \cdot B \rightarrow \Delta' \cdot B}
$$
 (b) $\frac{B \rightarrow \Delta''}{A \cdot B \rightarrow A \cdot \Delta''}$ (15)

are derivable.

PROOF. We only prove rule (b) . The proof of rule (a) is symmetric.

Let Δ'' be C_1, C_2, \ldots, C_n . We contend that all premises of [\(12\)](#page-8-0) are derivable in NLN^+ with

- Γ being $A \cdot B$,
- Δ being $A \cdot \Delta''$ (i.e., $A \cdot C_1, A \cdot C_2, \ldots, A \cdot C_n$),
- Θ being Δ'' (i.e., C_1, C_2, \ldots, C_n),
- $A_{\Theta'}$ being \top for all $\Theta' \in \Theta^{\sim}$, and
- B_{Θ} being defined by
	- (i) if $\Theta'' = {\neg C_1, \neg C_2, \dots, \neg C_n}$, then $B_{\Theta''}$ is \bot , and
	- (*ii*) if for some $i = 1, 2, ..., n$, $C_i \in \Theta''$, then $B_{\Theta''}$ is \top ,

Indeed, in such setting, we trivially have the first and the second premises of [\(12\)](#page-8-0).

In case (i) of the definition of $B_{\Theta''}$, it follows from $B \to C_1, C_2, \ldots, C_n$, by $(9)(b)$ $(9)(b)$, that

$$
B, \neg C_1, \neg C_2, \ldots, \neg C_n \rightarrow
$$

implying, by $(10)(a)$ $(10)(a)$,

$$
B, \neg C_1, \neg C_2, \ldots, \neg C_n \to \bot
$$

That is, the third premise of (12) is derivable. Then, by Example $10(b)$ $10(b)$ and thinnings, we obtain

$$
\Gamma, \{\Theta', A, \top\} \cdot \{\Theta'', B, \bot\} \to \Delta
$$

That is, the last premise of [\(12\)](#page-8-0) is derivable as well.

In case (ii) of the definition of $B_{\Theta''}$, the third premise of [\(12\)](#page-8-0) is trivially derivable and since $A \cdot C_i$ is in both $\{\Theta', A, \top\} \cdot \{\Theta'', B, \bot\}$ and Δ , from the axiom $A \cdot C_i \to A \cdot C_i$, by thinnings, we obtain the last premise

$$
\Gamma, \{\Theta', A, \top\} \cdot \{\Theta'', B, \top\} \to \Delta
$$

of [\(12\)](#page-8-0).

This proves our contention. Now, by [\(12\)](#page-8-0) and the definitions of Γ and Δ , we have the desired conclusion $A \cdot B \to A \cdot \Delta''$.

EXAMPLE 12. Sequent [\(1\)](#page-1-0) is derivable in NLN^+ , see the derivation below.

$$
\frac{\neg A/B \rightarrow \neg A/B}{(\neg A/B) \cdot B \rightarrow \neg A} \quad (8)(b) \quad \frac{(A/B) \cdot B \rightarrow A}{\neg A, (A/B) \cdot B \rightarrow} \quad (9)(b)
$$
\n
$$
\frac{(\neg A/B) \cdot B \rightarrow \neg A}{(\neg A/B) \cdot B, (A/B) \cdot B \rightarrow} \quad (10)(a)
$$
\n
$$
\frac{(\neg A/B) \cdot B, (A/B) \cdot B \rightarrow}{\neg A/B \cdot A/B \cdot B \rightarrow} \quad (10)(a)
$$
\n
$$
\frac{\neg A/B, (A/B) \cdot B \rightarrow \bot}{\neg A/B, (A/B) \cdot B \rightarrow \bot} \quad (8)(a)
$$
\n
$$
\frac{\bot/B \rightarrow \bot/B}{\neg A/B \rightarrow \neg (A/B) \cdot B \cdot B} \quad (15)(a)
$$
\n
$$
\frac{\bot/B \rightarrow \bot/B}{(\bot/B) \cdot B \rightarrow} \quad (11)
$$
\n
$$
\frac{(\bot/B) \cdot B \rightarrow \bot}{(\bot/B) \cdot B \rightarrow} \quad (11)
$$

THEOREM 13. (Soundness, cf. [\[3,](#page-22-1) Proposition 1].) *If* $\Sigma \vdash \Gamma \rightarrow \Delta$, then $\Sigma \models \Gamma \rightarrow \Delta$.

In particular, NLN^+ is consistent. In the next section we show that the frame semantics is also (strongly) complete for NLN^+ .

PROOF OF THEOREM [13.](#page-11-0) The proof is by a induction on the derivation length. The basis is immediate and for the induction step we consider only the case of rules (12) and (13) .

For rule [\(12\)](#page-8-0), let $\mathfrak{I} = \langle W, R, V \rangle$ be an interpretation that satisfies all premises of the rule and assume to the contrary that for some world $u \in W$, $\mathfrak{I}, u \not\models \Gamma \rightarrow \Delta$. That is, u satisfies all formulas in Γ , but satisfies no formula in Δ (in J, of course). Then, by the premise $\Gamma \to \Delta$, $A \cdot B$ and the induction hypothesis, $\mathfrak{I}, u \models A \cdot B$. That is, there exists $v, w \in W$ such that $R(u, v, w)$, $\mathfrak{I}, v \models A \text{ and } \mathfrak{I}, w \models B.$

Let $\Theta', \Theta'' \in \Theta^{\sim}$ be such that $\mathfrak{I}, v \models \Theta'$ and $\mathfrak{I}, w \models \Theta''$ and let $A_{\Theta'}$ and $B_{\Theta''}$ be such that $\Theta', A \to A_{\Theta'}$ and $\Theta'', B \to B_{\Theta''}$ are the corresponding premises of the rule. By the induction hypothesis, $\mathfrak{I}, v \models A_{\Theta'}$ and $\mathfrak{I}, w \models$ $B_{\Theta''}.$

Then,

$$
\mathfrak{I}, u \not\models \Gamma, \{\Theta', A, A_{\Theta'}\} \cdot \{\Theta'', B, B_{\Theta''}\} \rightarrow \Delta
$$

which contradicts the induction hypothesis.

