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Abstract. Arbitrary public announcement logic (APAL) reasons about how the knowl-

edge of a set of agents changes after true public announcements and after arbitrary an-

nouncements of true epistemic formulas. We consider a variant of arbitrary public an-

nouncement logic called positive arbitrary public announcement logic (APAL+), which re-

stricts arbitrary public announcements to announcement of positive formulas. Positive

formulas prohibit statements about the ignorance of agents. The positive formulas corre-

spond to the universal fragment in first-order logic. As two successive announcements of

positive formulas need not correspond to the announcement of a positive formula, APAL+

is rather different from APAL. We show that APAL+ is more expressive than public an-

nouncement logic PAL, and that APAL+ is incomparable with APAL. We also provide a

sound and complete infinitary axiomatisation.

Keywords: Dynamic epistemic logic, Multi-agent systems, Universal formulas.

1. Introduction and Overview

Public announcement logic (PAL) [20,25] extends epistemic logic with oper-
ators for reasoning about the effects of specific public announcements. The
formula [ψ]ϕ means that “ϕ is true after the truthful announcement of ψ”.
This means that, when interpreted in an epistemic model with designated
state, after submodel restriction to the states where ψ is true (this includes
the designated state, and ‘truthful’ here means true), ϕ is true in that re-
striction. Arbitrary public announcement logic (APAL) [5] augments this
with operators for quantifying over public announcements. The formula �ϕ
means that “ϕ is true after the truthful announcement of any formula that
does not contain �”.

Quantifying over the communication of information as in APAL has appli-
cations to epistemic protocol synthesis, where we wish to achieve epistemic
goals by communicating information to agents, but where we do not know
of a specific protocol that will achieve the goal, and where we may not even
know if such a protocol exists. In principle, synthesis problems can be solved
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by specifying them as formulas in the logic, and applying model-checking
or satisfiability procedures. However in the case of APAL, while there is a
PSPACE-complete model-checking procedure [1], the satisfiability problem
is undecidable in the presence of multiple agents [18].

We consider a variant of APAL called positive arbitrary public announce-
ment logic (APAL+), we obtain various semantic results relating refinements
to positive formulas, we give various rather surprising expressivity results,
and we give a non-surprising axiomatization. In APAL the arbitrary public
announcements quantify over quantifier-free formulas, that are equivalent
to epistemic formulas (basic modal logic). Whereas in APAL+ the arbi-
trary public announcements quantify over quantifier-free positive formulas:
formula �+ϕ means that “ϕ is true after the truthful public announcement
of any positive formula”. A formula is positive if, roughly, the knowledge
modalities are never bound by negations. Positive formulas consist only of
positive knowledge statements, such as “it is known that”, and prohibit
negative knowledge statements such as “it is not known that” and “it is
uncertain that”. In the standard translation, such formulas correspond to
the universal fragment [3].

The restriction to positive formulas is natural in view of possible applica-
tions. There are many protocols wherein the messages convey that an agent
knows an atomic proposition and wherein only the invariants or postcondi-
tions require that an agent does not know an atomic proposition. Knowledge
of atomic propositions is stable and easy to verify whereas absence of knowl-
edge is fragile and, typically, hard to verify. For example, verifying knowledge
is done by direct observation such as witnessing a communication, or by mes-
sage passing between principals in a security protocol (where messages are
considered atomic components), or by reading a time-stamped blockchain
ledger [27]. However, verifying that an agent does not know a proposition
requires an assumption that there are no private communication channels
or clandestine messages, and thus negative knowledge cannot be verified in
the same way as positive knowledge. Consequently, quantifying over positive
announcements can often be viewed as quantifying over protocols consisting
of straightforwardly verifiable information. The decidability of positive ar-
bitrary public announcement logic therefore means that we can answer the
question whether it is possible to achieve a particular knowledge state by
means of such protocols.

Let us give some other concrete examples. In the alternating bit protocol
[23] the communicating agents achieve partial correctness of message trans-
fer by stacking acknowledgements (where ‘acknowledge’ means ‘know’). The
internet protocol TCP/IP manages package transfer, taking into account of
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missing packages and time-outs, again by means of stacked knowledge [26].
In those case there are no concerns involving ignorance, it is a matter of
guaranteeing (partial) knowledge. In various security protocols the worst-
case scenario is that all messages between principals are intercepted, in other
words, that they become public announcements (all aspects of the protocol
except private keys may be assumed public). For example, in cards cryp-
tography two communicating agents attempt to learn the card deal without
other players (eavesdroppers) learning the card deal (or even any single card
other than their own) [13,15,31]. The dining cryptographers protocol [12,30]
has semi-public (coin tossing, observed by an agent and its neighbour) and
public aspects (announcing bits, depending on the outcome of the coin toss
and whether the agent paid for the meal), in order to guarantee an ignorance
epistemic goal (who paid for the meal?). The public part consists of positive
announcements (namely of known values of bits).

The logic APAL+ is decidable. The proof of this result is substantial and
of a fairly technical nature and it is therefore reported in a companion paper
[34]. As this result puts APAL+ in perspective to similar logics, let us sum-
marily sketch the picture. For an in-depth discussion we refer to [34]. With
respect to other logics with quantification over announcements, APAL, the
related group announcement logic, and coalition announcement logic are all
undecidable [2] (and all three are only known to have infinitary axiomati-
sations), whereas the ‘mental model’ arbitrary public announcement logic
of [11] and Boolean arbitrary public announcement logic (BAPAL) [33] are
decidable.

As the name suggests, BAPAL has quantification over Boolean announce-
ments [33]. This form of quantification is therefore even more restricted than
in APAL+. Its axiomatisation is finitary, unlike APAL+, for which we only
report an infinitary axiomatisation.

From the dynamic epistemic logics that are quantifying over non-public
information change, arbitrary arrow update logic [36] is undecidable, whereas
the already mentioned refinement modal logic [8] and arbitrary action model
logic [21] are decidable. For the last two logics this is an elementary con-
sequence of the fact that they are as expressive as the base modal logic.
This is shown with respect to K models (models for arbitrary accessibility
relations). In [22] it is also shown that refinement modal logic interpreted
on models of the class S5 (where all accessibility relations are equivalence
relations; the logic is then called refinement epistemic logic) is as expressive
as the modal logic S5.
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We hope that the logic APAL+ offers a valuable contribution to this
already diverse landscape of logics with quantification over information
change.

In Section 2 we give an overview of structures and structural notions,
such as epistemic model, bisimulation, and refinement, and we present pub-
lic announcement logic and arbitrary public announcement logic. In Section
3 we give the syntax and semantics of positive arbitrary public announce-
ment logic APAL+. In Section 4 we show that APAL+ model checking is
PSPACE-complete. In Section 5 we demonstrate that APAL and APAL+ are
incomparable. In Section 6 we give the complete infinitary axiomatisation
of APAL+.

2. Public Announcement Logics

We recall definitions and technical results from epistemic logic, public an-
nouncement logic [20,25] and arbitrary public announcement logic [5].
Throughout this contribution, let A be a countable set of agents and let
P be a countable set of propositional atoms (or atoms, or propositional vari-
ables).

2.1. Structural Notions

In this subsection we define epistemic models, model restrictions, and various
types of bisimulation.

Definition 2.1. An epistemic model M = (S,∼, V ) consists of a domain
S , which is a non-empty set of states, a set of accessibility relations ∼,
indexed by agents a ∈ A, where ∼a ⊆ S × S is an equivalence relation on
states (a relation that is reflexive, transitive and symmetric), and a valuation
V : S → P(P ), which is a function from states to subsets of propositional
atoms (namely those true in that state).

The class of all epistemic models is called S5 . A pointed epistemic model
Ms = ((S,∼, V ), s) consists of an epistemic model M along with a desig-
nated state s ∈ S . A pointed epistemic model will often also be called an
epistemic model.

Given two states s, t ∈ S , we write s∼at to denote that (s, t) ∈ ∼a.
We write [s]a to denote the a-equivalence class of s, which is the set of
states [s]a = {t ∈ S | s∼at}. As we will often be required to discuss several
models at once, we will use the convention that Ms = ((S, ∼, V ), s), M ′

s′ =
((S′,∼′, V ′), s′), Mγ

sγ = ((Sγ ,∼γ , V γ), sγ), etc. If s ∼a t, we say that there
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is an a-link (a-step) between s and t. An epistemic model is connected if
between any two states in its domain there is a path consisting of such
links, i.e., if for any states s, t there are states s = s1, s2, . . . , sn = t and
agents a1, . . . , an−1 such that for all 1 ≤ i ≤ n − 1, si ∼ai

si+1.

Definition 2.2. Let M = (S,∼, V ) ∈ S5 be an epistemic model and
T ⊆ S where ∅ �= T . We define the restriction of M to T as M |T =
(S |T , ∼|T , V |T ) where:

S |T = T

∼a|T = ∼a ∩ (T × T )

V |T (p) = V (p) ∩ T

If N is a restriction of M we write N ⊆ M . A restriction N of M is also
called a submodel of M .

Definition 2.3. Let M = (S,∼, V ) ∈ S5 and M ′ = (S′,∼′, V ′) ∈ S5 be
epistemic models. A non-empty relation R ⊆ S × S′ is a bisimulation if and
only if for every (s, s′) ∈ R, p ∈ P , and a ∈ A the conditions atoms-p,
forth-a and back-a hold.

• atoms-p: s ∈ V (p) if and only if s′ ∈ V ′(p).

• forth-a: For every t∼as there exists t′∼′
as′ such that (t, t′) ∈ R.

• back-a: For every t′∼′
as′ there exists t∼as such that (t, t′) ∈ R.

If (s, s′) ∈ R then we call Ms and M ′
s′ bisimilar and write Ms 
 M ′

s′ or (to
indicate the relation) R : Ms 
 M ′

s′ . If for all s ∈ S there is an s′ ∈ S′ such
that Ms 
 M ′

s′ , and for all s′ ∈ S′ there is an s ∈ S such that Ms 
 M ′
s′ ,

we write M 
 M ′.

We note that the union of two bisimulations is a bisimulation, and that
there is a maximal bisimulation between the states of an epistemic model,
which is an equivalence relation, see [7] for such standard notions. A model
is bisimulation minimal iff for any s, t ∈ S with s �= t, Ms is not bisimilar
to Mt.

We will also require the notions of restricted bisimulation (restricted to a
set of atoms Q ⊆ P ) and bounded bisimulation (bounded to a depth n ∈ N).
Q-Bisimulations are intended to preserve modal formulas that contain only
atoms from Q, whereas n-bisimulations are intended to preserve the truth of
formulas ϕ with wherein stacks of epistemic operators have maximal depth
n (this notion will be defined later).
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Definition 2.4. Let M,M ′ ∈ S5 be epistemic models and let Q ⊆ P be
a set of propositional atoms. A non-empty relation R ⊆ S × S′ is a Q-
bisimulation if and only if for every (s, s′) ∈ R and a ∈ A, forth-a and
back-a hold, whereas atoms-p is only required to hold for all p ∈ Q. If
(s, s′) ∈ R then we call Ms and M ′

s′ Q-bisimilar and write Ms 
Q M ′
s′ .

The notion of n-bisimulation, for n ∈ N, is given by defining a set of
relations R0 ⊇ · · · ⊇ Rn.

Definition 2.5. Let M,M ′ ∈ S5 be epistemic models, and n ∈ N. A non-
empty relation R0 ⊆ S × S′ is a 0-bisimulation if and only if for every
(s, s′) ∈ R0 and for every p ∈ P

• atoms-p: s ∈ V (p) if and only if s′ ∈ V ′(p).

A non-empty relation Rn+1 ⊆ S × S′ is an (n + 1)-bisimulation if and only
if for every (s, s′) ∈ Rn+1, for all p ∈ P , and for every a ∈ A, there is an
n-bisimulation Rn ⊇ Rn+1 such that:

• (n + 1)-forth-a: For every t∼as there exists t′∼′
as′ such that (t, t′) ∈ Rn;

• (n + 1)-back-a: For every t′∼′
as′ there exists t∼as such that (t, t′) ∈ Rn.

If (s, s′) ∈ Rn for an n-bisimulation Rn, then we call Ms and M ′
s′ n-bisimilar

and write Ms 
n M ′
s′ .

2.2. Syntax and Semantics of Public Announcement Logics

We now define the syntax and semantics of epistemic logic S5 , public an-
nouncement logic PAL, and arbitrary public announcement logic APAL.

Definition 2.6. The language of arbitrary public announcement logic Lapal

is the set of formulas generated by the following rule, where p ∈ P and a ∈ A.
Typical members of Lapal are denoted by lower case Greek letters ϕ, ψ, etc.,
possibly primed.

