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Abstract. A residuated lattice is said to be integrally closed if it satisfies the quasiequa-

tions xy ≤ x =⇒ y ≤ e and yx ≤ x =⇒ y ≤ e, or equivalently, the equations x\x ≈ e

and x/x ≈ e. Every integral, cancellative, or divisible residuated lattice is integrally closed,

and, conversely, every bounded integrally closed residuated lattice is integral. It is proved

that the mapping a �→ (a\e)\e on any integrally closed residuated lattice is a homo-

morphism onto a lattice-ordered group. A Glivenko-style property is then established for

varieties of integrally closed residuated lattices with respect to varieties of lattice-ordered

groups, showing in particular that integrally closed residuated lattices form the largest vari-

ety of residuated lattices admitting this property with respect to lattice-ordered groups.

The Glivenko property is used to obtain a sequent calculus admitting cut-elimination for

the variety of integrally closed residuated lattices and to establish the decidability, indeed

PSPACE-completenes, of its equational theory. Finally, these results are related to pre-

vious work on (pseudo) BCI-algebras, semi-integral residuated pomonoids, and Casari’s

comparative logic.

Keywords: Residuated lattice, Lattice-ordered group, Glivenko property, Proof theory,
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1. Introduction

A residuated lattice-ordered monoid (residuated lattice for short) is an alge-
braic structure A = 〈A,∧,∨, ·, \, /, e〉 of type 〈2, 2, 2, 2, 2, 0〉 such that
〈A,∧,∨〉 is a lattice, 〈A, ·, e〉 is a monoid, and \, / are left and right residuals
of · in the underlying lattice order, i.e., for all a, b, c ∈ A,

b ≤ a\c ⇐⇒ ab ≤ c ⇐⇒ a ≤ c/b.

These structures form a variety (equivalently, equational class) RL and pro-
vide algebraic semantics for substructural logics, as well as encompassing
well-studied classes of algebras such as lattice-ordered groups (�-groups for
short) and lattices of ideals of rings with product and division operators
(see, e.g., [4,15,23,28]).
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It is proved in [1] that a residuated lattice A is cancellative—i.e., satisfies
the monoid quasiequations xy ≈ xz =⇒ y ≈ z and yx ≈ zx =⇒ y ≈ z—if
and only if it satisfies the equations x\xy ≈ y and yx/x ≈ y. Cancellative
residuated lattices hence form a variety CanRL that subsumes the varieties
of �-groups LG and their negative cones LG−, but excludes many important
residuated lattices studied in logic (e.g., all non-trivial Brouwerian algebras).
In [29] it is proved that varieties of cancellative residuated lattices satisfying
a further condition are categorically equivalent to varieties of lattice-ordered
groups with a co-nucleus. Despite this rich structural theory, however, no
analytic (cut-free) proof system is known for CanRL and the decidability
of its equational theory is still an open problem. The same issues arise also
for varieties of cancellative residuated lattices satisfying one or both of the
equations xy ≈ yx (commutativity) and x ≤ e (integrality).

In this paper we study residuated lattices that satisfy a weaker cancel-
lation property and are closely related to other algebras for non-classical
logics, including (pseudo) BCI-algebras [11,22,24,25], semi-integral residu-
ated pomonoids [12,31], Dubreil-Jacotin semigroups [5, Chap. 12–13], and
algebraic semantics for Casari’s comparative logic [6–8,27,30]. Following
Fuchs [13, Chap. XII.3], a residuated lattice A is said to be integrally closed
if it satisfies the (ordered monoid) quasiequations xy ≤ x =⇒ y ≤ e and
yx ≤ x =⇒ y ≤ e, or equivalently, the equations x\x ≈ e and x/x ≈ e.
If A is conditionally complete (i.e., every upper-bounded non-empty subset
of A has a least upper bound), then being integrally closed is equivalent to
being integrally closed in the ordered group sense, namely, an ≤ b for all
n ∈ N\{0} implies a ≤ e (see [13, Chap. XII.3] for details).

Let us denote the variety of integrally closed residuated lattices by IcRL.
Clearly, every cancellative residuated lattice belongs to IcRL. This is also
the case for any integral residuated lattice; indeed, any bounded integrally
closed residuated lattice is integral. Since any product of an integral resid-
uated lattice and an �-group is integrally closed, by [18, Cor. 5.3], this is
the case in particular for all GBL-algebras, residuated lattices satisfying the
divisibility property: if a ≤ b, then there exist c, d such that a = cb = bd.
Like CanRL, the variety GBL of GBL-algebras has a rich structure theory
(see, e.g., [18,29]), but no analytic (cut-free) proof system is known and the
decidability of its equational theory is open. Figure 1 depicts relationships
between these and other varieties of integrally closed residuated lattices,
using the prefixes Can and I, respectively, to denote the cancellative and
integral members of a variety, and Triv to denote the trivial variety.

In Section 2, we prove that the mappings a �→ a\e and a �→ e/a coin-
cide for any integrally closed residuated lattice A and that a �→ (a\e)\e
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Figure 1. Varieties of integrally closed residuated lattices

defines a residuated lattice homomorphism from A onto an �-group. We use
this result to establish a Glivenko-style property (studied for varieties of
pointed residuated lattices in [17]) for varieties of integrally closed residu-
ated lattices with respect to varieties of �-groups (Theorem 2.10), showing in
particular that IcRL is the largest variety of residuated lattices admitting
this property with respect to LG (Corollary 2.13).

