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Abstract. We present an axiomatization of the non-associative Lambek calculus ex-

tended with classical negation for which the frame semantics with the classical interpreta-

tion of negation is sound and complete.
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1. Introduction

This paper deals with the extension of the non-associative Lambek calcu-
lus NL [6] with classical negation. Namely, what axioms and rules of infer-
ence should be added to NL to obtain sound and complete frame (ternary
relational) semantics (see [3]) with the classical interpretation of negation.
That is, a world satisfies the negation of a formula if and only if it does not
satisfy the formula itself.

A number of extensions of NL with negation are known from the lit-
erature. However, all of them do not comply with the above semantical
approach.

• The extension of NL with De Morgan negation in [1] defined by the
axioms

A → ¬¬A

and ¬¬A → A

and the rule of inference A → B

¬B → ¬A

and denoted by NLN , is too weak. This is because the valid in the
above mentioned semantics sequent (in which, as usual, ¬ has the highest
preference)
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(¬A/B) · B → ¬(A/B) · B (1)

is not derivable in that extension, see Examples 2 and 3 in the end of
Section 4.

• The classical non-associative Lambek calculus CNL in [2] is too strong,
because the sequents ¬A/B → A\¬B and A\¬B → ¬A/B are derivable
in CNL, but are not valid.

• The non-associative Lambek calculus with negation and connexive im-
plication in [8] is also too strong, because the sequents

1. ¬(A\B) → A\¬B 2. A\¬B → ¬(A\B)
3. ¬(A/B) → ¬A/B 4. ¬A/B → ¬(A/B)

are derivable in this calculus, but are not valid.

In this paper we present an axiomatization of NL extended with negation
for which the frame semantics with the classical interpretation of negation is
sound and complete. It should be noted however, that our sequent calculus,
denoted NLN+, is more expressive. Namely, sequents are expressions of the
form Γ → Δ, where Γ and Δ are finite sets of formulas constructed from
propositional variables by means of the Lambek connectives and negation.
Such sequents implicitly contain one external conjunction of the elements of
Γ and one external disjunction of the elements of Δ.

The calculus NLN+ is tightly related to PNL—the Lambek calculus
extended with classical propositional logic, see [4]. The PNL counterpart of
an NLN+-sequent Γ → Δ is the PNL-formula

∧

C∈Γ

C ⊃ ∨

C∈Δ

C. Obvi-

ously, they are equivalent with respect to the ternary relational semantics,
and it follows from the completeness theorem for NLN+ (Theorem 30) that
NLN+ corresponds to a conservative fragment of PNL. However, an ax-
iomatization of NLN+ in its own language is not trivial at all: it involves
rather complicated rules in the style of resolution calculus.

The paper is organized as follows. In Sections 2 and 3 we recall NL and
its frame semantics. In Section 4 we state how, in our opinion, the classical
negation should behave and present two motivating examples. Then, in Sec-
tion 5, we recall the definition of PNL, define our sequent calculus NLN+

for the extension of NL with classical negation, and prove the soundness
theorem. The completeness theorem for NLN+ is proved in Section 6. Fi-
nally, in Section 7, we replace some of the inference rules of NLN+ with
their equivalent alternatives.
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2. The Non-associative Lambek Calculus

The language of the non-associative Lambek calculus NL [6] consists of
propositional variables (atomic formulas) and the Lambek connectives ·,\,
and /. Expressions of the form A → B, where A and B are formulas, are
called sequents.

The axioms of NL are sequents of the form

C → C

and the rules of inference are

(a)
A · B → C

B → A\C
(b)

B → A\C

A · B → C
(2)

(a)
A · B → C

A → C/B
(b)

A → C/B

A · B → C
(3)

and
A → B B → C

A → C

The Pentus interpretation �A� of a formula A in the free group generated
by propositional variables is as follows, see [7, Section 2.1].

• If A is a propositional variable, then �A� = A;

• �A · B� = �A��B�, �A\B� = �A�−1�B�, and �A/B� = �A��B�−1.

Proposition 1. [7, Lemma 2.3] If �NL A → B, then �A� = �B�.

Actually, [7, Lemma 2.3] deals with the associative Lambek calculus that
is stronger than NL.

3. The Frame Semantics of NL

The semantics of NL we consider here is the frame (or ternary relational)
semantics from [3]. Namely, an interpretation is a triple I = 〈W,R, V 〉, where
W is a set of (possible) worlds, R is a ternary (accessibility) relation on W ,
and V is a (valuation) function from W into sets of propositional variables.

The satisfiability relation |= between worlds in W and formulas is defined
as follows. Let u ∈ W .

• If A is a propositional variable, then I, u |= A, if A ∈ V (u);

• I, u |= A ·B, if there are v, w ∈ W such that R(u, v, w) and the following
holds: I, v |= A and I, w |= B;
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• I, u |= A\B, if for all v, w ∈ W such that R(v, w, u) the following holds:
I, w |= A implies I, v |= B;

• I, u |= A/B, if for all v, w ∈ W such that R(w, u, v) the following holds:
I, v |= B implies I, w |= A; and

• I, u |= A → B, if I, u |= A implies I, u |= B.

A formula A (a sequent A → B) is satisfiable, if I, u |= A (respectively,
I, u |= A → B), for some interpretation I = 〈W,R, V 〉 and some u ∈ W .
Also, we say that I satisfies a formula A (a sequent A → B), denoted I |= A
(respectively, I |= A → B), if I, u |= A (respectively, I, u |= A → B), for
all u ∈ W , and we say that I satisfies a set of formulas Γ (a set of sequents
Σ), denoted I |= Γ (respectively, I |= Σ), if I satisfies all formulas in Γ
(respectively, I satisfies all sequents in Σ).

Finally, a set of sequents Σ semantically entails a sequent A → B, de-
noted Σ |= A → B, if each interpretation satisfying Σ also satisfies A → B.

This semantics is strongly sound and strongly complete for NL, i.e., for
a set of sequents Σ, Σ � A → B if and only if Σ |= A → B, cf. [3,
Proposition 1].

