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ANDRZEJ INDRZEJCZAK Free Logics are Cut-Free

Abstract. The paper presents a uniform proof-theoretic treatment of several kinds of
free logic, including the logics of existence and definedness applied in constructive mathe-
matics and computer science, and called here quasi-free logics. All free and quasi-free logics
considered are formalised in the framework of sequent calculus, the latter for the first time.
It is shown that in all cases remarkable simplifications of the starting systems are possible
due to the special rule dealing with identity and existence predicate. Cut elimination is
proved in a constructive way for sequent calculi adequate for all logics under consideration.

Keywords: Sequent calculus, Free logic, Definedness logic, Logic of partial terms, Logic

of existence, Cut elimination.

Introduction

Free logics come from different sources, appear under many names, and
find multiple applications. In several philosophical contexts and applications
to modal logics (see e.g. Bencivenga [3]|, Garson [8], Priest [24]) they are
usually called free logics (the name coined by K. Lambert). In constructive
mathematics and applications to computer science they are called logics
of existence (Scott [25], Troelstra and van Dalen [29]), logics of definedness
(Feferman [6]), or logics of partial terms (Beeson [2]). Despite the many faces,
and variety of applications of this branch of logic, the common, and the main,
feature is that singular terms are free from existential assumptions, i.e. they
are not assumed to denote an existing object (we will call such terms shortly
nondenoting), as in the standard classical or intuitionistic logic. Accordingly,
both classical and intuitionistic logic may be modified to obtain their free
versions. On the other hand, in all logics under consideration quantifiers are
assumed to have an existential import.

We provide a systematic treatment of some important free logics in the
framework of sequent calculus (SC). Our formalization covers logics which
were not so far dealt with in SC, but also provides an improved and simpli-
fied account even in cases which were already presented as such calculi. In
particular, we provide a uniform formalization of all logics considered (in the
language with identity) by means of a simple rule (ET) (existence predicate
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introduction) which is derivable in more standard approaches but is pow-
erful enough to simplify quantifier rules of all systems under consideration.
These simplifications are twofold: (a) for all logics discussed the only terms
which have to be instantiated when quantifiers are eliminated are variables;
(b) for some logics, quantifier rules with no additional existence formulae are
sufficient, in contrast to usually applied formalizations. Moreover, all refined
SC systems will be proven cut-free in a constructive way. Our analysis will
be strictly proof-theoretic in the sense that no reference to a semantic char-
acterization of the discussed logics, except informal remarks, will be needed.

In what follows we consider six different kinds of free logics obtained
by using three criteria of division: positive versus negative, inclusive versus
noninclusive, and absolutely free versus quasi-free. The former division is
well known from the literature on free logics (see, e.g. Bencivenga [3]). In
positive logics we admit that atomic formulae with nondenoting terms are
evaluated as true or false. In negative logics all such formulae are evalu-
ated as false or, to the same effect, all primitive predicates and functions
are strict, i.e. interpreted only on denoting terms. We do not consider here
neutral free logics (or in Lehmann’s terms [18], a strictly Fregean logic)
since they cannot be based on the standard classical or intutionistic basis
and the construction of SC requires an adaptation of some nonstandard
techniques. The second division concerns the semantic situation; inclusive
logics admit empty domains in models, whereas noninclusive ones exclude
such a situation. Free logics which are inclusive are called universally free.
The last division, on absolutely and quasi-free, is a new one, at least as a
terminological proposal (Lehmann used a phrase “somewhat less free ver-
sion”). It is determined by a semantical treatment of variables. In the case of
quasi-free logics valuations of variables are standard functions, i.e. variables
are assumed to denote existing objects. In the case of absolutely free logics
all terms, including variables, may fail to denote, i.e. valuations are partial
functions. All quasi-free logics are also noninclusive.

These six logics in the language without identity will be referred to as:

PFL (positive FL, universally and absolutely free);
e NFL (negative FL, universally and absolutely free);

PFL" (positive noninclusive FL);
e NFL" (negative noninclusive FL);
PFL* (quasi-free positive FL);

e NFL* (quasi-free negative FL).
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In the language with identity a subscript = will be added to the respective
name (i.e. PFL_, NFLI, etc.). We will be using also names FL, FL" if some
result applies to both absolutely free, or both quasi-free logics.

PFL (as well as PFL") is the most popular version of FL, known better
from philosophical applications and usually grounded on the classical basis
(see e.g. Bencivenga [3], Lehmann [18]). The remaining logics are strongly
connected with applications in constructive mathematics and computer sci-
ence, so usually they were rather used in the intuitionistic version. However,
the specific axioms and rules may be used also with the classical basis, as
was noted by Feferman [6]. Thus NFL_ is the logic of the existence pred-
icate of Scott [25], whereas NFLZT is the logic of partial terms (LPT) of
Beeson [2]. In the former case, Scott examined the intuitionistic version
whereas Tennant [27] provided the classical version. LPT is also called the
basic system of definedness logics which are treated as a wider family of
systems specialised to deal with partial untyped combinatory and lambda
calculi (Feferman [6]). Our custom of using a superscript ‘+’ is borrowed
from Troelstra and van Dalen [29] who provided an extensive comparison of
both negative approaches in the context of constructive mathematics under
the names E-logic and ET-logics respectively. PFL™ as such was rather not
considered so far in isolation. However, in the intuitionistic version it belongs
to the wider family of logics with existence predicate which has found an
interesting proof-theoretic analysis. Baaz and Iemhoff [1] provided SC for
intuitionistic versions of identity-free PFL and PFL*' with proofs of cut
elimination (full for PFL and partial for PFL™) and interpolation. These
results were recently improved by Maffezioli and Orlandelli [19]. PFLE was
not examined so far to the best of our knowledge.

Most of the considered logics have an adequate semantic and axiomatic
characterization (PFLY seems to be an exception). Although the first system
which may be treated as a kind of free logic was presented as a natural
deduction (ND) system (Jaskowski [16], see Bencivenga [3]), the number
of nonaxiomatic proof systems for several variants of free logic is relatively
small. There are ND systems for both kinds of NFL (Tennant [27], Troelstra
and van Dalen [29]). Tableau systems can be found in Bencivenga et al. [4],
Gumb [10] and in Priest [24]. As for the treatment in terms of SC, Bencivenga
[3] contains a formalization of PFL and Gratzl [9] provided SC for NFL_
where cut is eliminable partially (so called “inessential cuts”, in Takeuti’s
sense, cannot be removed) — both on the classical basis. There is also a
fresh work of Pavlovi¢ and Gratzl [23] where PFL_ and NFL_, also in their
noninclusive variant, are examined as cut-free SC. We already mentioned
SC for intuitionistic PFL in both variants provided by Baaz and Iemhoff [1],
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and by Maffezioli and Orlandelli [19]. Some earlier works like that of Trew
[28] are concerned mostly with other systems and their peculiar features.