For rule [\(13\)](#page-8-1), let $\mathfrak{I} = \langle W, R, V \rangle$ be an interpretation that satisfies all premises of the rule and assume to the contrary that for some world $u \in W$, $\mathfrak{I}, u \not\models \Gamma'' \rightarrow A \backslash C$. That is, $\mathfrak{I}, u \models \Gamma''$, but $\mathfrak{I}, u \not\models A \backslash C$.

By the definition of \models , there exists $v, w \in W$ such that $R(v, w, u)$, $\mathfrak{I}, w \models$ A, but

$$
\mathfrak{I}, v \not\models C \tag{16}
$$

Let $\Theta' \in \Theta^{\sim}$ be such that $\mathfrak{I}, w \models \Theta'$ and let $A_{\Theta'}$ be such that $\Theta', A \rightarrow$ A_{Θ} is the corresponding premise of the rule. By the induction hypothesis, $\mathfrak{I}, w \models A_{\Theta'}$. Then $\mathfrak{I}, v \models {\Theta', A, A_{\Theta'}}$ \cdot Γ'' . Therefore, by the premise

 $\{\Theta', A, A_{\Theta'}\}\cdot \Gamma'' \to C$ and (again) by the induction hypothesis, $\mathfrak{I}, v \models C$ which contradicts (16) .

COROLLARY 14. NLN^+ *is a strongly conservative extension of* NL *.*

PROOF. This is because the relational semantics is sound for NLN^+ (Theorem [13\)](#page-11-0) and strongly complete for *NL* [\[3](#page-22-1), Proposition 1].

6. Completeness

The proof of the completeness theorem, i.e., that $\Sigma \models \Gamma \rightarrow \Delta$ implies $\Sigma \vdash \Gamma \rightarrow \Delta$, is similar to that of [\[4,](#page-22-5) Theorem 15]. It follows the standard construction, but is more involved because of the presence of negation and the absence of conjunction/disjunction.

For a set of formulas Θ , we write $\Sigma \vdash \Theta \to \Delta$ if for some finite subset Γ of Θ , $\Sigma \vdash \Gamma \rightarrow \Delta$.

Definition 15. A set of formulas Γ is called **^Σ**-*consistent* if **^Σ** ^Γ [→]. Otherwise, it is called **Σ**-*inconsistent*.

EXAMPLE 16. The set of formulas $\Gamma, C, \neg C$ is inconsistent because

$$
\frac{C \to C}{C, \neg C \to} \quad (9)(b)
$$

\n
$$
\Gamma, C, \neg C \to
$$
 a number of thinnings (10)(b)

In what follows by "maximal" we mean maximal with respect to inclusion. EXAMPLE 17. Let Σ be a set of sequents, $\mathfrak{I} = \langle W, R, V \rangle$ be an interpretation satisfying Σ , and let $u \in W$. Then

$$
[u]_{\mathfrak{I}} = \{C : \mathfrak{I}, u \models C\}
$$
 (17)

is a maximal **Σ**-consistent set of formulas.

For the proof of the completeness theorem we need the following wellknown auxiliary results.

PROPOSITION 18. If

$$
\Sigma \not\vdash \Gamma \to \Delta \tag{18}
$$

then, for each formula C*,*

$$
\Sigma \not\vdash \Gamma, C \to \Delta \tag{19}
$$

or

$$
\Sigma \not\vdash \Gamma, \neg C \to \Delta \tag{20}
$$

PROOF. Assume to the contrary that neither (19) nor (20) . That is, there are finite subsets Θ' and Θ'' of Γ such that

$$
\Sigma \vdash \Theta', C \to \Delta
$$

and

$$
\Sigma \vdash \Theta'', \neg C \to \Delta
$$

Then

$$
\frac{\Sigma \vdash \Theta', C \to \Delta}{\Sigma \vdash \Theta' \to \Delta, \neg C} (9)(a) \qquad \Sigma \vdash \Theta'', \neg C \to \Delta \atop \Sigma \vdash \Theta', \Theta'' \to \Delta} (11)
$$

which contradicts (18) .

Corollary 19. *A* **Σ***-consistent set of formulas* Γ *is maximal* **Σ***-consistent if and only if for each formula* C, either $C \in \Gamma$ or $\neg C \in \Gamma$.

PROOF. The "if" direction of the corollary is Example [16](#page-12-5) and the "only if" direction of the corollary is Proposition [18](#page-12-1) with empty Δ .

Corollary 20. *Let* Γ *be a maximal* **Σ***-consistent set of formulas. If*

$$
\Sigma \vdash \Gamma \to C \tag{21}
$$

then $C \in \Gamma$ *.*

PROOF. If $C \notin \Gamma$, then, by Corollary [19,](#page-13-0) $\neg C \in \Gamma$ which, together with [\(21\)](#page-13-1), contradicts **Σ**-consistency of Γ.

