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Abstract. The tetravalent modal logic (T ML) is one of the two logics defined by Font

and Rius (J Symb Log 65(2):481–518, 2000) (the other is the normal tetravalent modal

logic T MLN ) in connection with Monteiro’s tetravalent modal algebras. These logics are

expansions of the well-known Belnap–Dunn’s four-valued logic that combine a many-valued

character (tetravalence) with a modal character. In fact, T ML is the logic that preserves

degrees of truth with respect to tetravalent modal algebras. As Font and Rius observed,

the connection between the logic T ML and the algebras is not so good as in T MLN ,

but, as a compensation, it has a better proof-theoretic behavior, since it has a strongly

adequate Gentzen calculus (see Font and Rius in J Symb Log 65(2):481–518, 2000). In

this work, we prove that the sequent calculus given by Font and Rius does not enjoy the

cut-elimination property. Then, using a general method proposed by Avron et al. (Log

Univ 1:41–69, 2006), we provide a sequent calculus for T ML with the cut-elimination

property. Finally, inspired by the latter, we present a natural deduction system, sound and

complete with respect to the tetravalent modal logic.
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1. Introduction

The class TMA of tetravalent modal algebras was first considered by Antonio
Monteiro (1978), and mainly studied by I. Loureiro, A. V. Figallo, A. Ziliani
and P. Landini. Later on, J.M. Font and M. Rius were interested in the logics
arising from the algebraic and lattice-theoretical aspects of these algebras.
From Monteiro’s point of view, in the future these algebras would give rise to
a four-valued modal logic with significant applications in Computer Science
(see [8]). Although such applications have not yet been developed, the two
logics considered in [8] are modal expansions of Belnap–Dunn’s four-valued
logic, a logical system that is well-known for the many applications it has
found in several fields. In these logics, the four non-classical epistemic values
emerge: 1 (true and not false), 0 (false and not true), n (neither true nor false)
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and b (both true and false). We may think of them as the four possible ways
in which an atomic sentence P can belong to the present state of information:
we were told that (1) P is true (and were not told that P is false); (2) P is
false (and were not told that P is true); (3) P is both true and false (perhaps
from different sources, or in different instants of time); (4) we were not told
anything about the truth value of P . In this interpretation, it makes sense
to consider a modal-like unary operator � of epistemic character, such that
for any sentence P , the sentence �P would mean “the available information
confirms that P is true”. It is clear that in this setting the sentence �P can
only be true in the case where we have some information saying that P is
true and we have no information saying that P is false, while it is simply
false in all other cases (i.e., lack of information or at least some information
saying that P is false, disregarding whether at the same time some other
information says that P is true); that is, on the set {0,n,b, 1} of epistemic
values this operator must be defined as �1 = 1 and �n = �b = �0 = 0.
This is exactly the algebra that generates the variety of TMAs.

Font and Rius [8] studied two logics related to TMAs. One of them is
obtained by following the usual “preserving truth” scheme, taking {1} as
designated set, that is, ψ follows from ψ1, . . . , ψn in this logic when every
interpretation that sends all the ψi to 1 also sends ψ to 1. The other logic,
denoted by T ML (the logic we are interested in), is defined by using the
preserving degrees of truth scheme, that is, ψ follows from ψ1, . . . , ψn when
every interpretation that assigns to ψ a value that is greater or equal than
the value it assigns to the conjunction of the ψi’s. These authors proved that
T ML is not algebraizable in the sense of Blok and Pigozzi, but it is finitely
equivalential and protoalgebraic. However, they confirm that its algebraic
counterpart is also the class of TMAs: but the connection between the logic
and the algebras is not so good as in the first logic. As a compensation, this
logic has a better proof-theoretic behavior, since it has a strongly adequate
Gentzen calculus (Theorems 3.6 and 3.19 of [8]).

In [8], it was proved that T ML can be characterized as a matrix logic
in terms of two logical matrices, but later, in [6], it was proved that T ML
can be determined by a single logical matrix. Besides, taking profit of the
contrapositive implication introduced by Figallo and Landini [7], a sound
and complete Hilbert-style calculus for this logic was presented. Finally, the
paraconsistent character of T ML was also studied from the point of view of
the Logics of Formal Inconsistency, introduced by Carnielli and Marcos [5]
and afterward developed in [4].
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2. Preliminaries

Recall that, a De Morgan algebra is a structure 〈A,∧,∨,¬, 0〉 such that
〈A,∧,∨, 0〉 is a bounded distributive lattice and ¬ is a De Morgan negation,
i.e., an involution that additionally satisfies De Morgan’s laws: for every
a, b ∈ A

¬¬a = a

¬(a ∨ b) = ¬a ∧ ¬b.

A tetravalent modal algebra (TMA) is an algebra A = 〈A,∧,∨,¬,�, 0〉 of
type (2, 2, 1, 1, 0) such that its non-modal reduct 〈A,∧,∨,¬, 0〉 is a De Mor-
gan algebra and the unary operation � satisfies, for all a ∈ A, the two
following axioms:

�a ∧ ¬a = 0,

¬�a ∧ a = ¬a ∧ a.

Every TMA A has a top element 1 which is defined as ¬0. These algebras
were studied mainly by Loureiro [10], and also by Figallo and Landini [7]
and A. Ziliani, at the suggestion of the late A. Monteiro (see [8]). The class
of all tetravalent modal algebras constitute a variety which is denoted by
TMA. Let M4 = {0,n,b, 1} and consider the lattice given by the following
Hasse diagram

1

n b

0

This is a well-known lattice and it is called L4 (See [1], p. 516). Then,
TMA is generated by the above four-element lattice enriched with two unary
operators ¬ and � given by ¬n = n, ¬b = b, ¬0 = 1 and ¬1 = 0 and the
unary operator � is defined as: �n = �b = �0 = 0 and �1 = 1 (see
[8]). This tetravalent modal algebra, denoted by M4m, has two prime filters,
namely, Fn = {n, 1} and Fb = {b, 1}. As we said, M4m generates the variety
TMA, i.e., an equation holds in every TMA iff it holds in M4m.
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Lemma 2.1. (See [8]) In every TMA A and for all a, b ∈ A the following
hold:

(i) ¬�a ∨ a = 1, (viii) ��a = �a,

(ii) �a ∨ ¬a = a ∨ ¬a, (ix) �(a ∧ b) = �a ∧ �b,

(iii) �a ∨ ¬�a = 1, (x) �(a ∨ �b) = �a ∨ �b,

(iv) �a ∧ ¬�a = 0, (xi) �¬�a = ¬�a

(v) �a ≤ a, (xii) a ∧ �¬a = 0,

(vi) �1 = 1, (xiii) �(�a ∧ �b) = �a ∧ �b

(vii) �0 = 0, (xiv) �(�a ∨ �b) = �a ∨ �b

The next proposition will be needed in what follows.

Proposition 2.2. Let A be a TMA. If x ≤ y ∨ z and x ∧ ¬z ≤ y, then
x ≤ y ∨ �z, for every x, y, z ∈ A.

Proof. It is a routine task to check that the assertion holds in M4m. The
fact that M4m generates the variety TMA completes the proof.

Let L = {∨,∧,¬,�} be a propositional language. From now on, we
shall denote by Fm = 〈Fm,∧,∨,¬,�,⊥〉 the absolutely free algebra of type
(2,2,1,1,0) generated by some denumerable set of variables. We denote by
Fm the set of sentential formulas, and we shall refer to them by lowercase
Greek letters α, β, γ, . . . and so on; and we shall denote finite sets of formulas
by uppercase Greek letters Γ, Δ, etc.