ϕ : :=p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | �ϕ

We will follow the usual rules for omission of parentheses. We use all of the
standard abbreviations for propositional logic, and additionally the abbre-
viations Laϕ : :=¬Ka¬ϕ, 〈ϕ〉ψ : :=¬[ϕ]¬ψ, and ♦ϕ : :=¬�¬ϕ. We also
consider the language of public announcement logic, Lpal , consisting of Lapal

without the � operator, the language of epistemic logic, Lel , consisting of
Lpal without [·] operators, and the language of propositional logic, Lpl , with-
out any modalities. A formula in Lel is an epistemic formula, and a formula
in Lpl is a Boolean. The epistemic depth of a formula in Lapal counts the num-
ber of stacked Ka operators (while ignoring the � operators), i.e., d(Kaϕ) =
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d(ϕ)+1, and d(p) = 0, d(�ϕ) = d(¬ϕ) = d(ϕ), d(ϕ∧ψ) = max{d(ϕ), d(ψ)},
d([ϕ]ψ) = d(ϕ) + d(ψ). We write v(ϕ) for the set of propositional variables
occurring in ϕ, where v(p) = {p}, v(Kaϕ) = v(�ϕ) = v(¬ϕ) = v(ϕ), and
v([ϕ]ψ) = v(ϕ ∧ ψ) = v(ϕ) ∪ v(ψ).

Definition 2.7. The binary satisfaction relation |= between pointed epis-
temic models and Lapal formulas is defined as follows by induction on formula
structure. Let M = (S,∼, V ) ∈ S5 be an epistemic model. Then:

Ms |= p iff s ∈ V (p)
Ms |= ¬ϕ iff Ms �|= ϕ
Ms |= ϕ ∧ ψ iff Ms |= ϕ and Ms |= ψ
Ms |= Kaϕ iff for every t ∼a s : Mt |= ϕ
Ms |= [ϕ]ψ iff if Ms |= ϕ then (M |ϕ)s |= ψ
Ms |= �ϕ iff for every ψ ∈ Lel : Ms |= [ψ]ϕ

where M |ϕ = M |[[ϕ]]M with [[ϕ]]M = {s ∈ S | Ms |= ϕ}.

When Ms |= ϕ, we say that ϕ is true in Ms (or in state s of M), or that
Ms satisfies ϕ. In the semantics of �, a ψ such that Ms |= [ψ]ϕ is called a
witness of the quantifier �.

A model restriction M |ϕ to a formula ϕ restricts the domain of M to those
states where ϕ is true. This is the basis of the semantics of public announce-
ments. We note that ϕ may no longer be true in that model restriction. A
typical counterexample is the Moore sentence p∧¬Kap: whenever true, after
its announcement it is false. The restriction M |ϕ is also called the result of
the announcement of ϕ in M .

Whenever Ms |= ϕ for all s ∈ S, we write M |= ϕ (ϕ is valid on M), and
when M |= ϕ for all M of class S5 , we write S5 |= ϕ and we say that ϕ is
valid. Formula ϕ ∈ Lapal is satisfiable if there is an epistemic model Ms such
that Ms |= ϕ.

Let Ms and M ′
s′ be given. If for all ϕ ∈ Lapal , Ms |= ϕ if and only

if M ′
s′ |= ϕ, then Ms and M ′

s′ are modally equivalent, for which we write
Ms ≡apal M ′

s′ . For modal equivalence for formulas up to modal depth n we
write Ms ≡n

apal M ′
s′ , and for modal equivalence for formulas in the language

restricted to atoms in Q ⊆ P we write Ms ≡Q
apal M ′

s′ .
Public announcement logic PAL and epistemic logic S5 have the same

semantics as APAL but defined on the languages Lpal and Lel , respectively.
The notation used for modal equivalence in Lel is ≡el (we do not need similar
notation for Lpal , as every formula in Lpal is equivalent to a formula in Lel

[25], see also the next subsection on expressivity); for the same up to modal
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depth n it is ≡n
el , and in the language restricted to atoms in Q ⊆ P it is

≡Q
el .
We continue with elementary results on the relation between bisimulation

and modal equivalence.

Lemma 2.8. [24] Let Ms ,M
′
s′ ∈ S5 be epistemic models. Then Ms 
 M ′

s′

implies Ms ≡el M ′
s′.

Lemma 2.9. [24] Let Ms,M
′
s′ ∈ S5 be image-finite epistemic models (each

state has finitely many accessible states). Then Ms ≡el M ′
s′ implies Ms 


M ′
s′.

These are well-known results. We observe that Lemma 2.8 can be gener-
alised to the languages Lpal and Lapal (i.e., to modal equivalence of pointed
epistemic models in the respective logics), as public announcements and
arbitrary public announcements are bisimulation invariant operations. The
latter was shown in [1] for the logic GAL, but the proof also applies to
APAL; see also the similar proof for APAL+ in Lemma 3.12, later.

Analogous results to Lemma 2.8 apply to Q-bisimulations when we re-
strict the language of epistemic formulas to propositional atoms in Q, and
analogous results also apply to n-bisimulations.

Lemma 2.10. [14,16] Let Ms ,M
′
s′ ∈ S5 be epistemic models and let Q ⊆ P .

Then Ms 
Q M ′
s′ implies Ms ≡Q

el M ′
s′.

Lemma 2.11. [7, Prop. 2.31] Let Ms ,M
′
s′ ∈ S5 be epistemic models and let

n ∈ N. Then Ms 
n M ′
s′ implies Ms ≡n

el M ′
s′.

Again, both generalise to the language Lpal . However, they do not gener-
alise to the language Lapal . This is because in the restricted logical language
the arbitrary announcement still quantifies over all propositional variables
and not only over those in Q, and, respectively, because the arbitrary an-
nouncement quantifies over formulas of arbitrarily large epistemic depth,
and not only over formulas of at most the epistemic depth of the formula
bound by the arbitrary announcement. We will get back to this after pre-
senting the expressivity results for public announcement logics, in the next
section.

A common epistemic model in our contribution is the a-b-chain. We there-
fore introduce it in this section, as well as results on distinguishing formulas
for a-b-chains.

Consider the epistemic model M = (S,∼, V ) for two agents a, b and a set
of atoms P (often a singleton P = {p}) such that S is a subset of the integers
Z, ∼a is the symmetric and reflexive closure of S2∩{(2n, 2n+1) | n ∈ Z}, ∼b
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is the symmetric and reflexive closure of S2∩{(2n, 2n−1) | n ∈ Z}, such that
between any two states in the domain S a path of a-links and b-links exists
(in other words, such that M is connected), and without any requirement
on the valuation. As the a-links and b-links between states alternate in the
model, such a model is called an a-b-chain, or simply a chain. The names of
the states are arbitrary; any isomorphic model will also be called a chain.
A chain is finite iff the domain S is finite. A finite chain has a largest and
a smallest element (with respect to Z) of the domain. These are called the
ends or the edges of the chain. Observe that an edge is a singleton ∼a-class
or ∼b-class, and that all other equivalence classes consist of two states. A
chain with only a largest or smallest element has only one edge. Such a
one-edged chain is isomorphic to N. A prefix of a one-edged a-b-chain is a
submodel that is an a-b-chain and that contains that edge.

We now introduce the distinguishing formula. Given a logical language L
and a semantics, such as the above for Lapal , and given a model
M = (S,∼, V ) and a subset T ⊆ S, a distinguishing formula for T is some
δ ∈ L such that Mt |= δ for all t ∈ T and Mt �|= δ for all t �∈ T .

It is well-known that all subsets of a finite (bisimulation minimal) epis-
temic model are distinguishable in the language Lel of epistemic logic (see
[28] or the more recent [32] discussing it; an older source in a slightly different
setting is [9]).

Lemma 2.12. Let M = (S,∼, V ) be a (bisimulation minimal) finite a-b-
chain and let B ⊆ S. Then B has a distinguishing formula.

Similarly, if the edge of a one-edged infinite a-b-chain has a distinguishing
formula, then all finite subsets of that chain can be distinguished. In order
to prove this we first define: L0

ab = L0
ba:=ε, and for n ≥ 0, L2n+1

ab δ0:=LbL
2n
ab ,

L2n+2
ab :=LaL2n+1

ab , L2n+1
ba δ0:=LaL2n

ba , L2n+2
ba :=LbL

2n+1
ba . Informally, Ln

ab is a
stack of n alternating La and Lb operators of which the last one, if any, is
Lb, whereas Ln

ba is a stack of n alternating La and Lb operators of which
the last one, if any, is La. Note that for any formula ϕ, L0

abϕ = L0
baϕ = ϕ.

Similarly to Ln
ab and Ln

ba, we define Kn
ab and Kn

ba.

Lemma 2.13. Let M = (S,∼, V ) be a one-edged infinite a-b-chain such that
the edge has a distinguishing formula and let B ⊆ S be finite. Then B has
a distinguishing formula.

Proof. Without loss of generality we assume that S = N (so that B ⊆ N is
a finite set of natural numbers), that the edge is state 0, and that 0 ∼a 1. Let
δ0 ∈ Lel be the assumed distinguishing formula of edge 0. In other words,
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M0 |= δ0 and for all i > 0, Mi �|= δ0.1 Obviously, Mn |= Ln
baδ0. However,

also, for all states i ≤ n, Mi |= Ln
baδ0, as all states are a-accessible and

b-accessible to themselves. Now let for n > 0, δn := Ln
baδ0 ∧ ¬Ln−1

ba δ0. From
Mi |= Li

baδ0 for all i ≤ n and Mj |= ¬Lj−1
ba δ0 for all j > n it follows that

Mn |= δn and that Mk �|= δn for any k �= n. Therefore δn is a distinguishing
formula for state n ∈ N, and thus the distinguishing formula δB for B is∨

i∈B δi.

We will use this result frequently in subsequent proofs.

2.3. Expressivity of Public Announcement Logics

Given logical languages L and L ′, and a class of models in which L and L ′

are both interpreted (employing a satisfaction relation |= resp. |=′), we say
that L is at least as expressive as L ′, if every formula in L ′ is equivalent to
a formula in L (where ‘ϕ′ ∈ L ′ is equivalent to ϕ ∈ L’ means: for all Ms,
Ms |=′ ϕ′ if and only if Ms |= ϕ). If L is not at least as expressive as L ′

and L ′ is not at least as expressive as L, then L is incomparable to L ′ (L
and L ′ are incomparable). If L is at least as expressive as lang′, and L ′ is at
least as expressive as L, then L is as expressive as L ′ (L and L ′ are equally
expressive). Finally, if L is at least as expressive as L ′ but L ′ is not at least
as expressive as L, then L is more expressive than L ′. So, ‘more’ means
‘strictly more’. The combination of a language with a semantics given a
class of models determines a logic. In this work we only consider model class
S5. Also, in this work the clause of the satisfaction relation for a modality
is the same for all languages containing that modality, so that it suffices
only to employ |=. “Given logic L1 with language L1 interpreted on model
class X1 by way of satisfaction relation |=1, and logic L2 with language
L2 interpreted on model class X2 by way of satisfaction relation |=2, L1 is
more expressive than L2,” therefore becomes “given language L, model class
X and satisfaction relation |=, logic L1 with language L1 ⊆ L, and logic
L2 with language L2 ⊆ L, L1 is more expressive than L2.” We therefore
abbreviate the latter by “L1 is more expressive than L2,” and similarly for
other expressivity terminology.

The following expressivity results are shown by Plaza [25] (Proposi-
tion 2.14), and by Balbiani et al. [5] (Propositions 2.15 and 2.16). We give
the proof of Proposition 2.16 in detail, including an alternative proof (that

1We did not require that M is bisimulation minimal in the formulation of the lemma.
The minimality follows from the existence of δ0. Further note that M |B need not be an
a-b-chain, it may be disconnected.
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{p} {}a
M s:

{p, q} {}

{p, q} {q}

a

a

b b

M s :

{p, q}

{p, q} {q}
a

b

(M |q)s :

Figure 1. Models used in the proof of Proposition 2.16. The actual states

are underlined. We will always assume reflexive and symmetric closure

of accessibility relations

is not known from the literature), as we will use these methods later when
obtaining additional expressivity results for positive arbitrary public an-
nouncement logic.

Lemma 2.14. PAL is as expressive as S5 (for single or multiple agents).

Proposition 2.15. APAL is as expressive as PAL for a single agent.

Proposition 2.16. APAL is (strictly) more expressive than PAL for mul-
tiple agents.

Proof. Suppose that arbitrary public announcement logic is as expressive
as public announcement logic in S5 for more than one agent. We note that
public announcement logic is also as expressive as epistemic logic S5 . Con-
sider the formula ♦(Kap∧¬KbKap). Then there exists a formula ϕ ∈ Lel that
is equivalent to ♦(Kap∧¬KbKap). There will be some propositional variable
q not occurring in ϕ. Consider S5 models M and M ′ as in Figure 1; let the
underlined states be called s and s′, respectively. We note that Ms 
p M ′

s′

and, as q does not appear in ϕ, then Ms |= ϕ if and only if M ′
s′ |= ϕ. How-

ever Ms �|= ♦(Kap ∧ ¬KbKap), whereas M ′
s′ |= ♦(Kap ∧ ¬KbKap) because

M ′
s′ |= 〈q〉(Kap ∧ ¬KbKap). This is a contradiction.