PROPOSITION 21. If $\Sigma \nvDash \Gamma \rightarrow \Delta$, then there is a maximal Σ -consistent set *of formulas* Θ *including* Γ *such that* $\Sigma \not\vdash \Theta \rightarrow \Delta$ *.*

PROOF. Consider the family $\mathcal F$ of sets of formulas defined by

$$
\mathcal{F} = \{ \Phi : \Sigma \not\vdash \Phi \to \Delta \text{ and } \Gamma \subseteq \Phi \}
$$

This family is not empty, because it contains Γ and, by compactness of \vdash , it is inductively ordered by inclusion. Therefore, by Zorn's lemma, $\mathcal F$ has a maximal (with respect to inclusion, of course) element Θ . Since $\Sigma \not\vdash \Theta \rightarrow \Delta$, this Θ is Σ -consistent. Thus, by Corollary [19,](#page-13-0) for the proof that Θ is maximal **Σ**-consistent, it suffices to show that for each formula C, either $C \in \Theta$ or $\neg C \in \Theta$, which follows from maximality of Θ in $\mathcal F$ and Proposition [18.](#page-12-1)

Theorem 22. *Let* Γ *be a maximal* **Σ***-consistent set of formulas containing* ^A·B*. Then, there exist a maximal* **^Σ***-consistent sets of formulas* ^Γ *containing* A and Γ'' *containing* B *such that* $\Gamma' \cdot \Gamma'' \subset \Gamma$ *.*

For the proof of Theorem [22](#page-13-2) we need the lemma below.

LEMMA 23. Let Γ be a Σ -consistent finite set of formulas such that Σ \vdash $\Gamma \to A \cdot B$. Then, for each finite set of formulas Θ there exist $\Theta', \Theta'' \in \Theta^{\sim}$ *such that all three sets of formulas*

\n- $$
\Theta', A
$$
,
\n- Θ'', B , and
\n- Γ , $\{\Theta', A\}$. $\{\Theta'', B\}$
\n
\n(22)

are **Σ***-consistent.*

PROOF. Since Γ is Σ -consistent and $\Sigma \vdash \Gamma \rightarrow A \cdot B$, by (the contraposition of) two-sided many-formula resolution [\(12\)](#page-8-0) with empty Δ , there is a pair of sets of formulas $\Theta', \Theta'' \in \Theta^{\sim}$ such that

$$
\Sigma \not\vdash \Gamma, \{\Theta', A, A_{\Theta'_n}\} \cdot \{\Theta'', B, B_{\Theta''}\} \to \tag{23}
$$

for all formulas $A_{\Theta'}$ and $B_{\Theta''}$ satisfying $\Sigma \vdash \Theta', A \to A_{\Theta''}$ and $\Sigma \vdash \Theta'', B \to A_{\Theta''}$ $B_{\Theta''}.$

It follows from [\(23\)](#page-14-0) that Γ , $\{\Theta', A\}$ · $\{\Theta'', B\}$ is Σ -consistent. For the proof that both sets of formulas Θ' , A and Θ'' , B are also **Σ**-consistent, assume to the contrary, that $\Sigma \vdash \Theta', A \to \text{or } \Sigma \vdash \Theta'', B \to \text{and define the formulas}$ $A_{\Theta'}$ and $B_{\Theta''}$ by

$$
A_{\Theta'} = \begin{cases} \perp, & \text{if } \Sigma \vdash \Theta', A \rightarrow \\ \top, & \text{otherwise} \end{cases}
$$

and

$$
B_{\Theta''} = \begin{cases} \perp, & \text{if } \Sigma \vdash \Theta'', B \to \\ \top, & \text{otherwise} \end{cases}
$$

Then one of the formulas $A_{\Theta'}$ or $B_{\Theta''}$ is \perp , implying, by Example [10](#page-9-0) and thinning $(10)(b)$ $(10)(b)$,

 $\Sigma \vdash \Gamma, \{\Theta', A, A_{\Theta'}\} \cdot \{\Theta'', B, B_{\Theta''}\} \rightarrow$

in contradiction with [\(23\)](#page-14-0).

Corollary 24. *Let* Γ *be a* **Σ***-consistent infinite set of formulas such that* $\Sigma \vdash \Gamma \rightarrow A \cdot B$. Then, for each finite set of formulas Θ there exist $\Theta', \Theta'' \in$ Θ[∼] *such that all three sets of formulas in [\(22\)](#page-14-1) are* **Σ***-consistent.*

PROOF. Let $\Gamma = \{C_1, C_2, ...\}$ and let m be such that $\Sigma \vdash C_1, \ldots, C_m \rightarrow$ $A \cdot B$. Let $\Gamma_n = \{C_1, C_2, \ldots, C_m, C_{m+1}, \ldots, C_{m+n}\}, n = 1, 2, \ldots$ Then Γ_n is **Σ**-consistent and $\Sigma \vdash \Gamma_n \to A \cdot B$. Thus, by Lemma [23,](#page-14-2) there is a pair of sets of formulas $\Theta'_n, \Theta''_n \in \Theta^{\sim}$ such that all three sets of formulas Θ'_n, A , Θ''_n, B , and $\Gamma, \{\Theta'_n, A\} \cdot \{\Theta''_n, B\}$ are **Σ**-consistent.

п

Since Θ^{\sim} is finite, for some $\Theta', \Theta'' \in \Theta^{\sim}$ there are infinitely many indices *n* such that $\Theta'_n = \Theta'$ and $\Theta''_n = \Theta''$. By compactness, all three sets in [\(22\)](#page-14-1) are **Σ**-consistent.