Definition 2.3. The tetravalent modal logic T ML defined over Fm is the
propositional logic 〈Fm, |=T ML〉 given as follows: for every finite set Γ ∪
{α} ⊆ Fm, Γ |=T ML α if and only if, for every A ∈ TMA and for every
h ∈ Hom(Fm,A),

∧
{h(γ) : γ ∈ Γ} ≤ h(α). In particular, ∅ |=T ML α if

and only if h(α) = 1 for every A ∈ TMA and for every h ∈ Hom(Fm,A).

Remark 2.4. Observe that, if h ∈ Hom(Fm,A) for any A ∈ TMA, we
have that h(⊥) = 0. This follows from the fact that ⊥ is the 0-ary operation
in Fm, 0 is the 0-ary operation in A and the definition of homomorphism
(in the sense of universal algebra).

It is worth mentioning that there is a number of works on modal logics
which either share the non-modal fragment with T ML or have non-modal
fragments which are characterized by the same four-element matrix. Clearly,
these logics have some relation to T ML. Some examples of such systems are
Priest’s KFDE [13], Belnapian modal logics of Odintsov and Wansing [11,12]
and modal bilattice logic [9,14].
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Let M = 〈T ,D,O〉 be a logical matrix for L , that is, T is a finite,
non-empty set of truth values, D is a non-empty proper subset of T , and
O includes a k-ary function f̂ : T k → T for each k-ary connective f ∈ L .
Recall that, a valuation in M is a function v : Fm → T such that

v(f(ψ1, . . . , ψk)) = f̂(v(ψ1), . . . , v(ψk))

for each k-ary connective f and all ψ1, . . . , ψk ∈ Fm. A formula α ∈ Fm
is satisfied by a given valuation v, in symbols v |= α, if v(α) ∈ D. Let
Γ, Δ ⊆ Fm. We say that the Δ is consequence of Γ, denoted Γ |=M Δ, iff
for every valuation v in M, either v does not satisfy some formula in Γ or v
satisfies some formula in Δ.

Font and Rius proved in [8] that the tetravalent modal logic T ML is a
matrix logic defined in terms of two logical matrices. But later, Coniglio and
Figallo proved in [6] that T ML can be characterized as a matrix logic in
terms of a single logical matrix. Indeed, let M4 = 〈T ,D,O〉 be the matrix
where the set of truth values is T = {0,n,b, 1}, the set of designated values
is D = {b, 1} and O = {∨̃, ∧̃, ¬̃, �̃} where ∨̃, ∧̃ : T 2 → T and ¬̃, �̃ : T → T
are defined as x∨̃y = Sup{x, y}, x∧̃y = Inf{x, y} (here we are assuming that
the elements of T are ordered as in the lattice M4).

x ¬̃x �̃x

0 1 0

n n 0

b b 0

1 0 1

then,

Proposition 2.5. [6] T ML is sound and complete w.r.t. M4.

Therefore, given Γ and Δ sets of formulas, Δ is consequence of Γ in
T ML, denoted Γ |=T ML Δ, iff for every valuation v in M4, either v does
not satisfy some formula in Γ or v satisfies some formula in Δ. If Δ is a
set with exactly one element, we recover the consequence relation given in
Definition 2.3.

In order to characterize T ML syntactically, that is, by means of a deduc-
tive system, J. M. Font and M. Rius introduced in [8] the sequent calculus
G. The sequent calculus G is single-conclusion, that is, it deals with sequents
of the form Δ ⇒ α such that Δ ∪ {α} is a finite subset of Fm. The axioms
and rules of G are the following:
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Axioms

(Structural axiom) α ⇒ α (Modal axiom) ⇒ α ∨ ¬�α

Structural rules

(Weakening)
Δ ⇒ α

Δ, β ⇒ α
(Cut)

Δ ⇒ α Δ, α ⇒ β

Δ ⇒ β

Logic rules

(∧ ⇒)
Δ, α, β ⇒ γ

Δ, α ∧ β ⇒ γ
(⇒ ∧)

Δ ⇒ α Δ ⇒ β

Δ ⇒ α ∧ β

(∨ ⇒)
Δ, α ⇒ γ Δ, β ⇒ γ

Δ, α ∨ β ⇒ γ

(⇒ ∨)1
Δ ⇒ α

Δ ⇒ α ∨ β
(⇒ ∨)2

Δ ⇒ β

Δ ⇒ α ∨ β

(¬)
α ⇒ β

¬β ⇒ ¬α
(⊥)

Δ ⇒ ⊥
Δ ⇒ α

(¬¬ ⇒)
Δ, α ⇒ β

Δ,¬¬α ⇒ β
(⇒ ¬¬)

Δ ⇒ α

Δ ⇒ ¬¬α

(� ⇒)
Δ, α,¬α ⇒ β

Δ, α,¬�α ⇒ β
(⇒ �)

Δ ⇒ α ∧ ¬α

Δ ⇒ α ∧ ¬�α

The notion of derivation in the sequent calculus G is the usual. Besides, for
every finite set Γ ∪ {ϕ} ⊆ Fm, we write Γ �G ϕ iff the sequent Γ ⇒ ϕ has a
derivation in G. We say that the sequent Γ ⇒ ϕ is provable iff there exists
a derivation for it in G.

Font and Rius proved in [8] that G is sound and complete with respect
to the tetravalent modal logic T ML.

Theorem 2.6. (Soundness and Completeness, [8]) For every finite set Γ ∪
{α} ⊆ Fm,

Γ |=T ML α if and only if Γ �G α.

Moreover,

Proposition 2.7. [8] An arbitrary equation ψ ≈ ϕ holds in every TMA iff
ψ ��G ϕ (that is, ψ �G ϕ and ϕ �G ψ).

As a consequence of it we have that:

Corollary 2.8. [8]

(i) The equation ψ ≈ 1 holds in every TMA iff �G ψ.
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(ii) For any ψ,ϕ ∈ Fm, ψ �G ϕ iff h(ψ) ≤ h(ϕ) for every h ∈
Hom(Fm,A), for every A ∈ TMA.

3. G Does not Admit a Cut-elimination Theorem

Corollary 2.8 is a powerful tool to determine whether a given sequent of G
is provable or not. For instance,

Proposition 3.1. In G we have that the sequent ¬�α ⇒ α is provable iff
the sequent ⇒ α is provable.

Proof. Indeed, suppose that the sequent ¬�α ⇒ α is provable in G. Then,
h(¬�α) ≤ h(α), for all h ∈ Hom(Fm,M4m). But, considering all the cases,
we must have that h(¬�α) = 0 and h(α) = 1, for all h, and therefore the
sequent ⇒ α is provable in G. The converse is straightforward.

Recall that a rule of inference is admissible in a formal system if the set
of theorems of the system is closed under the rule; and a rule is said to be
derivable in the same formal system if its conclusion can be derived from its
premises using the other rules of the system.
A well-known rule for readers familiar with modal logic is the Rule of Ne-
cessitation, which states that if ϕ is a theorem, so is �ϕ. Formally,

(Nec)
⇒ ϕ

⇒ �ϕ

Then, we have that:

Lemma 3.2. The Rule of Necessitation is admissible in G.