Another proof of larger expressivity does not use that ♦ quantifies over
arbitrarily many propositional variables but that ♦ quantifies over formulas
of arbitrarily large epistemic depth. It is due to Barteld Kooi. It is relevant to
mention this alternative proof here, because we will use a similar technique
in Section 5 on the expressivity of APAL+. Note that all models used in this
proof are a-b-chains.

Proof. Suppose that arbitrary public announcement logic is as expressive
as public announcement logic in S5 for more than one agent. Then (again)
there exists a formula ϕ ∈ Lel that is equivalent to ♦(Kap ∧ ¬KbKap). Let
d(ϕ) be the epistemic depth of this formula. Now consider (see Figure 2)
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{p} {}a
M s:

{p} {} {}{p}{} a b a b
Nt:

{p} {} {}{p}{} {p} {p}a b a b > d(ϕ) b
Nt :

{p}{p}{} a b
(N |ψ)t :

Figure 2. More models used in the proof of Proposition 2.16

model Nt. We can see it as some sort of infinite S5 unwinding of model Ms:
Nt is bisimilar to Ms. A bisimulation between Ms and Nt links all the p-
states in N to the single p-state in M , and all the ¬p-states in N to the single
¬p-state in M . So, in particular, this bisimulation contains pair (t, s). Now
consider a model that is like Nt, but cut off at the right-hand side, as in model
N ′

t′ in Figure 2, where the cut-off is beyond the epistemic depth of ϕ: let j >
d(ϕ) be such that the length of the a-b-path from the root t′ to the edge is j
and let that rightmost point be called v. State v is the unique state satisfying
Kap. Because of Lemma 2.13 we now can uniquely identify all finite subsets
of N ′

t′ . Therefore, there is an announcement ψ such that (N ′|ψ)t′ is the
final depicted model, where we note that, ignoring the value of q, it is the
same as the model (M ′|q)s′ in Figure 1. Announcement ψ is the formula
(Lj

baKap∧¬Lj−1
ba Kap)∨(Lj+1

ba Kap∧¬Lj
baKap)∨(Lj+2

ba Kap∧¬Lj+1
ba Kap). (We

refer to the proof of Lemma 2.13 for definition of Ln
ab and Ln

ba.) This formula
can be simplified to Lj+2

ba Kap∧¬Lj−1
ba Kap. From (N ′|ψ)t′ |= Kap∧¬KbKap

follows N ′
t′ |= 〈ψ〉(Kap ∧ ¬KbKap) and thus N ′

t′ |= ♦(Kap ∧ ¬KbKap).
However, as before, Ms �|= ♦(Kap ∧ ¬KbKap), and therefore, as Ms 
 Nt,
also Nt �|= ♦(Kap∧¬KbKap). On the other hand, (Ms and) Nt and N ′

t′ have
the same value for ϕ, as the difference between the two models is beyond
the epistemic depth of ϕ:

As j > d(ϕ), up to depth d(ϕ) the models Nt and N ′
t′ are isomorphic and

therefore bisimilar, i.e., Nt 
d(ϕ) N ′
t′ . Now applying Lemma 2.11 we obtain

Nt ≡d(ϕ)
el N ′

t′ , and therefore in particular Nt |= ϕ iff N ′
t′ |= ϕ. Again we have

a contradiction.

These different proofs to establish larger expressivity illustrate a impor-
tant difference between APAL and other public announcement logics. Let us
first introduce additional notation. Let Ms ≡Q

apal M ′
s′ (where Q ⊆ P ) mean

that for all ϕ ∈ Lapal with atoms restricted to Q, Ms |= ϕ if and only if
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M ′
s′ |= ϕ, and let Ms ≡n

apal M ′
s′ (where n ∈ N) mean that for all ϕ ∈ Lapal

with d(ϕ) ≤ n, Ms |= ϕ if and only if M ′
s′ |= ϕ.

Although Ms 
 M ′
s′ implies Ms ≡apal M ′

s′ , we do not have that Ms 
Q

M ′
s′ (always) implies Ms ≡Q

apal M ′
s′ and we also do not have that Ms 
n M ′

s′

(always) implies Ms ≡n
apal M ′

s′ .
The models used in Figure 1 provide typical (counter)examples. We note

that

Ms 
p M ′
s′ but Ms �≡p

apal M ′
s′ ,

because Ms |= ♦(Kap∧¬KbKap) whereas M ′
s′ �|= ♦(Kap∧¬KbKap). In the

language Lapal restricted to p, the arbitrary announcement modalities are
still interpreted over all atoms P , so they quantify not only over Lel formulas
only containing atom p but also over Lel formulas possibly containing atom
q as well.

Similarly, we note that, as shown in the alternative proof for Proposi-
tion 2.16,

Nt 
2 N ′
t′ but Nt �≡2

apal N ′
t′ .

This is because on the one hand Nt |= ♦(Kap ∧ ¬KbKap), whereas on the
other hand N ′

t′ �|= ♦(Kap∧¬KbKap), as N ′
t′ �|= 〈ψ〉(Kap∧¬KbKap) for some

ψ ∈ Lel with d(ψ) > 2.
However, this does not rule out that bounded (to some n) bisimilarity

implies bounded modal equivalence in a particular model. This will be used
in an expressivity proof comparing APAL and APAL+, later (Theorem 5.19
on page 33).

2.4. Positive Formulas

The positive formulas are the universal fragment of epistemic logic. They
play an important role in our work, also in relation to the structural notion
of refinement, that is therefore only defined in this section.

Definition 2.17. The language of positive formulas L+
el is defined induc-

tively as:

ϕ : :=p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Kaϕ

where p ∈ P and a ∈ A.

We note that L+
el is a fragment of Lel .

Lemma 2.18. Positive formulas are preserved under public announcements:
For all ϕ ∈ L+

el , ψ ∈ Lel : Ms |= ϕ implies Ms |= [ψ]ϕ.
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Corollary 2.19. Positive formulas are successful as public announcements:
For all ϕ ∈ L+

el : Ms |= ϕ implies Ms |= [ϕ]ϕ.

Corollary 2.20. Positive formulas are idempotent as public announce-
ments:
For all ϕ ∈ L+

el , ψ ∈ Lel : Ms |= [ϕ]ψ implies Ms |= [ϕ][ϕ]ψ.

These results were shown by van Ditmarsch and Kooi [35, Prop. 8] for an
extended fragment also containing the inductive clause [¬ϕ]ϕ. In their work
positive formulas are called preserved formulas instead. The results go back
to van Benthem [29].

A refinement is a relation that is a generalisation of bisimulation, and
that only requires the atoms and back condition to hold. Refinements (in
this form) were introduced in [8].

Definition 2.21. Let M,M ′ ∈ S5 be epistemic models. A non-empty re-
lation R ⊆ S × S′ is a refinement if and only if for every (s, s′) ∈ R, p ∈ P ,
and a ∈ A, the conditions atoms-p and back-a hold. If (s, s′) ∈ R then we
call M ′

s′ a refinement of Ms and call Ms a simulation of M ′
s′ . We write

M ′
s′ � Ms or equivalently Ms � M ′

s′ .

There are other notions of refinement. For example, in [7], simulation is
defined with an inclusion requirement for atoms: for each pair (s, s′) in the
relation, s ∈ V (p) implies s′ ∈ V ′(p); instead of full correspondence atoms:
s ∈ V (p) if and only if s′ ∈ V ′(p). The dual of that notion of simulation
leads to a different notion of refinement.

Lemma 2.22. The relation � is a preorder on epistemic models.

Lemma 2.23. Let Ms ,M
′
s′ ∈ S5 be epistemic models such that Ms � M ′

s′

and let ϕ ∈ L+
el be a positive formula. If Ms |= ϕ then M ′

s′ |= ϕ.

These results were shown by Bozzelli et al. in [8, Prop. 2 and 8]. We
note that the union of two refinements is a refinement and that there is
a maximal refinement between epistemic models (this is shown just as for
bisimulation).

The relation between positive formulas and refinement is intricate. One
important (and unreported) result is as follows. It follows from similar rea-
soning to Lemma 2.9, but in view of its novelty and because we will refer to
it later, we give the proof.

Lemma 2.24. Let M,M ′ ∈ S5 be image-finite epistemic models and let R ⊆
S × S′ be the relation such that (s, s′) ∈ R if and only if for every ϕ ∈ L+

el :
if Ms |= ϕ then M ′

s′ |= ϕ. If R is non-empty, then R is a refinement.
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Proof. Let (s, s′) ∈ R.
The clause atoms is satisfied because Ms |= p implies M ′

s′ |= p, and also
Ms |= ¬p implies M ′

s′ |= ¬p.
Let us now consider back, and suppose this clause is not satisfied. Then

there is a t′ with s′ ∼a t′ (i.e., an a-successor t′ of s′) such that none
of the finite a-successors t1, . . . , tn of s are in the relation R with t′, i.e.,
(t1, t′) �∈ R,. . . ,(tn, t′) �∈ R. Therefore, using the definition of R, for each ti,
where i = 1, . . . , n, there is a ϕi ∈ L+

el such that Mti
|= ϕi but M ′

t′ �|= ϕi.
Therefore Ms |= Ka(ϕ1∨. . .∨ϕn), whereas Ms′ �|= Ka(ϕ1∨. . .∨ϕn). Observe
that Ka(ϕ1 ∨ . . .∨ϕn) is a positive formula (the positive formulas are closed
under disjunction and under Ka). This contradicts our assumption that
(s, s′) ∈ R.

3. Positive Arbitrary Public Announcement Logic

In this section we give the syntax and semantics of positive arbitrary public
announcement logic APAL+, and we provide some semantic results about
the properties of positive announcements and arbitrary positive announce-
ment operators.

Definition 3.1. The language of positive arbitrary public announcement
logic L+

apal is defined inductively as:

ϕ : :=p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | �+ϕ

where p ∈ P and a ∈ A.

We use the abbreviation ♦+ϕ : :=¬�+¬ϕ. The epistemic depth and the set
of variables of a formula are defined as before.

Definition 3.2. Let M = (S,∼, V ) ∈ S5 be an epistemic model. The
interpretation of ϕ ∈ L+

apal is defined inductively as in Definition 2.7, but
with the following clause for positive arbitrary announcement:

Ms |= �+ϕ iff for every ψ ∈ L+
el : Ms |= [ψ]ϕ

So, the difference with the semantics for the arbitrary announcement in
APAL is the part ‘for every ψ ∈ L+

el ’ instead of ‘for every ψ ∈ Lel ’. Validity,
satisfiability and modal equivalence (notation ≡apal+) are defined as before.

An important observation is the partial correspondence between the re-
sults of positive announcements and model restrictions that are closed under
refinements, a notion that we will define now.
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Definition 3.3. Let M = (S,∼, V ) ∈ S5 be an epistemic model and let
T ⊆ S be a non-empty set of states. We say that T is closed under re-
finements in M if and only if for every s, t ∈ S such that Ms � Mt : if
s ∈ T then t ∈ T . We say that the model restriction M |T is closed under
refinements if and only if T is closed under refinements in M .

Lemma 3.4. The result of any positive announcement is closed under re-
finements.

Proof. Let M = (S,∼, V ) ∈ S5 be an epistemic model and let ϕ ∈ L+
el .

We have to show that a non-empty M |ϕ (i.e., M |[[ϕ]]M ) is closed under
refinements. Suppose that s, t ∈ S such that s ∈ [[ϕ]]M and Ms � Mt . Then
Ms |= ϕ. As Ms � Mt and ϕ ∈ L+

el then by Lemma 2.23 we have Mt |= ϕ.
So t ∈ [[ϕ]]M and therefore M |ϕ is closed under refinements.

Lemma 3.5. On finite models, a model restriction that is closed under re-
finements is the result of a positive announcement.

Proof. Let M = (S,∼, V ) ∈ S5 be an epistemic model and let T ⊆ S be a
non-empty set of states such that M |T is closed under refinements. Then for
every s ∈ T and t ∈ S \ T we have that Ms �� Mt . As M is image-finite it
then follows from Lemma 2.24 that for every s ∈ T and t ∈ S \T there exists
ϕs,t ∈ L+

el such that Ms |= ϕs,t but Mt �|= ϕs,t . Let ϕ =
∨

s∈T

∧
t∈S\T ϕs,t .

Then ϕ ∈ L+
el ; for every s ∈ T : Ms |= ϕ; and for every t ∈ S \ T : Mt �|= ϕ.

So [[ϕ]]M = T and therefore M |T is the result of a positive announcement.

In contrast to public announcements, a sequence of positive announce-
ments cannot generally be expressed as a single positive announcement.

Proposition 3.6. Arbitrary positive announcements are not composable in
S5 , i.e., it is not the case that S5 |= ♦+♦+ϕ → ♦+ϕ for all ϕ ∈ L+

apal .

