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Abstract. In order to provide a unified framework for studying non-commutative alge-

braic logic, Rump and Yang used three axioms to define quantum B-algebras, which can

be seen as implicational subreducts of quantales. Based on the work of Rump and Yang,

in this paper we shall continue to investigate the properties of three axioms in quantum

B-algebras. First, using two axioms we introduce the concept of generalized quantum

B-algebras and prove that the opposite of the category GqBAlg of generalized quantum

B-algebras is equivalent to the category LogPQ of logical pre-quantales, but we can not

prove that pre-quantales can be used as the injective objects in GqBAlg. Next, we use one

axiom to propose the concept of C-algebras and show that a C-algebra is a group if and

only if each of its elements is dualizing. Further, by dualizing elements of a C-algebra X,

we can define different binary operations on X such that X is a moniod. Finally, we by

the Zig–Zag relation discuss some properties of quantum B-algebras.
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1. Introduction

Quantales as a valued domain have been applied to the study of enriched
category, lattice-valued algebra, many-valued topology and quantitative do-
main (see [4,5,8,9,20,21,24,25]). By definition, a quantale is a complete
lattice Q with an associative multiplication · that distributes over arbitrary
joins, that is,

a · (
∨

i∈I

bi) =
∨

i∈I

(a · bi) and (
∨

i∈I

bi) · a =
∨

i∈I

(bi · a) (C1)

for all a, bi ∈ Q (I is an index set). By the completeness of a quantale Q, the
multiplication · gives rise to a pair of binary operations → and � satisfying

x ≤ y → z ⇐⇒ x · y ≤ z ⇐⇒ y ≤ x � z (C2)

for all x, y, z ∈ Q. Based on the above implicational operators of quantales,
quantum B-algebras are introduced axiomatically by Rump and Yang (see
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[14,18]), and it is proved that quantum B-algebras can provide a unified
semantics for non-commutative algebraic logic. Further, in [18] Rump and
Yang showed that the three prototypes of algebraic logic together with all
their descendants are special cases of quantum B-algebras in a natural way.
Recall that a quantum B-algebra is a poset X with two binary operations
→ and � satisfying the following three conditions

y ≤ z =⇒ x → y ≤ x → z (C3)

x ≤ y → z ⇐⇒ y ≤ x � z (C4)

x � (y → z) = y → (x � z) (C5)

for all x, y, z ∈ X. A quantum B-algebra X is called commutative if x →
y = x � y for all x, y ∈ X. X is called unital if there exists an element
u ∈ X such that u � x = x = u → x for all x ∈ X. A residuated semigroup
(residuated groupoid) (see [2]) is a partially ordered semigroup (partially or-
dered groupoid) (X, ·,≤) with two binary operations → and � which satisfy
(C2), where a groupoid means a set with a multiplication (not necessarily
associative). A residuated semigroup is said to be unital if it is a monoid
with respect to the semigroup multiplication. It is easy to verify that every
(unital) residuated semigroup is a (unital) quantum B-algebra.

In fact, there is a close relation between quantales and quantum B-
algebras. On one hand, a quantale is a quantum B-algebra and quantales
can be used as the injective objects in the category qBAlg of quantum B-
algebras (see [16]). On the other hand, we can construct a quantale from
a quantum B-algebra. To see this, given a quantum B-algebra X, Rump
and Yang by upper sets constructed the upper-set quantale (the enveloping
quantale) U(X) where the multiplication � on U(X) is defined as follows

A � B := {x ∈ X : ∃b ∈ B, b → x ∈ A}. (C6)

By the upper-set quantale U(X), Rump and Yang proved that the opposite
of the category qBAlg is equivalent to the category LogQ of logical quantales
(see [18]). However, for the lower-set lattice L(X), Rump and Han et al.
respectively gave some examples to indicate that in general we can not use
the implicational operators → and � to define a multiplication · on L(X)
such that (L(X), ·) is a quantale (see [7,18]).

In [14], Rump proved that the three axioms (C3),(C4),(C5) in a quantum
B-algebra are independent to each other. In this note, based on the work
of Rump and Yang, we shall continue to investigate the properties of the
axioms (C3),(C4),(C5). First, we use the axioms (C3) and (C4) to define
generalized quantum B-algebras and prove that most of the properties of
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quantum B-algebras can be generalized to generalized quantum B-algebras,
but we can not prove that pre-quantales can be used as the injective objects
in the category GqBAlg of generalized quantum B-algebras. Next, we by the
axiom (C5) propose the concept of C-algebras and show that a C-algebra is
a group if and only if each of its elements is dualizing. Further, by dualizing
elements of a C-algebra X, we can define different binary operations on X
such that X is a moniod. Finally, we by the Zig–Zag relation discuss some
properties of quantum C-algebras.