Proof. From Corollary 2.8 and considering the algebra M4m.

From the above lemma, we can obtain a proof of ⇒ �(α ∨ ¬�α) in G,
for any α ∈ Fm. Let Π be a proof of ⇒ �(α ∨ ¬�α) and let (r) be the
last rule application in Π. Clearly, Π makes use of more than one rule since
�(α ∨ ¬�α) is not an axiom. Then, we have the following two cases:

Case 1: Π is of the form
·
·
·

Γ ⇒ ϕ
(r)

⇒ �(α ∨ ¬�α)

Case 2: Π is of the form
·
·
·

Γ1 ⇒ ϕ1 Γ2 ⇒ ϕ2
(r)

⇒ �(α ∨ ¬�α)
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In case 1, (r) has just one premise, and therefore it can be: (⊥), weakening,
(∧ ⇒), (∨ ⇒), (⇒ ∨), (¬), (¬¬ ⇒), (⇒ ¬¬), (� ⇒) or (⇒ �). In the case
of (⊥), the only possibility is having Γ = ∅. But this would imply that the
sequent ⇒ ⊥ is provable, which contradicts the soundness of G. Thus, this
case is discarded. On the other hand, none of the other rules above has the
structure of (r), so they are also discarded.

Therefore, Π is of the form depicted in Case 2. Then, (r) must be one of
the following: the cut rule, (⇒ ∧) or (∨ ⇒). It is clear that (r) cannot be
(⇒ ∧) nor (∨ ⇒). Consequently, (r) must be the cut rule.
We have just proved, therefore, the following assertion.

Proposition 3.3. Every proof of ⇒ �(α ∨ ¬�α) in G uses the cut rule.

Moreover, we have that:

Lemma 3.4. For every ϕ ∈ Fm such that ⇒ ϕ is provable in G, we have
that ⇒ �ϕ is provable in G; and every proof of ⇒ �ϕ in G makes use of
the cut rule.

Consequently,

Theorem 3.5. G does not admit cut-elimination.

4. The General Method of Avron, Ben-Naim and Konikowska

Avron and Konikowska [2] use the Rasiowa–Sikorski decomposition method-
ology to get sound and complete proof systems employing n-sequents for all
propositional logics based on non-deterministic matrices. Later, these same
authors jointly with Ben-Naim [3] presented a general method to transform
a given sound and complete n-sequent proof system into an equivalent sound
and complete system of ordinary two-sided sequents (for languages satisfying
a certain minimal expressiveness condition). In this section we shall recall
both methods considering ordinary (deterministic) matrices.

In what follows, L is a propositional language and let (in this section)
Fm be the absolutely free algebra over L generated by some denumerable
set of variables, with underlying set (of formulas) Fm. Let M = 〈T ,D,O〉
be a logical matrix for L . As we said, a valuation v in M satisfies a given
formula α if v(α) ∈ D. A sequent Γ ⇒ Δ is satisfied by the valuation v,
in symbols v |= Γ ⇒ Δ, if either v does not satisfy some formula in Γ
or v satisfies some formula in Δ. A sequent is valid if it is satisfied by all
valuations.
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Now, suppose that T = {t0, . . . , tn−1}, where n ≥ 2, and D = {td, . . . ,
tn−1}, where 1 ≤ d ≤ n − 1.

Definition 4.1. (See [2]) An n-sequent over L is an expression

Γ0 | · · · | Γn−1

where, for each i, Γi is a finite set of formulas. A valuation v satisfies the
n-sequent Γ0 | · · · | Γn−1 iff there exists i, 0 ≤ i ≤ n − 1 and ψ ∈ Γi such
that v(ψ) = ti. An n-sequent is valid if it is satisfied by every valuation v.

Note that, a valuation v satisfies an ordinary sequent Γ ⇒ Δ iff v satisfies
the n-sequent Γ0 | · · · | Γn−1 where Γi = Γ for all 0 ≤ i ≤ d − 1 and Γj = Δ
for all d ≤ j ≤ n − 1.

An alternative presentation of n-sequents is by means of sets of signed
formulas. A signed formula over the language L and T , is an expression of
the form

ti : ψ

where ti ∈ T and ψ ∈ Fm. A valuation v satisfies the signed formula ti : ψ
iff v(ψ) = ti. If U ⊆ T and Γ ⊆ Fm, we denote by U : Γ the set

U : Γ = {t : α | t ∈ U , α ∈ Γ}
If U = {t}, we write t : Γ instead of {t} : Γ. A valuation satisfies the

set of signed formulas U : Γ if it satisfies some signed formula of U : Γ; and
we say that U : Γ is valid if it is satisfied by every valuation v ∈ V. It is
clear that, the n-sequent Γ0 | · · · | Γn−1 is valid iff the set of signed formulas
n−1⋃

i=0

ti : Γi is valid.

Avron and Konikowska developed in [2] a generic n-sequent system for
any logic based on an n-valued matrix. Consider the n-valued matrix M =
〈T ,D,O〉 and let SFM the system defined as follows: for Ω and Ω′ sets of
signed formulas

• Axioms: T : α

• Structural rules: Weakening:
Ω
Ω′ in case Ω ⊆ Ω′
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• Logical rules: for each k-ary connective f and every (a1, . . . , ak) ∈ T k

Ω, a1 : α1 · · · Ω, ak : αk

Ω, f̂(a1, . . . , ak) : f(α1, . . . , αk)

Theorem 4.2. [2] The system SFM is sound and complete w.r.t. the matrix
M

Let Fmp be the set of all formulas of Fm that have p as their only
propositional variable, i.e., Fmp = {α ∈ Fm : V ar(α) = {p}}. Let M =
〈T ,D,O〉 be a logical matrix and denote by N the set T \ D.

Definition 4.3. [3] The language L is sufficiently expressive for M iff
for any i, 0 ≤ i ≤ n − 1 there exist natural numbers li,mi and formulas
αi

j , β
i
k ∈ Fmp, for 1 ≤ j ≤ li and 1 ≤ k ≤ mi such that for any valuation v,

the following conditions hold:

(i) αi
1 = p if ti ∈ N and βi

1 = p if ti ∈ D,

(ii) for ϕ ∈ Fm and ti ∈ T
v(ϕ) = ti ⇔ v(αi

1[p/ϕ]), . . . , v(αi
li [p/ϕ])

∈ N and v(βi
1[p/ϕ]), . . . , v(αi

mi
[p/ϕ]) ∈ D

where αi
j [p/ϕ] (βi

k[p/ϕ]) is the formula obtained by the substitution of p

by ϕ in αi
j (βi

k).

Note that, as it is mentioned in [3], condition (i) above is not really limiting,
since given αi

j , β
i
k satisfying (ii), we can simply add to them the necessary for-

mula p without violating (ii). Condition (i) will only be used for a backward
translation from ordinary sequents to n-sequents, and will be disregarded
otherwise.
If Γ is a set of formulas and α ∈ Fmp, we denote by α[p/Γ] the set

α[Γ] = {α[p/γ] | γ ∈ Γ}
The method is based on replacing each n-sequent by a semantically equiva-
lent set of two-sided sequents.
Let L be a sufficiently expressive language and for 0 ≤ i ≤ n − 1 let li, mi,
αi

j and βi
k as in Definition 4.3. Consider the n-sequent Σ = Γ0 | · · · | Γn−1

over L . A partition π of the n-sequent Σ is a tuple π = (π0, · · · , πn−1) such
that, for every i, πi is a partition of the set Γi of the form:

πi = {Γ′
ij | 1 ≤ j ≤ li} ∪ {Γ′′

ik | 1 ≤ k ≤ mi}
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Note that πi is not a partition in the usual sense, since its components
are allowed to be empty. Besides, observe that the number of sets in this
partition is exactly the number of formulas corresponding to i in Definition
4.3.