We will provide sequent calculi for all above-mentioned logics in both
classical and intuitionistic version. The main results of the paper are the
following: (1) A unified proof-theoretic framework will be provided for all
logics considered. (2) We will show that all logics with identity may obtain
improved SC formalizations on the basis of the additional rule (ET). (3)
In the case of quasi-free logics the introduction of (ET) leads to even more
drastic simplification of the quantifier rules and elimination of existence
predicate. (4) Cut elimination will be proved in a uniform way for most
sequent systems presented, including all based on (ET).

In Section 1, we provide the basic technical information on languages,
logics and sequent calculi. In Section 2, SC for six free logics in identity-free
language will be characterised. The next section deals with the systems for
the same logics but with identity. In Section 4, we consider an alternative
treatment of these logics based on the application of the special rule (ET)
that introduces existence statements into antecedents and uses the quantifier
rules with instantiation of terms restricted to variables. Moreover, in Sec-
tion 5, we will show that quasi-free logics may be characterised by means of
quantifier rules of the same kind as those used in the classical and intuition-
istic logic, but with the restricted instantiation of terms; this eventually
justifies our terminology — quasi-free logics. Section 6 provides a uniform
proof of cut elimination for the systems under consideration.

1. Preliminaries

We will be concerned with logics formulated in standard predicate languages
with the following logical vocabulary:

e connectives: =, A, V, —;
o first-order quantifiers: V, 3;
e predicates: F, =.

An unary existence predicate E is taken as logical and primitive (with
one exception — see Section 6); a binary predicate = is primitive in languages
of all systems considered in Sections 3-5.

Our considerations apply to logics formulated in languages with two (pos-
sibly empty) sets of primitive extralogical predicate- and function-symbols of
any arity n. In the metalanguage they will be denoted by R™ and f™ respec-
tively. Note that metavariable R™ applies also to logical predicates E and =.
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The category of terms covers variables and complex terms built by means
of function symbols. Formulae are built recursively in the standard way.
Metavariables ¢, 1, . .. are applied to any terms, ¢, 1, x denote any formulae,
and I', A, II, ¥ their finite multisets.

Individual variables will be divided additionally into bound VAR =
{z,y,2,...} and free variables (parameters) PAR = {a,b,c,...}. This
Gentzen’s notational custom facilitates several technical matters but is not
essential and all the presented systems and the results holding for them may
be easily rephrased for languages where such distinction is not introduced.

©[t1/t2] is used for the operation of substitution of an arbitrary term to
for all occurrences of a variable ¢; in ¢, and similarly I'[t1 /ts] for a uniform
substitution in all formulae in I'. It is always assumed that the substitution
thus represented is correct, i.e. if t5 is a variable or contains variables, they
remain free after substitution.

The six free logics we consider were characterised axiomatically and
semantically. For our purposes the former characterization is enough and
we briefly recall it here. We present their axiomatic formulations in the lan-
guage with the existence (or definedness) predicate E. Note that researchers
working on mathematical and computer science applications (e.g. Beeson [2],
Feferman [6], Gumb [10]) prefer to use not only different terminology and
semantics but even different notation. Thus the language is enriched with
unary definedness predicate | applied as a suffix to any term. The informal
meaning of ¢ | is that ¢ is defined or has a denotation. Although Beeson
emphasized the difference between the predicate of definedness and exis-
tence, with | expressing the property of terms not of objects, from a technical
point of view it is not important and we will be uniformly applying a unary
prefix-symbol E as representing either definedness or existence relative to
the system under consideration. On the other hand, it is worth emphasizing
that the final result of our proof-theoretic analysis can be taken as support-
ing Beeson’s view of significant differences between these two approaches
(see Section 5).

PFL may be characterised axiomatically (i.e. as a Hilbert system) by the
addition of the following axioms and rules to some standard propositional
classical HCL (or intuitionistic — HIL) basis:

(E3I) p[x/t] N Et — Tz
(E3E) if F o A Ex — 1, then - Jzp — 1), where z is not free in
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(EVI) if F¢ A Ex — ¢, then F ¢ — Vxyp, where x is not free in ¢
(EVE) Yzp N Et — ¢z /1]

The resulting system HPFL is universally free, i.e. it is adequate with
respect to models with empty domains. If we want to obtain the system for
HPFL", i.e. the version adequate wrt. nonempty models we must add the
axiom of existence:

(E) JzEwx.

In NFL all predicates are required to be strict in the sense that they are
defined only on denoting terms. To obtain the system HNFL we must add
a Denotation Principle:

(DP) R"; ...t, — Ety A... A Et,

with R™ covering also equality in the case of NFL_. This principle is
extended to functions (again all functions are strict in NFL):

What is called here FL™ (in both positive and negative version) corre-
sponds to the logic of partial terms LPT (Beeson [2]) or definedness logic
(Feferman [6]) or ET (Troelstra and van Dalen [29]). It seems to be a logic
which is halfway to full free logic in the sense that two quantifier principles
are like in classical/intuitionistic logic whereas two (universal instantiation
and existential generalization) are formulated with existential minor pre-
misses. Thus to obtain HPFL™ we add either to HCL or to HIL (E3E) and
(EVI), but instead of (F3E) and (EVI) we add classical rules:

(3E) if F ¢ — 1), then F Jzp — 9, where z is not free in ¢
(V1) if 1 — ¢, then F ¢ — Vap, where x is not free in ¢

Moreover we need the characteristic set of denotation axioms of the form:
(DA) FEa, for every parameter (free variable).

They syntactically express the fact that variables range over existent
objects. In fact, these logics were considered rather as intuitionistic and
negative versions, however, Feferman [6] states that the classical basis can
also be used and Baaz and Temhoff [1] deal with the positive version (and on
the intuitionistic basis only). For the sake of uniformity we will examine all
systems in both their classical and intuitionistic version, even if they were
not treated in such a way originally (in particular, in terms of adequate
semantics).
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HPFL_ may be characterised by the addition of reflexivity and Leibniz
Principle:

(R) t=t
(LP) t1 =ty Aplz/t1] — plz/ta].

In the same way we obtain HPFL”, HPFLZ.
In the case of HNFL_ we keep (LP) but (R) must be replaced with a
kind of restricted reflexivity:

(R') Bt —t=t.