In Section 3, we exploit the Glivenko property for IcRL to obtain
a sequent calculus admitting cut-elimination by extending the standard
sequent calculus for RL (see, e.g., [15,28]) with a non-standard weaken-
ing rule. As a consequence, we obtain the decidability, indeed PSPACE-
completeness, of the equational theory of IcRL (Theorem 3.3). In Sec-
tion 4, these results are related to previous work on (pseudo) BCI-
algebras [11,22,24] and semi-integral residuated pomonoids [12,31]. In par-
ticular, we prove that the equational theory of IcRL is a conservative exten-
sion of the equational theories of these classes (Theorem 4.7), noting that the
sequent calculus defined for BCI-algebras corresponds to a calculus used to
prove decidability in [24]. Finally, in Section 5, we prove that the equational
theory of a variety of algebras for Casari’s comparative logic [6–8,27,30] is
a conservative extension of the equational theory of commutative integrally
closed residuated lattices (Theorem 5.3). In this case, the sequent calculus
corresponds to a system used in [27] to establish the decidability of Casari’s
comparative logic.
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2. The Structure of Integrally Closed Residuated Lattices

In this section we establish some basic facts about the structure of integrally
closed residuated lattices. We then use these facts to establish a Glivenko
property for varieties of integrally closed residuated lattices with respect to
varieties of �-groups. Let us recall first that every integral residuated lattice
is integrally closed, and show that in the presence of a greatest or least
element the converse is also true.

Lemma 2.1. Any upper or lower bounded integrally closed residuated lattice
is integral.

Proof. Suppose that  is the greatest element of an integrally closed resid-
uated lattice A. Then a ·  ≤  and hence a ≤ / = e for all a ∈ A. So
A is integral. Moreover, any residuated lattice with a least element ⊥ has a
greatest element ⊥/⊥, so must also be integral.

Since every finite residuated lattice is bounded, we obtain the following
description of finite integrally closed residuated lattices.

Corollary 2.2. A finite residuated lattice is integrally closed if and only
if it is integral.

There are integrally closed residuated lattices that are not integral: for exam-
ple, any non-trivial �-group. The variety generated by all finite integrally
closed residuated lattices is hence not IcRL—that is, IcRL does not have
the finite model property—but rather the variety IRL of integral residuated
lattices, which is known to be generated by its finite members [3].

A residuated lattice is called e-cyclic if the two unary operations a �→
a\e and a �→ e/a coincide. The next result shows that integrally closed
residuated lattices have this property and that either one of the defining
equations for this variety (relative to RL) suffices to imply the other.

Proposition 2.3. Any residuated lattice satisfying either x\x ≈ e or x/x ≈
e is integrally closed and e-cyclic.

Proof. Let A be a residuated lattice satisfying x\x ≈ e, noting that the
case where A satisfies x/x ≈ e is symmetrical. Since any residuated lat-
tice satisfies x/x ≈ (x/x)\(x/x), we have that A also satisfies x/x ≈ e.
That is, A is integrally closed. Now consider any a ∈ A. By residuation,
a(a\e) ≤ e, so a(a\e)a ≤ a, giving (a\e)a ≤ a\a = e and hence a\e ≤ e/a.
But, symmetrically, also e/a ≤ a\e. So A satisfies x\e ≈ e/x and is e-cyclic.
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For any e-cyclic residuated lattice A and a ∈ A, we write ∼ a to denote
the common result a\e = e/a. The next lemma collects some useful proper-
ties of this operation for integrally closed residuated lattices.

Lemma 2.4. Any one of the following equations and quasiequations axiom-
atizes IcRL relative to the variety of e-cyclic residuated lattices:

(i) ∼(x\y) ≈ ∼ y/ ∼x

(ii) ∼(y/x) ≈ ∼x\ ∼ y

(iii) x(∼x)y ≤ e =⇒ y ≤ e

(iv) y(∼x)x ≤ e =⇒ y ≤ e.

Proof. For (i), let A be any e-cyclic residuated lattice and consider
a, b ∈ A. Since a(∼ a)b ≤ b, it follows that (∼ a)b ≤ a\b ≤ ∼ ∼(a\b)
and ∼(a\b)(∼ a)b ≤ e, yielding ∼(a\b) ≤ ∼ b/ ∼ a. Note also that
a(a\b)(∼ b/ ∼ a) ∼ a ≤ b(∼ b) ≤ e. Hence if A is integrally closed, it follows
that (a\b)(∼ b/ ∼ a) ≤ (∼ a)/(∼ a) = e, yielding ∼ b/ ∼ a ≤ ∼(a\b); that is,
A satisfies ∼(x\y) ≈ ∼ y/ ∼x. Conversely, if A satisfies ∼(x\y) ≈ ∼ y/ ∼x,
then a\a ≤ (∼ a/∼ a)(a\a) = ∼(a\a)(a\a) ≤ e; that is, A satisfies x\x ≈ e
and is integrally closed. The proof for (ii) is symmetrical.

For (iii), consider first any integrally closed residuated lattice A and
a, b ∈ A. If a(∼ a)b ≤ e, then (∼ a)b ≤ ∼ a and hence b ≤ ∼ a\ ∼ a = e; that
is, A satisfies x(∼x)y ≤ e =⇒ y ≤ e. Suppose next that A is an e-cyclic
residuated lattice that satisfies x(∼x)y ≤ e =⇒ y ≤ e and consider a ∈ A.
Then a(∼ a)(∼ a\ ∼ a) ≤ e yields ∼ a\ ∼ a ≤ e. But also ∼ a(a/a)a ≤ e,
yielding a/a ≤ ∼ a\ ∼ a ≤ e. That is, A satisfies x/x ≈ e and is integrally
closed. The proof for (iv) is symmetrical.

For any e-cyclic residuated lattice A, the map

α : A → A; a �→ ∼ ∼ a

is a nucleus on the induced partially ordered monoid 〈A,≤, ·, e〉, i.e., an
increasing, order-preserving, idempotent map satisfying α(a)α(b) ≤ α(ab)
for all a, b ∈ A (see, e.g., [15, Lem. 3.35]). Moreover, the image of A under
α can be equipped with the structure of a residuated lattice

A∼ ∼ = 〈α[A],∧,∨∼ ∼, ·∼ ∼, \, /, e〉,
where a∨∼ ∼b := α(a∨b) and a·∼ ∼b := α(a·b) (see, e.g., [15, Thm. 3.34(4)]).