Then, given a partition π of the n-sequent Σ, we define the two-sided
sequent Σπ determined by Σ and the partition π, as follows:

l0⋃

j=1

α0
j [Γ

′
0j ], . . . ,

ln−1⋃

j=1

αn−1
j [Γ′

(n−1)j ] ⇒
m0⋃

k=1

β0
k[Γ′′

0k], . . . ,
mn−1⋃

k=1

βn−1
k [Γ′′

(n−1)k]

Let Π be the set of all partitions of the n-sequent Σ. Then, the set TWO(Σ)
is defined as follows:

TWO(Σ) = {Σπ | π ∈ Π}
Theorem 4.4. [3] Let Σ be an n-sequent over L and v a valuation. Then,
v satisfies Σ iff v satisfies Σ′, for every Σ′ ∈ TWO(Σ).

Definition 4.5. [3] Let C be an n-sequent calculus over L . Then, let
TWO(C) the (ordinary) sequent calculus over L given by:

Axioms TWO(A), for all axiom A of C,

Inference rules
TWO(S)

Σ′ , where S is a finite set of n-sequents, R is one

n-sequent such that
S

R
is a rule in C and Σ′ ∈ TWO(R).

Then,

Theorem 4.6. [3] If an n-sequent Σ is provable in C, then each two-sided
sequent Σ′ ∈ TWO(Σ) is provable in TWO(C).

Theorem 4.7. [3] Let L be a sufficiently expressive language for M, and
let C be a sound and complete sequent calculus w.r.t M. Then, TWO(C) is
sound and complete w.r.t. M.

The analogue of the cut rule for ordinary sequents is the following gen-
eralized cut rule for sets of signed formulas:

Ω ∪ {i : α | i ∈ I} Ω ∪ {j : α | j ∈ J}
Ω

for I, J ⊆ V, I ∩ J = ∅

Theorem 4.8. [3] Under the conditions of Theorem 4.7, the cut rule is
admissible in TWO(C). In particular, if C is obtained by the method of [2],
then the cut rule is admissible in TWO(C).
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As it was observed in [3], the n-sequent calculi obtained using the above
general method are hardly optimal (the same is true for the two-sided cal-
culi). We can use the three general streamlining principles from [2] to re-
duce the calculi to a more compact form. The three streamlining princi-
ples are: Principle 1: deleting a derivable rule, Principle 2: simplifying a
rule by replacing it with one with weaker premises, and Principle 3: com-
bining two context-free rules with the same conclusion into one. Recall
that a rule R is context-free if whenever φ1···φn

Σ is a valid application of
R, and Σ′ is a set of signed formulas, then φ1∪Σ′···φn∪Σ′

Σ∪Σ′ is also a valid
application of R. A rule R of an ordinary two-sided sequent calculus is

context-free if
Γ1 ⇒ Δ1, . . . ,Γk ⇒ Δk

Γ ⇒ Δ
is a valid application of R, then

Γ1, Γ′ ⇒ Δ1, Δ′, . . . ,Γk, Γ′ ⇒ Δk, Δ′

Γ, Γ′ ⇒ Δ, Δ′ is also a valid application of R, where

Γ′ and Δ′ are finite sets of formulas.
Of these three, the first and the third decrease the number of rules, while

the second simplifies a rule by decreasing the number of its premises.
It is worth mentioning that applying Principles 1-3 preserves the cut-

elimination property since cut-elimination is obtained via the completeness
result and the principles are designed to retain completeness.

5. Cut-free Sequent Calculus for T ML

Now, we shall use the method exhibited in Section 2 to develop a 4-sequent
calculus for T ML. In this case, we shall use its alternative presentation
provided by sets of 4-signed formulas.

Let SF 4 be 4-sequent calculus given by: for α, β ∈ Fm, Ω and Ω′ arbitrary
sets of signed formulas
Axioms: {0 : α,n : α,b : α, 1 : α}.
Structural rules: Weakening.

Ω
Ω′ in case Ω ⊆ Ω′

Logical rules: for i, j ∈ M4

(∨ij)
Ω, i : α Ω, j : β

Ω, Sup{i, j} : α ∨ β
(∧ij)

Ω, i : α Ω, j : β

Ω, Inf{i, j} : α ∧ β

(¬0)
Ω, 0 : α

Ω, 1 : ¬α
(¬n)

Ω,n : α

Ω,n : ¬α
(¬b)

Ω,b : α

Ω,b : ¬α
(¬1)

Ω, 1 : α

Ω, 0 : ¬α

(�i)
Ω, i : α

Ω, 0 : �α
, for i �= 1 (�1)

Ω, 1 : α

Ω, 1 : �α
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In rules (∨ij) (and ((∧ij)), the supremum (infimum) is taken on the lattice
M4. Besides, observe that the system SF 4 has forty logical rules and it is
not optimal. However, in this step we are not going to use the principles
mentioned in Section 2 to reduce SF 4.

Proposition 5.1. (i) SF 4 is sound and complete w.r.t. the matrix M4,

(ii) the cut rule is admissible in SF 4.

Proof. From Theorem 4.2.

Now, we shall apply the method described in Section 2 to translate SF 4

to an ordinary two-sided sequent calculus.

Proposition 5.2. The language L is sufficiently expressive for the seman-
tics determined by the matrix M4.

Proof. Let v : Fm → M4 be a valuation and let α ∈ Fm an arbitrary
formula, then we have that

v(α) = 0 ⇐⇒ v(α) ∈ N and v(¬α) ∈ D
v(α) = n ⇐⇒ v(α) ∈ N and v(¬α) ∈ N
v(α) = b ⇐⇒ v(α) ∈ D and v(¬α) ∈ D
v(α) = 1 ⇐⇒ v(α) ∈ D and v(¬α) ∈ N

where N = M4\D = {0,n}.

According to Theorem 4.7, to transform SF 4 to an ordinary one, we have to
replace every axiom A with the equivalent set of ordinary sequents TWO(A).
In terms of 4-sequents, the only axiom of SF 4 has the form

α | α | α | α

and it yields the following ordinary two-sided sequents

α,¬α ⇒ α α,¬α ⇒ ¬α α

⇒ ¬α, α α,¬α ⇒ ¬α, α ¬α ⇒ ¬α, α

All of them can be derived from α ⇒ α (or from an instance of it) by the
use of weakening.
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Now, let us focus on rules (∨ij), i, j ∈ M4. First observe that, if ϕ ∈ Fm
then

TWO(ϕ | | | ) = {ϕ ⇒,⇒ ¬ϕ}
TWO( | ϕ | | ) = {ϕ ⇒,¬ϕ ⇒}
TWO( | | ϕ | ) = {⇒ ϕ ,⇒ ¬ϕ}
TWO( | | | ϕ) = {¬ϕ ⇒,⇒ ϕ}

So, after removing the contexts for brevity, the rules (∨ij)’s are translated
to the following thirty-two two-sided sequent rules:

(∨)10
⇒ α ¬α ⇒ β ⇒ ⇒ ¬β

⇒ α ∨ β ; ¬(α ∨ β) ⇒ (∨)1n
⇒ α ¬α ⇒ β ⇒ ¬β ⇒

⇒ α ∨ β ; ¬(α ∨ β) ⇒
(∨)1b

⇒ α ¬α ⇒ ⇒ β ⇒ ¬β

⇒ α ∨ β ; ¬(α ∨ β) ⇒ (∨)11
⇒ α ¬α ⇒ ⇒ β ¬β ⇒

⇒ α ∨ β ; ¬(α ∨ β) ⇒
(∨)b0

⇒ α ¬α ⇒ β ⇒ ⇒ ¬β

⇒ α ∨ β ; ⇒ ¬(α ∨ β)
(∨)bn

⇒ α ¬α ⇒ β ⇒ ¬β ⇒
⇒ α ∨ β ; ¬(α ∨ β) ⇒

(∨)bb
⇒ α ¬α ⇒ ⇒ β ⇒ ¬β

⇒ α ∨ β ; ⇒ ¬(α ∨ β)
(∨)b1

⇒ α ¬α ⇒ ⇒ β ¬β ⇒
⇒ α ∨ β ; ¬(α ∨ β) ⇒

(∨)n0
α ⇒ ¬α ⇒ β ⇒ ⇒ ¬β

α ∨ β ⇒ ; ¬(α ∨ β) ⇒ (∨)nn
α ⇒ ¬α ⇒ β ⇒ ¬β ⇒

α ∨ β ⇒ ; ¬(α ∨ β) ⇒
(∨)nb

α ⇒ ¬α ⇒ ⇒ β ⇒ ¬β

⇒ α ∨ β ; ¬(α ∨ β) ⇒ (∨)n1
α ⇒ ¬α ⇒ ⇒ β ¬β ⇒

⇒ α ∨ β ; ¬(α ∨ β) ⇒
(∨)00

α ⇒ ¬α ⇒ β ⇒ ⇒ ¬β

α ∨ β ⇒ ; ⇒ ¬(α ∨ β)
(∨)0n

α ⇒ ¬α ⇒ β ⇒ ¬β ⇒
α ∨ β ⇒ ; ¬(α ∨ β) ⇒

(∨)0b
α ⇒ ¬α ⇒ ⇒ β ⇒ ¬β

⇒ α ∨ β ; ⇒ ¬(α ∨ β)
(∨)01

α ⇒ ¬α ⇒ ⇒ β ¬β ⇒
⇒ α ∨ β ; ¬(α ∨ β) ⇒

In the above list we use an informal notation by separating the alternate
conclusion sequents with semicolons. At this point, we shall follow the three
principles mentioned in the above section in order to reduce the number of
rules. Our main tool for this job will be the next proposition.

Proposition 5.3. Let SC a sequent calculus in which the cut rule is admis-

sible, let S be a set of sequents and Σ be a sequent such that
S ∪ {Γ ⇒ Δ, ϕ}

Σ
and

S ∪ {Γ, ϕ ⇒ Δ}
Σ

are two context-free rules of SC. Then,
S

Σ
is derivable

in SC.

Proof. From the fact that the rules are context-free and using the cut rule.
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Then, from (∨)10, (∨)1n and Proposition 5.3 we get
⇒ α ¬α ⇒ β ⇒

⇒ α ∨ β | ¬(α ∨ β) ⇒ .

From (∨)1b, (∨)11 and Proposition 5.3 we get
⇒ α ¬α ⇒ ⇒ β

⇒ α ∨ β | ¬(α ∨ β) ⇒ .

From these rules and Proposition 5.3 we obtain (1)
⇒ α ¬α ⇒

⇒ α ∨ β
and

(1’)
⇒ α ¬α ⇒
¬(α ∨ β) ⇒ . Analogously, from (∨)b0, (∨)bn, (∨)bb, (∨)b1 we obtain

(2)
⇒ α ⇒ ¬α

⇒ α ∨ β
. Finally, from (1), (2) and Proposition 5.3 we get that

⇒ α

⇒ α ∨ β
(1)

is derivable. On the other hand, following an analogous reasoning we can
prove that

⇒ β

⇒ α ∨ β
(2)

is derivable. Then, after combining rules (1) and (2) and restoring the con-
text we get the rule

(⇒ ∨)
Γ ⇒ Δ, α, β

Γ ⇒ Δ, α ∨ β

From (∨)n0, (∨)nn, (∨)nb and (∨)n1 we obtain (5)
⇒ α ¬α ⇒

⇒ α ∨ β
; then using

(1’) and restoring the context we get (5)
Γ,¬α ⇒ Δ

Γ,¬(α ∨ β) ⇒ Δ
. In a similar way,

it can be proved that (6)
Γ,¬β ⇒ Δ

Γ,¬(α ∨ β) ⇒ Δ
is derivable. Then, combining

(5) and (6) and restoring the context we get

(¬∨ ⇒)
Γ,¬α,¬β ⇒ Δ

Γ,¬(α ∨ β) ⇒ Δ

From (∨)n0, (∨)nn, (∨)00 and (∨)0n and restoring context we obtain the
rule

(∨ ⇒)
Γ, α ⇒ Δ Γ, β ⇒ Δ

Γ, α ∨ β ⇒ Δ

and, from (∨)00, (∨)0b, (∨)b0 and (∨)bb we get

(⇒ ¬∨)
Γ ⇒ Δ,¬α Γ ⇒ Δ,¬β

Γ ⇒ Δ,¬(α ∨ β)
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In the same way, we obtain the following rules for the connective ∧:

(∧ ⇒)
Γ, α, β ⇒ Δ

Γ, α ∧ β ⇒ Δ
(⇒ ∧)

Γ ⇒ Δ, α Γ ⇒ Δ, β

Γ ⇒ Δ, α ∧ β

(¬∧ ⇒)
Γ,¬α ⇒ Δ Γ,¬β ⇒ Δ

Γ,¬(α ∧ β) ⇒ Δ
(⇒ ¬∧)

Γ ⇒ Δ,¬α,¬β

Γ ⇒ Δ,¬(α ∧ β)

On the other hand, rules (¬)i with i ∈ M4 are translated to (after eliminating
the trivial rules)

(¬)0
α ⇒ ⇒ ¬α

¬¬α ⇒ (¬)n
α ⇒ ¬α ⇒

¬¬α ⇒
(¬)b

⇒ α ⇒ ¬α

⇒ ¬¬α
(¬)1

⇒ α ¬α ⇒
⇒ ¬¬α

From (¬)0, (¬)n and Proposition 5.3 on the one hand; and (¬)b, (¬)1 and
Proposition 5.3 on the other, we obtain

(¬¬ ⇒)
Γ, α ⇒ Δ

Γ,¬¬α ⇒ Δ
(⇒ ¬¬)

Γ ⇒ Δ, α

Γ ⇒ Δ,¬¬α

Finally, rules (�)i are translated to

(�)0
α ⇒ ⇒ ¬α

�α ⇒ ; ⇒ ¬�α
(�)n

α ⇒ ¬α ⇒
�α ⇒ ; ⇒ ¬�α

(�)b
⇒ α ⇒ ¬α

�α ⇒ ; ⇒ ¬�α
(�)1

⇒ α ¬α ⇒
⇒ �α ; ¬�α ⇒

and, from these rules and Proposition 5.3, we obtain

(� ⇒)1
Γ, α ⇒ Δ

Γ,�α ⇒ Δ

(� ⇒)1
Γ ⇒ Δ,¬α

Γ,�α ⇒ Δ
(⇒ �)