Proof. We construct a counter-example. Consider model M = (S,∼, V )
in Figure 3, where S = {s, t, u, v, w, s′, t′, u′, v′}, s∼at∼as′∼at′, u∼av∼aw,
u′∼av′, s∼bs

′, t∼bu, t′∼bu
′, V (p) = {s, t, u, v, s′, t′, u′, v′}, and V (q) =

{t, v, s′, t′, v′}.
We claim that Ms |= ♦+♦+(Laq ∧ Ka(Kbq ∨ Kb¬q)) but Ms �|= ♦+(Laq ∧

Ka(Kbq ∨ Kb¬q)).
We note that (M |Kap|(¬q ∨ Kbq))s |= Laq ∧ Ka(Kbq ∨ Kb¬q) (see Fig-

ure 3) and so Ms |= ♦+♦+(Laq ∧ Ka(Kbq ∨ Kb¬q)).
Let R = {(x, x) | x ∈ S} ∪ {(t, t′), (u, u′), (v, v′), (s′, t′), (t′, v′), (s, u′)}.

We note that R is a refinement.
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Figure 3. Counterexample for the composability of positive announce-

ments. Left: initial model, with explicit refinement relation. Middle: after

announcing Kap. Right: after subsequently announcing ¬q ∨ Kbq

As Ms′ � Mt′ , Mt � Mt′ , and Mt′ � Mt′ , then by Lemma 3.4 any
positive announcement that is true in Ms and that preserves s′ or t (or t′)
will also preserve t′ so any positive announcement after which Laq is true
will preserve t′.

Also, as Ms � Mu′ then by Lemma 3.4 any positive announcement that
is true in Ms will preserve u′.

Therefore, any positive announcement that is true in Ms and preserves
one of the a-accessible states t, s′ and t′ (such that Laq is true after the
announcement), will also preserve t′, and also u′ that is b-accessible from t′,
such that ¬(Kbq ∨Kb¬q) is true in t′ after the announcement, and therefore
La¬(Kbq ∨ Kb¬q) true in s.

So if after any positive announcement in s Laq is true, then ¬Ka(Kbq ∨
Kb¬q) is also true. Therefore Ms |= �+ (Laq → ¬Ka(Kbq ∨ Kb¬q)) and so
Ms �|= ♦+(Laq ∧ Ka(Kbq ∨ Kb¬q)).

However, other validities involving the quantifier are the same for APAL
and for APAL+. We list a few.

Lemma 3.7. [5, Lemmas 3.1 & 3.9] Let ϕ,ψ ∈ L+
apal . Then:

1. S5 |= �+ (ϕ ∧ ψ) ↔ (�+ϕ ∧ �+ψ);

2. S5 |= ϕ implies S5 |= �+ϕ;

3. S5 |= �+ϕ → ϕ;

4. S5 |= Ka�+ϕ → �+Kaϕ.
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Proof. The proofs are exactly as in [5]. The first two directly follow from
the semantics of �+ . For the third, note that S5 |= �+ϕ → [�]ϕ and S5 |=
[�]ϕ ↔ ϕ.

For the last, suppose that Ms |= Ka�+ϕ, that Ms |= ψ for ψ ∈ L+
el , and

that t is in the domain of M |ψ such that s ∼a t. We have to show that
(M |ψ)t |= ϕ. As s ∼a t also holds in M , from the assumption Ms |= Ka�+ϕ
it follows that Mt |= �+ϕ. As t is in the domain of M |ψ, Mt |= ψ. From
Mt |= �+ϕ and Mt |= ψ follows (M |ψ)t |= ϕ, as required.

We now proceed to prove that, like the APAL quantifier, the APAL+

quantifier also satisfies the Church-Rosser and McKinsey properties. As our
proof of Church-Rosser is very different from that in [5], we give the proofs
of these properties and also the proofs of the lemmas on which they depend
in detail.

Given a model M = (S,∼, V ), if for all p ∈ Q ⊆ P , V (p) = ∅ or V (p) = S,
we say that the valuation of the atoms in Q is constant on M .

Lemma 3.8. [5, Lemma 3.2] Let ϕ ∈ L+
apal and let M ∈ S5 be a model on

which the valuation of atoms in v(ϕ) is constant. Then M |= ϕ or M |= ¬ϕ.

Proof. Let p ∈ v(ϕ). Let ψ(�/p) be the substitution of all occurrences of
p in ϕ by �. As the valuation of p is constant, then if p is true on M we have
that M |= ϕ ↔ ϕ(�/p). Similarly, if p is false on M , then M |= ϕ ↔ ϕ(⊥/p).
Let ϕ′ be the result of successively substituting all p ∈ v(ϕ) by � or ⊥ in this
way. Clearly M |= ϕ ↔ ϕ′. Using the S5 validities Ka� ↔ �, Ka⊥ ↔ ⊥,
using S5 |= �+� ↔ � and S5 |= �+⊥ ↔ ⊥, and using propositional properties
of combining � and ⊥, we obtain that S5 |= ϕ′ ↔ � or S5 |= ϕ′ ↔ �. Thus
we also have that M |= ϕ ↔ � or M |= ϕ ↔ �, in other words, that M |= ϕ
or M |= ¬ϕ.

Lemma 3.9. [5, Lemma 3.3] Let ϕ ∈ L+
apal and let M = (S,∼, V ) ∈ S5 be a

model on which the valuation of atoms in v(ϕ) is constant. Then M |= ϕ →
�+ϕ.

Proof. Let s ∈ S and Ms |= ϕ. Now consider ψ ∈ L+
el such that Ms |= ψ.

Note that the valuation of atoms in v(ϕ) on M |ψ is also constant, and that it
is the same as the valuation of atoms on M . Consider the disjoint union M ′ =
M + M |ψ of M and M |ψ (it is the model defined by the disjoint union of
the respective domains, accessibility relations, and valuations). Like M and
M |ψ, M ′ is a model on which the valuation of v(ϕ) is constant. Therefore,
from Lemma 3.8, either M ′ |= ϕ or M ′ |= ¬ϕ. The second implies that
M |= ¬ϕ which contradicts Ms |= ϕ. Therefore, M ′ |= ϕ. From M ′ |= ϕ it
follows that M |ψ |= ϕ, so that in particular (M |ψ)s |= ϕ. As ψ was arbitrary,
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we now have shown that: for all ψ ∈ L+
el , if Ms |= ψ then (M |ψ)s |= ϕ. By

the semantics of public announcement this is equivalent to: for all ψ ∈ L+
el ,

Ms |= [ψ]ϕ. By the semantics of �+ this is equivalent to Ms |= �+ϕ. From that
and the assumption it follows that Ms |= ϕ → �+ϕ, and as s was arbitrary,
we thus have shown that M |= ϕ → �+ϕ, as required.

Given a model Ms and a (finite) set of propositional variables Q, we write
δs
Q for the conjunction of literals expressing the values of the atoms from Q

in s. This is the so-called characteristic formula of the (restricted) valuation
in state s. Note that Ms |= δs

Q.

Proposition 3.10. Arbitrary positive announcements have the Church-Rosser
property in S5 , i.e. S5 |= ♦+�+ϕ → �+♦+ϕ for all ϕ ∈ L+

apal .

Proof. Let Ms |= ♦+�+ϕ. Then there is ψ ∈ L+
el such that Ms |= 〈ψ〉�+ϕ,

i.e., Ms |= ψ and (M |ψ)s |= �+ϕ. In particular, (M |ψ)s |= [δs
v(ϕ)]ϕ. There-

fore, since we also have that Ms |= δs
v(ϕ), (M |ψ|δs

v(ϕ))s |= ϕ. Observe that
M |ψ|δs

v(ϕ) is a model on which the valuation of atoms in v(ϕ) is constant.
Now let η ∈ L+

el be arbitrary and such that Ms |= η. Consider (M |η|δs
v(ϕ))s.

The valuation of the atoms in v(ϕ) is also constant on M |η|δs
v(ϕ). From

Lemma 3.8 it follows that M |η|δs
v(ϕ) |= ϕ or M |η|δs

v(ϕ) |= ¬ϕ. Similarly
to the reasoning in the proof of Lemma 3.9, the latter contradicts (the
above) (M |ψ|δs

v(ϕ))s |= ϕ, and therefore M |η|δs
v(ϕ) |= ϕ. From that follows

(M |η)s |= 〈δs
v(ϕ)〉ϕ, so that (M |η)s |= ♦+ϕ.

We have now shown that for all η ∈ L+
el , Ms |= η implies (M |η)s |= ♦+ϕ,

which by the semantics of �+ is equivalent to Ms |= �+♦+ϕ.

Proposition 3.11. [5, Prop. 3.4] Arbitrary positive announcements have
the McKinsey property in S5 , i.e. S5 |= �+♦+ϕ → ♦+�+ϕ for all ϕ ∈ L+

apal .

Proof. The proof is different from that of Proposition 3.10, but the crucial
role of the announcement of values of all variables in ϕ is the same.

Suppose Ms |= �+♦+ϕ. Then (as above) (M |δs
v(ϕ))s |= ♦+ϕ. As M |δs

v(ϕ) is
a model on which the valuation of the atoms in v(ϕ) is constant, we have
(Lemma 3.10) that M |δs

v(ϕ) |= ϕ → �+ϕ. Also using the dual M |δs
v(ϕ) |=

♦+ϕ → ϕ of that lemma, we obtain M |δs
v(ϕ) |= ♦+ϕ → �+ϕ. From that and

(M |δs
v(ϕ))s |= ♦+ϕ it follows that (M |δs

v(ϕ))s |= �+ϕ, and we therefore obtain
Ms |= 〈δs

v(ϕ)〉�+ϕ and also Ms |= ♦+�+ϕ.

Nowhere in the proofs of Lemma 3.7, Lemma 3.8, Proposition 3.11 and
Proposition 3.10 is it essential that the announced formulas are positive. A
closer comparison with the results in [5] may therefore be of interest:
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The proofs of Lemma 3.7 and Proposition 3.11 (McKinsey) are virtually
identical to, respectively, [5, Lemma 3.2] and [5, Prop. 3.4]. The proof of
Lemma 3.8 is more detailed than that of [5, Lemma 3.3], but it seems to
amount to the intentions of that more schematic proof. However, the proof
of Proposition 3.10 (Church-Rosser) is very different from the proof of [5,
Prop. 3.8], that is not only more involved but also based on a lemma that
was later shown by Kuijer to be incorrect. We have therefore not attributed
Proposition 3.10 to [5].

Again, we note that analogous results to Lemma 2.8 and Lemma 2.9
on bisimulation correspondence also apply to the language L+

apal : bisimi-
larity preserves modal equivalence (APAL+ is bisimulation invariant), and
on image-finite models modal equivalence implies bisimilarity. As we also
consider some variations, we will give the crucial detail to prove the first.

Lemma 3.12. Let Ms ,M
′
s′ ∈ S5 . Then Ms 
 M ′

s′ implies Ms ≡apal+ M ′
s′.

Proof. We prove the equivalent proposition:

Let ϕ ∈ L+
apal be a formula. Then for all epistemic models Ms ,M

′
s′ ∈

S5 such that Ms 
 M ′
s′ , Ms |= ϕ if and only if M ′

s′ |= ϕ.

This is a straightforward proof by induction over the complexity of the
formula ϕ occurring the proposition (just as the proof in [1]), where it is
important that this formula is declared before the two models. The clause
for �+ϕ goes as follows.
Ms |= �+ϕ
⇔
For all ψ ∈ L+

el , Ms |= [ψ]ϕ
⇔
For all ψ ∈ L+

el , Ms |= ψ implies (M |ψ)s |= ϕ
⇔ (*)
For all ψ ∈ L+

el , M ′
s′ |= ψM ′
s′ |= ψM ′
s′ |= ψ implies (M |ψ)s |= ϕ

⇔ (**)
For all ψ ∈ L+

el , M ′
s′ |= ψ implies (M ′|ψ)s′ |= ϕ(M ′|ψ)s′ |= ϕ(M ′|ψ)s′ |= ϕ

⇔
For all ψ ∈ L+

el , M ′
s′ |= [ψ]ϕ

⇔
M ′

s′ |= �+ϕ.
Step (*) is justified because Ms 
 M ′

s′ implies Ms ≡el M ′
s′ (Lemma 2.8).

Therefore, Ms |= ψ iff M ′
s′ |= ψ.

Step (**) is justified as follows. Given the assumption Ms 
 M ′
s′ , let

R : Ms 
 M ′
s′ . Define R′ as follows: R′(t, t′) iff (R(t, t′) and Mt |= ψ). From
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Lemma 2.8 it follows that also M ′
t′ |= ψ, so that R′ is indeed a relation

between M |ψ and M ′|ψ. We now show that R′ : (M |ψ)s 
 (M ′|ψ)s′ . The
clause atoms-p is obviously satisfied. Concerning forth-a, take any pair (t, t′)
such that R′(t, t′) and let u in the domain of M |ψ be such that t ∼a u. As u
is in the domain of M |ψ, Mu |= ψ. From R′(t, t′) follows R(t, t′). As t ∼a u
in M |ψ, also t ∼a u in M . From R(t, t′), t ∼a u in M , and forth-a (for R) it
follows that there is u′ in the domain of M ′ such that R(u, u′) and t′ ∼a u′.
From R(u, u′), Mu |= ψ, and Lemma 2.8 it follows that M ′

u′ |= ψ, i.e., u′

is also in the domain of M |ψ. From R(u, u′), Mu |= ψ, and the fact the u′

is in the domain of M |ψ it follows that R′(u, u′), as required. This proves
forth-a. The step back-a is shown similarly. Note that in particular R′(s, s′).
This therefore establishes that (M |ψ)s 
 (M ′|ψ)s′ .