The addition of the same axioms is required for HNFL" and HNFLZX.
However for the latter we may use also as the axiom of quantified reflexivity:

(QR) Vzz = x.

Let us note that in some formalizations of NFL (e.g. Beeson [2], Scott
[25]) also a different version of (LP) is proposed to the effect that ¢; = t5 is
replaced with Et; V Ety — t; = to and we have:

(LPI) (Etl V Etg — tl = tg) A gO[SL’/tl] — QD[CIZ/tQ]

This follows from the fact that in NFL a different kind of identity is con-
sidered. A difference can be roughly explained semantically without enter-
ing into details. FL is often interpreted in models where all terms have a
denotation in outer domain OD and exsistent ones in a (inner) subdomain
ID C OD. Assumed interpretation of = in PFL is then a diagonal of OD?,
but in NFL it is a diagonal of I D?. Strictly speaking this latter NFL-identity
should be denoted with a different symbol which is often the case. However,
in NFL all predicates are strict so it comes to the same and (LP’) may be
replaced with (LP). Therefore the only essential difference concerns reflex-
ivity which must be weakened. In Section 3 we will justify formally our claim
that (LP) is interderivable with (LP’) in NFL.

All logics considered will be formalised as sequent calculi with sequents
I' = A being ordered pairs of finite multisets of formulae called the
antecedent and the succedent, respectively. Moreover, in the intuitionistic
version the succedents are restricted to at most one formula. We will use as
a propositional basis the calculus G (after Gentzen) which is essentially the
calculus G1 of Troelstra nad Schwichtenberg [30]. All necessary structural
rules, including cut, weakening and contraction are primitive. The calculus
G consists of the following rules:
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DEFINITION 1. Rules of G:
'=Ap p, =%

= =
=) pTSA (;‘W)PP Y
807807 : :> 7‘)07@
(C=) ﬁO’FEA (=0C) FI?A,ASD
ﬂ @, =
(=) -0, '= A (=) = A -
o, Y, = A = A I'= A
(N=) ——F———— (=N)
e AP, = A F'=ApAY
o, I'= A v, = A = A, 0,0
(V=) (=V)
eV, I'= A F'=AeVy
( :>)F:>A,g0 P, I'= A (=) p,I'= A
— —) —
o=, I'= A I'=sAp—

In the case of intutionistic version one of the contraction rules (= C) is
dispensable, and (= V) must be split into two rules, with either ¢ or 1 as
the only side formula in the succedent.

Let us recall that formulae displayed in the schemata are active, whereas
the remaining ones are parametric, or form a context. In particular, all
active formulae in the premisses are called side formulae, and the one in the
conclusion is the principal formula of respective rule application. Proofs are
defined in a standard way as finite trees with nodes labelled by sequents.
The height of a proof D of I' = A is defined as the number of nodes of the
longest branch in D. F; I' = A means that I' = A has a proof of height k.

We prefer to work with G rather than with the calculus G3 which is often
preferred as better-behaved for proof search (see e.g. Troelstra and Schwicht-
enberg [30] or Negri and von Plato [21]; it is also used for FL in Pavlovi¢ and
Gratzl [23]). However, for our purposes of showing interderivability of several
rules in different systems, the calculus with primitive structural rules, includ-
ing cut, is more convenient. In G3-style calculi we have to prove admissibility
of structural rules and invertibility of logical rules to demonstrate their ade-
quacy. Having such a calculus with invertible rules is certainly preferable for
proof search and Hintikka-style completeness proofs, but in the study of a
variety of systems it is easier to operate with SC having structural rules, cut
in particular, as primitive, and prove instead derivability of new rules. The
main difference is that admissibility results are in general more complicated
and system-dependent, so they should be examined again for every exten-
sion, since the addition of new rules can spoil them (although it is possible
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to make extensions which guarantee the preservation of structural proper-
ties — see Negri and von Plato [22]). Proofs of derivability are simpler (just
proofs in the system) and automatically hold for all extensions. Moreover,
a proof of cut elimination presented in Section 6 is more direct in the sense
that we do not need to prove first several auxiliary results on invertibility of
logical rules and admissibility of other structural rules which is characteris-
tic in the case of G3-style calculi. The last thing is that in G3, antecedent
rules for negation, implication and universal quantifier in the intuitionis-
tic version differ significantly from classical rules to preserve invertibility,
whereas in the system G only numerical restriction on succedents matters,
and all proofs presented on the classical basis are immediately transformed
into intutionistic format.

This propositional basis, in the classical or intutitonistic version, will be
fixed for all systems under consideration. Concerning the rules for quantifiers
we display for further reference three sets of rules:

DEFINITION 2. A simple set SQ:

plz/t],T= A I'= A, p[x/al
(V=) Vep, I'= A (=V) I'= A Vzp

plr/al,I'= A I'= A, plz/t]
(3=) dxp, I's A (=3) I'= A/ dze

DEFINITION 3. An existence set EQ:

B PR W R i
DEFINITION 4. A mixed set MQ:
(3=) w (=3E) ]m

where in all sets a (the eigenvariable) is not in I'; A, ¢ and ¢ is any term free
for z in all sets of rules.

DEFINITION 5. Restricted quantifier rules

We will consider (V =), (= 3), (VE =), (= 3E) also in restricted form
where ¢ may be only an arbitrary (but correctly substitutable) parame-
ter. Such restricted rules will be called (V ='), (= 3), (VE =), (= 3E'),
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and accordingly restricted sets of quantifier rules are called SQR, EQR and
MQR.

The first (simple) set is just the set of quantifier rules from Gentzen’s LK
characterising classical first-order logic and intuitionistic one with empty A.
It will be of use for us only in the restricted version SQR in Section 5. The
remaining sets characterize suitable free logics, in particular MQ (and MQR)
is the basic set for PFLT and NFL™ whereas EQ and EQR characterize the
remaining logics. We note here the following fact:

Cramm 1. (VE =) is derivable by (V =); (= V) is derivable by (= VE).
(= 3E) is derivable by (= 3); (3 =) is derivable by (IE =).

PROOF. requires only the application of (W =). |

Note that often (see e.g. Bencivenga [3], Baaz and Iemhoff [1]) (VE =)
and (= JFE) are introduced as two-premiss rules:

I'= A Et ¢[z/t],lI= X I'= AEt II= X, ¢z /t]
Vee, T 1I= A, Y = A Y, Jzp
They are interderivable with their one-premiss variants stated above, but
the latter have smaller branching factor and this simplifies proof-figures.
They are also better for proof-search and used in G3 but, due to the miss-
ing primitive contraction rules, they must be changed a bit to obtain a
contraction-absorbing variant:

x/t],Vrp, Et,I'= A Et,T= A, Jzp, o[z /t]
Vep, Et,I'= A Et,I'= A, Jxp

and in the intuitionistic variant with no repetition of 3xp in the premiss of

(1 = 3F) and A empty. Such rules were applied by Maffezioli and Orlandelli

[19] and Pavlovi¢ and Gratzl [23]. In our approach simpler variants are
sufficient, since contraction is primitive.