Suppose now that A is an integrally closed residuated lattice satisfying
∼ ∼x ≈ x. Then for any a ∈ A,

a(∼ a) = ∼ ∼(a(∼ a)) = ∼(a\(∼∼ a)) = ∼(a\a) = ∼ e = e.
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That is, A satisfies x(x\e) ≈ e and is therefore an �-group (see [23, Sec. 2]
for the translations to the standard signature). In this case, ∼ is the group
inverse operation and α is the identity map, so A = A∼ ∼. On the other
hand, if A is an integral residuated lattice, then ∼ a = e for all a ∈ A and α
maps every element to e, so A∼ ∼ is trivial. More generally, if A is integrally
closed, then α and its image enjoy the following properties.

Proposition 2.5. Let A be an integrally closed residuated lattice.

(a) The map α : A → A∼ ∼ is a surjective homomorphism.

(b) A∼ ∼ is an �-group.

Proof. (a) Any nucleus on the induced partially ordered monoid of a
residuated lattice preserves the monoidal structure and joins (see, e.g., [15,
Thm. 3.34(2)]). By parts (i) and (ii) of Lemma 2.4, this nucleus also pre-
serves the residual operations. It therefore suffices to show that α preserves
binary meets. First note that since (∼ a)(∼∼ a) ≤ e, also a(∼ a)(∼∼ a) ≤ a,
and, since b(∼ b) ≤ e, it follows that a(∼ a)b(∼ b)(∼∼ a) ≤ a. Similarly,
a(∼ a)b(∼ b)(∼∼ b) ≤ b, and hence

a(∼ a)b(∼ b)(∼∼ a ∧ ∼ ∼ b) ≤ a ∧ b ≤ ∼ ∼(a ∧ b).

By residuation, a(∼ a)b(∼ b)(∼∼ a∧∼∼ b)(∼(a∧b)) ≤ e, and hence, apply-
ing part (iii) of Lemma 2.4 twice, (∼ ∼ a ∧ ∼ ∼ b)(∼(a ∧ b)) ≤ e. By residu-
ation again,

∼ ∼ a ∧ ∼ ∼ b ≤ ∼ ∼(a ∧ b).

Since α is order-preserving, ∼ ∼(a ∧ b) = ∼ ∼ a ∧ ∼ ∼ b as required.
(b) That A∼ ∼ is an integrally closed residuated lattice follows immedi-

ately from part (a). But also for any a ∈ A, we have ∼ ∼α(a) = α(α(a)) =
α(a), so A∼ ∼ satisfies ∼ ∼x ≈ x and is an �-group.

Proposition 2.6. Every integrally closed residuated lattice is torsion-free,
i.e., satisfies the quasiequation xn ≈ e =⇒ x ≈ e for each n ∈ N\{0}.
Proof. Let A be an integrally closed residuated lattice. We prove that
A satisfies xn ≈ e =⇒ x ≈ e for each n ∈ N\{0} by induction on n.
The case n = 1 is trivial. For the inductive step, suppose that n > 1 and
an = e for some a ∈ A. Then, since α : A → A∼ ∼ is a homomorphism,
α(a)n = α(an) = α(e) = e. But �-groups are torsion-free, so α(a) = e,
yielding ∼ a = ∼ ∼ ∼ a = ∼α(a) = ∼ e = e and

e = (∼ a)an = (∼ a)aan−1 ≤ an−1 ≤ ∼ a = e.

Hence an−1 = e and, by the induction hypothesis, a = e.
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We turn our attention now to varieties of integrally closed residuated
lattices. Given any class K ⊆ IcRL, we denote by K∼ ∼ the class {A∼ ∼ |
A ∈ K} ⊆ LG, recalling that LG denotes the variety of �-groups.

Proposition 2.7. Let V be any variety of integrally closed residuated lat-
tices.

(a) V∼ ∼ is a variety of �-groups.

(b) If V is defined relative to IcRL by a set of equations E, then V∼ ∼ is
defined relative to LG by E.

Hence the map V �→ V∼ ∼ is an interior operator on the lattice of subvarieties
of IcRL whose image is the lattice of subvarieties of LG.

Proof. Let V be a variety of integrally closed residuated lattices defined
relative to IcRL by a set of equations E (e.g., the equational theory of V),
and let W be the variety of �-groups defined relative to LG by E. Clearly
W = W∼ ∼ ⊆ V∼ ∼. But also each A∼ ∼ ∈ V∼ ∼ is, by Proposition 2.5,
an �-group and a homomorphic image of A ∈ V. So V∼ ∼ ⊆ W. The last
statement then follows from the observation that V∼ ∼ = V if and only if
V ⊆ LG.

We now establish a correspondence between the validity of equations in
an integrally closed residuated lattice A and validity of equations in the
�-group A∼ ∼, denoting the term algebra for residuated lattices over a fixed
countably infinite set of variables by Tm.

Lemma 2.8. For any integrally closed residuated lattice A and s, t ∈ Tm,

A∼ ∼ |= s ≤ t ⇐⇒ A |= ∼ ∼ s ≤ ∼ ∼ t.

Proof. Suppose first that A |= ∼ ∼ s ≤ ∼ ∼ t. Since A∼ ∼ is a homomor-
phic image of A, also A∼ ∼ |= ∼ ∼ s ≤ ∼ ∼ t. But A∼ ∼ is an �-group, so
A∼ ∼ |= s ≤ t.

Now suppose that A �|= ∼ ∼ s ≤ ∼ ∼ t. Then there exists a homomor-
phism ν : Tm → A such that ν(∼∼ s) �≤ ν(∼∼ t). Since α is a homomor-
phism from A to A∼ ∼, we obtain a homomorphism α ◦ ν : Tm → A∼ ∼
such that

α ◦ ν(s) = α(ν(s)) = ∼ ∼ ν(s) = ν(∼∼ s) �≤ ν(∼∼ t) = α(ν(t)) = α ◦ ν(t).

Hence A∼ ∼ �|= s ≤ t as required.