PROOF OF THEOREM [22.](#page-13-2) Let C_1, C_2, \ldots be a list of all formulas and let $\Theta_n = \{C_1, C_2, \ldots, C_n\}.$

Consider the infinite tree T whose nodes are pairs of sets $(\Theta', \Theta'') \in \Theta_n^{\sim} \times$ Θ[∼] *ⁿ* , n = 1, 2,..., such that all three sets of formulas in [\(22\)](#page-14-1) are **Σ**-consistent and $({A_1, \ldots, A_n}, {B_1, \ldots, B_n})$ is a child node of $({A_1, \ldots, A_{n-1}}, {B_1, \ldots, A_n})$ B_{n-1} }), $n = 0, 1, \ldots$, where both $\{A_0\}$ and $\{B_0\}$ are \emptyset .

Obviously, the degree of T is at most 4. Since, by Corollary 24 , for each $n = 1, 2, \ldots$, there exist sets of formulas $\Theta', \Theta'' \in \Theta_n^{\sim}$ such that all three sets of formulas in (22) are **Σ**-consistent, the tree is infinite. Thus, by Kőnig's infinity lemma ([\[5](#page-22-7)]), T has an infinite path. Let Γ' and Γ'' be the unions of the first and the second components of the pairs lying on that path, respectively.

By compactness, both Γ' and Γ'' are $\pmb{\Sigma}\text{-consistent}$ and

$$
\mathbf{\Sigma}\not \vdash \Gamma, \{\Gamma', A\}\cdot \{\Gamma'', B\} \rightarrow
$$

implying that $\Gamma, \Gamma' \cdot \Gamma''$ is Σ -consistent,

In addition, by Corollary [19,](#page-13-0) both Γ' and Γ'' are maximal Σ -consistent. Thus, it follows from the same corollary that $A \in \Gamma'$ and $B \in \Gamma''$.

Finally, since Γ is maximal Σ -consistent, $\Gamma' \cdot \Gamma'' \subseteq \Gamma$ as well.

THEOREM 25

- (a) *If* $\Sigma \nvDash \Gamma'' \rightarrow A \setminus C$, then there exists a maximal Σ -consistent set of *formulas* Γ' *containing* A *such that* $\Sigma \nvdash \Gamma' \cdot \Gamma'' \rightarrow C$ *.*
- (b) *If* $\Sigma \not\vdash \Gamma' \rightarrow C/B$ *, then there exists a maximal* Σ -consistent set of *formulas* Γ'' *containing* B *such that* $\Sigma \nvdash \Gamma' \cdot \Gamma'' \rightarrow C$ *.*

The proof of Theorem [25](#page-15-0) is similar to that of Theorem [22.](#page-13-2)

LEMMA 26

- (a) Let Γ'' be a finite set of formulas. If $\Sigma \nvdash \Gamma'' \rightarrow A \backslash C$, then for each *finite set of formulas* Θ *there exists a set of formulas* $\Theta' \in \Theta^{\sim}$ *such that* Θ', A is Σ -consistent and $\Sigma \nvDash {\Theta', A} \cdot \Gamma'' \to C$.
- (b) Let Γ' be a finite set of formulas. If $\Sigma \not\vdash \Gamma' \rightarrow C/B$, then for each *finite set of formulas* Θ *there exists a set of formulas* $\Theta'' \in \Theta^{\sim}$ *such that* Θ'', B *is* Σ *-consistent and* $\Sigma \not\vdash \Gamma' \cdot {\Theta'', B} \rightarrow C$ *.*

PROOF. We only prove part (b) of the lemma. The proof of part (a) is symmetric.

Since $\Sigma \not\vdash \Gamma' \rightarrow C/B$, by (the contraposition of) [\(14\)](#page-8-2), there exists a set of formulas $\Theta''\in \Theta^\sim$ such that

$$
\Sigma \not\vdash \Gamma' \cdot \{\Theta'', B, B_{\Theta''}\} \to C \tag{24}
$$

for all formulas $B_{\Theta''}$ satisfying $\Sigma \vdash \Theta'', B \to B_{\Theta''}$. In particular, it follows that $\Sigma \not\vdash \Gamma' \cdot {\Theta''}, B \rbrace \rightarrow C$.

To show that Θ'', B is Σ -consistent, assume to the contrary, that $\Sigma \vdash$ $\Theta'', B \to$. Then, by [\(10\)](#page-7-1)(a), $\Sigma \vdash \Theta'', B \to \bot$ and we put $B_{\Theta''}$ to be \bot . Then, by Example [10\(](#page-9-0)b) and thinnings, of course, $\vdash \Gamma' \cdot B_{\Theta''} \rightarrow$, from which, by thinnings, we obtain $\Sigma \vdash \Gamma' \cdot \{\Theta'', B, B_{\Theta''}\} \to C$, in contradiction with [\(24\)](#page-16-0).

COROLLARY 27

- (a) Let Γ'' be an infinite set of formulas. If $\Sigma \not\vdash \Gamma'' \rightarrow A \backslash C$, then for each *finite set of formulas* Θ *there exists a set of formulas* $\Theta' \in \Theta^{\sim}$ *such that* Θ', A is Σ -consistent and $\Sigma \nvDash {\Theta', A}$ $\cdot \Gamma'' \to C$.
- (b) Let Γ' be an infinite set of formulas. If $\Sigma \nvdash \Gamma' \rightarrow C/B$, then for each *finite set of formulas* Θ *there exists a set of formulas* $\Theta'' \in \Theta^{\sim}$ *such that* Θ'', B *is* Σ *-consistent and* $\Sigma \not\vdash \Gamma' \cdot {\Theta'', B} \rightarrow C$ *.*

PROOF. We only prove part (b) of the corollary. The proof of part (a) is symmetric.