(2VE=)

(2 =3F)

(1vE=) £l (1 =3E)

2. The Basic Sequent Calculi for Identity-Free FL

Let us start with GPFL. It may be characterised by means of the existence
set of quantifier rules added to G (see definition 1 and 3). Of course, in the
case of the intuitionistic version we restrict succedents of rules to at most
one formula (active or parametric). We omit the proof of equivalence with
H-system; one can find such a proof in Pavlovi¢ and Gratzl [23].

To obtain sequent calculi for the remaining five logics let us consider the
following rules which can be collectively treated as the rules for elimination
of existence predicate in the antecedent:
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DEFINITION 6. Existence elimination rules:

EbI'= A -~ Fa,I'= A . .
(EE) ﬁ (EE ) ﬁ Where a 18 not in F, A
Et;,T= A Et;,T= A
(NEE) — 1= (NEE') b 1=

Rty ... t,, = A Efrty .o t,, = A
for ¢ < n, every predicate R" and function f™.

Note that (EE) is stronger than (EFE") (which is called NI in Pavlovié
and Gratzl [23]), since b is an arbitrary parameter. If we want to obtain
GPFL", the system excluding empty domains, we must add to GPFL this
latter, restricted version of E elimination. The proof of the adequacy with
axiomatic formulation is straightforward; in one direction it is sufficient to
prove the axiom JxFx:

Fa = Fa
(70353 Fa,Fa = dxEx

r Fa= JdrxEx
(BE") =

For the other direction it is sufficient to prove derivability of (EE") in G
with added axiomatic sequent = JzxFx:

Ea,'=> A
Fa,Ea,I' = A E?/E:;))
= dzFEx JeFEx, ' = A (Cut)
'=A “

To obtain GPFLT we add MQ, a mixed set of quantifier rules (definition
4) to G, moreover we must add (E'E). The latter rule is stronger than (FE")
which has the side effect that PFL™ is not universally free. This feature is
rather not problematic if we remember that logics of this kind are of interest
mainly in mathematical applications where the existence of some objects of
interest is tacitly assumed (see the remarks in Feferman [6]). (E'E) is of
course equivalent to the solution applied by Baaz and Iemhoff [1] where,
in case of PFLT, axiomatic sequents I' = Fa for arbitrary parameter a are
added. The solution based on (E'FE) was applied by Maffezioli and Orlandelli
[19] to obtain full cut elimination in their SC for the same logics, including
PFL*. Also in both formulations (= VE) and (3F =) are replaced with
standard quantifier rules (= V) and (3 =). Note that such a simplification is
not possible in general for FL since such a system would be incomplete; nei-
ther = Vo Ex nor = V(e — 1) — (Voyp — Vaip) is be provable. However,
with (E'F) at hand these sequents are provable by means of “more classical”
rules. It is also easy to show that in the presence of (E'E) the existence set
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is equivalent to this combined set with (= V) and (3 =) replacing (= VE)
and (3F =-). By Claim 1 we know that (= V) and (3 =) are derivable in
all systems by means of (W =-). To show that (= VE) and (3E =) are
derivable in GPFL™ is straightforward. We demonstrate derivability of the
former (the latter case is similar):

Ea,T = A, p[x/d]
I'= A pl[z/d]
(=) I'= A Vzp

If we want to obtain systems for negative variants of these free logics we
must add (NEFE) and (NEE') to respective GFL described above. The proof
of their equivalence to H-systems is immediate. It is sufficient to prove (DP)
and (DP’) by means of respective rules and demonstrate their derivability
by cut with sequents corresponding to denotation principles.

Let us note that for GPFL, GPFL", GNFL and GNFL" the following
result holds:

(EE)

LEMMA 1. (Substitution) If - I' = A, then by Ila/t] = Ala/t].

PRrROOF. By induction on the height of a proof (see e.g. Pavlovié¢ and Gratzl
[23]). Note that (EFE") may require similar relettering like (3 =) and (= V).
It is important to note that a proof provides the height-preserving admissi-
bility. [

The reason why this lemma does not hold for GPFL" and GNFL™' is
connected with (E'E). Substitution of ¢ for b in the case where the former is
not a parameter is not correct. It has important consequences for these two
systems, since the substitution lemma is a standard auxiliary result required
in the proof of the cut elimination theorem.

Summing up we have the following systems:

DEFINITION 7. Sequent calculi for free logics without identity:

GPFL: G + EQ;
GNFL: GPFL + {(NEE),(NEE")};
GPFL": GPFL + {(EE")}

GNFL": GPFL" + {(NEE),(NEE')};
GPFL": G + MQ + {(EE)};

GNFL": GPFLT + (NEE) and (NEE").



Free Logics are Cut-Free 871

3. Enter the Identity

It is well known that the existence predicate F is theoretically dispensable
in FL= since it may be defined as dxxz = t or even as t = t in NFL_.
However, for our purposes it is convenient to keep E as primitive and only
characterize = by suitable rules. Otherwise, rules for quantifiers involving
active existence formulae are more complicated, especially in PFL. Moreover,
we have uniform quantifier rules with existence formulae for PFL and NFL.

Principles characterising identity are often treated by addition of suitable
axiomatic sequents (see e.g. Takeuti [26]) but such solution may result in
restricted cut elimination. This is the case of SC for NFL provided by Gratzl
[9] where cuts on identities are not eliminable. For our purposes it is better
to use rules:

DEFINITION 8. Rules for free logics with identity:

(= plz/te], I'= A = )t:t,F:>A
N tlth,QO[ZC/tﬂ,FiA N I's A

b=5bT= A t=tI'= A a=tI= A
—F) ———"= (NEI) ——— El) —————
( ) ' A ( ) Et,I'= A (ET) Et,I'= A

where ¢ is atomic in (= I), a is not in I'; At in (ET).

(= I) is essentially the rule applied by Negri and von Plato [21] to for-
malize Leibniz principle. However in the setting of G3, where contraction
is not primitive, we need the following contraction-absorbing variant of this
rule (similarly as in the case of quantifier rules — see Section 2):

z/ta], t1 = to, lx/t1],T=> A
tl - t27 ‘P[x/tl]7rz> A

The restriction to atomic formulae is necessary to avoid troubles in the
proof of cut elimination. Otherwise, there is a problem with compound cut
formulae introduced by means of respective rule to the left premiss of cut,
and by means of (= I) to the right premiss of cut. There is no loss of
generality however, since the following is provable for all systems considered
in this paper.