We now use that the induction hypothesis for ϕ not merely holds for
epistemic models Ms, M ′

s′ , but for any pair of epistemic models Nt, N ′
t′ , so

in particular for (M |ψ)s, (M ′|ψ)s′ . (In the formulation of the proposition
to be proved, the formula is declared before the models.) We thus conclude
that (M |ψ)s |= ϕ iff (M ′|ψ)s′ |= ϕ, as required.

The above lemma is the analogue of bisimulation invariance for epistemic
logic (Lemma 2.8). This analogue does not hold for APAL+ when we replace
bisimulations with Q-bisimulations. This is because in the formula �+ϕ, the
positive announcements can range over atoms that do not appear in ϕ. It
similarly fails for the logic APAL; see the discussion at the end of Subsection
2.3.

We end this section with a fairly obvious result for compactness, that is
similarly obtained for APAL+ as for APAL.

A logic with language L is compact if for any Φ ⊆ L, if every finite Φ′ ⊆ Φ
is satisfiable, then Φ is satisfiable. Like APAL, APAL+ is not compact.

Proposition 3.13. APAL+ is not compact.

This follows from the same reasoning used by Balbiani et al. [5] to show
that APAL is not compact. Specifically, under the semantics of APAL+ the
set of formulas {[ψ](Kap → KbKap) | ψ ∈ L+

el} ∪ {¬�+ (Kap → KbKap)} is
unsatisfiable but every finite subset is satisfiable. (The only difference with
the proof in [5] is that instead of ‘ψ ∈ L+

el ’ above it there says ‘ψ ∈ Lel ’.)
Any finite subset is satisfiable because the epistemic depth of such a set
{[ψ](Kap → KbKap) | ψ ∈ L+

el} is bounded (or, alternatively, because there
must be an atom q ∈ P not occurring in such a set). We then proceed fairly
similarly as in the proof of Proposition 2.16.
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4. Model Checking Complexity

We now address the model checking complexity for APAL+. In this section
we will assume that we are working with a finite fragment of the language (so
A and P are finite sets) and finite models M = (S,∼, V ) (where S is finite).
The model checking problem for APAL+, for which we write MC(APAL+), is
as follows: given a finite pointed model Ms and ϕ ∈ L+

apal , determine whether
Ms |= ϕ. The model checking problem for APAL+ is PSPACE-complete. We
adapt the proof given for the PSPACE-complete model checking complexity
for GAL, by Ågotnes et al. [1, Theorems 24 & 25]. We note that APAL
model checking is also PSPACE-complete, which was shown in [1, p. 74] by
an even simpler adaptation of the proof for GAL than our adaptation for
APAL+.

Lemma 4.1. Let M = (S,∼, V ),M ′ = (S′,∼′, V ′) ∈ S5 be finite epistemic
models. Given that a refinement from M to M ′ exists, there is a unique,
maximal refinement R ⊆ S × S′ from M to M ′ and it is computable in
polynomial time.

Proof. This follows from similar reasoning used to show that the unique,
maximal bisimulation between two models is computable in polynomial
time, defining the refinement as a greatest fixed point of a monotone func-
tion, however relaxing the forth condition appropriately. Specifically, we
define the function f : ℘(S ×S′) −→ ℘(S ×S′) by (s, s′) ∈ f(R) if and only
if:

• (s, s′) ∈ R;

• for all p ∈ P , s ∈ V (p) if and only if s′ ∈ V ′(p);

• for all a ∈ A, for every t′ ∼′
a s′, there exists t ∼a s such that (t, t′) ∈ R;

It is clear that the function is monotone (i.e., if R ⊆ R′, then f(R) ⊆
f(R′)), and that any non-empty fixed point of this function is a refinement.
Furthermore, every refinement, R from M to M ′, is a fixed point of f .
Therefore, the greatest fixed point will be a unique maximal refinement.
The function f can be computed in polynomial time, and at most |S| · |S′|
iterations will be required to reach a fixed point, so the maximal refinement
is computable in polynomial time.

Theorem 4.2. MC(APAL+) is in PSPACE.

Proof. We adapt an alternating polynomial time (APTIME) model-checking
algorithm used for GAL [1, Algorithm 1, p. 74]. The main variation required
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is that we must be able to test whether a submodel can be defined by a pos-
itive announcement. From Proposition 3.4 and Proposition 3.5 it follows
that, in order for a restriction of a finite model to be definable as the re-
sult of a positive announcement, it must be closed under refinements. From
Lemma 4.1 we can check that this condition is satisfied by first computing
in polynomial time the maximal refinement from M to itself, RM , and then
using this refinement to select only refinement preserving restrictions of the
model.

We now present the algorithm, sat, for model-checking in APAL+. The
algorithm sat takes as input a finite model M = (S,∼, V ), some s ∈ S and a
formula ϕ ∈ L+

apal that we require to be in what is known as negation normal
form. This means that the formula conforms to the syntax ϕ : :=p | ¬p | ϕ∧
ϕ | ϕ ∨ ϕ | Kaϕ | Laϕ | [ϕ]ϕ | 〈ϕ〉ϕ | �+ϕ | ♦+ϕ. It is clear that all formulas
are semantically equivalent to a formula in negation normal form. One can
easily compute it and its size is linear in the size of the given formula.

A run of the algorithm halts with either accept or reject. Each case of the
algorithm is either existential or universal, where for an existential case to be
accepting, one choice must lead to an accepting case, and for a universal case
to be accepting, every choice must lead to an accepting case. The algorithm
is presented as Algorithm 1.

The proof of correctness follows the inductive argument presented in [1]:
we can show that sat(M, s, ϕ) accepts if and only if Ms |= ϕ by induction
over the complexity of ϕ. The correctness of the (∀)�+ϕ and (∃)♦+ϕ cases
follows directly from Proposition 3.4, Proposition 3.5 and Lemma 4.1, as
mentioned above. In particular, the (∀)�+ϕ and (∃)♦+ϕ cases in Algorithm 1
can be shown to match the semantic interpretation of the �+ and ♦+ operators
respectively. Focusing on the ♦+ case, if there is a positive announcement α
such that (M |α)s |= ϕ, then there is some restriction M ′ = (S′,∼′, V ′)
of M such that s ∈ S′, M ′

s |= ϕ, and for all t, t′ ∈ S such that Mt �
Mt′ , if t ∈ S′ then t′ ∈ S′. Applying the inductive hypothesis, choosing
such a restriction will lead to an accepting run. Conversely, if there is some
restriction satisfying these properties, from Lemma 3.5, there must be some
corresponding positive announcement α that realises this refinement. Again,
applying the inductive hypothesis we have (M |α)s |= ϕ and hence Ms |= ♦+α.
The case for �+ is treated in a similar manner.

Since sat can be implemented in polynomial time, MC(APAL+) is in
APTIME, which is equivalent to PSPACE [10].

Theorem 4.3. MC(APAL+) is PSPACE-hard.
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Algorithm 1 sat(M, s, ϕ)

from M compute RM ;
case ϕ of
(·) p: if s ∈ V (p) then accept else reject;
(·) ¬p: if s ∈ V (p) then reject else accept;
(∀) ϕ1 ∧ ϕ2: choose ϕ′ ∈ {ϕ1, ϕ2}; sat(M, s, ϕ′);
(∃) ϕ1 ∨ ϕ2: choose ϕ′ ∈ {ϕ1, ϕ2}; sat(M, s, ϕ′);
(∀) Kaϕ′: choose t ∼a s; sat(M, t, ϕ′);
(∃) Laϕ′: choose t ∼a s; sat(M, t, ϕ′);
(∀) [ϕ1]ϕ2: choose a restriction M ′ = (S′,∼′, V ′) of M ;

if for some s′ ∈ S′, not sat(M, s′, ϕ1) then accept
else if for some s′ ∈ S \ S′, sat(M, s′, ϕ1) then accept
else if s /∈ S′ then accept else sat(M ′, s, ϕ2);

(∃) 〈ϕ1〉ϕ2: choose a restriction M ′ = (S′,∼′, V ′) of M ;
if for some s′ ∈ S′, not sat(M, s′, ϕ1) then reject
else if for some s′ ∈ S \ S′, sat(M, s′, ϕ1) then reject
else if s /∈ S′ then reject else sat(M ′, s, ϕ2);

(∀) �+ϕ: Choose any restriction M ′ = (S′,∼′, V ′) of M such that
for all t ∈ S′, for all t′ where (t, t′) ∈ RM , we have t′ ∈ S′

if s ∈ S′ then sat(M ′, s, ϕ) else accept;
(∃) ♦+ϕ: Choose any restriction M ′ = (S′,∼′, V ′) of M such that

for all t ∈ S′, for all t′ where (t, t′) ∈ RM , we have t′ ∈ S′

if s ∈ S′ then sat(M ′, s, ϕ) else reject;
end case

Proof. This follows from similar reasoning used to show that MC(GAL)
is PSPACE-hard, [1]. The basic approach is to show that instances of the
QBF-SAT problem can be solved through model-checking a L+

apal formula
on an appropriately constructed model. A quantified Boolean formula may
be given as Ψ = Q1x1 . . . Qkxkϕ(x1, . . . , xk), where Qi ∈ {∀,∃}, x1, . . . , xk

are propositional variables, and ϕ(x1, . . . , xk) is a Boolean formula. (Fol-
lowing custom in QBF-SAT, the variables are not named p1, . . . , pn but
x1, . . . , xn instead.) The notation ϕ(x1, . . . , xk) means that each variable
x1, . . . , xk binds to all its occurrences, possibly none, in ϕ. For 1 ≤ n ≤ k,
we will use the abbreviation Ψn = Qnxn . . . Qkxkϕ(x1, . . . , xk) to represent
the fragment of Ψ where x1, . . . , xn−1 (if n = 1 none at all) are unquantified.

The satisfiability problem for quantified Boolean problems (QBF-SAT) is
well-known to be the canonical problem for PSPACE-completeness. Given
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Figure 4. The model MΨ used to encode the quantified Boolean formula
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Figure 5. A restriction of MΨ satisfying f(¬x1 ∧ x2 ∧ xk)

any quantified Boolean formula Ψ, we can construct a model, MΨ
s , and a

APAL+ formula, ψ, such that MΨ
s |= ψ if and only if Ψ is satisfiable.

The model MΨ = (S,∼, V ) is specified with respect to a set of atoms
{x+

i , x−
i | 1 ≤ i ≤ k}, an additional auxiliary variable x0, and a single agent.

The model represents each Boolean variable xi for 1 ≤ i ≤ k by a pair of
states (si, 0) and (si, 1), so we let S = {s1, . . . , sk} × {0, 1} ∪ {s}, including
the s state as designated state from which to evaluate the formula. The
single agent with a universal relation is unable to distinguish any state, so
∼ = S × S. Finally we have V (x+

i ) = {(si, 1)} and V (x−
i ) = {(si, 0)}, and

V (x0) = {s}. The model is depicted in Figure 4.
We are then able to encode the satisfiability of Ψ = Q1x1 . . . Qkxk

ϕ(x1, . . . , xk) inductively.
For each i from 1 to k we define the formulas Xi = Ljx

+
i , Xi = Ljx

−
i ,

Ui = Xi ∧ Xi and Di = Xi ↔ ¬Xi, for, respectively: Xi is true, Xi is
false, Xi is undetermined and Xi is determined. Additionally, U0 represents
Ljx0. As the base case of the induction we have f(ϕ(x1, . . . , xk)) = U0 ∧
∧k

i=1 Di ∧ ϕ(X1, . . . , Xk), that may be satisfied by some restriction of MΨ,
as in Figure 5.
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We have two inductive cases, for Qn = ∀ and Qn = ∃. If Qn = ∀, then

f(Ψn) = �+
((

U0 ∧
n∧

i=1

Di ∧
k∧

i=n+1

Ui

)

→ f(Ψn+1)

)

.

If Qn = ∃, then

f(Ψn) = ♦+
(

U0 ∧
n∧

i=1

Di ∧
k∧

i=n+1

Ui ∧ f(Ψn+1)

)

.

The Boolean quantifier Qi is simulated using a ♦+ or �+ operator, appropri-
ately guarded so that it removes precisely one of (si, 0) and (si, 1) from the
model, and does not affect any of the other states. This is achieved by the
subformulas:

∧n
i=1 Di, which requires either (si, 0) or (si, 1) to remain in the

restriction, for i = 1 . . . n; and
∧k

i=n+1 Ui which requires both (si, 0) and
(si, 1) to remain in the restriction for i = n + 1 . . . k. Since the model is
finite, and each state has a unique evaluation, this can always be achieved
by a positive public announcement. After all the quantifiers have been ap-
plied in turn, we able to interpret the Boolean formula ϕ, by checking which
states remain. The encoding of this formula and the constructed model are
polynomial in the size of Ψ, so model-checking APAL+ is PSPACE-hard. A
more extensive discussion of the construction and proof can be found in [1].