4. Extending NL with Classical Negation

When extending NL with classical negation, one would expect the following
extension of the frame semantics from Section 3 to be (strongly) sound and
(strongly) complete for the extended NL.

• I, u |= ¬A, if I, u �|= A.

Example 2. Sequent (1) is valid, i.e., it is satisfied by all interpretations.
Indeed, let I = 〈W,R, V 〉 be an interpretation, u ∈ W , and let I, u |=

(¬A/B) ·B. That is, there are worlds v, w ∈ W such that R(u, v, w) and the
following holds: I, v |= ¬A/B and I, w |= B. Then, by definition,

I, u |= ¬A (4)

Since I, w |= B and R(u, v, w), for I, u |= ¬(A/B) · B it suffices to show
that I, v |= ¬(A/B), that, by definition, is I, v �|= A/B,

To show the latter, assume to the contrary that I, v |= A/B. Then, since
I, w |= B, I, u |= A in contradiction with (4).

A possible candidate for such an extension is Buszkowski’s NLN [1]
defined in Section 1. Beside of being of interest in its own right, the NLN
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negation is motivated by extensions of categorial grammars. However, as
shows the example below, this negation is too weak.

Example 3. Sequent (1) is not derivable in NLN .1 For the proof, we ex-
tend the Pentus interpretation from Section 2 to negation by

• �¬A� = �A�−1.

Then the proof of [7, Lemma 2.3] extends to the “associative extension” LN
of NLN .

From this point, the proof of non-derivability of (1) is immediate, because
�(¬A/B) · B� = �A�−1, whereas �¬(A/B) · B� = �B��A�−1�B�.

In Example 12 in Section 5 we present a derivation of (1) in the calculus
NLN+ for which the frame semantics with the classical interpretation of
negation is sound and complete.

5. The Calculi PNL and NLN+

The language of NLN+ is the language of NLN augmented with ⊥ (fal-
sity). The semantics of ⊥ is standard:

• I, u �|= ⊥
and we abbreviate ¬⊥ as 
.

As we have already mentioned in the introduction, sequents of NLN+

are of the form Γ → Δ, where Γ and Δ are finite sets of formulas and we
naturally define the satisfiability relation for such sequents by

• I, u |= Γ → Δ, if I, u �|= A, for some A ∈ Γ, or I, u |= B, for some B ∈ Δ.

Satisfiability by an interpretation and semantical entailment extend to
NLN+ sequents in a straightforward manner.

In what follows we use the notation below.
Let Γ be a set of formulas and let C be a formula. We define the sets of

formulas C · Γ and Γ · C by

C · Γ = {C · A : A ∈ Γ}
and

Γ · C = {A · C : A ∈ Γ}

1The author is grateful to Wojciech Buszkowski for the proof.
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and for two sets of formulas Γ′ and Γ′′ we define the set of formulas Γ′ · Γ′′

by

Γ′ · Γ′′ = {A · B : A ∈ Γ′ and B ∈ Γ′′}
As usual, for a set of formulas

Θ1 ∪ · · · ∪ Θm ∪ {C1, . . . , Cn}
we write

Θ1, . . . ,Θm, C1, . . . , Cn

possibly in a different order.
Finally, two- and one-sided many-formula resolutions (12), (13), and (14)

below employ the following notation. For a set of “resolution” formulas
Θ = {C1, . . . , Cn} we denote by Θ∼ the set of all sets of formulas of the
form {C̃1, . . . , C̃n}, where C̃i ∈ {¬Ci, Ci}, i = 1, . . . , n.

We precede the definition of NLN+ with some motivating examples.
These examples involve PNL—the Lambek calculus extended with classical
propositional logic, see [4], that is tightly related to NLN+. The rules of
inference of PNL are rules (2) and (3) of the nonassociative Lambek calculus
NL (where → is replaced by ⊃) and modus ponens

A, A ⊃ B

B

and the axioms of PNL are the axioms of classical propositional calculus

A ⊃ (B ⊃ A)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

(¬A ⊃ ¬B) ⊃ ((¬A ⊃ B) ⊃ A)

A ⊃ (B ⊃ (A ∧ B))

(A ∧ B) ⊃ A

(A ∧ B) ⊃ B

A ⊃ (A ∨ B)

B ⊃ (A ∨ B)

(A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨ B) ⊃ C))

A (strongly) sound and (strongly) complete semantics of PNL results in
extending the semantics of the Lambek connectives and negation with the
ordinary semantics of ∨, ∧, and ⊃. Namely,

• I, u |= A ∨ B, if I, u |= A or I, u |= B;
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• I, u |= A ∧ B, if I, u |= A and I, u |= B; and

• I, u |= A ⊃ B, if I, u �|= A or I, u |= B.

Remark 4. As it has been already noted in the introduction, the PNL
counterpart of an NLN+-sequent Γ → Δ is the PNL-formula

∧

C∈Γ

C ⊃
∨

C∈Δ

C. Obviously, they are semantically equivalent, and it follows from the

completeness theorem for NLN+ (Theorem 30 in Section 6) that NLN+

corresponds to a (strongly) conservative fragment of PNL. Namely,

{Γi → Δi : i ∈ I} �NLN + Γ → Δ

if and only if
⎧
⎨

⎩

∧

C∈Γi

C ⊃
∨

C∈Δi

C : i ∈ I

⎫
⎬

⎭
�PNL

∧

C∈Γ

C ⊃
∨

C∈Δ

C

Example 5. Let Θ = {C1, . . . , Cn}.

• If n = 0, then Θ∼ = {∅},

• if n = 1, then Θ∼ = {{¬C1}, {C1}},

• if n = 2, then Θ∼ = {{¬C1,¬C2}, {C1,¬C2}, {¬C1, C2}, {C1, C2}},

• etc.

The PNL counterpart of a set of formulas {C̃1, . . . , C̃n} ∈ Θ∼ is the

conjunction
n∧

i=1

C̃i. Since PNL-formulas
∨

Θ̃∈Θ∼

∧

C̃∈Θ̃

C̃ and
n∧

i=1

(¬Ci ∨ Ci) are

(semantically) equivalent, the former formula is equivalent to 
. Therefore,
the “many-formula” resolution

{Θ̃, Γ → Δ : Θ̃ ∈ Θ∼}
Γ → Δ

(5)

is sound for the frame semantics.