Let $\Gamma' = \{A_1, A_2, ...\}$ and let $\Gamma'_n = \{A_1, A_2, ..., A_n\}, n = 1, 2, ...$ Then $\Sigma \not\vdash \Gamma'_n \to C/B$ and, by Lemma [26,](#page-15-1) there exists a set of formulas $\Theta''_n \in \Theta^{\sim}$ such that Θ''_n, B is Σ -consistent and $\Sigma \not\vdash \Gamma' \cdot {\Theta''}, B \rbrace \to C$.

Since Θ^{\sim} is finite, for some $\Theta'' \in \Theta^{\sim}$ there are infinitely many indices n such that $\Theta''_n = \Theta''$. By compactness, $\Sigma \not\vdash \Gamma' \cdot {\Theta''}, B$ $\to C$.

PROOF OF THEOREM 25 . We only prove part (b) of the theorem. The proof of part (a) is symmetric.

Let C_1, C_2, \ldots be a list of all formulas and let $\Theta_n = \{C_1, C_2, \ldots, C_n\}.$

Consider the infinite tree T whose nodes are sets $\Theta'' \in \Theta_n^{\sim}$, $n = 1, 2, \ldots$, such that Θ'', B is Σ -consistent and $\Sigma \nvdash \Gamma' \cdot {\Theta''}, B$ $\to C$, and $\{A_1, \ldots, A_n\}$ is a child node of $\{A_1,\ldots,A_{n-1}\}$, where $\{A_0\}$ is \emptyset .

Obviously, T is a binary tree. Since, by Corollary [27,](#page-16-1) for each $n = 1, 2, \ldots$, there exists a set of formulas $\Theta'' \in \Theta_n^{\sim}$ such that Θ'', B is Σ -consistent and $\Sigma \nvDash \Theta'' \cdot {\overline{\Gamma''}}, B \} \rightarrow C$, the tree is infinite. Thus, by Kőnig's Infinity Lemma ([\[5](#page-22-7)]), T has an infinite path. Let Γ'' be the union of of the sets of formulas lying on that path. By compactness, Γ'', B is Σ -consistent and $\Sigma \not\vdash \Gamma' \cdot {\Gamma'', B} \rightarrow C$. In addition, by Corollary [19,](#page-13-0) Γ'' is maximal Σ consistent. Thus, it follows from the same corollary that $B \in \Gamma''$.

DEFINITION 28. Let Σ be a set of NLN^+ sequents. The Σ -*canonical* interpretation $\mathfrak{I}_{\Sigma} = \langle W_{\Sigma}, R_{\Sigma}, V_{\Sigma} \rangle$ is defined as follows.

- W_{Σ} consists of all maximal Σ -consistent sets of formulas;
- $R_{\mathbf{\Sigma}} = \{ (\Gamma, \Gamma', \Gamma'') \in W_{\mathbf{\Sigma}}^3 : \Gamma' \cdot \Gamma'' \subseteq \Gamma \}; \text{ and }$
- $V_{\Sigma}(\Gamma) = \Gamma \cap \mathcal{P}$, where $\mathcal P$ is the set of all propositional variables (atomic formulas).

THEOREM 29. Let $\Gamma \in W_{\Sigma}$. Then, for each formula C, $\mathfrak{I}_{\Sigma}, \Gamma \models C$ if and *only if* $C \in \Gamma$ *.*

PROOF. The proof is by induction on the complexity of C . The basis (i.e., the case of a propositional variable) is immediate. The cases of all connectives are treated in the standard manner, but, for the sake of completeness, we consider them below.

• Let C be of the form $\neg A$ and let \mathfrak{T}_{Σ} , $\Gamma \models \neg A$. By the induction hypothesis $A \notin \Gamma$. Since Γ is maximal Σ -consistent, by Corollary [19,](#page-13-0) $\neg A \in \Gamma$.

Conversely, let $\neg A \in \Gamma$. Then $A \notin \Gamma$, because Γ is Σ -consistent. Thus, by the induction hypothesis, $\mathfrak{I}_{\Sigma}, \Gamma \not\models A$, implying, by definition, $\mathfrak{I}_{\Sigma}, \Gamma \models \neg A$. • Let C be of the form $A \cdot B$ and let \mathfrak{I}_{Σ} , $\Gamma \models A \cdot B$. That is, there are $\Gamma', \Gamma'' \in W_{\Sigma}$ such that $\mathfrak{I}_{\Sigma}, \Gamma' \models A, \mathfrak{I}_{\Sigma}, \Gamma'' \models B$, and $\Gamma' \cdot \Gamma'' \subseteq \Gamma$. By the induction hypothesis, $A \in \Gamma'$ and $B \in \Gamma''$, which, together with $\Gamma' \cdot \Gamma'' \subseteq \Gamma$ imply $A \cdot B \in \Gamma$.

Conversely, let $A \cdot B \in \Gamma$. Then, by Theorem [22,](#page-13-2) there are $\Gamma', \Gamma'' \in W_{\Sigma}$ such that $A \in \Gamma'$, $B \in \Gamma''$, and $\Gamma' \cdot \Gamma'' \subseteq \Gamma$. By the induction hypothesis, $\mathfrak{I}_{\Sigma}, \Gamma' \models A$ and $\mathfrak{I}_{\Sigma}, \Gamma'' \models B$, implying, by definition, $\mathfrak{I}_{\Sigma}, \Gamma \models A \cdot B$.