Following [17], we will say that a variety V of residuated lattices admits
the (equational) Glivenko property with respect to another variety W of
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residuated lattices if for all s, t ∈ Tm,

V |= e/(s\e) ≤ e/(t\e) ⇐⇒ W |= s ≤ t ⇐⇒ V |= (e/s)\e ≤ (e/t)\e,

noting that if V is a variety of e-cyclic residuated lattices, this simplifies to

W |= s ≤ t ⇐⇒ V |= ∼ ∼ s ≤ ∼ ∼ t.

Let us also note the following useful consequence of this property.

Proposition 2.9. If V is a variety of residuated lattices admitting the
Glivenko property with respect to a variety of residuated lattices W, then
for all s ∈ Tm,

W |= s ≤ e ⇐⇒ V |= s ≤ e.

Proof. The equation x ≤ e/(x\e) and quasiequation x ≤ e =⇒ e/(x\e) ≤
e are valid in all residuated lattices. Hence for all s ∈ Tm,

W |= s ≤ e ⇐⇒ V |= e/(s\e) ≤ e/(e\e)

⇐⇒ V |= e/(s\e) ≤ e

⇐⇒ V |= s ≤ e.

For integrally closed residuated lattices, we obtain the following pivotal
result.

Theorem 2.10. Any variety V of integrally closed residuated lattices admits
the Glivenko property with respect to V∼ ∼.

Proof. Suppose that V∼ ∼ |= s ≤ t. For any A ∈ V, it follows that A∼ ∼ |=
s ≤ t, and hence A |= ∼ ∼ s ≤ ∼ ∼ t, by Lemma 2.8. So V |= ∼ ∼ s ≤ ∼ ∼ t.
The other implication follows from the fact that V∼ ∼ ⊆ V and V∼ ∼ |=
∼ ∼x ≈ x.

Corollary 2.11. The variety of integrally closed residuated lattices admits
the Glivenko property with respect to the variety of �-groups, and hence for
all s ∈ Tm,

LG |= s ≤ e ⇐⇒ IcRL |= s ≤ e.

Theorem 2.10 shows that, in some sense, IcRL plays the same role for LG
that the variety of Heyting algebras plays for the variety of Boolean algebras
(see, e.g., [2, Thm. IX.5.3]). Moreover, as the next result demonstrates,
IcRL is the largest variety of residuated lattices that can play this role.

Theorem 2.12. Let V be a variety of integrally closed residuated lattices
that is axiomatized relative to IcRL by equations of the form s ≤ e. Then V
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is the largest variety of residuated lattices admitting the Glivenko property
with respect to V∼ ∼.

Proof. By Theorem 2.10, V admits the Glivenko property with respect to
V∼ ∼. Now suppose that W is any variety of residuated lattices admitting
the Glivenko property with respect to V∼ ∼. By assumption, V is axioma-
tized relative to IcRL by a set of equations E of the form s ≤ e, so, by
Proposition 2.7, the variety V∼ ∼ is axiomatized relative to LG by E. But
also by Proposition 2.9, all members of the variety W must satisfy all the
equations in E as well as x\x ≤ e. So W ⊆ V.

Corollary 2.13. The variety of integrally closed residuated lattices is the
largest variety of residuated lattices that admits the Glivenko property with
respect to the variety of �-groups.

It is not the case that every variety V of integrally closed residuated
lattices is the largest variety of residuated lattices admitting the Glivenko
property with respect to the corresponding variety V∼ ∼ of �-groups. For
example, the variety of commutative integrally closed residuated lattices
corresponds to the variety of abelian �-groups. However, for any integral
residuated lattice A, the �-group A∼ ∼ is trivial, so the largest variety admit-
ting the Glivenko property with respect to the variety of abelian �-groups
must contain all integral residuated lattices.

We conclude this section by describing a further syntactic relationship
existing between IcRL and the variety IRL of integral residuated lat-
tices. Recall that for any residuated lattice A, the negative cone of A is
the residuated lattice A− with universe A− = {a ∈ A | a ≤ e}, monoid
and lattice operations inherited from A, and residuals a\−b := (a\b)∧e and
b/− a := (b/a) ∧ e, for a, b ∈ A−. Define now inductively e− = e, x− = x ∧ e
for each variable x, (s ∗ t)− = s− ∗ t− for ∗ ∈ {∧,∨, ·},

(s\t)− = (s−\t−) ∧ e, and (s/t)− = (s−/t−) ∧ e.

It is then straightforward (see [23, Lem. 5.10]) to prove that for any residu-
ated lattice A and s, t ∈ Tm,

A− |= s ≈ t ⇐⇒ A |= s− ≈ t−.

Since the negative cone of an integrally closed residuated lattice is integral
and an integral residuated lattice is integrally closed, we obtain the following
result.

Proposition 2.14. For any s, t ∈ Tm,

IRL |= s ≈ t ⇐⇒ IcRL |= s− ≈ t−.
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3. Proof Theory and Decidability

In this section we obtain a sequent calculus for integrally closed residu-
ated lattices as an extension of the standard sequent calculus for residuated
lattices with a non-standard weakening rule. We prove that this calculus
admits cut-elimination and obtain as a consequence a proof of the decid-
ability, indeed PSPACE-completeness, of the equational theory of integrally
closed residuated lattices.

A (single-conclusion) sequent is an expression of the form Γ⇒ t where Γ
is a finite (possible empty) sequence of terms s1, . . . , sn ∈ Tm and t ∈ Tm.
Sequent rules, calculi, and derivations are defined in the usual way (see,
e.g., [15,28]), and we say that a sequent s1, . . . , sn ⇒ t is valid in a class K
of residuated lattices, denoted by |=K s1, . . . , sn ⇒ t, if K |= s1 · · · sn ≤ t,
where the empty product is understood as e.

As a base system we consider the sequent calculus RL presented in Fig-
ure 2. A sequent is derivable in RL if and only if it is valid in RL (see,
e.g., [15,28]), and RL admits cut-elimination, i.e., there is an algorithm that
transforms any derivation of a sequent in RL into a derivation of the sequent
that does not use the cut rule.

We define IcRL to be the sequent calculus consisting of the rules of RL
together with the rule

Γ, Π ⇒ u |=LG Δ ⇒ e
Γ, Δ, Π ⇒ u

(LG-w)
.