For more details on quantum B-algebras, readers please refer to [6,7,12,
14–19,22].

2. Generalized Quantum B-algebras

In this section, we shall introduce the concept of generalized quantum B-
algebras and consider the relation between generalized quantum B-algebras
and logical pre-quantales. Here we shall use the way similar to that of Rump
and Yang in [18]. For reader’s convenience, we shall give all the details.

2.1. Logical Pre-quantales

A pre-quantale is a complete lattice Q with a multiplication · (not necessarily
associative) satisfying (C1) (see [13]). By the completeness of a pre-quantale
Q, the multiplication · gives rise to a pair of binary operations → and �
satisfying (C2). Note that the three operations →, � and · determine each
other. We shall make use of the derived operations (also called the inverse
residuals)

a � b :=
∧

{x ∈ Q : x · a ≥ b}, a � b :=
∧

{x ∈ Q : a · x ≥ b}.

An element c of a complete lattice L is said to be supercompact if for any
subset A ⊆ L, the inequality c ≤ ∨

A implies that c ≤ a for some a ∈ A.
The set of supercompact elements of L will be denoted by Lsc.

Definition 2.1. Let Q be a pre-quantale. Then a non-zero element c ∈ Q
is called left (right) balanced if it satisfies the left (right) of the equations

c · (
∧

i∈I

ai) =
∧

i∈I

(c · ai), (
∧

i∈I

ai) · c =
∧

i∈I

(ai · c)

for arbitrary ai ∈ Q. If both equations hold, we call c balanced.

More properties of balanced elements can be found in [14,18].
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Definition 2.2. A pre-quantale Q is called logical if every supercompact
element of Q is balanced and Q is algebraic, that is, every a ∈ Q can be
represented as a join a =

∨
C with C ⊆ Qsc.

A morphism of logical pre-quantales Q,P is a map f : Q → P which
satisfies the condition that f(

∨
A) =

∨
f(A) and f(

∧
A) =

∧
f(A) for any

subset A ⊆ Q, and f(a)f(b) ≤ f(ab) for all a, b ∈ Q. The category of logical
pre-quantales will be denoted by LogPQ. In what follows, we shall see that
logical pre-quantales are related to the following implicational algebras.

2.2. Generalized Quantum B-algebras

In the following we shall use two axioms to define generalized quantum B-
algebras. Actually, we shall see that generalized quantum B-algebras have
most of the properties of quantum B-algebras.

Definition 2.3. A generalized quantum B-algebra is a poset X with two
binary operations → and � satisfying (C3) and (C4).

Remark 2.4. Any residuated groupoid is a generalized quantum B-algebra.
A pre-quantale is a residuated groupoid and hence a generalized quantum
B-algebra.

Example 2.5. Let X = {0, a, b, 1} be the nonlinear poset with smallest
element 0 and greatest element 1. Define a binary operation → by the below
table and put �=→.

It is easily checked that X is a commutative generalized quantum B-
algebra, but X is not a quantum B-algebra (this is because 1 → (a → 0) =
1 �= a = a → (1 → 0)).

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b b 1 1 1
1 0 1 1 1

•
�

�• •
�

�
�

�

�
�

•
0

a b

1

Proposition 2.6. Let (X, →,�,≤) be a generalized quantum B-algebra.
Then for all x, y, z ∈ X we have

(1) y ≤ z =⇒ x � y ≤ x � z;

(2) y ≤ z =⇒ z � x ≤ y � x;

(3) y ≤ z =⇒ z → x ≤ y → x;

(4) x ≤ (x � y) → y, x ≤ (x → y) � y;
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(5) x → y = ((x → y) � y) → y, x � y = ((x � y) → y) � y;

(6) If X has the smallest element 0, then 0 → 0 = 0 � 0 is the greatest
element.

Proof. It is easy to prove that (C4) can imply (2)–(6). Further, we can
show that (C3) and (C4) imply (1).