(=1 l where ¢ is atomic

LEMMA 2. (Leibniz Principle) -t = to, plx/t1] = ¢l /t2], for any formula
©.
PRrROOF. by induction on the complexity of formula . The basis is derivable

from axiom by (= I). The induction step is proved as in Negri and von Plato
[21]. |
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The rule (= I) is universal for all systems considered in this section
and the remaining ones. So in what follows let us use an abbreviation G-
for G with added (= I). (= E),(= E") and (NEI) will vary for different
systems and all of them refer to reflexivity of identity. (E1) is also universal,
in the sense that it is correct for all considered free logics. However its
remarkable role in uniform formalization of all systems will be considerd in
the later sections. Intuitively it says that if some term denotes then there
is a parameter with the same denotation. This, rather intuitively obvious,
rule is of remarkable technical importance.

Now to obtain GPFL—, GPFL™ or GPFLZ it is enough to add (= I)
and (= FE) to respective systems from the preceding section (definition 7).
Equivalence to H-systems for these logics follows from lemma 2.

In the case of GNFL_ we use (NEI) instead of (= E). It must be added
together with (= I) to GNFL (as characterised in definition 7). We must
also remember that a schematic predicate R™ in the schema of (NEE)
can also represent identity. Interderivability with HNFL where (R') is used
instead of (R) is obvious. Pavlovi¢ and Gratzl [23] use a slightly different
but equivalent set of rules and provide a detailed proof of adequacy. The
same solution works also for NFL™ and NFLZY; it is sufficient to add the
same two identity rules to G-systems from the previous section. However
it is interesting to note that the last logic may be formalised in a different
way and on a weaker basis. We can obtain a formalization of NFLL from
GNFL" by adding (= I) and (= E") instead of (NEI). Moreover, (EE)
may be eliminated in such a system, since it is derivable. Therefore let us
distinguish between the two formalizations of NFLZ:

GNFL1Z is G- + MQ + {(NEE),(NEE'),(NEI),(EE)};
GNFL2f is G- + MQ + {(NEE),(NEE'), (= E")}.
LEMMA 3. GNFL1f FT = A iff GNFL2Z FT' = A

PROOF. by induction on the height of the proof and interderivability of
respective rules. In one direction, every application of (EE) in GNFL1Z is
replaced with:

EbT = A
PR s
- = A

Every application of (N ET) is simulated with:

oy a=a=>a=a
CEY == ZLI2 8 wvEs)
(Cut) =Vexr ==z Vex =z, Et, I = A

Et,I'= A
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The converse requires only showing that (= E") is derivable in GNFL11:

b=0T= A
(N%%) EbT = A
( I'=A

It is quite an important observation that we can dispense with (EFE)
(essential when identity is missing). It shows that no special axioms of the
form = Fa, as in Baaz and Iemhoff [1], are required if identity is present.
The substitution lemma (lemma 1) holds for the same systems with identity
as in the preceding section. Again, because of the presence of (E'FE) it does
not hold for GPFLL and GNFL1Z. It fails also for GNFL2Z, since (= E")
generates the same problem with substitution of b by nonparametric .

Finally let us comment on the alternative characterization of identity
used sometimes in negative logics. In Section 2 we mentioned that in NFL
Leibniz Principle (LP) for identity is expressed sometimes by means of a
slightly more complicated principle (LP’) which in G may be formulated as
an axiomatic sequent:

Et1V Ety — t1 = tQ,(p[l'/tl] = (p[l‘/tg]

However, if all predicates are strict it is equivalent to ordinary (LP). This
may be shown easily in the framework of our systems:
LEMMA 4. (LP) is interderivable with (LP") in GNFL— (and its extensions)

PROOF. Provability of (LP’) is harder and goes by induction on the com-
plexity of o[z/t]. In the basis we have:

(:> W) Etl = Etl
Et) = Ety, Ets plx/ta] = plx/ts] =D
Ej:z; Bty = Et1 V Ets t1 = to, [x/t1] = @[x/ts] o

Ety,Et1 V Ety — t; = to, [z /t1] = ¢[z/ts]
@[x/tl],Etl vV Etg — 11 = to, (p[.%’/tl] = (p[.’L’/tg]
Et1V Bty — t1 = to, pla/t1] = ¢z /ts]

Inductive step is proved like lemma 2. Provability of (LP) from (LP’) does
not even require (NEE):

(NEE)
(C =)

t1 =ta = t1 = to

W =
((:> )) Et1V Eta, t1 =ty = t1 = to
(O t) t1 =to = Et1 V Eto — t1 = to Et1V Ety — t1 = tg,go[:v/tﬂ = (p[l‘/tg]
u

t1 = to, p[z/t1] = plz/ts]
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Thus we are entitled to use the same rule (= I) for identity in all cases.
Summing up we have the following systems:

DEFINITION 9. Sequent calculi for free logics with identity:

GPFL-: G= + EQ + {(= E)};

GPFL™: GPFL_ + {(EE")};

GPFLL: G- + MQ + {(= E),(EE)};

GNFL_: G- + EQ + {(NEE),(NEE'"),(NEI)};

GNFLZ: GNFL_ + {(EE")};

GNFL1Z: G- + MQ + {(NFEFE),(NEFE'),(NEI),(EE)};

GNFL2t: G- + MQ + {(NEE),(NEE"),(= E")};

where G2 = G + {(=1)}.

We could also schematize our systems in a simpler way by emphasizing
the fact that they are just the same systems which were considered in the
previous section (see definition 7) but with different sets of identity rules

added. Let SI = {(= I), (= E)}, NI = {(= I), (NEI)} and RI = {(= I), (=
E™)}, then:

GPFL- = GPFL + SI;

GPFL"™ = GPFL" + SI;

GPFLY = GPFL* + SI;

GNFL_ = GNFL + NI;

GNFL™ = GNFL" + NI;

GNFL1* = GNFL™ + NI;

GNFL2f = GNFL™' + RI (but without (EE)).

Note that we cannot obtain something like GPFL2E where (EF) is dis-
pensable, since (NEE) is required to prove its derivability.