Example 6. If Θ �= ∅, then the PNL-formulas 
 · 
 and∨

Θ′,Θ′′∈Θ∼

∧

C′ ∈ Θ′
C′′ ∈ Θ′′

C ′ · C ′′ are equivalent, implying the “product” many-

formula resolution
{Γ, Θ′ · Θ′′ → Δ : Θ′, Θ′′ ∈ Θ∼}

Γ,
 · 
 → Δ
(6)
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The equivalence of 
 · 
 and
∨

Θ′,Θ′′∈Θ∼

∧

C′ ∈ Θ′
C′′ ∈ Θ′′

C ′ · C ′′ can be shown

(semantically in PNL) as follows. Example 5 implies that 
·
 is equivalent
to

(
∨

Θ′∈Θ∼

∧

C′∈Θ′
C ′

)

·
(

∨

Θ′′∈Θ∼

∧

C′′∈Θ′′
C ′′

)

that, in turn, is equivalent to

∨

Θ′,Θ′′∈Θ∼

(
∧

C′∈Θ′
C ′

)

·
(

∧

C′′∈Θ′′
C ′′

)

and the latter implies
∨

Θ′,Θ′′∈Θ∼

∧

C′ ∈ Θ′
C′′ ∈ Θ′′

C ′ · C ′′.

The converse implication is trivial, because C ′ · C ′′ ⊃ 
 · 
 is a valid
formula.

At last, we are ready to define the calculus NLN+ whose axioms are
sequents

⊥ →
and

C → C

and the rules of inference are as follows.

(a)
A · Γ → C

Γ → A\C
(b)

B → A\C

A · B → C
(7)

(a)
Γ · B → C

Γ → C/B
(b)

A → C/B

A · B → C
(8)

(a)
Γ, C → Δ

Γ → Δ,¬C
(b)

Γ → Δ, C

Γ,¬C → Δ
(9)

thinnings

(a)
Γ → Δ

Γ → Δ, C
(b)

Γ → Δ
Γ, C → Δ

(10)

mix
Γ′ → Δ′, C Γ′′, C → Δ′′

Γ′, Γ′′ → Δ′, Δ′′ (11)
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two-sided many-formula resolution
Γ → Δ, A · B {Θ′, A → AΘ′ Θ′′, B → BΘ′′ Γ, {Θ′, A,AΘ′ } · {Θ′′, B,BΘ′′ } → Δ : Θ′,Θ′′ ∈ Θ∼}

Γ → Δ

(12)

and two one-sided many-formula resolutions

{Θ′, A → AΘ′ {Θ′, A,AΘ′} · Γ′′ → C : Θ′ ∈ Θ∼}
Γ′′ → A\C

(13)

and
{Θ′′, B → BΘ′′ Γ′ · {Θ′′, B,BΘ′′} → C : Θ′′ ∈ Θ∼}

Γ′ → C/B
(14)

Rule (12) is read as follows: if the sequent Γ → Δ, A · B is derivable
and, for a set of “resolution” formulas Θ and all pairs of sets Θ′, Θ′′ ∈ Θ∼,
there exist formulas AΘ′ and BΘ′′ such that the sequents Θ′, A → AΘ′ ,
Θ′′, B → BΘ′′ , and Γ, {Θ′, A,AΘ′} · {Θ′′, B,BΘ′′} → Δ are derivable, then
the sequent Γ → Δ is derivable, and similarly for rules (13) and (14).

Remark 7. It seems that the “auxiliary” formulas AΘ′ and BΘ′′ in the
above rules are essential, because the rule

Θ′ → AΘ′ Θ′′ → BΘ′′ AΘ′ · BΘ′′ → C

Θ′ · Θ′′ → C

is not sound. In PNL, one obtains soundness by replacing AΘ′ and BΘ′′ with∧

C∈Θ′
C and

∧

C∈Θ′′
C, respectively. However, we do not have conjunctions

in NLN+.

In fact, rules (7)(a) and (8)(a) are redundant, because they follow from
(13) and (14), respectively. Namely, (7)(a) follows from (13) with the empty
Θ and AΘ′ being A. Then the first premise of (13) is the axiom A → A and
the other premise of (13) is the the premise of (7)(a). The proof of (8)(a)
from (14) is symmetric. Nevertheless, we left those rules to emphasize the
similarity with rules (2)(a) and (3)(a) of NL.

Also, in view of (10), we can, equivalently, replace mix with cut

Γ → Δ, C Γ, C → Δ
Γ → Δ

However, using mix reduces the size of the derivation trees in the subsequent
Examples 10 and 12 and Proposition 18.

Example 8. Rule (5) is derivable in NLN+. The proof is by a straightfor-
ward induction on the number of formulas in Θ.
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For the basis, the case of the empty Θ is immediate and for Θ = {C1}
we have

Γ, C1 → Δ
Γ → Δ,¬C1

(9)(a) Γ,¬C1 → Δ
Γ → Δ

(11)

For the induction step, let Θ and Θn be {C1, . . . , Cn, Cn+1} and {C1, . . . , Cn},
respectively. Then, since each set of formulas in Θ∼ is either of the form
Θ, Cn+1 or of the form Θ,¬Cn+1, where Θ ∈ Θ∼

n , we have

Example 9. The resolution (6) is derivable from two sided many-formula
resolution (12) by substituting

• Γ,
 · 
 for Γ,

• 
 for both A and B, and

• 
 for all AΘ′ and BΘ′′ .

Then

• the first premise Γ,
 · 
 → Δ,
 · 
 of (12) is derivable, by thinnings,
from the axiom 
 · 
 → 
 · 
;

• the second and the third premises Θ′,
 → 
 and Θ′′,
 → 
 of (12) are
derivable, by thinnings, from the axiom 
 → 
; and

• the last premise Γ, {Θ′,
,
} · {Θ′′,
,
} → Δ of (12) is derivable, also
by thinnings, from the corresponding premise Γ, Θ′ · Θ′′ → Δ of (6).