Γ ⇒ Δ, α Γ,¬α ⇒ Δ
Γ ⇒ Δ,�α

(¬� ⇒)
Γ ⇒ Δ, α Γ,¬α ⇒ Δ

Γ,¬�α ⇒ Δ

(⇒ ¬�)1
Γ, α ⇒ Δ

Γ ⇒ Δ,¬�α
(⇒ ¬�)2

Γ ⇒ Δ,¬α

Γ ⇒ Δ,¬�α

Definition 5.4. Let SCT ML be the sequent calculus given by the axiom
α ⇒ α the structural rules of cut and left and right weakening

(w ⇒)
Γ ⇒ Δ

Γ, α ⇒ Δ
(⇒ w)

Γ ⇒ Δ
Γ ⇒ Δ, α
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and the logical rules (∨ ⇒), (⇒ ∨), (¬∨ ⇒), (⇒ ¬∨), (∧ ⇒), (⇒ ∧),
(¬∧ ⇒), (⇒ ¬∧), (¬¬ ⇒), (⇒ ¬¬), (� ⇒)i, (⇒ �), (¬� ⇒), (⇒ ¬�)i

i = 1, 2.

We shall write Γ ⇔ Δ to indicate that both the sequents Γ ⇒ Δ and
Δ ⇒ Γ are provable. Then, it is not difficult to verify that α∧¬α ⇔ α∧¬�α,
for every formula α. Besides, the modal axiom ⇒ α ∨ ¬�α of G is derivable
in SCT ML. Indeed,

α ⇒ α(⇒ ¬�)1 ⇒ α,¬�α
(⇒ ∨) ⇒ α ∨ ¬�α

Moreover, the sequent ⇒ �(α ∨ ¬�α) is derivable in SCT ML without the
cut rule:

α ⇒ α(⇒ ¬�)1 ⇒ α,¬�α
(⇒ ∨) ⇒ α ∨ ¬�α

¬α ⇒ ¬α(� ⇒)1 ¬α,�α ⇒
(¬¬ ⇒) ¬α,¬¬�α ⇒

(¬∨ ⇒)
¬(α ∨ ¬�α) ⇒

(⇒ �)
⇒ �(α ∨ ¬�α)

Remark 5.5. In Font and Rius’ system G, the propositional constant ⊥ is
used. By following Avron, Ben-Naim and Konikowska’s method, we obtained
a system in which ⊥ does not appear. However, it is easy to check that the
sequent ¬α ∧ �α ⇒ is provable in SCT ML, for any formula α. Then, if we
denote by ⊥ the formula ¬α ∧ �α, for any formula α, we have that the rule
(⊥) of G is derivable in SCT ML.

Theorem 5.6. (i) SCT ML is sound and complete w.r.t. M4.

(ii) The cut rule is admissible in SCT ML,

Proof. The system SCT ML was constructed according to the method dis-
played in Section 2.

Corollary 5.7. SCT ML is a cut-free sequent calculus that provides a syn-
tactical counterpart for T ML.

6. Some Applications of the Cut Elimination Theorem

In this section, we shall use the cut-free system SCT ML to show independent
proofs of some (known) interesting properties of the logic T ML. In what
follows Γ, Δ are sets of formulas and α, β, ψ are formulas.



1364 M. Figallo

In the first place, we shall present a new independent proof of Proposition
2.5. To do this, we need the following technical result.

Proposition 6.1. If �SCT ML Γ ⇒ Δ then, for every A ∈ TMA and for
every h ∈ Hom(Fm,A),

∧
γ∈Γ h(γ) ≤

∨
δ∈Δ h(δ).

Proof. Suppose that �SCT ML Γ ⇒ Δ and let P be a cut-free proof of the
sequent Γ ⇒ Δ in SCT ML. Let A ∈ TMA and let h ∈ Hom(Fm,A). We
use induction on the number n of inferences in P. If n = 0 the proposition is
obviously valid. (I.H.) Suppose that the proposition holds for n < k, k > 0.
Let n = k and let (r) be the last inference in P. Ir (r) is the right/left
weakening rule, the proposition holds since A is, in particular, a lattice. If
(r) is one of the rules (∨ ⇒), (⇒ ∨), (¬∨ ⇒), (⇒ ¬∨), (∧ ⇒), (⇒ ∧),
(¬∧ ⇒), (⇒ ¬∧), (¬¬ ⇒), (⇒ ¬¬), the proposition holds since A is, in
particular, a De Morgan algebra. Finally, if (r) is one of the rules, (� ⇒)i,
(⇒ �), (¬� ⇒), (⇒ ¬�)i i = 1, 2 then the proposition holds since A is
a tetravalent modal algebra. For instance, suppose that (r) is (⇒ �) and

the last inference of P is
Γ ⇒ Δ, α Γ,¬α ⇒ Δ

Γ ⇒ Δ,�α
. By (I.H.), we have (1)

∧
γ∈Γ h(γ) ≤

∨
δ∈Δ h(δ) ∨ h(α) and (2)

∧
γ∈Γ h(γ) ∧ h(¬α) ≤

∨
δ∈Δ h(δ).

Then, from (1), (2) and Proposition 2.2 we have
∧

γ∈Γ h(γ) ≤
∨

δ∈Δ h(δ) ∨
h(�α).

Proposition 6.2. The following conditions are equivalent.

(i) Γ |=T ML ψ,

(ii) Γ |=M4 ψ.

Proof. (i) imples (ii): immediate.
(ii) implies (i): It is consequence of Theorem 5.6 (i) and Proposition 6.1.

Next, we shall prove that the rule (¬) of Font and Rius’ system is ad-
dmissible in SCT ML. Let X a set of formulas, we shall denote by ¬X the
set ¬X = {¬γ : γ ∈ X}.

Theorem 6.3. If �SCT ML Γ ⇒ Δ, then �SCT ML ¬Δ ⇒ ¬Γ.

Proof. Suppose that �SCT ML Γ ⇒ Δ and let P a cut-free proof of the
sequent Γ ⇒ Δ. We use induction on the number n of inferences in P. If
n = 0, then Γ ⇒ Δ is α ⇒ α, for some α, and ¬Δ ⇒ ¬Γ is ¬α ⇒ ¬α which
is provable in SCT ML. (I.H.) Suppose that the lemma holds for n < k, with
k > 0. Let n = k and let (r) be the last inference in P. If (r) is left weakening,

then the last inference of P is
Γ ⇒ Δ

Γ, α ⇒ Δ
. By (I.H.), ¬Δ ⇒ ¬Γ is provable
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in SCT ML and using right weakening we have �SCT ML ¬Δ ⇒ ¬Γ,¬α. If
(r) is an instance of the right weakening the treatment is analogous.

Suppose now that (r) is (an instance of) a logic rule. If (r) is (⇒ ∨) and

the last inference of P is
Γ ⇒ Δ, α, β

Γ ⇒ Δ, α ∨ β
. By (I.H.), ¬α,¬β,¬Δ ⇒ ¬Γ is

provable, and using (¬∨ ⇒) we have that ¬(α ∨ β),¬Δ ⇒ ¬Γ is provable.
The cases where (r) is one of the rules (∨ ⇒), (⇒ ¬∨), (¬∨ ⇒), (⇒ ∧)
(∧ ⇒), (⇒ ¬∧), (¬∧ ⇒) are left to the reader.