Remark 2.7. It is not difficult to prove that (2),(3),(4) in Proposition 2.6
are equivalent to (C4). Moreover, we can also show that (X, →,�,≤) be a
generalized quantum B-algebra if and only if X satisfies (1)–(4) in Propo-
sition 2.6. Thus, by Proposition 3 in [18] we have that (X, →,�,≤) be a
quantum B-algebra if and only if X satisfies (1)–(4) and the following two
conditions y → z ≤ (x → y) → (x → z) and y � z ≤ (x � y) � (x � z)
for all x, y, z ∈ X.

A morphism f : X → Y of generalized quantum B-algebras is a mono-
tonic map which satisfies the following equivalent inequalities

f(x → y) ≤ f(x) → f(y), f(x � y) ≤ f(x) � f(y) (C7)

for all x, y ∈ X. The category of generalized quantum B-algebras will be
denoted by GqBAlg.

Let (X, →,�,≤) be a generalized quantum B-algebra. Then the set
U(X) of upper sets in X is a complete lattice with respect to set-theoretic
union. Further, we can verify that U(X) with the multiplication � defined
by (C6) is a logical pre-quantale. Conversely, given a logical pre-quantale Q,
we can show that (Qsc,�,�,≥) is a generalized quantum B-algebra (with
reverse ordering).

Now, we define two functors

U : GqBAlgop −→ LogPQ, V : LogPQ −→ GqBAlgop

with V (Q) = Qsc. For a morphism f : X → Y in GqBAlgop and A ∈ U(X),
we define U(f)(A) := f−1(A), while for a morphism g : Q → L in LogPQ,
we define V (g) to be the restriction of g◦ to Lsc, where g◦ is the left adjoint
of g. Using the way similar to Theorem 1 in [18], we can prove the following
result.

Theorem 2.8. GqBAlgop is equivalent to LogPQ.

Proof. The proof is similar to that of Theorem 1 in [18].

As we mentioned in the introduction, for a given quantum B-algebra X,
we in general can not use the implicational operators → and � to define
a multiplication · on the lower-set lattice L(X) such that (L(X), ·) is a
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quantale. However, for a given generalized quantum B-algebra X we can
define a multiplication ⊗ on L(X) as follows

∀A,B ∈ L(X), A ⊗ B := {x ∈ X : ∃a ∈ A, b ∈ B, x ≤ a → b}
or

A ⊗ B := {x ∈ X : ∃a ∈ A, b ∈ B, x ≤ b � a}.

such that (L(X),⊗) is a pre-quantale. Unfortunately, (L(X),⊗) is in general
not a logical pre-quantale.

In [11,16,26], we have seen that quantales can be used as the injective
objects in the categories of quantum B-algebras and partially ordered semi-
groups. Naturally, we shall consider the question whether pre-quantales can
be used as the injective objects in the categories of generalized quantum B-
algebras and partially ordered groupoids. First, we shall review the concept
of injective objects in a category. Let C be a category and let M be a class of
morphisms in C. Then an object S in C is called M-injective provided that
for any morphism h : A → B in M and any morphism f : A → S in C there
exists a morphism g : B → S ∈ C such that g ◦ h = f (see [1]). If there is no
confusion for M, an M-injective object is usually called an injective object.
Let POGrpd denote the category of partially ordered groupoids and their
submultiplicative order-preserving maps, where a submultiplicative map be-
tween partially ordered groupoids is a map f : (A, ·,≤) → (B, ∗,≤) such
that f(a) ∗ f(a′) ≤ f(a · a′) for all a, a′ ∈ A.

Let (A, ·,≤) be a partially ordered groupoid and a1, a2, · · · , an ∈ A. Then
since · may not be associative the symbol a1a2 · · · an doesn’t make sense.
If put n − 2 parentheses to the symbol a1a2 · · · an, then we shall work out
an element. We assume that there are kn ways of putting parentheses to
the symbol a1a2 · · · an, and πi(a1a2 · · · an) denotes the ith way of putting
parentheses, where 1 ≤ i ≤ kn. We let E denote the class of those morphisms
h : A → B for which πi(h(a1) · · ·h(an)) ≤ h(a) always implies πi(a1 · · · an) ≤
a. A morphism f ∈ E is called an embedding.

Given a partially ordered groupoid (A, ·,≤), we define now a multiplica-
tion • on L(A) as follows

∀I, J ∈ L(A), I • J = {x ∈ A : x ≤ a · b for some a ∈ I, b ∈ J}.

It is easy to verify that (L(A), •) is a pre-quantale. To define a map μ : A →
L(A) by μ(a) =↓ a.