Example 10. (Cf. [4, Example 6].) The following sequents are derivable in
NLN+.

(a) ⊥ · B → (b) A · ⊥ →
We only derive sequent (a). The derivation of sequent (b) is symmetric.

⊥ →
⊥ → ⊥/B

⊥ · B → ⊥
(10)(a)
(8)(b) ⊥ →

⊥ · B → (11)

In Example 12 we show that sequent (1) is derivable in NLN+. For this
derivation we need the following derivable rules.
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Proposition 11. Rules

(a)
A → Δ′

A · B → Δ′ · B
(b)

B → Δ′′

A · B → A · Δ′′ (15)

are derivable.

Proof. We only prove rule (b). The proof of rule (a) is symmetric.
Let Δ′′ be C1, C2, . . . , Cn. We contend that all premises of (12) are deriv-

able in NLN+ with

• Γ being A · B,

• Δ being A · Δ′′ (i.e., A · C1, A · C2, . . . , A · Cn),

• Θ being Δ′′ (i.e., C1, C2, . . . , Cn),

• AΘ′ being 
 for all Θ′ ∈ Θ∼, and

• BΘ′′ being defined by

(i) if Θ′′ = {¬C1,¬C2, . . . ,¬Cn}, then BΘ′′ is ⊥, and
(ii) if for some i = 1, 2, . . . , n, Ci ∈ Θ′′, then BΘ′′ is 
,

Indeed, in such setting, we trivially have the first and the second premises
of (12).

In case (i) of the definition of BΘ′′ , it follows from B → C1, C2, . . . , Cn,
by (9)(b), that

B,¬C1,¬C2, . . . ,¬Cn →
implying, by (10)(a),

B,¬C1,¬C2, . . . ,¬Cn → ⊥
That is, the third premise of (12) is derivable. Then, by Example 10(b) and
thinnings, we obtain

Γ, {Θ′, A,
} · {Θ′′, B,⊥} → Δ

That is, the last premise of (12) is derivable as well.
In case (ii) of the definition of BΘ′′ , the third premise of (12) is trivially

derivable and since A ·Ci is in both {Θ′, A,
} · {Θ′′, B,⊥} and Δ, from the
axiom A · Ci → A · Ci, by thinnings, we obtain the last premise

Γ, {Θ′, A,
} · {Θ′′, B,
} → Δ

of (12).
This proves our contention. Now, by (12) and the definitions of Γ and Δ,

we have the desired conclusion A · B → A · Δ′′.
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Example 12. Sequent (1) is derivable in NLN+, see the derivation below.

Theorem 13. (Soundness, cf. [3, Proposition 1].) If Σ � Γ → Δ, then
Σ |= Γ → Δ.

In particular, NLN+ is consistent. In the next section we show that the
frame semantics is also (strongly) complete for NLN+.

Proof of Theorem 13. The proof is by a induction on the derivation
length. The basis is immediate and for the induction step we consider only
the case of rules (12) and (13).

For rule (12), let I = 〈W,R, V 〉 be an interpretation that satisfies all
premises of the rule and assume to the contrary that for some world u ∈ W ,
I, u �|= Γ → Δ. That is, u satisfies all formulas in Γ, but satisfies no formula
in Δ (in I, of course). Then, by the premise Γ → Δ, A ·B and the induction
hypothesis, I, u |= A ·B. That is, there exists v, w ∈ W such that R(u, v, w),
I, v |= A and I, w |= B.

Let Θ′, Θ′′ ∈ Θ∼ be such that I, v |= Θ′ and I, w |= Θ′′ and let AΘ′ and
BΘ′′ be such that Θ′, A → AΘ′ and Θ′′, B → BΘ′′ are the corresponding
premises of the rule. By the induction hypothesis, I, v |= AΘ′ and I, w |=
BΘ′′ .

Then,

I, u �|= Γ, {Θ′, A,AΘ′} · {Θ′′, B, BΘ′′} → Δ

which contradicts the induction hypothesis.
For rule (13), let I = 〈W,R, V 〉 be an interpretation that satisfies all

premises of the rule and assume to the contrary that for some world u ∈ W ,
I, u �|= Γ′′ → A\C. That is, I, u |= Γ′′, but I, u �|= A\C.

By the definition of |=, there exists v, w ∈ W such that R(v, w, u), I, w |=
A, but

I, v �|= C (16)

Let Θ′ ∈ Θ∼ be such that I, w |= Θ′ and let AΘ′ be such that Θ′, A →
AΘ′ is the corresponding premise of the rule. By the induction hypothe-
sis, I, w |= AΘ′ . Then I, v |= {Θ′, A,AΘ′} · Γ′′. Therefore, by the premise
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{Θ′, A,AΘ′} · Γ′′ → C and (again) by the induction hypothesis, I, v |= C
which contradicts (16).

Corollary 14. NLN+ is a strongly conservative extension of NL.

Proof. This is because the relational semantics is sound for NLN+ (The-
orem 13) and strongly complete for NL [3, Proposition 1].

6. Completeness

The proof of the completeness theorem, i.e., that Σ |= Γ → Δ implies
Σ � Γ → Δ, is similar to that of [4, Theorem 15]. It follows the standard
construction, but is more involved because of the presence of negation and
the absence of conjunction/disjunction.

For a set of formulas Θ, we write Σ � Θ → Δ if for some finite subset Γ
of Θ, Σ � Γ → Δ.

Definition 15. A set of formulas Γ is called Σ-consistent if Σ �� Γ →.
Otherwise, it is called Σ-inconsistent.

Example 16. The set of formulas Γ, C,¬C is inconsistent because

C → C

C,¬C →
Γ, C,¬C →

(9)(b)
a number of thinnings (10)(b)

In what follows by “maximal” we mean maximal with respect to inclusion.

Example 17. Let Σ be a set of sequents, I = 〈W,R, V 〉 be an interpretation
satisfying Σ, and let u ∈ W . Then

[u]I = {C : I, u |= C} (17)

is a maximal Σ-consistent set of formulas.