• Let C be of the form $A \setminus B$ and let $\mathfrak{T}_{\Sigma}, \Gamma'' \models A \setminus B$. (We have replaced Γ in the statement of the theorem with Γ'', because, in our notation, the latter is the third component of R_{Σ} .) Assume to the contrary that $A \setminus B \notin$ Γ''. Then, by (the contraposition of) Corollary [20,](#page-13-3) $\Sigma \nvDash \Gamma'' \rightarrow A \setminus B$ and, by Theorem [25\(](#page-15-0)a), there exists a maximal Σ -consistent set of formulas Γ' containing A such that

$$
\Sigma\not\vdash\Gamma'\cdot\Gamma''\to B
$$

It follows that $\Gamma' \cdot \Gamma''$, $\neg B$ is Σ -consistent. Thus, by Proposition [21,](#page-13-4) there exists a maximal Σ -consistent set of formulas Γ including $\Gamma' \cdot \Gamma''$, $\neg B$.

By definition, $R_{\Sigma}(\Gamma, \Gamma', \Gamma'')$ and, by the induction hypothesis, $\mathfrak{I}_{\Sigma}, \Gamma' \models A$ and \mathfrak{I}_{Σ} , $\Gamma \models \neg B$. This, however, contradicts our assumption \mathfrak{I}_{Σ} , $\Gamma'' \models A \setminus B$.

Conversely, let $A \setminus B \in \Gamma''$ and let Γ and Γ' be maximal Σ -consistent sets of formulas such that $\Gamma' \cdot \Gamma'' \subseteq \Gamma$ and $\mathfrak{I}_{\Sigma}, \Gamma' \models A$. We have to show that $\mathfrak{I}_{\Sigma}, \Gamma \models B.$

By the induction hypothesis, $A \in \Gamma'$ which, together with $A \setminus B \in \Gamma''$ and $\Gamma' \cdot \Gamma'' \subseteq \Gamma$, implies $A \cdot (A \backslash B) \in \Gamma$. Since the sequent $A \cdot (A \backslash B) \to B$ is derivable in **NL** and Γ is maximal **Σ**-consistent, by Corollary [20,](#page-13-3) $B \in \Gamma$. Thus, by the induction hypothesis, \mathfrak{I}_{Σ} , $\Gamma \models B$.

• The case of ℓ is symmetric to that of λ and is omitted.

THEOREM 30 (Completeness) If $\Sigma \models \Gamma \rightarrow \Delta$, then $\Sigma \models \Gamma \rightarrow \Delta$.

PROOF. Assume to the contrary that

$$
\Sigma\not\models\Gamma\to\Delta
$$

Then

$$
\Sigma\not\vdash\Gamma,\neg\Delta\to
$$

implying that Γ , $\neg \Delta$ is Σ -consistent.^{[2](#page-18-1)} Therefore, by Proposition [21,](#page-13-4) there exists a maximal Σ -consistent set of formulas Θ including $\Gamma, \neg \Delta$. By The-orem [29](#page-17-0) and by the definition of the satisfiability relation, $\mathfrak{I}_{\Sigma}, \Theta \models \Gamma$, but $\mathfrak{I}_{\Sigma}, \Theta \not\models C$ for all $C \in \Delta$.

Therefore, by the definition of the satisfiability relation, $\mathfrak{I}_{\Sigma}, \Theta \not\models \Gamma \rightarrow \Delta$ which, together with $\mathfrak{I}_{\Sigma} \models \Sigma$, contradicts this theorem prerequisite. п

REMARK 31. Like in [\[4,](#page-22-5) Section 5] it can be shown that the relational semantics of NLN^+ possess the finite model property. Thus, NLN^+ is strongly decidable.

We conclude this section with the *canonical mapping* of an interpretation satisfying a set of formulas Σ into \mathfrak{I}_{Σ} .

DEFINITION 32. Let Σ be a set of sequents and let $\mathfrak{I} = \langle W, R, V \rangle$ be an interpretation satisfying Σ . The *canonical mapping* $\iota_{\mathfrak{I}} : W \to W_{\Sigma}$ is defined by $\iota_1(u)=[u]_1$, see [\(17\)](#page-12-6) for the definition of $[u]_1$.

Since $\mathfrak{I} \models \Sigma$, this mapping is well-defined.

COROLLARY 33. Let Σ be a set of sequents, $\mathfrak{I} = \langle W, R, V \rangle$ be an inter*pretation satisfying* Σ *, and let* $u, v, w \in W$ *be such that* $R(u, v, w)$ *. Then* $R_{\mathbf{\Sigma}}(\iota_{\mathfrak{I}}(u),\iota_{\mathfrak{I}}(v),\iota_{\mathfrak{I}}(w)).$

PROOF. Assume $R(u, v, w)$ and let $A \in [v]_{\mathfrak{I}}$ and $B \in [w]_{\mathfrak{I}}$. We have to show that $A \cdot B \in [u]_{\mathfrak{I}}$.

By definition, $\mathfrak{I}, v \models A$ and $\mathfrak{I}, w \models B$, which, together with $R(u, v, w)$, implies $\mathfrak{I}, u \models A \cdot B$. Thus, by definition, we have the desired containment $A \cdot B \in [u]_{\mathfrak{I}}.$

²Of course, $\neg \Delta = \{\neg C : C \in \Delta\}.$

7. Restating the Resolution Rules

It follows from the proofs of Lemmas [23](#page-14-2) and [26](#page-15-1) that we may restrict twosided many-formula resolution [\(12\)](#page-8-0) and one-sided many-formula resolutions [\(13\)](#page-8-1) and [\(14\)](#page-8-2) to the cases in which all $A_{\Theta'}$ and all $B_{\Theta''}$ are in { \bot , \top }.