If (r) is (⇒ ¬¬) and the last inference of P is
Γ ⇒ Δ, α

Γ ⇒ Δ,¬¬α
. By (I.H.),

¬α,¬Δ ⇒ ¬Γ is provable in SCT ML and using (¬¬ ⇒) we have that
¬¬¬α,¬Δ ⇒ ¬Γ is provable. If (r) is (¬¬ ⇒) the proof is analogous.

If (r) is (� ⇒)1 and the last inference of P is
Γ, α ⇒ Δ

Γ,�α ⇒ Δ
. By (I.H.), we

have that ¬Δ ⇒ ¬Γ,¬α is provable in SCT ML. Then, using (⇒ ¬�)2 we
have that ¬Δ ⇒ ¬Γ,¬�α is provable.

If (r) is (� ⇒)2 and the last inference of P is
Γ ⇒ Δ,¬α

Γ,�α ⇒ Δ
. By (I.H.), we

have that ¬Δ,¬¬α ⇒ ¬Γ is provable in SCT ML and using left weakening
we have (1) �SCT ML α,¬Δ,¬¬α ⇒ ¬Γ. On the other hand, one can easily
check that �SCT ML α ⇒ ¬¬α and by means of (right/left) weakening(s) we
have (2) �SCT ML α,¬Δ ⇒ ¬¬α,¬Γ. From (1), (2) and the cut rule, we
have �SCT ML α,¬Δ ⇒ ¬Γ (the cut rule is admissible in SCT ML). Then,
using (⇒ ¬�)1 we have �SCT ML ¬Δ ⇒ ¬Γ,¬�α.

If (r) is (⇒ �) and the last inference of P is
Γ ⇒ Δ, α Γ,¬α ⇒ Δ

Γ ⇒ Δ,�α
.

By (I.H.) we have that (3) �SCT ML ¬α,¬Δ ⇒ ¬Γ and (4) �SCT ML ¬Δ ⇒
¬¬α,¬Γ. From (4) and a similar reasoning to the above, we have that
(5) �SCT ML ¬Δ ⇒ α,¬Γ. From (3), (5) and (¬� ⇒) we get �SCT ML

¬Δ,¬�α ⇒ ¬Γ.
The cases where (r) is one of the rules (⇒ ¬�)1, (⇒ ¬�)2 and (¬� ⇒)

are treated similarly.

Corollary 6.4. (¬) is admissible in SCT ML.

Finally,

Theorem 6.5. �T ML �ψ iff �T ML ψ.

Proof. (=⇒) Suppose that �T ML �ψ. By Theorem 5.6, Proposition 2.5
we know that the sequent ⇒ �ψ has a cut-free proof P in SCT ML. Let (r)
be the last inference of P. By inspecting the rules of SCT ML we may assert
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that (r) has to be an instance of the rule (⇒ �). So, (r) is
⇒ ψ ¬ψ ⇒

⇒ �ψ
and clearly the sequent ⇒ ψ is provable in SCT ML. Therefore �T ML ψ.

(⇐=) Suppose that �T ML ψ. By Theorem 5.6 (i), we have: (1) ⇒ ψ is
provable in SCT ML. From (1) and Theorem 6.3, we have that: (2) ¬ψ ⇒
is also provable in SCT ML. From (1), (2) and the rule (⇒ �), we may
assert that ⇒ �ψ is provable in SCT ML. Therefore, �T ML �ψ.

7. Natural Deduction for T ML

In this section, we shall present a natural deduction system for T ML. We
take our inspiration from the construction made before. In particular, it
threw some light on how the connective � behaves. We think that this
system shows an interesting example of a rule (different from the usual ones),
namely the introduction rule of the connective �, that needs to produce a
discharge of hypothesis; and this is related to the intrinsic meaning of the
connective.

The proof system NDT ML will be defined following the notational con-
ventions given in [15].

Definition 7.1. Deductions in NDT ML are inductively defined as follows:
Basis: The proof tree with a single occurrence of an assumption φ with a

marker is a deduction with conclusion φ from open assumption φ.
Inductive step: Let D, D1, D2,D3 be deductions. Then, they can be ex-

tended by one of the following rules below. The classes [¬φ]u, [¬ψ]v, [φ]u,
[ψ]v below contain open assumptions of the deductions of the premises of the
final inference, but are closed in the whole deduction.

MA (modal axioma)
φ ∨ ¬�φ

D1

φ

D2

ψ
∧I

φ ∧ ψ

D
φ ∧ ψ ∧E1φ

D
φ ∧ ψ ∧E2ψ

D
¬φ

¬∧I1¬(φ ∧ ψ)

D
¬ψ

¬∧I2¬(φ ∧ ψ)

D1

¬(φ ∧ ψ)

[¬φ]u

D2

χ

[¬ψ]v

D3

χ
¬∧E,u,vχ
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D
φ ∨I1φ ∨ ψ

D
ψ ∨I2φ ∨ ψ

D1

φ ∨ ψ

[φ]u

D2

χ

[ψ]v

D3

χ ∨E,u,vχ

D1

¬φ

D2

¬ψ
¬∨I¬(φ ∨ ψ)

D
¬(φ ∨ ψ) ¬∨E1¬φ

D
¬(φ ∨ ψ) ¬∨E2¬ψ

D
φ

¬¬I¬¬φ

D
¬¬φ

¬¬E
φ

D1

ψ ∨ φ

[¬φ]u

D2

ψ �I∗,u
ψ ∨ �φ

D
�φ

�E
φ

D
¬φ

¬�I¬�φ

D1

¬�φ

D2

φ
¬�E¬φ

D
¬φ ∧ �φ

⊥I⊥

D
⊥ ⊥Eα

Remark 7.2. If we take ψ as ⊥ in �I∗ we get

D1

φ

[¬φ]u

D2

⊥ �I,u�φ

Formally, �I is derivable in NDT ML. The intuition behind this rule is the
following:“if we have a deduction for α and ¬α is not provable, then we have
a deduction for �α”.

As usual, by application of the rule ¬∧E a new proof-tree is formed from
D, D1, and D2 by adding at the bottom the conclusion χ while closing the
sets [¬φ]u and [¬ψ]u of open assumptions marked by u and v, respectively.
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Idem for the rules ∧E and �I. Note that we have introduced the symbol ⊥,
it behaves here as an arbitrary unprovable propositional constant.

Let Γ ∪ {α} ⊆ Fm. We say that the conclusion α is derivable from a set
Γ of premises, noted Γ � α, if and only if there is a deduction in NDT ML
of α from Γ.

Remark 7.3. In the sequent calculus SCT ML, the converse of the rule (⇒
∨) is admissible. That is, we can derive Γ ⇒ Δ from Γ ⇒

∨
Δ in SCT ML.

The proof is immediate using weakening(s) and the cut rule.

Theorem 7.4. (Soundness and Completeness) Let Γ, Δ ⊆ Fm, Γ finite.
The following conditions are equivalent:

(i) the sequent Γ ⇒ Δ is derivable in SCT ML,

(ii) there is a deduction of the disjunction of the sentences in Δ from Γ in
NDT ML.