Lemma 2.9. μ is an embedding.
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Proof. By the case that ↓ (a · b) = (↓ a)• (↓ b), we can complete the proof.

Theorem 2.10. A partially ordered groupoid is injective (with respect to
embeddings) if and only if it is a pre-quantale.

Proof. Suppose that Q is a pre-quantale, f : A → Q is a morphism
in POGrpd and ϕ : A → B is an embedding. We define now a map
g : B → Q as follows g(b) =

∨{πi(f(a1)f(a2) · · · f(an)) : a1, a2, · · · , an ∈
Asuch that πi(ϕ(a1)ϕ(a2) · · ·ϕ(an)) ≤ b}. It is easy to show that g is a mor-
phism. When b = ϕ(a), the fact that πi(ϕ(a1)ϕ(a2) · · ·ϕ(an)) ≤ ϕ(a) =⇒
πi(a1a2 · · · an) ≤ a implies πi(f(a1)f(a2) · · · f(an)) ≤ f(πi(a1a2 · · · an)) ≤
f(a), that is, gϕ(a) ≤ f(a). While the opposite inclusion follows from the
fact that f(a) is one of the terms in the sup that defines gϕ(a).

Conversely, we suppose that A is injective. Then for the embedding μ :
A → L(A) there exists a morphism ε : L(A) → A such that ε ◦ μ = idA.
Since (L(A), •) is a pre-quantale, using the way similar to Theorem 4.1 in
[11], we can prove that A is a pre-quantale.

In fact, we want to further prove that every partially ordered groupoid has
an injective hull just like partially ordered semigroups (see [23]). However,
we failed to do this. Of course, we also hope to prove that pre-quantales can
be used as the injective objects in the category GqBAlg. Unfortunately, up
to now we do not know how to define the embeddings in GqBAlg such that
pre-quantales are exactly the injective objects.

2.3. Residuated Semigroups

In this subsection we shall consider the condition for generalized quantum
B-algebras to be residuated semigroups.

Given a residuated semigroup (X, →,�, ·,≤), it is easy to see that

x → (y → z) = (x · y) → z (C8)

and

x � (y � z) = (y · x) � z (C9)

for all x, y, z ∈ X.

Proposition 2.11. Let (X, →,�, ·,≤) be a residuated groupoid. Then X
is a residuated semigroup if and only if X satisfies (C8) or (C9).

Proof. Necessity is obvious.
Sufficiency: we only need to prove that (a·b)·c = a·(b·c) for all a, b, c ∈ X.
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Assume that X satisfies (C8). Let x ∈ X. Then (a · b) · c ≤ x ⇐⇒ a · b ≤
c → x ⇐⇒ a ≤ b → (c → x) = (b · c) → x ⇐⇒ a · (b · c) ≤ x, which implies
that (a · b) · c = a · (b · c).

The case that X satisfies (C9) follows similarly.

Remark 2.12. For a given generalized quantum B-algebra (X, →,�,≤)
with a multiplication · satisfying (C8) or (C9), (X, →,�, ·,≤) is not neces-
sarily a residuated semigroup (see Example 2.13).

Example 2.13. Let X be the commutative generalized quantum B-algebra
defined in Example 2.5. We define two multiplications · and ∗ on X as
follows.

It is easy to check that X satisfies (C8) with respect to · and satisfies (C9)
with respect to ∗, but (X, →,�, ·,≤) and (X, →,�, ∗,≤) are not residuated
semigroups.

Remark 2.14. Even if a quantum B-algebra simultaneously satisfies (C8)
and (C9) with respect to a multiplication ·, it is not necessarily a residuated
semigroup (see Example 2.15).

Example 2.15. Let X = {0, a, b, 1} be the poset defined in Example 2.5.
We define now two binary operations → and · on X as follows.

We put �=→. Then it is easy to check that X is a commutative quantum
B-algebra and satisfies (C8) and (C9) with respect to ·, but (X, →,�, ·,≤)
is not a residuated semigroup.

If generalized quantum B-algebras satisfy some condition, then we shall
reach our desired result. We first recall the concept of positive subsets. A
subset A of a generalized quantum B-algebra X is said to be positive if A is
an upper set and satisfies the condition that x � y ∈ A ⇐⇒ x ≤ y ⇐⇒ x →
y ∈ A for all x, y ∈ X. A generalized quantum B-algebra is called positive if
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it has a positive subset. In [6], Han et al. proved that a quantum B-algebra
X is positive if and only if U(X) is a unital quantale with a multiplication �.
Here, we can also prove that a generalized quantum B-algebra X is positive
if and only if U(X) is a unital pre-quantale with a multiplication � defined
by (C6).