4. Enter (EI)

We did not consider the role of (EI) so far. This rule is derivable in all
systems we have introduced in the previous section; we state this as:

LEMMA 5. (EI) is derivable in GPFL—, GPFL", GPFLY, GNFL_, GNFL",
GNFL1* and GNFL2ZE.
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Proor. The following derivation justifies its derivability in GPFL_ and
GPFL~:

=t,I'= A
t=t=>t=t a=b
(=E) I — Fa,a=t,I'= A (W =)
(= 3E) (3E =)
(Cut) Et=dex =1t dex =t,I' = A
b EL.T = A

This proof works also for GPFLL (in this case (W =) is not required
in the right branch since (3 =) is the right rule). It must be only slightly
modified to obtain a derivability of (ET) in GNFL—, GNFL" and GNFL1Z;
in the left branch we must use (N EI) instead of (= F) and then we need
also to use contraction to eliminate one occurrence of Et. In the case of
GNFL2Z a derivation is considerably more complicated:

(:ET‘) a=a=a=a

= a=a t=t=>t=1
((Z’}ui) = Ver==x Vex =x, Bt =t=1 (V=)
(= 3) Ft=t=t
(€ =) FEt,Et = dex =t a=tT=A (3 =)
(Cut) FEt=dzx =t Jex =t, ' = A
Et,T'= A
|

Incidentally note that the left subtree shows how Ft =t =t is provable
in GNFL2Z (in GNFL1Z the proof is trivial by (NFET)).

So far we have noticed that substitution lemma fails for our formalizations
of FL and blamed rules (EE), (= E") for that. However, as we shall see,
using (ET) can help. Consider versions of (VE =) and (= 3F) with instan-
tiation terms t restricted to parameters only (see definition 5). It appears
that in the presence of (ET) these rules are sufficiently strong to derive their
unrestricted versions. Let us call such restricted versions GrPFL_, GrPFL",
GrPFLZL, GrNFL_, GrNFL"”, GrNFL1E and GrNFL2ZL respectively. The
following holds:

LEMMA 6. In all restricted systems (i.e. with (EI) and restricted quantifier
rules (VE =') and (= 3E')) their nonrestricted versions are derivable.

PrROOF. We demonstrate the case of (VE =):
[x/a]l,a =t = p[x/t] plz/t], Il =X
vlr/al,a =1t,11 = X
Vep, Fa,a =t, 11 = %
Vep, Et,a =t,a =111 =X
Vep, Et,a =t,11 = X

Ve, Et, Bt 11 = %

Ve, Et, 11 = %

(Cut) Ld
(VE =)

(=1)
(C=)

(ET)
(C =)
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where the leftmost leaf is provable by lemma 2. The case of (= 3JE) is
similar. By inspection of applied rules it is obvious that this proof holds in
restricted systems for all logics under consideration. [

THEOREM 1. Restricted systems are equivalent to their unrestricted coun-
terparts from Section 3.

Proor. It follows from Lemmas 5 and 6. [}

We also obtain for all restricted systems:
LEMMA 7. (Restricted Substitution) If b, T' = A, then -y, T'[a/b] = Ala/b).

PROOF. The same as for lemma 1. (ET) may require relettering to avoid con-
flict of the fresh parameter with substituted parameter. Since we admit only
substitution of parameters for parameters, (F'E) and (= E") are unprob-
lematic and the lemma holds for restricted systems for FL ™. [

Although this result is too weak for systems examined in Sections 2 and
3 it is sufficient for restricted systems of this section, since only parameters
are instantiated when quantifier rules are applied. It makes possible a proof
of cut elimination in Section 6 for all logics. Moreover, this is also important
for their possible applications to logics in the languages extended with oper-
ators (description-, abstraction-operator). In such logics terms generated by
the application of unrestricted quantifier rules may be very complex, thus
breaking the subformula property and destroying the possibility of a con-
structive cut elimination proof. In restricted systems this problem is solved
which opens the possibility for constructing well-behaved rules for operators.

Let us make a summary of restricted systems:

DEFINITION 10. Restricted sequent calculi for free logics with identity:
GrPFL_: Gr— + EQR + {(= E)};
GrPFLZ: GrPFL_ + {(FE")};
GrPFLZI: Gr— + MQR + {(= E), (EE)};
GrNFL=: Gr= + EQR + {(NEE),(NEE'),(NEI)};
GrNFLZ: GrNFL_ + {(EE")};
GrNFL1Zt: Gr— + MQR + {(NEE),(NEE"),(NEI),(EE)};
GrNFL2:: Gr= + MQR + {(NEE),(NEE'),(= E")};

where Gr—: G + {(= 1), (EI)} and EQR, MQR are restricted sets of quan-
tifier rules (see definition 5).
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5. Simplified Systems for Quasi-Free Logics

The application of (ET) permits restricted quantifier rules in all systems
but this is not the end. What is even more surprising with (EI), is that for
PFLE and NFLE we can simplify quantifier rules even further. Instead of
using MQR we can take SQR with (V =), (= 3') which are standard (for
classical and intuitionistic logic) quantifier rules with instantiation terms
restricted to parameters (see definition 2 and 5). Note first that:

LeEMMA 8. (V =), (= ) are derivable in all restricted systems for PFLL
and NFLT.

ProOF. We show it for (V ='). In GrNFL2+:

Fa = Fa
((]Z%Er; a=a= Fa olr/a],I' = A (VE =)
(Cut) = Fa FEa,Vzxp, ' = A
Veo, I = A

in GrNFL1t or GrPFLZ, the proof is even simpler, since in the leftmost
branch we need only one application of (FFE). [ |

Note that this result holds even for the systems for FL T without identity
and (EI). Moreover, if we use these rules in FLY instead of (VE =') and
(= JE') the resulting two formalizations are equivalent. This follows from
the more general result:

LEMMA 9. In the presence of (EI), (YE =) is derivable by (VY =') and
(= 3E) by (= ).

PrROOF. We demonstrate this for (VE =); the proof for (= 3F) is similar.
Let us consider the case with ¢ which is not a parameter:

vlz/al,a =t = ¢lx/t] plz/t], Il =X

olx/al,a =t,11 =%

Vep,a=tI11=3%
Ve, Et, 11 = 3%

where the leftmost leaf is derivable by lemma 2.
Of course in case t is a parameter the proof is even simpler, since the
application of (ET) and lemma 2 is dispensable. |

(Cut)

(V=)
(ET)

This result holds in general for all considered systems (since (ET) is deriv-
able in all systems). Moreover, in case of FLE (in all variants and formula-
tions) it yields that (V =') and (= 3') are interderivable with (VE =) and
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(= 3E'). Let us call such restricted systems for FLT (with SQR replacing
MQR) simplified systems and denote as GsL for a logic L (e.g. GsPFLY).
From lemma 8 and 9 follows:

THEOREM 2. Simplified systems GsPFLY, GsNFL1* and GsNFL2E are
equivalent to their restricted counterparts GrPFLY , GrNFL1E and GrNFL2t.