Proof. (i) implies (ii): Suppose that the sequent Γ ⇒ Δ is derivable in
SCT ML, that is, there is a formal proof P of Γ ⇒ Δ in SCT ML which
does not use the cut rule. We shall show that there is a deduction of the
disjunction of the formulas in Δ (denoted by

∨
Δ) from Γ in NDT ML,

using induction on the number n of rule applications in P, n ≥ 0.
If n = 0, then Γ ⇒ Δ is α ⇒ α and it is clear that α � α. Now, (I.H.)

suppose that “(i) implies (ii)” holds for n < k, with k > 0.
Let n = k, that is P is a derivation in SCT ML with last rule (r) of the

form

Γ1 ⇒ Δ1

. . .

. . .
...

Γt ⇒ Δt

...
(r)

Γ ⇒ Δ

If (r) is left weakening, then the last rule of P has the form (r)
Γ′ ⇒ Δ

Γ′, β ⇒ Δ
.

By (I.H.), there exists a deduction D of Δ from Γ′, then

D∨
Δ β

∧I∨
Δ ∧ β

∧E1∨
Δ
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is a deduction of
∨

Δ from Γ′ ∪ {β}. If (r) is right weakening, then (r) has

the form (r)
Γ ⇒ Δ′

Γ ⇒ Δ′, β
, then by (I.H.) there is a deduction D of

∨
Δ′ from

Γ.

D∨
Δ′

∨I1∨
Δ′ ∨ β

Now, suppose that (r) is a logical rule, we shall prove it just for (⇒ ∨),
(∨ ⇒), (⇒ ¬∨), (¬∨ ⇒). If (r) is (∨ ⇒), then we may assume that the last

inference of P has the form (⇒ ∨)
Γ ⇒ Δ′, α, β

Γ ⇒ Δ′, α ∨ β
. Then, by (I.H.) we have

a deduction D of
∨

Δ′ ∨ α ∨ β from Γ and the proof is complete.
If (r) is (∨ ⇒) and last inference of P has the from (∨ ⇒)Γ,γ1⇒Δ Γ,γ2⇒Δ

Γ,γ1∨γ2⇒Δ ,
then by (I.H.) there are deductions Di, i = 1, 2, of α from Γ ∪ {γi}. Then,
the following

γ1 ∨ γ2

[γ1]
u1

D1
∨

Δ

[γ2]
u2

D2
∨

Δ
∨E,u1,u2∨

Δ

is a deduction of
∨

Δ from Γ ∪ {γ1 ∨ γ2}. Note that in this last deduction
we have made every assumption γi in Di an open assumption with label ui.

If (r) is (¬∨ ⇒) then we may assume that the last instance of P has the

form (¬∨ ⇒)
Γ,¬γ1 ⇒ Δ

Γ,¬(γ1 ∨ γ2) ⇒ Δ
. By (I.H.), there is a deduction D of α from

Γ ∪ {γ1} and the following

¬(γ1 ∨ γ2) ¬∨E1¬γ1

D∨
Δ

is a deduction of α from Γ ∪ {¬(γ1 ∨ γ2)}. If (r) is (⇒ ¬∨) we proceed
analogously.

For (r) being any of the rules (� ⇒)i, (⇒ �), (¬� ⇒), (⇒ ¬�)i

i = 1, 2, we present the next table showing the deduction corresponding
to the premise(s) of (r) and the deduction corresponding to the consequence
of (r).
(ii) implies (i): In virtue of Remark 7.3, we shall reduce the proof to the case
in which Δ is a singleton. Let D be a deduction of the sentence in Δ from Γ
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in NDT ML. As before, we use induction on the number n of rule instances
in the deduction D. If n = 0 the proof is trivial. (I.H.) Suppose that “(ii)
implies (i)” holds for n < k, k > 0; and let (r) the last rule instance in D.
If (r) is one of the introduction/elimination rule of ∧I, ∧E, ¬∧I, ¬∧E, ∨I,
∨E, ¬∨I, ¬∨E, ¬¬I and ¬¬E; the proof is immediate since these rules are
just translations of the corresponding rules of SCT ML. Suppose that (r) is
�I∗, then D is

D1

ψ ∨ φ

[¬φ]u

D2

ψ �I∗,u
ψ ∨ �φ

Then, by (I.H.), we have that the sequents Γ1 ⇒ ψ ∨ φ and Γ2,¬φ ⇒ ψ are
provable in SCT ML, where Γ1 ∪Γ2 = Γ. By using weakening(s) and the cut
rule we obtain Γ ⇒ ψ, φ and Γ,¬φ ⇒ ψ are provable. Then, using (� ⇒),
we have that �SCT ML Γ ⇒ ψ, �φ. If (r) is �E, then D is

D
�φ

�E
φ

By (I.H.), we have �SCT ML Γ ⇒ �φ. From the fact that �SCT ML �φ ⇒ φ
and the cut rule the proof is completed. If (r) is ¬�I, then D is

D
¬φ

¬�I¬�φ

By (I.H.), we have �SCT ML Γ ⇒ ¬φ. By Theorem 6.3, �SCT ML ¬¬φ ⇒ ¬Γ
and from �SCT ML φ ⇒ ¬¬φ and the cut rule, we have �SCT ML φ ⇒ ¬Γ.
Using (� ⇒) we obtain �SCT ML �φ ⇒ ¬Γ and by Theorem 6.3 �SCT ML

¬¬Γ ⇒ ¬�φ. Finally, from �SCT ML Γ ⇒ ¬¬Γ and cut(s) (and weakening(s)
if necessary) we obtain �SCT ML Γ ⇒ ¬�φ. If (r) is ¬�E, then D is

D1

¬�φ

D2

φ
¬�E¬φ

By (I.H) and using weakening(s) we have that the sequents Γ ⇒ ¬�φ and
Γ ⇒ φ are provable in SCT ML. Using (⇒ ∧), we obtain �SCT ML Γ ⇒
φ ∧ ¬�φ and since φ ∧ ¬�φ ⇔ φ ∧ ¬φ and the cut rule we obtain �SCT ML
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Γ ⇒ φ ∧ ¬φ. Finally, taking into account that �SCT ML φ ∧ ¬φ ⇒ ¬φ we
have �SCT ML Γ ⇒ ¬φ.

The cases in which (r) is ⊥I or ⊥E are immediate (see Remark 5.5).
Since our natural deduction system is strongly inspired by the cut-free

sequent calculus SCT ML, one can likely expect normalization to hold for
SCT ML.

8. Conclusions

In the present paper we focused on the proof-theoretic aspects of the tetrava-
lent modal logic T ML. In the first place, we showed that the strongly ad-
equate Gentzen calculus given by Font and Rius for T ML does not enjoy
the cut-elimination property. Then, by applying a method due to Avron,
Ben-Naim and Konikowska, we developed a sequent calculus for T ML with
the cut-elimination property. This allowed us to provide new independent
proofs of some known interesting properties of T ML. Finally, strongly in-
spired by this cut-free sequent calculus, we presented a natural deduction
system, sound and complete with respect to the T ML.

Despite the fact that T ML was originally defined as the logic that
preserves degrees of truth w.r.t. tetravalent modal algebras, we could use
Avron, Ben-Naim and Konikowska’s method; and this is because T ML is
also a matrix logic. An interesting task to be done is to extend this method
to logics that preserve degrees of truth w.r.t. some ordered structure but
which do not have a matrix semantics.
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