Proposition 2.16. Let (X, →,�,≤) be a positively generalized quantum
B-algebra with a multiplication · satisfying (C8) or (C9). Then (X, →,
�, ·,≤) is a residuated semigroup.

Proof. Suppose that (X, →,�,≤) is a positively generalized quantum B-
algebra with a multiplication · satisfying (C8), where A is a positive subset
of X.

We first prove that the multiplication · is associative. Let a, b, c, x ∈ X.
Then we have

(a · b) · c ≤ x ⇐⇒ ((a · b) · c) → x ∈ A
⇐⇒ (a · b) → (c → x) ∈ A
⇐⇒ a → (b → (c → x)) ∈ A
⇐⇒ a → ((b · c) → x) ∈ A
⇐⇒ (a · (b · c)) → x ∈ A
⇐⇒ a · (b · c) ≤ x,

which implies that (a · b) · c = a · (b · c).
Next, we shall prove that X satisfies (C2). Let a, b, c ∈ X. Then we have

a · b ≤ c ⇐⇒ (a · b) → c ∈ A
⇐⇒ a → (b → c) ∈ A
⇐⇒ a ≤ b → c
⇐⇒ b ≤ a � c.

Thus, (X, →,�, ·,≤) is a residuated semigroup.
The argument for the case that X satisfies (C9) proceeds similarly.

The inverse of Proposition 2.16 is not necessarily right. In other words,
a residuated semigroup is a quantum B-algebra, but it may not be positive
(see Example 2.17).

Example 2.17. Let X = {0, a, b, 1} be the poset defined in Example 2.5.
We define now two binary operations → and · on X as follows.

We put �=→. Then it is easy to check that X is a residuated semigroup,
but it is not positive.
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If a generalized quantum B-algebra is unital, then it must be positive.
Thus, we have the following result.

Corollary 2.18. X is a unital generalized quantum B-algebra satisfying
(C8) or (C9) if and only if X is a unital residuated semigroup.

Remark 2.19. There is a generalized quantum B-algebra X on which there
does not exist a multiplication · satisfying (C8) or (C9) (see Example 2.20).

Example 2.20. Let X = {0, a, b, c, 1} be a poset determined by the figure
below. Define a binary operation → by the following table and put �=→.

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b b 1
b 0 a 1 a 1
c c 1 1 1 1
1 0 a b c 1

•
�

�• •
�

�
�

�

�
�

•
•
c

0

a b

1

It is easily checked that X is a commutative and unital generalized quan-
tum B-algebra. Since b → (c → 0) = a �= c = c → (b → 0), X is not a
quantum B-algebra. By Corollary 2.18, we have that there does not exist a
multiplication · on X satisfying (C8) or (C9).

Proposition 2.21. Let (X, →,�,≤) be a generalized quantum B-algebra
with a multiplication · satisfying (C8) and (C9). Then (CX ,→,�,≤) is a
quantum B-algebra, where CX = {a ∈ X : x → (y � a) = y � (x →
a) for all x, y ∈ X}.

Proof. It suffices to prove that CX is closed under → and �.
Let a, b ∈ CX . Then for all x, y ∈ X we have

x → (y � (a → b)) ⇐⇒ x → (a → (y � b))
⇐⇒ (x · a) → (y � b)
⇐⇒ y � ((x · a) → b)
⇐⇒ y � (x → (a → b))
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and
x → (y � (a � b)) ⇐⇒ x → ((a · y) � b)

⇐⇒ (a · y) � (x → b)
⇐⇒ y � (a � (x → b))
⇐⇒ y � (x → (a � b)),

which imply that a → b, a � b ∈ CX , that is, CX is closed under → and �.

3. C-algebras

In this section, we shall use the axiom (C5) to define C-algebras and inves-
tigate the relation between C-algebras and monoids (groups).

Definition 3.1. A set X with two binary operations → and � is called a
C-algebra if → and � satisfy the condition (C5).

In fact, the condition (C5) is similar to the axiom (C) that (x ∗ y) ∗ z =
(x ∗ z) ∗ y in BCI-algebras (or in BCK-algebras) (see Remark 3 in [10] and
Example 2.1 in [14]). So, we call the above algebra satisfying the condition
(C5) a C-algebra.