It is an interesting feature of quasi-free logics that they may be formalised
by means of quantifier rules totally freed from existence assumptions. For-
mulae of this kind are necessary only for (EI) (and (NEE),(NEE') in
GsNFL2Z; for GsNFL1t additionally in (N ET)). It shows also that defined-
ness logic although treated as a kind of free logic is in some sense very differ-
ent. More general quantifier rules are not necessary and even the definedness
predicate is dispensable, since it may be defined. Let us examine this last
possiblity for GsNFL2Z. In general, the fact that E is definable does not lead
to satisfying results if we want to obtain cut-free SC. However, in the case
of negative quasi-free logics the situation is different. Recall that Et may be
defined as t = t in NFL_. One part is in fact present as (NET) in GsNFL1E
and the corresponding sequent was proved incidentally in GNFL2ZL in Sec-
tion 4; the other one is immediate by (N E'E). Let us consider now the E-free
language and the following rules:

DEFINITION 11. Existence-free variants:
a:ti,F:>A ti:ti,FjA
(Str)
Rty ... t,I'= A Rty ... t,I'= A

where t,t;,7 < n is any term, a is not in I', A, ¢, t;.

a=tIT=A
t=tI'= A

(NEE-) (EI')

(NEE-) and (EI') are just E-free versions of (NEFE) and (EI) whereas
(Str) (for strict) is a new and more general rule, as we will show. One may
easily see that (Str) is derivable by these two rules. On the other hand,
(ET") is a special case of (Str), whereas (NEE_) is derivable:

ti=t;, [ = A ( I)
(=3) a=t,=>a=t; a=t,a=al = A (= E7)
(Str) a=1t; = Jxx =1t; a=t,I'= A (3=)
(Cut) Ry ... t, = Jxx =1, dex =, = A

Rntl...tn,FiA

Thus we can obtain a formalization of NFLE in the E-free language
by means of (Str) replacing both (NEE_) and (EI’). This does not work
however if we have strict functions, since E is indispensable in (NEE').
To overcome the problem we must introduce generalised versions of (Str)
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and (NEE_). We will define inductively the auxiliary notion of k-depth
occurrence of ¢ in atomic ¢ which will be symbolised ([t]*.
Let ¢ := R™; ...t,, we say that:

e t has O-depth occurrence in ¢, if t :==t;,7 < n;

e t has k + 1-depth occurrence in ¢, if there is some f"t; ...t, which has
k-depth occurrence in ¢ and ¢ :=t¢;,7 < n.

Now we can redefine (Str) and (NEE-):

DEFINITION 12. Generalised existence-free variants:
Str'y —— " — (NEE' ) ——~—
(S5tr7) o[t T= A ( =) o[t]FT'= A

where ¢ is any term having k-depth occurrence (k > 0) in (atomic) ¢, a is
not in ', A, .

The proof of interderivability of (Str’) with (EI’) and (NEE”.) is the
same as for the preceding set (which is sufficient for the case of languages
without functional terms). In this way we obtain also derivability of (NEE’)
and two simple SC characterizations of NFLY in existence-free language. We
call them GsNFL3ZE and GsNFL4Z. In fact, we could use also these results
to obtain a simplified axiomatization of LPT with no use of the definedeness
predicate. It is enough to take an axiomatization of the standard classical
or intutionistic pure (i.e. with variables only) first-order logic, for identity
add (LP) (admitting all kind of terms) and Yoz = z, and finally add a rule:

(STR): if - a =t — 1, then I @[t]* — 1,
where a is not in ¢, 1, t is any term, and ¢ is atomic.

No special axioms of the form Fa or denotation principles for strict pred-
icates and functions are required. Indeed this is very simple and economical
axiomatization of Feferman’s definedness logic. One may observe that this
result provides also another justification for Beeson’s remarks concerning
differences between definedness and existence predicate, mentioned in Sec-
tion 1.

Let us summarize the systems of this section:

DEFINITION 13. Simplified sequent calculi for quasi-free logics with identity:
GsPFLZI: Gr— + SQR + {(= E), (FE)};
GsNFL1Z: Gr— + SQR + {(NEE),(NEE"),(NEI), (EE)};
GsNFL2E: Gr= + SQR + {(NEE) (NEE'"), (= E")};
GsNFL3%: Gs— + SQR + {(NEE.), (= E")};
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GsNFL4t: G— + SQR + {(Str'), (= E")};

where Gr=: G + {(= I),(EI)}, Gs=: G + {(= I),(ET")} and G=: G +
{(=1}

6. Cut Elimination

We provide a general schema of proof of cut elimination for almost all sys-
tems described in Sections 2-5. More specifically, it covers all restricted and
simplified systems introduced in Sections 4-5, and all systems for absolutely
free logics presented in Sections 2-3. It does not apply to systems for quasi-
free logics from Sections 2-3, for which the substitution lemma does not
hold.

The general strategy of the proof was originally applied for hypersequent
calculi by Metcalfe et al. [20] and later extensively used in this framework
(see e.g. Ciabattoni et al. [5], Indrzejczak [11], [14], Kurokawa [17]). However
it is also applicable to standard sequent calculi (see Indrzejczak [12], [13])
and allows for an elegant proof which helps to avoid many complexities
inherent in other methods of proving cut elimination. In particular, we avoid
well known problems with contraction, since two auxiliary lemma deal with
this problem in advance.

We assume that all proofs are regular in the sense that every parameter
a which is fresh by side condition on the respective rule must be fresh in the
entire proof, not only on the branch where the application of this rule takes
place. There is no loss of generality since every proof may be systematically
transformed into regular proof by the restricted substitution lemma (lemma
7 in Section 4).

Let us define the notions of cut-degree and proof-degree:

1. Cut-degree is the complexity of cut-formula ¢, i.e. the number of con-
nectives and operators occurring in ¢ and is denoted as dyp;

2. Proof-degree (dD) is the maximal cut-degree in D.

The proof of cut elimination theorem is based on two lemmata which
successively make a reduction: first on the height of the right, and then on
the height of the left premiss of cut. ¥, I'* denote k > 0 occurrences of ¢, T,
respectively.