5. Expressivity

5.1. The Relative Expressivity of APAL+ and PAL

In this section we establish various expressivity results, mainly that (for
more than one agent) APAL+ is more expressive than S5 (or PAL), which
is obvious, and that APAL+ and APAL are incomparable, which is not
obvious.

Proposition 5.1. Arbitrary positive announcement logic is as expressive
as public announcement logic in S5 for a single agent.

Proof. We recall that single-agent APAL is as expressive as S5
[5, Prop. 3.11 and 3.12]. The same proof applies to single-agent APAL+:
it plays no role anywhere in the proof in [5] whether the announcement wit-
nessing an APAL quantifier is an epistemic formula or a positive epistemic
formula.
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Figure 6. Models Mω
0 and Mm

0 used in the proof of Theorem 5.11

Proposition 5.2. Arbitrary positive announcement logic is (strictly) more
expressive than public announcement logic in S5 for more than one agent.

Proof. We refer to the proof of Proposition 2.16. Observe that the an-
nouncement q used in that proof is a positive formula. Therefore, this
also shows that no epistemic formula is equivalent to the L+

apal formula
♦+(Kap ∧ ¬KbKap).

5.2. APAL+ is Not at Least as Expressive as APAL

We now consider the relative expressivity of APAL and APAL+. In this
subsection we show in Theorem 5.11, further below, that APAL+ is not at
least as expressive as APAL for multiple agents, by the standard method of
providing two pointed epistemic models and a formula (in Lapal) such that
the models can be distinguished by that formula but cannot be distinguished
by any formula in the other language (in L+

apal). The theorem and its proof
are preceded by the definition of the respective models and by various lem-
mas to be used in that proof. The next subsection is devoted to the other
direction of expressivity, namely that APAL is not at least as expressive as
APAL+ for multiple agents. From these two results we can then conclude
that APAL+ and APAL are incomparable in expressivity.
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Consider the models Mω
0 and Mm

0 in Figure 6. We will use these two
epistemic models in the expressivity result of this section. They are both
a-b-chains. We first define the base model, Mω. Formally Mω = (S,∼, V )
where S = N ∪ N

′ (where N
′ = {i′ | i ∈ N}), ∼a is the symmetric and

reflexive closure of {(2i, 2i + 1), (2i′, (2i + 1)′) | i ∈ N}, ∼b is the symmetric
and reflexive closure of {(2i+1, 2i+2), ((2i+1)′, (2i+2)′) | i ∈ N}∪{(0, 0′)},
and V (p) = {0, 0′}.

We define an ordering � over S ∪ {ω, ω′} as follows. This use of the
symbol � is different from that for models in the refinement relation and is
therefore unambiguous.

x � y iff

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ N and y = ω
x, y ∈ N and x ≤ y,
x, y ∈ N

′, x = w′, y = z′, and w ≥ z,
x = ω′ and y ∈ N

′, or
x ∈ N

′ ∪ {ω′} and y ∈ N ∪ {ω}
For convenience, in this proof we will denote the set Sy

x = {z ∈ S | x � z �
y} where x, y ∈ N∪{ω, ω′}. For m ∈ N, Mm

0 will be used as an abbreviation
for the model (M |Sω

m′)0, as depicted in Figure 6. We will show that no
formula of APAL+ can distinguish the set of models {Mm

0 | m ∈ N} from
the set of models {Mm

0 | m ∈ N} ∪ {Mω
0 }, while the sets are distinguishable

in APAL. The assumption that such a distinguishing APAL+ formula exists
is contradictory, as it must then in particular be true in Mm

0 for some m ∈ N

sufficiently large, in which case we can show that it must also be true in Mω
0 .

Models Mm
0 and Mω

0 in Figure 6 are the same except that in Mm
0 the

lower leg is cut off at the world named m′. As m is arbitrary, the final
indistinguishability link between (m − 1)′ and m′ could be for b or for a.
In subsequent proofs we assume without loss of generality that it is a b-link
and that (therefore) m ≥ 2 is even.

Lemma 5.3. The edge state m′ of model Mm can be distinguished by an
epistemic formula.

Proof. We show that the state m′ in Mm is the unique point satisfying
the formula KaLm

baKbp ∧ ¬Lm−1
ba Kbp (see Lemma 2.12 for notation).

We can see this as follows. The denotation of Kbp is {0, 0′}. Therefore,
the denotation of LaKbp is {0, 0′, 1, 1′}, and the denotation of LbLaKbp is
{0, 0′, 1, 1′, 2, 2′}, and in general the denotation of any Lk

baKbp for k ≤ m is
{0, 0′, . . . , k − 1, (k − 1)′, k, k′}. In particular, the denotation of Lm

baKbp is
{0, 0′, . . . , m − 1, (m − 1)′,m,m′}.
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Then, as m′ is an edge state, the denotation of KaLm
baKbp is {0, 0′, . . . , m−

1, (m−1)′,m′} (so, without state m), as in state m agent a considers a state
m + 1 possible (where Lm

baKbp is false), but in the edge m′ agent a does not
consider another state possible.

Next, the denotation of ¬Lm−1
ba Kbp is the complement of {0, 0′, . . . , m −

1, (m−1)′}, i.e., {m,m′,m+1,m+2, . . . }. The denotation of the conjunction

δm′ := KaLm
baKbp ∧ ¬Lm−1

ba Kbp

of these two formulas is the intersection of these two sets: {0, 0′, . . . , m −
1, (m − 1)′,m′} ∩ {m,m′,m + 1,m + 2, . . . } = {m′}, as required.

This shows that m′ has a distinguishing formula δm′ .

Lemma 5.4. Mm
0 �|= �(KbKap ∨ Kb¬Kap).

Proof. As edge state m′ of model Mm has a distinguishing formula, it
follows from Lemma 2.13 that any finite subset T ⊆ S of model Mm has
a distinguishing formula. In particular, we can therefore distinguish the set
T = {0, 0′, 1′}. Let formula δT ∈ Lel be such that Mm

0 |= δT and [[δT ]]Mm =
{0, 0′, 1′}. Note that (Mm|δT )0 �|= KbKap ∨ Kb¬Kap. Therefore, Mm

0 �|=
�(KbKap ∨ Kb¬Kap).

As an example of the Lemmas 5.3 and 5.4, consider model M2. The
distinguishing formula of world 2′ is δ2′ = KaLbLaKbp ∧ ¬LaKbp, and the
submodel consisting of domain {0, 0′, 1′}, using the method of Lemma 2.13,
has distinguishing formula (Lbδ2′ ∧¬δ2′)∨ (LaLbδ2′ ∧¬Lbδ2′)∨ (LbLaLbδ2′ ∧
¬LaLbδ2′), which is equivalent to LbLaLbδ2′ ∧ ¬δ2′ , i.e., to

LbLaLb(KaLbLaKbp ∧ ¬LaKbp) ∧ ¬(KaLbLaKbp ∧ ¬LaKbp).

Similarly, we thus obtain that δT in the proof of Lemma 5.4 is equivalent to
the formula

Lm+2
ab (KaLm+1

ba Kbp ∧ ¬Lm
baKbp) ∧ ¬Lm−1

ab (KaLm+1
ba Kbp ∧ ¬Lm

baKbp).

Lemma 5.5. Mω
0 |= �(KbKap ∨ Kb¬Kap).

Proof. Consider the relation R on Mω defined as the symmetric and re-
flexive closure of {(i, i′) | i ∈ N}. It is obvious that this relation R is a bisim-
ulation (and even an isomorphism). Differently said, the 0, 1, . . . chain is the
mirror image of the 0′, 1′, . . . chain. Therefore, Mω

0 |= �(KbKap∨Kb¬Kap):
firstly, any announcement must preserve actual state 0 and therefore also
preserves the bisimilar 0′; secondly, either 1 and the bisimilar 1′ are both
eliminated by an announcement, after which KbKap is true at 0, or 1 and
1′ are both preserved, after which Kb¬Kap is true at 0.
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We continue by preparing the ground for the result that Mω
0 and Mm

0

cannot be distinguished in L+
apal by a formula of epistemic depth at most

m. The main observation required for this result, is that given the very
sparse structure of the model Mω, there are only three meaningful posi-
tive announcements. We can show this by looking in detail at the maximal
refinements on Mω and some of its restrictions.

Lemma 5.6. Consider the relation R on Mω consisting of: (0, 0), (0, 0′),
(0′, 0), (0′, 0′), and all pairs (i, j), (i, j′), (i′, j), and (i′, j′) such that i, j ∈ N,
i, j > 0, and i ≤ j. Then R is a refinement.

Proof. The atoms-p requirement is satisfied as all pairs in the relation only
relate states wherein p is true in both ((0, 0), (0, 0′), (0′, 0), and (0′, 0′)) or
wherein p is false in both (all other pairs).

For back-a, let (i, j′) ∈ R for i, j ∈ N with i, j > 0 and suppose j′ ∼a k′.
We need to consider several cases:

• if k = j − 1 and j = 1, then: i = 1 and k′ = 0′ and as 0 ∼a 1 we choose
(0, 0′) ∈ R;

• if k = j − 1 and j �= 1, then: if i ≤ j − 1 then (i, (j − 1)′) ∈ R else i = j
and (i − 1) ∼a i so (i − 1, (j − 1)′) ∈ R;

• if k = j, then (choose i ∼a i and) (i, j′) ∈ R;

• if k = j + 1, then i ≤ j implies i ≤ j + 1 so (i, (j + 1)′) ∈ R.

The cases where (i, j), (i′, j′), (i′, j) ∈ R are similar, and the clause back-
b can also be similarly proved. We further note that R is the maximal
refinement on Mω.

The proof of Lemma 5.6 also holds for certain connected submodels of
Mω such that 0 or 0′ and 1 or 1′ are in the connected part Sy

x. We recall
the order � defined on N ∪ N

′ ∪ {ω, ω′}. These submodels are cases in the
following Corollary 5.7 and they are needed in the subsequent Lemma 5.8.
(The submodels only containing 0 or 0′, or only excluding 0 and 0′, are less
of interest, as will become clear in the proof of Lemma 5.8.)

Corollary 5.7. Let R′ be the restriction of R to Sy
x for some x, y ∈ S ∪

{ω, ω}, where S = D(Mω).

1. if x � 1′ and 1 � y then R′ is a refinement on Mω|Sy
x.

2. if x = 0 then R′ is a refinement on Mω|Sy
x.

3. if x = 0′ and 1 � y then R′ \ {(0′, 0)} is a refinement on Mω|Sy
x.
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4. if x � 1′ and y = 0 then R′ \ {(0, 0′)} is a refinement on Mω|Sy
x.

5. if y = 0′ then R′ is a refinement on Mω|Sy
x.

In the third item above the pair (0′, 0) is now excluded because back-a
fails, as the link 0 ∼a 1 cannot be matched in state 0′, wherein only 0′ ∼a 0′.
In the fourth item above the pair (0, 0′) is now excluded because the link
0′ ∼a 1′ cannot be matched in state 0.

Lemma 5.8. Let ϕ ∈ L+
el , N be any submodel of Mω and t ∈ D(N). Then

we have either (N |ϕ)t 
 (N |p)t, or (N |ϕ)t 
 (N |¬p)t, or (N |ϕ)t 
 Nt.

Proof. For the purposes of bisimulation it is sufficient to consider the con-
nected component of N |ϕ containing t. As the model N is an a-b-chain this
connected component will be a model (Mω|Sy

x)t for some x, y ∈ S ∪ {ω, ω′}
with x � t � y. So we have that (N |ϕ)t 
 (Mω|Sy

x)t. Then we have the
following cases:

1. If x = 0′ and y = 0 (or x = y = 0, or x = y = 0′), then p is true every-
where, and the connected component is bisimilar to a singleton model
wherein p is true. An announcement of p suffices here, so (N |ϕ)t 
 (N |p)t.

2. If x, y ∈ N \ {0} or x, y ∈ N
′ \ {0′}, then p is false everywhere. An

announcement of ¬p will equally result in a model restriction only con-
taining ¬p states. Both restrictions are bisimilar to a singleton model
wherein p is false, so (N |ϕ)t 
 (N |¬p)t.

3. Finally, as we are in a connected component, if neither of the above cases
are true, then we must have in our connected model a state i ∈ {0, 0′}
and a state j ∈ {1, 1′} that were preserved by the announcement of ϕ.
Now for every k ∈ D(N) where k ∈ (N \ {0}) ∪ (N′ \ {0′}) we have Nk

is a refinement of Nj (Corollary 5.7), so every such k must have been
preserved by the announcement of ϕ (Lemma 2.23). Further:

• if j = 1 and i = 0′ so that 0 is also in (N |ϕ), then N0′ is a refine-
ment of N0 (Corollary 5.7.3) so that both 0 and 0′ are preserved;

• if i = 0 and j = 1′ so that 0′ is also in (N |ϕ), then N0 is a re-
finement of N0′ (Corollary 5.7.4) so that again both 0 and 0′ are
preserved;

• if i = 0′ but 0 is not in (N |ϕ), then 0′ was preserved by assump-
tion;

• if i = 0 but 0′ is not in (N |ϕ), then 0 was preserved by assumption.
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Therefore every state in the connected component containing t is pre-
served by ϕ and (N |ϕ)t 
 Nt.