Therefore, two-sided many-formula resolution [\(12\)](#page-8-0) can be equivalently restated as:

If the sequent $\Gamma \rightarrow A \cdot B$ *is derivable and for each two elements* Θ' *and* Θ *of* Θ[∼] *the sequent in one of the clauses* (i)–(iii) *below is derivable, then the sequent* $\Gamma \rightarrow i\text{s}$ *derivable.*

(*i*) Θ' , $A \rightarrow$, *or*

$$
(ii) \ \Theta'', B \to, \ or
$$

(iii) Γ , {Θ', A} · {Θ'', B} \rightarrow ,

cf. [\(22\)](#page-14-1).

This rule of inference will be referred to as *modified* two-sided manyformula resolution.

Lemma [23](#page-14-2) follows immediately form (the contraposition of) this rule. Indeed, assume to the contrary that for any two elements Θ' and Θ'' of Θ^{\sim} ,

- $\Sigma \vdash \Theta', A \to \text{or}$
- $\Sigma \vdash \Theta'', B \to \text{or}$
- $\Sigma \vdash \Gamma, {\Theta', A} \cdot {\Theta'', B} \rightarrow$.

Then, by the modified two-sided many-formula resolution, we would have $\Sigma \vdash \Gamma \rightarrow$. This, however, contradicts the Σ -consistency of Γ .

On the other hand, the modified two-sided many-formula resolution is derivable from Lemma [23](#page-14-2) and, therefore, is derivable in NLN^+ . For the proof, assume to the contrary that we have all the premises of the modified two-sided many-formula resolution, but the sequent $\Gamma \rightarrow$ is not derivable. Then, by Lemma [23,](#page-14-2) there exist $\Theta', \Theta'' \in \Theta^{\sim}$ such that all three sets of formulas in (22) are Σ -consistent. This, however contradicts derivability of the sequent in one of the above clauses (i) – (iii) .

Similarly, the one-sided many-formula resolution [\(13\)](#page-8-1) can be equivalently restated as:

If for each element Θ' *of* Θ^{\sim} *the sequent in one of the clauses* (*i*)–(*ii*) *below is derivable, then the sequent* $\Gamma'' \to A \backslash C$ *is derivable.*

- (*i*) Θ' , $A \rightarrow$, *or*
- (*ii*) $\{\Theta', A\} \cdot \Gamma'' \to C.$

Like in the case of the modified two-sided many-formula resolution, it can be shown that this modified one-sided many-formula resolution is equivalent to Lemma $26(a)$ $26(a)$ that follows immediately form (the contraposition of) this rule.

Indeed, assume to the contrary that for each element Θ' of Θ^{\sim} ,

- $\Sigma \vdash \Theta', A \to \text{or}$
- $\Sigma \vdash \{\Theta', A\} \cdot \Gamma'' \to C.$

Then, by the modified one-sided many-formula resolution [\(13\)](#page-8-1), we would have $\Sigma \vdash \Gamma'' \to A \backslash C$. This, however, contradicts the lemma prerequisite.

Conversely, the above modified one-sided many-formula resolution is derivable from Lemma $26(a)$ $26(a)$. For the proof, assume to the contrary that we have all the premises of that modified resolution, but the sequent $\Gamma'' \to A \backslash C$. is not derivable. Then, by Lemma [26\(](#page-15-1)a), there exists a $\Theta' \in \Theta^{\sim}$ such that $Θ'$, A is Σ-consistent and Σ \forall { $Θ'$, A}Γ'' → C. This, however contradicts derivability of the sequent in one of the above clauses (i) or (ii) .

Symmetrically, the one-sided many-formula resolution [\(14\)](#page-8-2) is restated as: *If for each element* Θ'' *of* Θ^{\sim} *the sequent in one of the clauses* (*i*)–(*ii*) *below is derivable, then the sequent* $\Gamma' \to C/B$ *is derivable.*

 $(i) \Theta'', B \rightarrow, \text{ or}$

$$
(ii) \ \Gamma' \cdot \{\Theta'', B\} \to C.
$$

We collect the above equivalences of the resolution rules in Theorem [34](#page-20-0) below. To state this theorem, we need one more bit of notation: we denote by NLN_M^+ the calculus resulting from NLN^+ in replacing rules [\(12\)](#page-8-0), [\(13\)](#page-8-1), and [\(14\)](#page-8-2) with their modified counterparts.

THEOREM 34. *Calculi* NLN^+ *and* NLN_M^+ *are deductively equivalent.*

Even though, using $N\!LN_M^+$ instead of $N\!LN^+$ shortens the proofs of Lemmas [23](#page-14-2) and [26,](#page-15-1) the former looks very nontraditional. We believe that the rules (12) , (13) , and (14) are much easier to comprehend.

We conclude this section with the derivation of rules [\(12\)](#page-8-0) and [\(13\)](#page-8-1) in NLN_M^+ , but with a different set of resolution formulas, cf. Remark [7.](#page-8-3) The derivations of [\(14\)](#page-8-2) from its modification is similar. Note that the above derivability is already provided by the completeness theorem for the modified rules (which are equivalent to Lemmas [23](#page-14-2) and [26\)](#page-15-1).

So, for rule [\(12\)](#page-8-0), we shall prove that

$$
\Gamma, \neg \Delta \to \tag{25}
$$

is derivable from the premises of (12) by the modified two-sided manyformula resolution. Then the desired sequent $\Gamma \to \Delta$ would follow from [\(25\)](#page-20-1) by (9) and (11) .