This may be viewed as a special case of the weakening rule
Γ, Π ⇒ u

Γ, Δ, Π ⇒ u
(w)

where |=LG Δ ⇒ e is a decidable (indeed co-NP-complete) side-condition [16,
20]. The side-condition can also be understood proof-theoretically as requir-
ing a derivation of Δ⇒ e in some calculus for �-groups, such as the ana-
lytic hypersequent calculus provided in [16]. Let us remark further that,
since applications of (LG-w) can be pushed upwards in derivations, this
rule can be replaced with axioms of the form Γ, u, Π ⇒ u and Δ ⇒ e with
side-conditions |=LG Γ ⇒ e and |=LG Π ⇒ e, and |=LG Δ ⇒ e, respectively.

Proposition 3.1. A sequent is derivable in IcRL if and only if it is valid
in all integrally closed residuated lattices.

Proof. For the right-to-left direction, we construct a Lindenbaum-Tarski
algebra. Namely, it can be shown (as usual) that the binary relation Θ
defined on Tm by
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eluRtuCsmoixAytitnedI

s ⇒ s
(ID)

Γ2 ⇒ s Γ1,s,Γ3 ⇒ u
Γ1,Γ2,Γ3 ⇒ u

(CUT)

Left Operation Rules Right Operation Rules

Γ1,Γ2 ⇒ u
Γ1,e,Γ2 ⇒ u

(e⇒) ⇒ e
(⇒e)

Γ2 ⇒ s Γ1, t,Γ3 ⇒ u
Γ1, t/s,Γ2,Γ3 ⇒ u

(/⇒)
Γ,s ⇒ t
Γ ⇒ t/s

(⇒/)

Γ2 ⇒ s Γ1, t,Γ3 ⇒ u
Γ1,Γ2,s\t,Γ3 ⇒ u

(\⇒)
s,Γ ⇒ t
Γ ⇒ s\t

(⇒\)

Γ1,s, t,Γ2 ⇒ u
Γ1,s · t,Γ2 ⇒ u

(·⇒)
Γ1 ⇒ s Γ2 ⇒ t

Γ1,Γ2 ⇒ s · t (⇒·)

Γ1,s,Γ2 ⇒ u
Γ1,s∧ t,Γ2 ⇒ u

(∧⇒)1
Γ ⇒ s

Γ ⇒ s∨ t
(⇒∨)1

Γ1, t,Γ2 ⇒ u
Γ1,s∧ t,Γ2 ⇒ u

(∧⇒)2
Γ ⇒ t

Γ ⇒ s∨ t
(⇒∨)2

Γ1,s,Γ2 ⇒ u Γ1, t,Γ2 ⇒ u
Γ1,s∨ t,Γ2 ⇒ u

(∨⇒) Γ ⇒ s Γ ⇒ t
Γ ⇒ s∧ t

(⇒∧)

Figure 2. The sequent calculus RL

u Θ v :⇐⇒ u ⇒ v and u ⇒ v are derivable in IcRL

is a congruence on Tm and that the quotient Tm/Θ is an integrally closed
(since x\x⇒ e and x/x⇒ e are derivable in IcRL) residuated lattice satisfy-
ing

u/Θ ≤ v/Θ ⇐⇒ u ⇒ v is derivable in IcRL.

Suppose that |=IcRL s1, . . . , sn ⇒ t and consider the homomorphism from
Tm to Tm/Θ mapping each term u to the equivalence class u/Θ. Since
s1 · · · sn ≤ t is valid in Tm/Θ, it follows that s1 · · · sn/Θ ≤ t/Θ and hence
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that s1 · · · sn ⇒ t is derivable in IcRL. An application of (cut) with the deriv-
able sequent s1, . . . , sn ⇒ s1 · · · sn shows that also s1, . . . , sn ⇒ t is derivable
in IcRL.

For the left-to-right direction, we recall (see, e.g., [15,28]) that the rules
of RL preserve validity of sequents in RL and it suffices therefore to show
that the rule (LG-w) preserves validity in IcRL. Suppose then that |=IcRL
Γ, Π ⇒ u and |=LG Δ ⇒ e. Writing s1, s2, and t for the products of the
terms in Γ, Π, and Δ, respectively, IcRL |= s1s2 ≤ u and LG |= t ≤ e. By
Corollary 2.11, we obtain IcRL |= t ≤ e and hence IcRL |= s1ts2 ≤ u.
That is, |=IcRL Γ, Δ, Π ⇒ u.

Proposition 3.2. IcRL admits cut-elimination.

Proof. It suffices (as usual) to prove that if there exist cut-free derivations
d1 of Γ2 ⇒ s and d2 of Γ1, s,Γ3 ⇒ u in IcRL, then there is a cut-free derivation
of Γ1, Γ2, Γ3 ⇒ u in IcRL, proceeding by induction on the lexicographically
ordered pair 〈c, h〉 where c is the term complexity of s and h is the sum of
the heights of the derivations d1 and d2. The cases where the last steps in
the derivations d1 and d2 are applications of rules of RL are standard (see,
e.g., [15, Chap. 4.1]). We therefore just consider the cases where the last
step is an application of the rule (LG-w).