LEMMA 10. (Right reduction) Let D1 FT' = A, ¢ and Dy F ¥, 11 = X with
dDy,dDs < dip, and ¢ principal in T = A, @, then we can construct a proof
D such that D FTF 11 = A*. Y and dD < dp.
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PROOF. It goes by induction on the height of Ds. The basis is trivial, since
I' = A, is identical with I'*,II = A* ¥. The induction step requires
examination of all cases of possible derivations of ¢¥,II = 3, and the role
of the cut-formula in the transition. In cases where all occurrences of ¢
are parametric we simply apply the induction hypotheses to the premisses
of ©* 11 = ¥ and then apply the respective rule — it is essentially due
to the context independence of almost all rules and regularity of proofs
which prevents violation of side conditions on eigenvariables. If one of the
occurrences of ¢ in the premiss(es) is a side formula of the last rule we
must additionally apply weakening to restore the missing formula before
the application of the relevant rule.

In cases where one occurrence of ¢ in ¢* I = ¥ is principal we make use
of the fact that ¢ in the left premiss is also principal (note that for the cases
of contraction and weakening it is trivial). Note that due to condition that
 is principal in the left premiss it must be compound, since all rules intro-
ducing atomic formulae as principal are working only in the antecedents.
Hence all cases where one occurrence of atomic ¢ in the right premiss would
be introduced by means of such rules are not considered in the proof of this
lemma. The only exception is with I' = A, ¢ being an axiom with principal
atomic ¢, but it does not make any harm.

We analyse the case of Vap with rules taken from the existence set. Hence
D; finishes with:

Ea,T' = A, plz/a
= AVzp

(= VE)
where a is fresh; and Dy ends with:

olz/t], Vo T = %
Vool Bt, 11 = %

(VE =)

where k > 0.
The expected result is Et,I'* II = A*, ¥. We construct a new proof:

Et,T = A, ¢lz/t] Qle/t],T* 1T = AFL %

Cut
Et,T* 1= AF % (Cut)

where the left leaf is obtained by substitution lemma (lemma 1) on the
premiss of (= VE) in our original proof, and the right one by the induction
hypothesis applied to the premiss of (VE =) application in the original
proof. All cuts are of lower degree hence the new proof satisfies the condition
of the lemma. Proofs of other cases are similar. ]
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Note that this case (and the dual for Jz¢) shows why the proof fails
for G-systems with unrestricted quantifier rules for quasi-free logics; lemma
1 cannot be applied here. On the other hand, restricted and simplified G-
systems for these logics have no problem here, since ¢ must be a parameter
and the restricted substitution lemma (lemma 7) justifies the replacement.

LEMMA 11. (Left reduction) Let Dy F T = A, o* and Dy F ¢, 11 = X with
dD,,dDy < dp, then we can construct a proof D such that D + I',1I* =
A, YF and dD < de.

PRrOOF. This is proved by induction on the height of D; but with some
important differences. First note that we do not require ¢ to be princi-
pal in ¢, II = 3 so it includes the case with ¢ atomic. In all these cases
we just apply the induction hypothesis. This guarantees that even if an
atomic cut formula was introduced in the right premiss by one of the rules
(NEE),(EI),(NEI),(=I),(Str), and the like, the reduction of the height
is done only on the left premiss, and we always obtain the expected result.
Now, in cases where one occurrence of ¢ in I' = A, ©* is principal we first
apply the induction hypothesis to eliminate all other k£ — 1 occurrences of
@ in premisses and then we apply the respective rule. Since the only new
occurrence of ¢ is principal we can make use of the right reduction lemma
again and obtain the result, possibly after some applications of structural
rules. ]

Now we are ready to prove the cut elimination theorem:

THEOREM 3. Every proof in all G-systems specified above can be trans-
formed into cut-free proof.

PROOF. by double induction: primary on dD and subsidiary on the number
of maximal cuts (in the basis and in the inductive step of the primary
induction). We always take the topmost maximal cut and apply lemma 9 to
it. By successive repetition of this procedure we diminish either the degree
of a proof or the number of maximal cuts in it until we obtain a proof with
d=0. |

7. Concluding Remarks

We have presented several sequent calculi for six free logics, both in the clas-
sical and the intuitionistic version. In particular, we introduced a variety of
systems for quasi-free logics, which were not dealt with in this framework
so far, and showed in this case how to overcome the problems with cut



Free Logics are Cut-Free 883

elimination. All systems discussed for the six free logics considered in the
last section are not only cut-free but satisfy also a kind of the subformula
property to the effect that for every provable sequent, its proof may be built
from subformulae of the root, identities and existence statements (in case
of GsNFL3Z and GsNFL4ZL only identities). The former property permits
for further standard applications like e.g. proofs of interpolation theorems
which was in fact performed for PFLT (Baaz and Iemhoff [1], Maffezioli
and Orlandelli [19]). The latter property may be helpful in providing some
practical proof search procedures. In fact all these systems may be easily
transformed into G3-style calculi and then into tableau systems (see e.g.
Priest [24]), in case of quasi-free logics on the classical basis almost identical
to systems for classical logic. In this paper we focused however on the theo-
retical basis; possible refinements and applications to automated deduction
require further study.

In fact, independently of the research provided in this paper, Pavlovi¢ and
Gratzl [23] presented recently a study of SC for free logics. Their systems are
based on G3 but equivalent to ours presented in Section 3. For those systems
they proved the cut admissibility theorem in Dragalin-style (see Negri and
von Plato [21] for details). However, they do not provide SC for quasi-free
logics and restrict their considerations to languages with variables as the
only terms. Thus the problem of finding a solution for arbitrary terms is not
dealt with in that paper.

The most significant result of this paper is the construction of systems
which use restricted rules for quantifiers. This is important not only for
quasi-free logics and construction of cut-free systems for them but, as we
mentioned in Section 4, opens the room for decent, cut-free systems with
rules for operators making complex terms in all kinds of free logics. Indrze-
jezak [12] provided such a result for sequent calculus for first-order modal
logics based on PFL with definite descriptions. The results presented in this
paper open the prospects for extending this type of analysis to other the-
ories of definite descriptions (see e.g. Bencivenga [3]|, Fefermann [6], Scott
[25]), as well as to other kinds of complex terms, including indefinite descrip-
tions, lambda terms (Feferman [6]) or class-forming abstraction operators
(Tennant [27]). The application of quasi-free logics as the basis seems to be
particularly promising in the modal contexts using richer languages. One
may find an approach of this kind in Fitting and Mendelsohn [7] where neg-
ative quasi-free logic is the basis for modal extensions dealing with denot-
ing/nondenoting and rigid /nonrigid terms, including definite descriptions.
Recently Indrzejczak [15] extended such an approach to hybrid modal logics
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providing cut-free SC for them. The results presented in this paper provide
a firm ground for further extensions of this kind.
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