For the proof of the completeness theorem we need the following well-
known auxiliary results.

Proposition 18. If

Σ �� Γ → Δ (18)

then, for each formula C,

Σ �� Γ, C → Δ (19)

or

Σ �� Γ,¬C → Δ (20)
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Proof. Assume to the contrary that neither (19) nor (20). That is, there
are finite subsets Θ′ and Θ′′ of Γ such that

Σ � Θ′, C → Δ

and

Σ � Θ′′,¬C → Δ

Then
Σ � Θ′, C → Δ
Σ � Θ′ → Δ,¬C

(9)(a)
Σ � Θ′′,¬C → Δ

Σ � Θ′, Θ′′ → Δ
(11)

which contradicts (18).

Corollary 19. A Σ-consistent set of formulas Γ is maximal Σ-consistent
if and only if for each formula C, either C ∈ Γ or ¬C ∈ Γ.

Proof. The “if” direction of the corollary is Example 16 and the “only if”
direction of the corollary is Proposition 18 with empty Δ.

Corollary 20. Let Γ be a maximal Σ-consistent set of formulas. If

Σ � Γ → C (21)

then C ∈ Γ.

Proof. If C �∈ Γ, then, by Corollary 19, ¬C ∈ Γ which, together with (21),
contradicts Σ-consistency of Γ.

Proposition 21. If Σ �� Γ → Δ, then there is a maximal Σ-consistent set
of formulas Θ including Γ such that Σ �� Θ → Δ.

Proof. Consider the family F of sets of formulas defined by

F = {Φ : Σ �� Φ → Δ and Γ ⊆ Φ}
This family is not empty, because it contains Γ and, by compactness of �,

it is inductively ordered by inclusion. Therefore, by Zorn’s lemma, F has a
maximal (with respect to inclusion, of course) element Θ. Since Σ �� Θ → Δ,
this Θ is Σ-consistent. Thus, by Corollary 19, for the proof that Θ is maximal
Σ-consistent, it suffices to show that for each formula C, either C ∈ Θ or
¬C ∈ Θ, which follows from maximality of Θ in F and Proposition 18.

Theorem 22. Let Γ be a maximal Σ-consistent set of formulas containing
A ·B. Then, there exist a maximal Σ-consistent sets of formulas Γ′ contain-
ing A and Γ′′ containing B such that Γ′ · Γ′′ ⊆ Γ.
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For the proof of Theorem 22 we need the lemma below.

Lemma 23. Let Γ be a Σ-consistent finite set of formulas such that Σ �
Γ → A · B. Then, for each finite set of formulas Θ there exist Θ′, Θ′′ ∈ Θ∼

such that all three sets of formulas

• Θ′, A,
• Θ′′, B, and
• Γ, {Θ′, A} · {Θ′′, B}

(22)

are Σ-consistent.

Proof. Since Γ is Σ-consistent and Σ � Γ → A · B, by (the contraposition
of) two-sided many-formula resolution (12) with empty Δ, there is a pair of
sets of formulas Θ′, Θ′′ ∈ Θ∼ such that

Σ �� Γ, {Θ′, A,AΘ′
n
} · {Θ′′, B,BΘ′′} → (23)

for all formulas AΘ′ and BΘ′′ satisfying Σ � Θ′, A → AΘ′′ and Σ � Θ′′, B →
BΘ′′ .

It follows from (23) that Γ, {Θ′, A}·{Θ′′, B} is Σ-consistent. For the proof
that both sets of formulas Θ′, A and Θ′′, B are also Σ-consistent, assume to
the contrary, that Σ � Θ′, A → or Σ � Θ′′, B → and define the formulas
AΘ′ and BΘ′′ by

AΘ′ =
{⊥, if Σ � Θ′, A →


, otherwise

and

BΘ′′ =
{⊥, if Σ � Θ′′, B →


, otherwise

Then one of the formulas AΘ′ or BΘ′′ is ⊥, implying, by Example 10 and
thinning (10)(b),

Σ � Γ, {Θ′, A,AΘ′} · {Θ′′, B,BΘ′′} →
in contradiction with (23).

Corollary 24. Let Γ be a Σ-consistent infinite set of formulas such that
Σ � Γ → A · B. Then, for each finite set of formulas Θ there exist Θ′, Θ′′ ∈
Θ∼ such that all three sets of formulas in (22) are Σ-consistent.

Proof. Let Γ = {C1, C2, . . .} and let m be such that Σ � C1, . . . , Cm →
A · B. Let Γn = {C1, C2, . . . , Cm, Cm+1, . . . , Cm+n}, n = 1, 2, . . .. Then Γn

is Σ-consistent and Σ � Γn → A · B. Thus, by Lemma 23, there is a pair
of sets of formulas Θ′

n, Θ′′
n ∈ Θ∼ such that all three sets of formulas Θ′

n, A,
Θ′′

n, B, and Γ, {Θ′
n, A} · {Θ′′

n, B} are Σ-consistent.
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Since Θ∼ is finite, for some Θ′, Θ′′ ∈ Θ∼ there are infinitely many indices
n such that Θ′

n = Θ′ and Θ′′
n = Θ′′. By compactness, all three sets in (22)

are Σ-consistent.

Proof of Theorem 22. Let C1, C2, . . . be a list of all formulas and let
Θn = {C1, C2, . . . , Cn}.

Consider the infinite tree T whose nodes are pairs of sets (Θ′, Θ′′) ∈ Θ∼
n ×

Θ∼
n , n = 1, 2, . . ., such that all three sets of formulas in (22) are Σ-consistent

and ({A1, . . . , An}, {B1, . . . , Bn}) is a child node of ({A1, . . . , An−1}, {B1, . . .,
Bn−1}), n = 0, 1, . . ., where both {A0} and {B0} are ∅.

Obviously, the degree of T is at most 4. Since, by Corollary 24, for each
n = 1, 2, . . ., there exist sets of formulas Θ′, Θ′′ ∈ Θ∼

n such that all three sets
of formulas in (22) are Σ-consistent, the tree is infinite. Thus, by Kőnig’s
infinity lemma ([5]), T has an infinite path. Let Γ′ and Γ′′ be the unions
of the first and the second components of the pairs lying on that path,
respectively.