Suppose first that Γ2 = Π1, Δ, Π2 and d1 ends with
... d′

1

Π1, Π2 ⇒ s |=LG Δ ⇒ e
Π1, Δ, Π2 ⇒ s

(LG-w)

By the induction hypothesis, we obtain a cut-free derivation d3 of the sequent
Γ1, Π1, Π2, Γ3 ⇒ u in IcRL, and hence a cut-free derivation in IcRL ending
with

... d3
Γ1, Π1, Π2, Γ3 ⇒u |=LG Δ ⇒ e

Γ1, Π1, Δ, Π2, Γ3 ⇒ u
(LG-w)

Suppose next that Γ3 = Π1, Δ, Π2 and d2 ends with
... d′

2

Γ1, s,Π1, Π2 ⇒ u |=LG Δ ⇒ e
Γ1, s,Π1, Δ, Π2 ⇒ u

(LG-w)

By the induction hypothesis, we obtain a cut-free derivation d3 of the sequent
Γ1, Γ2, Π1, Π2 ⇒ u in IcRL, and hence a cut-free derivation in IcRL ending
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with
... d3

Γ1, Γ2, Π1, Π2 ⇒u |=LG Δ ⇒ e
Γ1, Γ2, Π1, Δ, Π2 ⇒ u

(LG-w)

The analogous case where Γ1 = Π1, Δ, Π2 is very similar.
Suppose finally that Γ1, s,Γ3 = Π1, Δ1, s,Δ2, Π2 and d2 ends with

... d′
2

Π1, Π2 ⇒ u |=LG Δ1, s,Δ2 ⇒ e
Π1, Δ1, s,Δ2, Π2 ⇒u

(LG-w)

By Proposition 3.1, we have |=IcRL Γ2 ⇒ s and hence |=LG Γ2 ⇒ s. But then
also |=LG Δ1, Γ2, Δ2 ⇒ e and we obtain a cut-free derivation in IcRL ending
with

... d′
2

Π1, Π2 ⇒u |=LG Δ1, Γ2, Δ2 ⇒ e
Π1, Δ1, Γ2, Δ2, Π2 ⇒ u

(LG-w)

We use this cut-elimination result to establish the decidability of the
equational theory of IcRL, noting that its quasiequational theory can be
shown to be undecidable using the fact that the quasiequational theory of
�-groups is undecidable [19].

Theorem 3.3. The equational theory of integrally closed residuated lattices
is decidable, indeed PSPACE-complete.

Proof. For PSPACE-hardness, it suffices to recall that the equational the-
ory of integral residuated lattices is PSPACE-complete [21] and consider the
translation described in Proposition 2.14. For inclusion, it suffices by Sav-
itch’s theorem, which states that NPSPACE = PSPACE [32], to observe that
a non-deterministic PSPACE algorithm for deciding validity of sequents is
obtained by guessing and checking cut-free derivations in IcRL. The correct-
ness of a derivation is checked branch by branch, recording only the branch
of the derivation from the root to the current point. Note also that for the
application of the rule (LG-w), we use the fact that the equational theory
of LG is coNP-complete [16] and therefore in PSPACE.

Let us remark that the cut-elimination argument of Proposition 3.2
applies also to sequent calculi for other varieties of integrally closed residu-
ated lattices. First, let V be any variety of residuated lattices axiomatized
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relative to RL by a set of {∨, ·, e}-equations. It is shown in [14, Sec. 3] that
V can then be axiomatized by “simple” equations of the form s ≤ t1∨. . .∨tn
where each of s, t1, . . . , tn is either e or a product of variables and s contains
at most one occurrence of any variable. Moreover, a sequent calculus for
V that admits cut-elimination is obtained by adding to RL for each such
equation s ≤ t1 ∨ . . . ∨ tn, a “simple” rule

Γ, Ψ(t1), Π ⇒u . . . Γ, Ψ(tn), Π ⇒u

Γ, Ψ(s), Π ⇒u

where Ψ(e) is the empty sequence and Ψ(x1 · · ·xm) (for not necessarily
distinct variables x1, . . . , xm) is the sequence of corresponding metavariables
Γx1 , . . . ,Γxm

. We obtain a sequent calculus for the variety W of integrally
closed members of V that also admits cut-elimination by adding the rule

Γ, Π ⇒ u |=W∼ ∼ Δ ⇒ e
Γ, Δ, Π ⇒ u

(W∼ ∼-w)

In particular, a sequent calculus for the variety of commutative integrally
closed residuated lattices is obtained by adding to IcRL the (left) exchange
rule

Γ1, Π2, Π1, Γ2 ⇒u

Γ1, Π1, Π2, Γ2 ⇒u
(el)

and replacing LG with the variety of abelian �-groups in the rule (LG-w).
It can then also be shown, as in the proof of Theorem 3.3, using the fact
that abelian �-groups have a coNP-complete equational theory, that the
equational theory of commutative integrally closed residuated lattices is
PSPACE-complete. In general, however, decidability of such a variety of
integrally closed residuated lattices W will depend not only on the decid-
ability of the equational theory of W∼ ∼, but also on the additional simple
rules for V.

Note finally that the equations x\x ≈ e and x/x ≈ e belong to the class
N2 described in [9], but are not acyclic in the sense defined there and the
method for constructing analytic sequent calculi in that paper therefore does
not apply. Indeed, there can be no extension of RL with structural analytic
rules (as defined in [9], and including the simple rules of [14]) for IcRL that
admits cut-elimination. If this were the case, then, by [9, Thm. 6.3], the
variety IcRL would be closed under MacNeille completions. However, by
Lemma 2.1, any bounded integrally closed residuated lattice is integral and
the completion of an integrally closed residuated lattice A will therefore be
integrally closed only if A is already integral.
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4. Sirmonoids and Pseudo BCI-Algebras

In this section we relate suitable reducts of integrally closed residuated
lattices to semi-integral residuated pomonoids, studied in [12,31], and
pseudo BCI-algebras, defined in [11] as non-commutative versions of BCI-
algebras [22].

A residuated pomonoid is a structure M = 〈M, �, ·, \, /, e〉 such that
〈M, ·, e〉 is a monoid, � is a partial order on M , and \, / are binary operations
on M satisfying b � a\c ⇐⇒ ab � c ⇐⇒ a � c/b for all a, b, c ∈ M . Such
a structure is called semi-integral if e is a maximal element of 〈M, �〉, or,
equivalently, for all a, b ∈ M ,

a � b ⇐⇒ a\b = e ⇐⇒ b/a = e.

It is not hard to show that a semi-integral residuated pomonoid (or sir-
monoid for short) may be identified with an algebraic structure S =
〈S, ·, \, /, e〉 of type 〈2, 2, 2, 0〉 satisfying the following equations and quasiequa-
tion:

(i) ((x\z)/(y\z))/(x\y) ≈ e

(ii) (y/x)\((z/y)\(z/x)) ≈ e

(iii) e\x ≈ x

(iv) x/e ≈ x

(v) (x · y)\z ≈ y\(x\z)

(vi) x\y ≈ e & y\x ≈ e =⇒ x ≈ y.