The premise $\Gamma, \neg \Delta \to A \cdot B$ of the modified rule follows from the premise $\Gamma \to \Delta$, $A \cdot B$ of [\(12\)](#page-8-0) by [\(9\)](#page-7-0)(b).

Given the other premises of (12) , we contend that all the premises of its modification in which the set of resolution formulas is the union of Θ from (12) ,

$$
\Theta_1 = \{A_{\Theta'} : \Theta', A \to A_{\Theta'} \text{ is a premise of (12)}\}
$$

and

$$
\Theta_2 = \{B_{\Theta''}: \Theta'', B \to B_{\Theta''} \text{ is a premise of (12)}\}
$$

are derivable.

Let

$$
\Theta_0', \Theta_0' \in (\Theta \cup \Theta_1 \cup \Theta_2)^\sim
$$

Then

• $\Theta'_0 = \Theta' \cup \Theta'_1 \cup \Theta'_2$, where $\Theta' \in \Theta^{\sim}$, $\Theta'_1 \in \Theta^{\sim}$, and $\Theta'_2 \in \Theta^{\sim}$; and

• Θ'_0 $\theta'_1 = \Theta'' \cup \Theta''_1 \cup \Theta''_2$, where $\Theta'' \in \Theta^{\sim}$, $\Theta''_1 \in \Theta^{\sim}$, and $\Theta''_2 \in \Theta^{\sim}$.

Now, if $\neg A_{\Theta'} \in \Theta'_1$, then $\Theta', \Theta'_1, \Theta'_2, A \to$ (that is premise *(i)* of the modified rule) is derivable from premise $\Theta', A \to A_{\Theta'}$ of [\(12\)](#page-8-0).

If $\neg B_{\Theta''} \in \Theta''_2$, then $\Theta'', \Theta''_1, \Theta''_2, B \to$ (that is premise *(ii)* of the modified rule) is derivable from premise $\Theta'', B \to B_{\Theta''}$ of [\(12\)](#page-8-0);.

Finally, if $A_{\Theta} \in \Theta'_1$ and $B_{\Theta''} \in \Theta''_2$, then

$$
\Gamma,\neg \Delta, \{\Theta', \Theta'_1, \Theta''_2, A\} \cdot \{\Theta'', \Theta'_1, \Theta''_2, A\} \rightarrow
$$

(that is premise (iii) of the modified rule) is derivable from premise

$$
\Gamma, \{\Theta', A, A_{\Theta'}\} \cdot \{\Theta'', B, B_{\Theta''}\} \to \Delta
$$

of [\(12\)](#page-8-0).

Thus, by the modified two-sided many-formula resolution, [\(25\)](#page-20-1) is derivable as well.

The case of one-sided many formula-resolution [\(13\)](#page-8-1) and its modification is treated in a similar manner. Given the premises of rule [\(13\)](#page-8-1), we contend that all the premises of its modification in which the set of resolution formulas is the union of Θ from [\(13\)](#page-8-1) and

$$
\Theta_1 = \{A_{\Theta'} : \Theta', A \to A_{\Theta'} \text{ is a premise of (13)}\}
$$

are derivable.

Indeed, each set in $(\Theta \cup \Theta_1)^\sim$ is of the form $\Theta' \cup \Theta'_1$, where $\Theta' \in \Theta^\sim$ and $\Theta_1' \in \Theta_1^{\sim}$.

If $\neg A_{\Theta'} \in \Theta'_1$, then $\Theta', \Theta'_1, A \to$ (that is premise *(i)* of the modified rule) is derivable from premise $\Theta', A \to A_{\Theta'}$ of [\(13\)](#page-8-1) and, if $A_{\Theta'} \in \Theta'_1$, then $\{\Theta', \Theta'_1, A\} \cdot \Gamma'' \to C$ (that is premise *(ii)* of the modified rule) is derivable from premise $\{\Theta', A, A_{\Theta'}\} \cdot \Gamma'' \to C$ of [\(13\)](#page-8-1).

Acknowledgements. The author is grateful to Wojciech Buszkowski for his comments on the first version of this paper.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Buszkowski, W., Categorial grammars with negative information, in H. Wansing, (ed.), *Negation. A Notion in Focus*, De Gruyter, Berlin, 1996, pp. 107–126.
- [2] DE GROOTE, Ph., and F. LAMARCHE., Classical non-associative Lambek calculus., *Studia Logica*, 71:355–388, 2002.
- [3] Došen, K., A brief survey of frames for the Lambek calculus., *Zeitschrift für Mathematische Logik und Grundlagen der Mathematik* 38:179–187, 1992.
- [4] Kaminski, M. and N. Francez, Relational semantics of the Lambek calculus extended with classical propositional logic., *Studia Logica* 102:479–497, 2014.
- [5] KŐNIG, D., Sur les correspondences multivoques des ensembles, *Fundamenta Mathematicae* 8:114–134, 1926.
- [6] Lambek, J., The mathematics of sentence structure, American Mathematical Monthly 65:154–170, 1958; also in W. Buszkowski, W. Marciszewski, and J. van Benthem, (eds.), *Categorial Grammars*, John Benjamins, Amsterdam, 1988, pp. 153–172.
- [7] Pentus, M., Lambek calculus and formal grammars, in *Provability, Complexity, Grammars*, volume 192 of *American Mathematical Society Translations: Series 2*. American Mathematical Society, Providence, RI, 1999, pp. 57–86.
- [8] Wansing, H., A note on negation in categorial grammar, *Logic Journal of the IGPL* 15:271–286, 2007.

M. Kaminski Department of Computer Science Technion – Israel Institute of Technology 3200003 Haifa Israel kaminski@cs.technion.ac.il