By compactness, both Γ′ and Γ′′ are Σ-consistent and

Σ �� Γ, {Γ′, A} · {Γ′′, B} →
implying that Γ, Γ′ · Γ′′ is Σ-consistent,

In addition, by Corollary 19, both Γ′ and Γ′′ are maximal Σ-consistent.
Thus, it follows from the same corollary that A ∈ Γ′ and B ∈ Γ′′.

Finally, since Γ is maximal Σ-consistent, Γ′ · Γ′′ ⊆ Γ as well.

Theorem 25

(a) If Σ �� Γ′′ → A\C, then there exists a maximal Σ-consistent set of
formulas Γ′ containing A such that Σ �� Γ′ · Γ′′ → C.

(b) If Σ �� Γ′ → C/B, then there exists a maximal Σ-consistent set of
formulas Γ′′ containing B such that Σ �� Γ′ · Γ′′ → C.

The proof of Theorem 25 is similar to that of Theorem 22.

Lemma 26

(a) Let Γ′′ be a finite set of formulas. If Σ �� Γ′′ → A\C, then for each
finite set of formulas Θ there exists a set of formulas Θ′ ∈ Θ∼ such that
Θ′, A is Σ-consistent and Σ �� {Θ′, A} · Γ′′ → C.

(b) Let Γ′ be a finite set of formulas. If Σ �� Γ′ → C/B, then for each
finite set of formulas Θ there exists a set of formulas Θ′′ ∈ Θ∼ such
that Θ′′, B is Σ-consistent and Σ �� Γ′ · {Θ′′, B} → C.

Proof. We only prove part (b) of the lemma. The proof of part (a) is
symmetric.
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Since Σ �� Γ′ → C/B, by (the contraposition of) (14), there exists a set
of formulas Θ′′ ∈ Θ∼ such that

Σ �� Γ′ · {Θ′′, B,BΘ′′} → C (24)

for all formulas BΘ′′ satisfying Σ � Θ′′, B → BΘ′′ . In particular, it follows
that Σ �� Γ′ · {Θ′′, B} → C.

To show that Θ′′, B is Σ-consistent, assume to the contrary, that Σ �
Θ′′, B →. Then, by (10)(a), Σ � Θ′′, B → ⊥ and we put BΘ′′ to be ⊥. Then,
by Example 10(b) and thinnings, of course, � Γ′ · BΘ′′ →, from which, by
thinnings, we obtain Σ � Γ′·{Θ′′, B,BΘ′′} → C, in contradiction with (24).

Corollary 27

(a) Let Γ′′ be an infinite set of formulas. If Σ �� Γ′′ → A\C, then for each
finite set of formulas Θ there exists a set of formulas Θ′ ∈ Θ∼ such that
Θ′, A is Σ-consistent and Σ �� {Θ′, A} · Γ′′ → C.

(b) Let Γ′ be an infinite set of formulas. If Σ �� Γ′ → C/B, then for each
finite set of formulas Θ there exists a set of formulas Θ′′ ∈ Θ∼ such
that Θ′′, B is Σ-consistent and Σ �� Γ′ · {Θ′′, B} → C.

Proof. We only prove part (b) of the corollary. The proof of part (a) is
symmetric.

Let Γ′ = {A1, A2, . . .} and let Γ′
n = {A1, A2, . . . , An}, n = 1, 2, . . .. Then

Σ �� Γ′
n → C/B and, by Lemma 26, there exists a set of formulas Θ′′

n ∈ Θ∼

such that Θ′′
n, B is Σ-consistent and Σ �� Γ′ · {Θ′′, B} → C.

Since Θ∼ is finite, for some Θ′′ ∈ Θ∼ there are infinitely many indices n
such that Θ′′

n = Θ′′. By compactness, Σ �� Γ′ · {Θ′′, B} → C.

Proof of Theorem 25. We only prove part (b) of the theorem. The proof
of part (a) is symmetric.

Let C1, C2, . . . be a list of all formulas and let Θn = {C1, C2, . . . , Cn}.
Consider the infinite tree T whose nodes are sets Θ′′ ∈ Θ∼

n , n = 1, 2, . . .,
such that Θ′′, B is Σ-consistent and Σ �� Γ′ ·{Θ′′, B} → C, and {A1, . . . , An}
is a child node of {A1, . . . , An−1}, where {A0} is ∅.

Obviously, T is a binary tree. Since, by Corollary 27, for each n = 1, 2, . . .,
there exists a set of formulas Θ′′ ∈ Θ∼

n such that Θ′′, B is Σ-consistent
and Σ �� Θ′′ · {Γ̃′′, B} → C, the tree is infinite. Thus, by Kőnig’s Infinity
Lemma ( [5]), T has an infinite path. Let Γ′′ be the union of of the sets
of formulas lying on that path. By compactness, Γ′′, B is Σ-consistent and
Σ �� Γ′ · {Γ′′, B} → C. In addition, by Corollary 19, Γ′′ is maximal Σ-
consistent. Thus, it follows from the same corollary that B ∈ Γ′′.
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Definition 28. Let Σ be a set of NLN+ sequents. The Σ-canonical in-
terpretation IΣ = 〈WΣ, RΣ, VΣ〉 is defined as follows.

• WΣ consists of all maximal Σ-consistent sets of formulas;

• RΣ = {(Γ, Γ′, Γ′′) ∈ W 3
Σ : Γ′ · Γ′′ ⊆ Γ}; and

• VΣ(Γ) = Γ ∩ P, where P is the set of all propositional variables (atomic
formulas).

Theorem 29. Let Γ ∈ WΣ. Then, for each formula C, IΣ, Γ |= C if and
only if C ∈ Γ.

Proof. The proof is by induction on the complexity of C. The basis (i.e.,
the case of a propositional variable) is immediate. The cases of all connec-
tives are treated in the standard manner, but, for the sake of completeness,
we consider them below.
• Let C be of the form ¬A and let IΣ, Γ |= ¬A. By the induction hypothesis
A /∈ Γ. Since Γ is maximal Σ-consistent, by Corollary 19, ¬A ∈ Γ.