We let SiRM denote the quasivariety of sirmonoids.
Any group G = 〈G, ·,−1 , e〉 is term-equivalent to a sirmonoid S satisfying

the equation (x\e)\e ≈ x, noting that in this case, a � b if and only if a = b
for all a, b ∈ S. Given a group G, let a\b := a−1 · b and b/a := b · a−1, and
conversely, given a sirmonoid S satisfying (x\e)\e ≈ x, let a−1 := a\e. For
convenience, we also call such a sirmonoid a group and denote the variety of
these algebras by Grp.

An algebraic structure B = 〈B, \, /, e〉 of type 〈2, 2, 0〉 satisfying the
equations (i)–(iv) and quasiequation (vi) is called a pseudo BCI-algebra.
The {\, /, e}-reduct of any sirmonoid is clearly a pseudo BCI-algebra.
More notably, every pseudo BCI-algebra is a subreduct of a sirmonoid [12,
Thm. 3.3], and the quasiequational theory of sirmonoids is therefore a con-
servative extension of the quasiequational theory of pseudo BCI-algebras. In
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what follows, we consider to what extent similar relationships hold between
sirmonoids and integrally closed residuated lattices.

Lemma 4.1. A residuated lattice is integrally closed if and only if its
{·, \, /, e}-reduct is a sirmonoid.

Proof. Let A be a residuated lattice. If its {·, \, /, e}-reduct is a sirmonoid,
then, since the induced partial order � is reflexive, a\a = a/a = e for all
a ∈ A, i.e., A is integrally closed. Conversely, suppose that A is integrally
closed. Consider first a, b ∈ A such that a\b = e. Then e ≤ a\b and, by
residuation twice, e ≤ b/a. Moreover, e = ∼ ∼(a\b) = ∼ ∼ a\ ∼ ∼ b and,
since A∼ ∼ is an �-group, also e = ∼ ∼ b/ ∼ ∼ a = ∼ ∼(b/a) ≥ b/a. That is,
a\b = e implies b/a = e and we define

a � b ⇐⇒ a\b = e ⇐⇒ b/a = e.

Since A is integrally closed, � is reflexive. Also, if a � b and b � a, then
e ≤ a\b and e ≤ b\a, yielding a ≤ b and b ≤ a, i.e., a = b. So � is anti-
symmetric. Suppose now that a � b and b � c. Then e = a\b and e = b\c.
Hence a ≤ b and b ≤ c, so a ≤ c, yielding e ≤ a\c. Note now that x\z ≤
(x\y) · (y\z) holds in all �-groups and hence (x\z) · (((x\y) · (y\z))\e) ≤ e
holds in all integrally closed residuated lattices by Corollary 2.11. So e ≤
a\c = (a\c) · e = (a\c) · (((a\b) · (b\c))\e) ≤ e, i.e., a\c = e and a � c. That
is, � is transitive and hence a partial order.

Moreover, for all a, b, c ∈ A,

b � a\c ⇐⇒ (ab)\c = b\(a\c) = e

⇐⇒ ab � c

⇐⇒ c/(ab) = (c/b)/a = e

⇐⇒ a � c/b.

That is, the {·, \, /, e}-reduct of A is a sirmonoid.

Not every sirmonoid is a subreduct of an integrally closed residuated lat-
tice, however. By Proposition 2.6, {·, \, /, e}-subreducts of integrally closed
residuated lattices satisfy xn ≈ e =⇒ x ≈ e for all n ≥ 1, but there are
sirmonoids (e.g., finite groups), that do not satisfy all of these quasiequa-
tions. On the other hand, it is known that any sirmonoid satisfying x � e
is a subreduct of an integral (and hence integrally closed) residuated lattice
[26].

The quasiequational theory of integrally closed residuated lattices is, as
we have just seen, not a conservative extension of the quasiequational theory



Integrally Closed Residuated Lattices 1079

of sirmonoids. However, as we will show in Theorem 4.7, such a conservative
extension result does hold if we restrict to equational theories.

Consider any sirmonoid S. As before, we denote by ∼ a the common
result of a\e and e/a for a ∈ S, and obtain a nucleus α : S → S; a �→ ∼ ∼ a
on 〈S,�, ·, e〉 and a residuated pomonoid (see, e.g., [15, Thm. 3.34(1)-(3)])

S∼ ∼ = 〈α[S],�, ·∼ ∼, \, /, e〉 where a ·∼ ∼ b := α(a · b).

We also obtain the following analogue of Proposition 2.5.

Proposition 4.2. Let S be a sirmonoid.

(a) The map α : S → S∼ ∼ is a surjective homomorphism.

(b) S∼ ∼ is a group.

Proof. (a) Since α : S → S is a nucleus on 〈S,�, ·, e〉 and α(e) = e, it
follows that α is a surjective monoid homomorphism between 〈S, ·, e〉 and
〈α[S], ·∼ ∼, e〉. Now, given a, b ∈ S, notice that a(∼ b)b � a and therefore
∼ b � a\(a/b). That is, (∼ b)\(a\(a/b)) = e. But also ∼ bb(a\(a/b)) �
a\(a/b) and hence b(a\(a/b)) � (∼ b)\(a\(a/b)) = e, yielding a\(a/b) �
b\e = ∼ b. So S satisfies x\(x/y) ≈ ∼ y. Analogously, S satisfies (x\y)/y ≈
∼x and hence for all a, b ∈ S,

(∼ b)/(∼ a) =
(
(a\b)\((a\b)/b)

)
/(∼ a) =

(
(a\b)\(∼ a)

)
/(∼ a) = ∼(a\b).

That is, S satisfies ∼(x\y) ≈ (∼ y)/(∼x) and, by a symmetric argument,
also ∼(y/x) ≈ (∼x)\(∼ y). Hence

α(a\b) = ∼ ∼(a\b) = ∼((∼ b)/(∼ a)) = (∼∼ a)\(∼∼ b) = α(a)\α(b).