Lemma 5.9. Let M,N be submodels of Mω, s ∈ D(M), t ∈ D(N), and
k ∈ N. If Ms 
k Nt, then Ms ≡k

apal+ Nt.

Proof. By induction on ϕ we show the equivalent proposition:

Let ϕ ∈ L+
apal , M,N be submodels of Mω, s ∈ D(M), t ∈ D(N), and

d(ϕ) ≤ k where k ∈ N. If Ms 
k Nt, then Ms |= ϕ iff Nt |= ϕ.

We only show the relevant cases Kaϕ, [ψ]ϕ, and �+ϕ. As k-bisimilarity is a
symmetric relation it suffices to show just one direction for each case. Let
R0 ⊇ · · · ⊇ Rk be such that R0 : Ms 
0 Nt, . . . , Rk : Ms 
k Nt.

Case Kaϕ: Suppose d(Kaϕ) ≤ k. We have Ms |= Kaϕ if and only if for
all s′ ∼a s, Ms′ |= ϕ. As Rk : Ms 
k Nt, for all t′ ∼a t there is some s′ ∼a s
such that Rk−1 : Ms′ 
k−1 Nt′ . By the induction hypothesis we have for all
ψ where d(ψ) ≤ k − 1, Ms′ |= ψ implies Nt′ |= ψ. As d(ϕ) ≤ k − 1, it follows
that for all t′ ∼a t, Nt′ |= ϕ. Therefore Nt |= Kaϕ.

Case [ψ]ϕ: Suppose d([ψ]ϕ) ≤ k, and Ms |= [ψ]ϕ. By the definition of d we
may suppose that d(ψ) = i and d(ϕ) = j where i+j ≤ k. As Rk : Ms 
k Nt,
by the induction hypothesis, Ms |= ψ if and only if Nt |= ψ. Therefore, if
Ms �|= ψ then Nt �|= ψ and vacuously Nt |= [ψ]ϕ, as required. Suppose now
that Ms |= ψ, so that also Nt |= ψ.

We define the following series of relations from (M |ψ) to (N |ψ) for 
 =
0, . . . , k − i: Q� = {(s, t) ∈ R�+i | Ms |= ψ}. Note that as (s, t) ∈ Q� implies
(s, t) ∈ R�+i for any such pair (s, t), and d(ψ) = i ≤ 
 + i, it follows by
induction that Nt |= ψ, so indeed these are relations from (M |ψ) to (N |ψ).

We now show that the clauses atoms, forth and back of bounded bisimu-
lation (Definition 2.5) hold for Q� = Q0, . . . ,Qk−i, for any pair (s, t) ∈ Q�.

Case 
 = 0. We show atoms-p, for p ∈ P . From (s, t) ∈ Q0 it follows that
(s, t) ∈ Ri. As R0 ⊇ Ri, it also follows that (s, t) ∈ R0, i.e., s and t satisfy
the same atoms. Therefore Q0 : (M |ψ)s 
0 (N |ψ)t.

Case 
 > 0. We show 
-forth-a. Let s ∼a s′ and Ms′ |= ψ (i.e., s ∼a s′

in (M |ψ)). From R�+i : Ms 
�+i Nt and s ∼a s′ follows that there is
a t′ ∼a t such that R�+i−1 : Ms′ 
�+i−1 Nt′ . As 
 > 0 and d(ψ) = i,
d(ψ) ≤ 
+i−1. From R�+i−1 : Ms′ 
�+i−1 Nt′ , Ms′ |= ψ and d(ψ) ≤ 
+i−1
it follows by the induction hypothesis that Nt′ |= ψ. Therefore t′ is in the
domain of N |ψ. By definition, from R�+i−1 : Ms′ 
�+i−1 Nt′ it follows that
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Q�−1 : (M |ψ)s′ 
�−1 (N |ψ)t′ . Therefore, t′ satisfies the requirement for

-forth-a for relation Q�. The clause 
-back-a is shown similarly.

In particular, (M |ψ)s 
k−i (N |ψ)t. From assumptions Ms |= [ψ]ϕ and
Ms |= ψ it follows that (M |ψ)s |= ϕ. Therefore, using that d(ϕ) = j ≤ k − i
and applying the induction hypothesis once again, we obtain that (N |ψ)t |=
ϕ, which with Nt |= ψ delivers the required Nt |= [ψ]ϕ.

Case �+ϕ: Suppose d(�+ϕ) ≤ k, and Ms |= �+ϕ. Then Ms |= [ψ]ϕ for all
ψ ∈ L+

el . Now for any ψ ∈ L+
el , by Corollary 5.8 we have either: (N |ψ)t 


(N |p)t, (N |ψ)t 
 (N |¬p)t or (N |ψ)t 
 Nt.

1. In the first case, since Ms 
k Nt, Nt |= p implies Ms |= p so both
(M |p)s and (N |p)t are bisimilar to the singleton model where p is true.
As Ms |= �+ϕ, we have (M |p)s |= ϕ and thus (N |p)t |= ϕ (Lemma 3.12).
Since (N |p)t 
 (N |ψ)t we have Nu |= [ψ]ϕ.

2. The second case is similar: if (N |ψ)t 
 (N |¬p)t, then Nt |= ¬p implies
Ms |= ¬p. We then have that (M |¬p)s and (N |¬p)t are bisimilar to the
singleton model where p is false, and thus (M |p)s |= ϕ implies (N |p)t |=
ϕ. It follows that Nt |= [ψ]ϕ.

3. Finally, if (N |ψ)t 
 Nt then since Ms 
k Nt and Ms |= [�]ϕ, we have
Ms |= ϕ and Nt |= ϕ by the induction hypothesis. Therefore (N |ψ)t |= ϕ
and Nt |= [ψ]ϕ.

Therefore, for every ψ ∈ L+
el , Nt |= [ψ]ϕ, so Nt |= �+ϕ as required.

As Mm
0 
m Mω

0 , the following corollary is rather a special case of the
previous lemma.

Corollary 5.10. Let ϕ ∈ L+
apal such that d(ϕ) ≤ m. Then Mm

0 |= ϕ iff
Mω

0 |= ϕ.

Theorem 5.11. APAL+ is not at least as expressive as APAL for multiple
agents.

Proof. Recall the Lapal formula �(KbKap ∨ Kb¬Kap) from Lemmas 5.4
and 5.5. Let us assume that there is an equivalent formula ϕ ∈ L+

apal and the
epistemic depth of this formula is d(ϕ) = m. We recall that the epistemic
depth counts the number of stacked knowledge modalities, but ignores the
arbitrary (positive) announcement modalities.

Consider again the models Mm
0 and Mω

0 of Figure 6. We have shown the
following:

1. Mm
0 �|= �(KbKap ∨ Kb¬Kap) (Lemma 5.4).

2. Mω
0 |= �(KbKap ∨ Kb¬Kap) (Lemma 5.5).
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{p} {}{}
0

{}{p}
l
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0

{p} a b a

M l
0:

N r
0 :

Figure 7. Models used in the proof of Theorem 5.19

3. Mm
0 |= ϕ iff Mω

0 |= ϕ (Corollary 5.10).

The assumption that �(KbKap ∨ Kb¬Kap) is equivalent to ϕ is in contra-
diction with these results. Therefore, no such equivalent ϕ exists.

5.3. APAL is Not at Least as Expressive as APAL+

We wish to establish incomparability of APAL and APAL+, so it remains to
show that APAL is not at least as expressive as APAL+ for multiple agents.
This we will do in the following Theorem 5.19, by, again, the standard
method of providing two pointed epistemic models and a formula (in L+

apal)
such that the models can be distinguished by that formula but cannot be
distinguished by any formula in the other language (in Lapal). Before that
theorem we will introduce the models used in its proof, present an intuitive
example to illustrate the proof method, and introduce some lemmas to be
used in that proof.

Consider models M l
0 and Nr

0 in Figure 7. Both are a-b-chains, and such
that a variable p is false in the evaluation point 0 and the values of p are
swapped in adjoining states. However, the model M l terminates on the a-
link side of the designated state 0 in state l (for left) and is infinite on b-link
side of 0, whereas the model Nr terminates on the b-link side of 0 in state
r (for right) and is infinite on the left.

Formally, let l be a negative odd integer and let r be a positive even
integer, then the domain of M l is {i | i ∈ Z, i ≥ l}. Relation Ra in M l is the
symmetric and reflexive closure of {(2i − 1, 2i) | i ∈ Z, 2i − 1 ≥ l}, whereas
Rb is the symmetric and reflexive closure of {(2i, 2i + 1) | i ∈ Z, 2i > l},
and V (p) = {2i + 1 | i ∈ Z, 2i + 1 ≥ l}. Then, the domain of Nr is {i | i ∈
Z, i ≤ r}; the relations and valuation in Nr are similarly defined as in M l.
We recall that M l and Nr are a-b-chains. Both have a single edge.

In order to informally explain the method in the subsequent proof, first
consider models M−1

0 and N2
0 in Figure 8. In M−1 but not in N2, from

the evaluation point 0, the a-link is closer to the edge than the b-link. The
formula �+ (Lbp → Lap) formalizes this property in L+

apal .
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{p} {}{}
0

{p}
−1

a b a

{p} {}
2

{}
0

{p} a b a

M−1
0 :

N2
0 :

Figure 8. An example for l = −1 and r = 2

In M−1, the prefixes of this chain are defined by the (positive) formulas:
Kbp (for {−1}), Ka(¬p ∨ Kbp) (for {−1, 0}), Kb(p ∨ Ka(¬p ∨ Kbp)) (for
{−1, 0, 1}), etc. As we build these prefixes from the left, the a-link from 0 is
included before the b-link from 0 is included. There are yet other positively
definable subsets containing 0, such as the ¬p-states. But that cuts off both
links. Differently said, if the b-link from state 0 to state 1 is included then the
a-link from state 0 to state −1 is included. And both have a different value of
p than in 0. This gives us Lbp → Lap. And therefore, M−1

0 |= �+ (Lbp → Lap).
Now look at N2. There, similar reasoning makes us conclude that the

b-link is always included before the a-link. So we can make a positive an-
nouncement, namely Kb(¬p ∨ Ka(p ∨ Kb¬p)), resulting in the restriction to
{0, 1, 2}, after which Lbp is true but Lap is false. So N2

0 �|= �+ (Lbp → Lap).
Of course the models M−1

0 and N2
0 can be easily distinguished in Lapal

too. They can even be distinguished in Lel , without APAL quantifiers, for
example by a formula expressing that the distance to the edge is 1 in M−1

0

but more than 1 in N2
t . As Kbp distinguishes state −1 in M−1, this formula

is LaKbp. We note that M−1
0 |= LaKbp whereas N2

0 �|= LaKbp. But, tellingly,
you need to have that distance explicitly in the formula, unlike in the L+

apal

formula. And d(LaKbp) = 2, larger than d(�+ (Lbp → Lap)) = 1.
Having prepared the ground for the proof, we now present Theorem 5.19

(at the end of this section) and preceding lemmas.

Lemma 5.12. The positively definable restrictions of M l are: all states, the
p-states, the ¬p-states, any finite prefix of the a-b-chain M l, and the union
or intersection of any of the previous.

Proof. The relation R := {(i + 2j, i) | j ∈ N, i ∈ Z, i ≥ l} is the maximal
refinement on M l. It is a refinement because M l

i+2j � M l
i iff M l

i is isomor-
phic to a submodel of M l

i+2j . A submodel is the most typical example of the
structural loss represented by a refinement. The relation R is also maximal.
We cannot pair a p-state to a larger p-state, such as in (l, l + 2): back-b
would then fail: from l +2 we can reach a ¬p-state via l +1 ∼b l +2, but we
cannot reach a ¬p-state by a b-link from state l. Similarly we cannot have
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any other pair where the second argument is a state named with a larger
number than the first argument, by iterating back steps.

Given R, the subsets of the domain of M l that are closed under refinement
are: all states, the p-states, the ¬p-states, and the finite prefixes of the chain
M l. To this we further add the union or intersection of any of the previous,
where we note that the union of two prefixes is the longer prefix and the
intersection of two prefixes is the smaller prefix. This means that also closed
under refinement are: the p-states of any finite prefix, the ¬p-states of any
finite prefix, and the union of a prefix of the chain with the set of p-states,
or ¬p-states, of a larger prefix (such as the set {−1, 0, 1, 2, 3, 5, 7, 9}).

We now show that all refinement closed subsets of the domain of M l are
positively definable. This is not evident, as the domain of M l is not finite
(so Lemma 3.5 does not apply). We define: δl

l := Kbp, δl
i+1 := Ka(¬p ∨ δl

i)
for i an odd natural number, and δl

i+1 := Kb(p ∨ δl
i) for i an even natural

number. The other positive formulas defining refinement closed subsets are
conjunctions or disjunctions of the previous; none of those however will play
a role in the continuation.