An element d of a C-algebra X is called a dualizing element if (x → d) �
d = x = (x � d) → d for all x ∈ X. A C-algebra X is said to be dual if X
has a dualizing element.

Lemma 3.2. Let (X, →,�) be a dual C-algebra with dualizing element d.
Then for all x, y ∈ X we have

(1) x → y = (y → d) � (x → d);

(2) x � y = (y � d) → (x � d);

(3) (x � d) → y = (y → d) � x;

(4) x = (d → d) � x, x = (d � d) → x.

Proof. Proof is straightforward.

Lemma 3.3. Let (X, →,�) be a dual C-algebra with dualizing elements
d1, d2. Then d1 → d1 = d2 → d2 and d1 � d1 = d2 � d2.

Proof. From Lemma 3.2(4), it follows that (d1 → d1) � (d2 → d2) =
d2 → d2. By Lemma 3.2(2),(4) again, we have that (d1 → d1) � (d2 →
d2) = ((d2 → d2) � d1) → ((d1 → d1) � d1) = d1 → d1. Thus, we have
d1 → d1 = d2 → d2.

Similarly, we can show d1 � d1 = d2 � d2.
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Example 3.4. Let X = {a, b, c}, → and � be two binary operations on X
defined by the table below.

It is easy to verify that (X, →,�) is a dual C-algebra with dualizing
element a.

Let (X, →,�) be a dual C-algebra with dualizing element d. Then we
define a binary operation ⊗d on X as follows

∀x, y ∈ X, x ⊗d y := (x � d) → y.

Lemma 3.5. Let (X, →,�) be a dual C-algebra with dualizing element d.
Then (X, ⊗d) is a monoid, where d is the unit with respect to ⊗d.

Proof. By Lemma 3.2, we see that d is the unit with respect to ⊗d. Next,
it suffices to prove that ⊗d is associative.

Let x, y, z ∈ X. Then by Lemma 3.2 we have

(x ⊗d y) ⊗d z = ((x ⊗d y) � d) → z
= (z → d) � (x ⊗d y)
= (z → d) � ((x � d) → y)
= (x � d) → ((z → d) � y)
= (x � d) → ((y � d) → z)
= (x � d) → (y ⊗d z)
= x ⊗d (y ⊗d z).

Thus, (X, ⊗d) is a monoid.

Theorem 3.6. A C-algebra X is a group if and only if X is non-empty and
every element of X is dualizing.

Proof. Every group X is a C-algebra with two binary operations x → y =
yx−1 and x � y = x−1y. It is easy to verify that every element of X is
dualizing.

Conversely, we assume that every element of X is dualizing. By
Lemma 3.3, we have that x → x = y → y and x � x = y � y for all
x, y ∈ X. Let u = x → x. Then by Lemma 3.2(4) we have u � u = u, which
implies that x → x = x � x. From Lemma 3.5, it follows that (X, ⊗u) is
a monoid. It suffices to show that every element x ∈ X has the left inverse
and the right inverse.



A Few Notes on Quantum B-algebras 1435

Let x ∈ X. Then we have

x ⊗u (x � u) = (x � u) → (x � u) = u

and

(x → u) ⊗u x = ((x → u) � u) → x = x → x = u,

which implies that (X, ⊗u) is a group.

Remark 3.7. In the proof of Theorem 3.6, we can see that x → u = x � u.
Since every element is dualizing, we by Lemma 3.2 have that x⊗u (x → y) =
(x � u) → (x → y) = ((x → y) → u) � x = ((x → y) � u) � x = ((u �
y) → x) � x = y. Similarly, we have (x � y) ⊗u x = y.

Let (X, →,�) be a dual C-algebra with dualizing element d. Then we
can define two new binary operations �d and ⊕d on X as follows

x �d y := (x → (y → d)) � d,

x ⊕d y := (x � (y � d)) → d.

In general, �d �= ⊗d and ⊕d �= ⊗d. To see this, in Example 3.4, a is a
dualizing element. By elementary calculation, we have that b�a c = c �= b =
b ⊗a c and c ⊕a b = a �= b = c ⊗a b.

Proposition 3.8. Let (X, →,�) be a dual C-algebra with dualizing ele-
ment d. Then (X, �d) is a monoid with unit d � d, and (X, ⊕d) is a monoid
with unit d → d.

Proof. It follows from Lemma 3.2 that d � d is the unit with respect to
�d and d → d is the unit with respect to ⊕d.