Conversely, let ¬A ∈ Γ. Then A /∈ Γ, because Γ is Σ-consistent. Thus, by
the induction hypothesis, IΣ, Γ �|= A, implying, by definition, IΣ, Γ |= ¬A.
• Let C be of the form A · B and let IΣ, Γ |= A · B. That is, there are
Γ′, Γ′′ ∈ WΣ such that IΣ, Γ′ |= A, IΣ, Γ′′ |= B, and Γ′ · Γ′′ ⊆ Γ. By the
induction hypothesis, A ∈ Γ′ and B ∈ Γ′′, which, together with Γ′ · Γ′′ ⊆ Γ
imply A · B ∈ Γ.

Conversely, let A · B ∈ Γ. Then, by Theorem 22, there are Γ′, Γ′′ ∈ WΣ

such that A ∈ Γ′, B ∈ Γ′′, and Γ′ · Γ′′ ⊆ Γ. By the induction hypothesis,
IΣ, Γ′ |= A and IΣ, Γ′′ |= B, implying, by definition, IΣ, Γ |= A · B.
• Let C be of the form A\B and let IΣ, Γ′′ |= A\B. (We have replaced
Γ in the statement of the theorem with Γ′′, because, in our notation, the
latter is the third component of RΣ.) Assume to the contrary that A\B �∈
Γ′′. Then, by (the contraposition of) Corollary 20, Σ �� Γ′′ → A\B and,
by Theorem 25(a), there exists a maximal Σ-consistent set of formulas Γ′

containing A such that

Σ �� Γ′ · Γ′′ → B

It follows that Γ′ ·Γ′′,¬B is Σ-consistent. Thus, by Proposition 21, there
exists a maximal Σ-consistent set of formulas Γ including Γ′ · Γ′′,¬B.

By definition, RΣ(Γ, Γ′, Γ′′) and, by the induction hypothesis, IΣ, Γ′ |= A
and IΣ, Γ |= ¬B. This, however, contradicts our assumption IΣ, Γ′′ |= A\B.

Conversely, let A\B ∈ Γ′′ and let Γ and Γ′ be maximal Σ-consistent sets
of formulas such that Γ′ · Γ′′ ⊆ Γ and IΣ, Γ′ |= A. We have to show that
IΣ, Γ |= B.
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By the induction hypothesis, A ∈ Γ′ which, together with A\B ∈ Γ′′ and
Γ′ · Γ′′ ⊆ Γ, implies A · (A\B) ∈ Γ. Since the sequent A · (A\B) → B is
derivable in NL and Γ is maximal Σ-consistent, by Corollary 20, B ∈ Γ.
Thus, by the induction hypothesis, IΣ, Γ |= B.
• The case of / is symmetric to that of \ and is omitted.

Theorem 30 (Completeness) If Σ |= Γ → Δ, then Σ � Γ → Δ.

Proof. Assume to the contrary that

Σ �� Γ → Δ

Then

Σ �� Γ,¬Δ →
implying that Γ,¬Δ is Σ-consistent.2 Therefore, by Proposition 21, there
exists a maximal Σ-consistent set of formulas Θ including Γ,¬Δ. By The-
orem 29 and by the definition of the satisfiability relation, IΣ, Θ |= Γ, but
IΣ, Θ �|= C for all C ∈ Δ.

Therefore, by the definition of the satisfiability relation, IΣ, Θ �|= Γ → Δ
which, together with IΣ |= Σ, contradicts this theorem prerequisite.

Remark 31. Like in [4, Section 5] it can be shown that the relational
semantics of NLN+ possess the finite model property. Thus, NLN+ is
strongly decidable.

We conclude this section with the canonical mapping of an interpretation
satisfying a set of formulas Σ into IΣ.

Definition 32. Let Σ be a set of sequents and let I = 〈W,R, V 〉 be an
interpretation satisfying Σ. The canonical mapping ιI : W → WΣ is defined
by ιI(u) = [u]I, see (17) for the definition of [u]I.

Since I |= Σ, this mapping is well-defined.

Corollary 33. Let Σ be a set of sequents, I = 〈W,R, V 〉 be an inter-
pretation satisfying Σ, and let u, v, w ∈ W be such that R(u, v, w). Then
RΣ(ιI(u), ιI(v), ιI(w)).

Proof. Assume R(u, v, w) and let A ∈ [v]I and B ∈ [w]I. We have to show
that A · B ∈ [u]I.

By definition, I, v |= A and I, w |= B, which, together with R(u, v, w),
implies I, u |= A · B. Thus, by definition, we have the desired containment
A · B ∈ [u]I.

2Of course, ¬Δ = {¬C : C ∈ Δ}.



314 M. Kaminski

7. Restating the Resolution Rules

It follows from the proofs of Lemmas 23 and 26 that we may restrict two-
sided many-formula resolution (12) and one-sided many-formula resolutions
(13) and (14) to the cases in which all AΘ′ and all BΘ′′ are in {⊥,
}.

Therefore, two-sided many-formula resolution (12) can be equivalently
restated as:

If the sequent Γ → A · B is derivable and for each two elements Θ′ and
Θ′′ of Θ∼ the sequent in one of the clauses (i)–(iii) below is derivable, then
the sequent Γ → is derivable.

(i) Θ′, A →, or

(ii) Θ′′, B →, or

(iii) Γ, {Θ′, A} · {Θ′′, B} →,

cf. (22).
This rule of inference will be referred to as modified two-sided many-

formula resolution.
Lemma 23 follows immediately form (the contraposition of) this rule.

Indeed, assume to the contrary that for any two elements Θ′ and Θ′′ of Θ∼,

• Σ � Θ′, A → or

• Σ � Θ′′, B → or

• Σ � Γ, {Θ′, A} · {Θ′′, B} →.

Then, by the modified two-sided many-formula resolution, we would have
Σ � Γ →. This, however, contradicts the Σ-consistency of Γ.