The argument is the same for the model Nr. In this case relation R′ :=
{(i − 2j, i) | j ∈ N, i ∈ Z, i ≤ r} is the maximal refinement on Nr, and any
Nr

i is isomorphic to a submodel of Nr
i−2j . The positive formulas defining the

prefixes are now defined as: δr
r := Kbp, δr

i−1 := Ka(¬p ∨ δr
i ) for i an even

natural number, and δr
i−1 := Kb(p ∨ δr

i ) for i an odd natural number.

Corollary 5.13. The positively definable restrictions of Nr are: all states,
the p-states, the ¬p-states, any finite prefix of the a-b-chain Nr, and the
union or intersection of any of the previous.

Lemma 5.14. M l
0 |= �+ (Lbp → Lap).

Proof. Let T ⊆ D(M) be positively definable and such that 0 ∈ T . Then
either M l|T is a prefix of M l containing 0, or M l|T consists of discon-
nected parts of which M l|{0} is a singleton part. In the second case, from
(M l|{0})0 |= ¬Lap and (M l|{0})0 |= ¬Lbp follows (M l|{0})0 |= Lap → Lbp.
In the first case, as M l|T is a prefix of M containing 0, the a-link to −1
(where −1 may be l) must always be included in that restriction if the b-link
to 1 is included. Therefore (M l|T )0 |= Lbp → Lap. From (M l|T )0 |= Lbp →
Lap for all T containing 0, and the observation that all such T are positively
definable (Lemma 5.12), it follows that M l

0 |= �+ (Lbp → Lap).

Lemma 5.15. Nr
0 �|= �+ (Lbp → Lap).

Proof. The prefix T = {0, . . . , r} of Nr is positively definable by δr
0 ∈ L+

el

(see above). We now have that (Nr|δr
0)0 |= Lbp, because 0 ∼b 1 and
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(Nr|δr
0)1 |= p, but (Nr|δr

0)0 �|= Lap, because state −1 (and any other
state i < −1) has been eliminated by the announcement of δr

0. There-
fore, (Nr|δr

0)0 |= Lbp ∧ ¬Lap. From that and Nr
0 |= δr

0 (as 0 ∈ T ) it fol-
lows that Nr

0 |= 〈δr
0〉(Lbp ∧ ¬Lap). Therefore Nr

0 |= ♦+(Lbp ∧ ¬Lap), i.e.,
Nr

0 �|= �+ (Lbp → Lap).

The following lemma is very crucial. Note that the restrictions below can
be for any subset of the domain, not necessarily positively definable.

Lemma 5.16. Given are restricted models M of M l and N of Nr, and i, j ∈
N with i ∈ D(M) and j ∈ D(N). If Mi 
n Nj, then for all ψ ∈ Lel such
that Mi |= ψ there is a ψ′ ∈ Lel such that (M |ψ)i 
n (N |ψ′)j, and for all
ψ′ ∈ Lel such that Nj |= ψ′ there is a ψ ∈ Lel such that (M |ψ)i 
n (N |ψ′)j.

Proof. Given ψ ∈ Lel with Mi |= ψ, let M ′
i be obtained by restricting

(M |ψ)i to states at most n steps, on either side, from i, and omitting com-
ponents disconnected from i. We then have that M ′

i 
n (M |ψ)i, and that
M ′

i is a finite chain of length at most 2n + 1. We recall that any finite sub-
set in Nr is distinguishable in Lel , using the distance from endpoint r (see
Lemma 2.13). Similarly, any finite subset in a connected part of N is distin-
guishable in Lel from its complement in that part (which again follows from
Lemma 2.13 or otherwise from Lemma 2.12). So, as M ′ ⊆ M and Mi 
n Nj ,
there is a ψ′ ∈ Lel and a finite N ′ ⊆ N such that N ′

j 
 (N |ψ′)j (i.e., un-
bounded) and M ′

i 
n N ′
j . From that and M ′

i 
n (M |ψ)i it follows that
(M |ψ)i 
n (N |ψ′)j . The proof in the other direction, assuming a ψ′ ∈ Lel

such that Nj |= ψ′, is similar.

It is important to note that in the above proof the epistemic depths d(ψ)
and d(ψ′) are not related to n: they are arbitrary and therefore can be larger
than n.

Lemma 5.17. Let M ⊆ M l, N ⊆ Nr, i, j ∈ N with i ∈ D(M) and j ∈
D(N), and n ∈ N: if Mi 
n Nj, then Mi ≡n

apal Nj.

Proof. We show the equivalent formulation:

For all ϕ ∈ Lapal , M ⊆ M l, N ⊆ Nr, i, j ∈ N with i ∈ D(M) and
j ∈ D(N), and n ∈ N: if Mi 
n Nj and d(ϕ) ≤ n, then Mi |= ϕ iff
Nj |= ϕ.

The proof is by induction on the structure of ϕ. The cases of interest are
Kaϕ, [ψ]ϕ, and �ϕ. The first two cases are similar to those shown in Lemma
5.9, and therefore shown in less detail. As n-bisimilarity is a symmetric
relation, it suffices to show only one direction of the equivalence.
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Case Kaϕ: Suppose d(Kaϕ) ≤ n. We have Mi |= Kaϕ if and only if for
all i′ ∼a i, Mi′ |= ϕ. As Mi 
n Nj , for all j′ ∼a j there is some i′ ∼a i such
that Mi′ 
n−1 Nj′ . By the induction hypothesis, given d(ϕ) ≤ n − 1, we
have for all j′ ∼a j, Nj′ |= ϕ. Therefore Nj |= Kaϕ.

Case [ψ]ϕ: Suppose d([ψ]ϕ) ≤ n, and Mi |= [ψ]ϕ. By the definition
of d we may suppose that d(ψ) = x and d(ϕ) = y where x + y ≤ n.
Let R0 ⊇ · · · ⊇ Rn be such that R0 : Mi 
0 Nj , . . . , Rn : Mi 
n Nj .
For all (i′, j′) ∈ Rx, we have Mi′ 
x Nj′ , so by the induction hypothesis,
Mi′ |= ψ if and only if Nj′ |= ψ. Therefore, if Mi �|= ψ then Nj �|= ψ and
vacuously Nj |= [ψ]ϕ, as required. Suppose now that Mi |= ψ. We define
the series of relations from (M |ψ) to (N |ψ) for z = 0, . . . , y: Qz = {(i′, j′) ∈
Rn−z | Mi′ |= ψ}. The conditions atoms, forth and back for the bounded
bisimulation of Definition 2.5 hold for Q0, . . . ,Qy, and so (M |ψ)i 
y (N |ψ)j .
Applying the induction hypothesis once again, we have (M |ψ)i |= ϕ implies
(N |ψ)j |= ϕ, and so Nj |= [ψ]ϕ.

Case �ϕ:
To match the previous lemma, we show the dual diamond form.

Mi |= ♦ϕ
⇔
there is ψ ∈ Lel ,Mi |= 〈ψ〉ϕ
⇔
there is ψ ∈ Lel ,Mi |= ψ and (M |ψ)i |= ϕ
⇔ Lemma 5.16
there is ψ′ ∈ Lel , Nj |= ψ′ and (N |ψ′)j |= ϕ
⇔
there is ψ′ ∈ Lel , Nj |= 〈ψ′〉ϕ
⇔
Nj |= ♦ψ

Corollary 5.18. Let ϕ ∈ Lapal , l < −d(ϕ) and r > d(ϕ). Then M l
0 |= ϕ

iff Nr
0 |= ϕ.

Theorem 5.19. APAL is not at least as expressive as APAL+ for multiple
agents.

Proof. Consider the formula �+ (Lbp → Lap). Let us suppose that �+ (Lbp →
Lap) is equivalent to a Lapal formula ϕ. The epistemic depth of this formula
is d(ϕ). Let M l

0 and Nr
0 be such that |l|, r > d(ϕ). Then:

1. M l
0 |= �+ (Lbp → Lap) (Lemma 5.14);

2. Nr
0 �|= �+ (Lbp → Lap) (Lemma 5.15);
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3. M l
0 |= ϕ iff Nr

0 |= ϕ (Corollary 5.18).

This is a contradiction. Therefore, no such equivalent Lapal formula exists.

Corollary 5.20. APAL and APAL+ have incomparable expressivity.

Proof. From Theorem 5.11 and Theorem 5.19.

The relative expressivity of APAL+ to group announcement logic and
coalition announcement logic, mentioned in the introduction, has recently
been addressed in [17,19]. It is shown that GAL is not at least as expressive
as CAL and that APAL is not at least as expressive as CAL, with chain mod-
els for three agents instead of the two agent a-b-chains in our contribution.
Whether CAL is not at least as expressive as GAL is an open question.

6. Axiomatisation

In this section we provide a sound and complete axiomatisation for arbi-
trary positive announcement logic. It is as the (infinitary) axiomatisation
for arbitrary public announcement logic given by Balbiani et al. [5,6], but
with restrictions to positive announcements in appropriate axioms.

Definition 6.1. Consider a new symbol �. The necessity forms are defined
inductively as:

ψ(�) : := � | (ϕ → ψ(�)) | [ϕ]ψ(�) | Kaψ(�)

where ϕ ∈ L+
apal and a ∈ A.

A necessity form contains a unique occurrence of the symbol �. If ψ(�)
is a necessity form and ϕ ∈ L+

apal , then ψ(ϕ) ∈ L+
apal , where ψ(ϕ) stands

for the substitution of the unique occurrence of � in ψ(�) by ϕ. We also call
ψ(ϕ) an instantiation of ψ(�).

The axiomatisation APAL+
ω is given below. A formula is a theorem if it

belongs to the least set of formulas containing all axioms and closed under
the derivation rules.

Definition 6.2. The axiomatisation APAL+
ω consists of the following ax-

ioms and rules. In the rule R+ω, the expressions χ([ψ]ϕ) and χ(�+ϕ) are
instantiations of a necessity form χ(�).
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P All propositional tautologies K Ka(ϕ → ψ) → (Kaϕ → Kaψ)
T Kaϕ → ϕ 4 Kaϕ → KaKaϕ
5 ¬Kaϕ → Ka¬Kaϕ AP [ϕ]p ↔ (ϕ → p)
AN [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ) AC [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)
AK [ϕ]Kaψ ↔ (ϕ → Ka[ϕ]ψ) AA [ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ

A+ �+ ϕ → [ψ]ϕ where ψ ∈ L+
el MP From ϕ and ϕ → ψ infer ψ

NecK From ϕ infer Kaϕ NecA From ϕ infer [ψ]ϕ

R+ω From χ([ψ]ϕ) for every ψ ∈ L+
el infer χ(�+ ϕ)

The axiomatisation APAL+
ω is identical to the axiomatisation APALω

in [5] and to the axiomatisation APAL in [6], except for the replacement of
the APAL � by the APAL+ �+ on two occasions, resulting in the axiom A+
and the rule R+ω. Other, non-essential differences are the different names
for axioms and rules, for example the axiom we call K they call A1, the
axiom we call T they call A4, and so on; and the presence of additional,
known to be derivable, axioms in [6].

Note that the proof of completeness of APAL given in [5] was wrong and
that a correct proof of completeness has been given in [4,6].

Theorem 6.3. The infinitary axiomatisation APAL+
ω is sound and com-

plete for the logic APAL+.

Proof. The soundness of the axiomatisation is evident as the axiom A+
and the rule R+ω follow the semantics of the �+ operator (just as their
non-positive counterparts followed the semantics of the � operator), and
all remaining axioms and rules are, as well-known, standard from epistemic
logic and public announcement logic.

The completeness proof proceeds exactly as in [6], with appropriate re-
strictions from epistemic announcements to positive announcements in the
cases of A+ and R+ω.

More precisely, the positive arbitrary announcement operator �+ only fea-
tures in the subinductive case [ψ]�+χ and in the inductive case �+ψ of the
proof of the Truth Lemma. The Truth Lemma for APAL is proved by a
complexity measure wherein [ψ]ϕ is less complex than �ϕ for any ψ ∈ Lel .
Similarly, [ψ]ϕ is less complex than �+ϕ for any ψ ∈ L+

el . This justifies that
substituting ‘epistemic’ for ‘positive’ in appropriate places is sufficient.

No other changes are required.

We note that APAL+
ω is an infinitary axiomatisation, as the rule R+ω

requires an infinite number of premises. Just as for the infinitary axiomati-
sation of the logic APAL, it is unknown if a finitary axiomatisation exists.
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7. Conclusion

We presented a variant of arbitrary public announcement logic called posi-
tive arbitrary public announcement logic, APAL+, which restricts arbitrary
public announcements to announcement of positive formulas. We showed
that the model checking complexity of APAL+ is PSPACE-complete, that
APAL+ is more expressive than public announcement logic PAL, that it is
incomparable with APAL, and we provided a sound and complete infinitary
axiomatisation. The proof of the decidability of APAL+ is reported in a
companion paper [34].
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