Let x, y, z ∈ X. Then we have

(x �d y) �d z = ((x �d y) → (z → d)) � d
= (((x → (y → d)) � d) → (z → d)) � d
= (((z → d) → d) � (x → (y → d))) � d
= (x → (((z → d) → d) � (y → d))) � d
= (x → (y → (z → d))) � d
= (x → (((y → (z → d)) � d) → d)) � d
= (x → ((y �d z) → d)) � d
= x �d (y �d z).

Thus, (X, �d) is a monoid.
Similarly, we can prove that (X, ⊕d) is also a monoid.

Remark 3.9. For a dualizing element d in a C-algebra X, in general d →
d �= d � d and �d �= ⊕d. For instance, a is a dualizing element in Exam-
ple 3.4. It is easy to verify that a → a = c �= b = a � a and a �a c =
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c �= a = a ⊕a c. Further, one can prove that since b ⊗a a = b = b ⊗a b,
a �a a = c = a �a c and a ⊕a a = a = a ⊕a b, (X, ⊗a), (X, �a) and (X, ⊕a)
are not groups.

Proposition 3.10. Let (X, →,�) be a dual C-algebra with dualizing ele-
ment d and satisfy (C4). Then �d = ⊕op

d and d → d = d � d.

Proof. Let (X, →,�) be a dual C-algebra with dualizing element d and
satisfy (C4). Then by Proposition 2.6, we have that y � d ≤ x � d ⇐⇒
x ≤ y ⇐⇒ y → d ≤ x → d.

For all x, y, t ∈ X, we have

x �d y ≤ t ⇐⇒ (x → (y → d)) � d ≤ t
⇐⇒ t → d ≤ x → (y → d)
⇐⇒ x ≤ (t → d) � (y → d)
⇐⇒ x ≤ y → t ⇐⇒ y ≤ x � t
⇐⇒ y ≤ (t � d) → (x � d)
⇐⇒ t � d ≤ y � (x � d)
⇐⇒ (y � (x � d)) → d ≤ t
⇐⇒ y ⊕d x ≤ t,

which implies x �d y = y ⊕d x, that is, �d = ⊕op
d .

By Proposition 3.8 and the above description, we have that d → d =
(d � d) �d (d → d) = (d → d) ⊕d (d � d) = d � d.

Proposition 3.11. X is a dual C-algebra satisfying (C4) if and only if X
is a dual residuated semigroup.

Proof. Sufficiency is obvious.
Assume that (X, →,�) is a dual C-algebra with dualizing element d.

From Proposition 3.8, it suffices to prove that (X, →,�,�d,≤) satisfies the
condition (C2).

Let x, y, z ∈ X. Then by Lemma 3.2 and Proposition 3.10 we have

x �d y ≤ z ⇐⇒ (x → (y → d)) � d ≤ z
⇐⇒ z → d ≤ x → (y → d)
⇐⇒ x ≤ (z → d) � (y → d)
⇐⇒ x ≤ y → z
⇐⇒ y ≤ x � z.

Thus, (X, →,�,�d,≤) is a dual residuated semigroup.

Corollary 3.12. X is a dual quantum B-algebra if and only if X is a dual
residuated semigroup.
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4. Zig–Zag Relation on Quantum B-algebras

In this section, we shall consider the Zig–Zag relation on a quantum B-
algebra.

Definition 4.1. Let X be a poset. Then two elements x, y ∈ X are said
to be Zig–Zag connected (or to have the Zig–Zag relation) if there is a
finite comparable sequence x = z0, z1, · · · , zn = y in X, that is, zi−1 and
zi are comparable (i.e., zi−1 ≤ zi or zi−1 ≥ zi) (see [3,18]). This defines
an equivalence relation ∼ on X, that is, x ∼ y if and only if x and y are
Zig–Zag connected.

In [14,18], Rump proved that ∼ is a congruence relation on a quantum
B-algebra X and ([x] → [y]) � [y] = [x] = ([x] � [y]) → [y] for all
[x], [y] ∈ X/ ∼, where [x] = {y ∈ X : x ∼ y}. By Theorem 3.6, we have that
(X/ ∼,⊗U ) is a group, where U = [x → x] = [x � x].

Let (X, →,�,≤) be a quantum B-algebra. Then we denote by Aa,b the
set {x ∈ X : a ≤ b → x}. Usually, Aa,a is simply written as Aa. In order
to investigate the properties of the equivalence class modulo ∼, we need to
introduce the following concepts.