On the other hand, the modified two-sided many-formula resolution is
derivable from Lemma 23 and, therefore, is derivable in NLN+. For the
proof, assume to the contrary that we have all the premises of the modified
two-sided many-formula resolution, but the sequent Γ → is not derivable.
Then, by Lemma 23, there exist Θ′, Θ′′ ∈ Θ∼ such that all three sets of
formulas in (22) are Σ-consistent. This, however contradicts derivability of
the sequent in one of the above clauses (i)–(iii).

Similarly, the one-sided many-formula resolution (13) can be equivalently
restated as:

If for each element Θ′ of Θ∼ the sequent in one of the clauses (i)–(ii)
below is derivable, then the sequent Γ′′ → A\C is derivable.

(i) Θ′, A →, or

(ii) {Θ′, A} · Γ′′ → C.
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Like in the case of the modified two-sided many-formula resolution, it can
be shown that this modified one-sided many-formula resolution is equivalent
to Lemma 26(a) that follows immediately form (the contraposition of) this
rule.

Indeed, assume to the contrary that for each element Θ′ of Θ∼,

• Σ � Θ′, A → or

• Σ � {Θ′, A} · Γ′′ → C.

Then, by the modified one-sided many-formula resolution (13), we would
have Σ � Γ′′ → A\C. This, however, contradicts the lemma prerequisite.

Conversely, the above modified one-sided many-formula resolution is deriv-
able from Lemma 26(a). For the proof, assume to the contrary that we have
all the premises of that modified resolution, but the sequent Γ′′ → A\C.
is not derivable. Then, by Lemma 26(a), there exists a Θ′ ∈ Θ∼ such that
Θ′, A is Σ-consistent and Σ �� {Θ′, A}Γ′′ → C. This, however contradicts
derivability of the sequent in one of the above clauses (i) or (ii).

Symmetrically, the one-sided many-formula resolution (14) is restated as:
If for each element Θ′′ of Θ∼ the sequent in one of the clauses (i)–(ii)

below is derivable, then the sequent Γ′ → C/B is derivable.

(i) Θ′′, B →, or

(ii) Γ′ · {Θ′′, B} → C.

We collect the above equivalences of the resolution rules in Theorem 34
below. To state this theorem, we need one more bit of notation: we denote
by NLN+

M the calculus resulting from NLN+ in replacing rules (12), (13),
and (14) with their modified counterparts.

Theorem 34. Calculi NLN+ and NLN+
M are deductively equivalent.

Even though, using NLN+
M instead of NLN+ shortens the proofs of

Lemmas 23 and 26, the former looks very nontraditional. We believe that
the rules (12), (13), and (14) are much easier to comprehend.

We conclude this section with the derivation of rules (12) and (13) in
NLN+

M , but with a different set of resolution formulas, cf. Remark 7. The
derivations of (14) from its modification is similar. Note that the above
derivability is already provided by the completeness theorem for the modified
rules (which are equivalent to Lemmas 23 and 26).

So, for rule (12), we shall prove that

Γ,¬Δ → (25)
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is derivable from the premises of (12) by the modified two-sided many-
formula resolution. Then the desired sequent Γ → Δ would follow from (25)
by (9) and (11).

The premise Γ,¬Δ → A ·B of the modified rule follows from the premise
Γ → Δ, A · B of (12) by (9)(b).

Given the other premises of (12), we contend that all the premises of
its modification in which the set of resolution formulas is the union of Θ
from (12),

Θ1 = {AΘ′ : Θ′, A → AΘ′ is a premise of (12)}
and

Θ2 = {BΘ′′ : Θ′′, B → BΘ′′ is a premise of (12)}
are derivable.

Let

Θ′
0, Θ

′
0′ ∈ (Θ ∪ Θ1 ∪ Θ2)∼

Then

• Θ′
0 = Θ′ ∪ Θ′

1 ∪ Θ′
2, where Θ′ ∈ Θ∼, Θ′

1 ∈ Θ∼
1 , and Θ′

2 ∈ Θ∼
2 ; and

• Θ′
0′ = Θ′′ ∪ Θ′′

1 ∪ Θ′′
2 , where Θ′′ ∈ Θ∼, Θ′′

1 ∈ Θ∼
1 , and Θ′′

2 ∈ Θ∼
2 .

Now, if ¬AΘ′ ∈ Θ′
1, then Θ′, Θ′

1, Θ
′
2, A → (that is premise (i) of the

modified rule) is derivable from premise Θ′, A → AΘ′ of (12).
If ¬BΘ′′ ∈ Θ′′

2 , then Θ′′, Θ′′
1 , Θ′′

2 , B → (that is premise (ii) of the modified
rule) is derivable from premise Θ′′, B → BΘ′′ of (12);.

Finally, if AΘ′ ∈ Θ′
1 and BΘ′′ ∈ Θ′′

2 , then

Γ,¬Δ, {Θ′, Θ′
1, Θ

′′
2 , A} · {Θ′′, Θ′

1, Θ
′′
2 , A} →

(that is premise (iii) of the modified rule) is derivable from premise

Γ, {Θ′, A,AΘ′} · {Θ′′, B,BΘ′′} → Δ

of (12).
Thus, by the modified two-sided many-formula resolution, (25) is deriv-

able as well.
The case of one-sided many formula-resolution (13) and its modification is

treated in a similar manner. Given the premises of rule (13), we contend that
all the premises of its modification in which the set of resolution formulas is
the union of Θ from (13) and

Θ1 = {AΘ′ : Θ′, A → AΘ′ is a premise of (13)}
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are derivable.
Indeed, each set in (Θ∪Θ1)∼ is of the form Θ′ ∪Θ′

1, where Θ′ ∈ Θ∼ and
Θ′

1 ∈ Θ∼
1 .

If ¬AΘ′ ∈ Θ′
1, then Θ′, Θ′

1, A → (that is premise (i) of the modified
rule) is derivable from premise Θ′, A → AΘ′ of (13) and, if AΘ′ ∈ Θ′

1, then
{Θ′, Θ′

1, A} · Γ′′ → C (that is premise (ii) of the modified rule) is derivable
from premise {Θ′, A,AΘ′} · Γ′′ → C of (13).
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