Definition 4.2. A quantum B-algebra X is called conditional if Aa �= ∅
for all a ∈ X. A conditional quantum B-algebra X is called strong if for any
descending chain a1 ≥ a2 ≥ · · · ≥ an ≥ · · · in Aa,b it is bounded below in
X for all a, b ∈ X.

Remark 4.3. A residuated semigroup is a strongly conditional quantum
B-algebra.

Theorem 4.4. Let X be a conditional quantum B-algebra. Then a ∈ X is
maximal in X if and only if a = max[a].

Proof. Sufficiency is easy.
Suppose that a ∈ X is a maximal element in X. If ↓ x∩ ↓ a �= ∅, then

x ≤ a. Indeed: Let y ∈↓ x∩ ↓ a. Then since Aa �= ∅ there exists an element
a0 ∈ Aa such that a ≤ a → a0 which implies a ≤ a → a0 ≤ y → a0. By the
fact that a is maximal, we have that a = a → a0 = y → a0 ≥ x → a0. Thus,
a = a � a0 ≤ (x → a0) � a0, which implies a = (x → a0) � a0 ≥ x.

Let b ∈ [a]. Then we need to prove b ≤ a. Suppose that in any finite
Zig–Zag chain joining a to b there exists a first element ak such that ak �≤ a.
Then ak−1 ≤ a and ak−1 ≤ ak which imply that ↓ ak∩ ↓ a �= ∅. By the
above description, we have ak ≤ a, contradiction. So, all the elements in
the finite Zig–Zag chain are therefore less than or equal to a, which implies
b ≤ a, that is, a = max[a].
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Remark 4.5. Let X be a poset with two maximal elements a, b and ↓ a∩ ↓
b �= ∅. Then we can not define two binary operations → and � on X such
that (X, →,�,≤) is a conditional quantum B-algebra.

Lemma 4.6. Let (X, →,�,≤) be a non-empty quantum B-algebra, A,B, C ∈
X/ ∼. If C ⊗U B = A, then c → a ∈ B, b � a ∈ C for all a ∈ A, b ∈ B, c ∈ C.
Proof. Let a ∈ A, b ∈ B, c ∈ C. Then [a] = A, [b] = B, [c] = C. By Re-
mark 3.7, we have that C⊗U [c → a] = [c]⊗U ([c] → [a]) = [a] = A = C⊗U B.
Since (X/ ∼,⊗U ) is a group, we have that [c → a] = B, which implies
c → a ∈ B. Similarly, we can prove that b � a ∈ C.

Proposition 4.7. Let X be a strongly conditional quantum B-algebra that
is non-empty. If X contains a descending chain that is unbounded below,
then every class (modulo ∼) contains at least one such chain.

Proof. Let a1 ≥ a2 ≥ · · · an ≥ · · · be a descending chain, unbounded
below, in X. Then this chain must be in some class A modulo ∼. We let B
be any class modulo ∼. Then there exists a unique class C modulo ∼ such
that C ⊗U B = A, and by Lemma 4.6 we see that for every c ∈ C we have
in B the descending chain c → a1 ≥ c → a2 ≥ c → a3 ≥ · · · . Suppose that
there exists b ∈ B such that c → an ≥ b for every n. Then the descending
chain a1 ≥ a2 ≥ · · · an ≥ · · · is in Ab,c. Since X is strongly conditional, we
have that the descending chain a1 ≥ a2 ≥ · · · an ≥ · · · is bounded below,
contradiction. Thus, B contains a descending chain that is unbounded below,
and since B is arbitrary the same is true for all classes modulo ∼.

Proposition 4.8. Let X be a strongly conditional quantum B-algebra that
is non-empty. If X contains an ascending chain that is unbounded above,
then every class (modulo ∼) contains at least one descending chain that is
unbounded below.

Proof. Let a1 ≤ a2 ≤ · · · an ≤ · · · be an ascending chain, unbounded
above, in X. Then this chain must be in some class A modulo ∼. Assume
that B is any class modulo ∼. Then there exists a unique class C modulo ∼
such that A⊗UB = C. By Lemma 4.6 we see that for every c ∈ C we have in B
the descending chain a1 → c ≥ a2 → c ≥ a3 → c ≥ · · · . Suppose that there
exists b ∈ B such that an → c ≥ b for every n, which implies an ≤ b � c and
the ascending chain a1 ≤ a2 ≤ · · · an ≤ · · · is bounded above, contradiction.
Thus, B contains a descending chain that is unbounded below.
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