Analogously, α(b/a) = α(b)/α(a), so α is a sirmonoid homomorphism.
(b) It follows from the fact that α preserves the residuals that S∼ ∼ is a

sirmonoid. To prove that S∼ ∼ is a group, it suffices to show that it satisfies
∼ ∼x ≈ x. But α is idempotent and hence ∼ ∼α(a) = α(a) for every a ∈ S
as required.

Recall that s � t is valid in a group G if and only if s ≈ t is valid in G.
Moreover, in every sirmonoid S the map a �→ ∼ a is both antitone, using
residuation, and monotone, since S |= ∼(x\y) ≈ ∼ y/ ∼x. Hence, since
S |= ∼ ∼ ∼x ≈ ∼x, also ∼ s � ∼ t is valid in a sirmonoid S if and only if
∼ s ≈ ∼ t is valid in S. The proof of the following result now mirrors the
proof of Lemma 2.8.

Lemma 4.3. For any sirmonoid S and residuated monoid terms s, t,

S∼ ∼ |= s ≈ t ⇐⇒ S |= ∼ ∼ s ≈ ∼ ∼ t.
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Given any class K of sirmonoids, we let K∼ ∼ denote the corresponding
class of groups {S∼ ∼ | S ∈ K}. The proof of the following Glivenko-style
result proceeds very similarly to the proof of Proposition 2.7 and is therefore
omitted.

Proposition 4.4. Let Q be any quasivariety of sirmonoids defined relative
to SiRM by a set of equations E. Then Q∼ ∼ is a variety of groups defined
relative to Grp by E, and for any residuated monoid terms s, t,

Q∼ ∼ |= s ≈ t ⇐⇒ Q |= ∼ ∼ s ≈ ∼ ∼ t.

In particular, we obtain the following Glivenko-style property for SiRM
with respect to the variety of groups.

Corollary 4.5. For any residuated monoid terms s, t,

Grp |= s ≈ t ⇐⇒ SiRM |= ∼ ∼ s ≈ ∼ ∼ t.

We use this result to prove that the equational theory of IcRL is a
conservative extension of the equational theory of SiRM. We call a sequent
s1, . . . , sn ⇒ t an m-sequent if s1, . . . , sn, t are residuated monoid terms, and
say that it is valid in a class K of sirmonoids, denoted |=K s1, . . . , sn ⇒ t, if
K |= s1 · · · sn � t, recalling that the empty product is understood as e.

Proposition 4.6. An m-sequent is derivable in IcRL if and only if it is
valid in all sirmonoids.

Proof. For the right-to-left direction, suppose that an m-sequent Γ ⇒ t is
valid in all sirmonoids. By Lemma 4.1, it is also valid in all integrally closed
residuated lattices, and hence, by Proposition 3.1, derivable in IcRL.

For the left-to-right direction, it suffices to show that all the rules of
IcRL apart from (cut) preserve validity in SiRM. For the key case of
(LG-w), suppose that |=SiRM Γ, Π ⇒ u and |=LG Δ ⇒ e. Letting s1, s2,
and t denote the products of the terms in Γ, Π, and Δ, respectively, we
obtain SiRM |= s1s2 ≤ u and LG |= t ≤ e. We claim that Grp |= t ≈ e.
Otherwise, since the free group on countably infinitely many generators can
be totally ordered (see, e.g., [10, Thm. 3.4]), we would have an �-group in
which e < t, contradicting LG |= t ≤ e. Hence, by Corollary 4.5, we obtain
SiRM |= t � e. So SiRM |= s1ts2 � u; that is, |=SiRM Γ, Δ, Π ⇒ u.

Theorem 4.7. The equational theory of integrally closed residuated lattices
is a conservative extension of the equational theories of sirmonoids and
pseudo BCI-algebras.

By the previous result, the sequent calculus consisting of the rules of IcRL
restricted to m-sequents and omitting the rules for ∧ and ∨ is sound and
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complete for the variety of sirmonoids and admits cut-elimination. Similarly,
if we further remove the rules for ·, we obtain a sound and complete calculus
for the variety of pseudo BCI-algebras that admits cut-elimination.

Corollary 4.8. The equational theories of sirmonoids and pseudo BCI-
algebras are decidable.

Similar results hold for BCI-algebras [22], axiomatized relative to pseudo
BCI-algebras by the equation x\y ≈ y/x, and sircomonoids [31], axiomatized
relative to sirmonoids by x\y ≈ y/x or x · y ≈ y · x. In particular, the
equational theory of commutative integrally closed residuated lattices is a
conservative extension of the equational theories of sircomonoids and BCI-
algebras. Let us remark also that the decidability of the equational theory of
BCI-algebras was proved using a sequent calculus with the restricted version
of (LG-w) in [24].

5. Casari’s Comparative Logic

The results of the previous sections extend with only minor modifications to
the setting of pointed residuated lattices (also known as FL-algebras), con-
sisting of residuated lattices with an extra constant operation f. As before,
we call such an algebra integrally closed if it satisfies x\x ≈ e and x/x ≈ e.
It is then straightforward to prove analogues of Lemma 2.1 and Proposi-
tion 2.3, simply adding “pointed” before every occurrence of “residuated
lattice”.

An �-group can be identified with an integrally closed pointed residuated
lattice satisfying (x\e)\e ≈ x and f ≈ e. However, to show that α : A →
A; a �→ ∼ ∼ a on an integrally closed pointed residuated lattice A defines
a homomorphism onto an �-group A∼ ∼ = 〈α[A],∧,∨∼ ∼, ·∼ ∼, \, /, e, α(f)〉,
we need also α(f) = e. Assuming this condition, we obtain analogues of
Propositions 2.5 and 2.7 , and Theorem 2.10 for integrally closed pointed
residuated lattices satisfying f\e ≈ e.1

Let us turn our attention now to a particular class of algebras introduced
by Casari in [7] (see also [6,8,27,30]) to model comparative reasoning in
natural language. For any commutative pointed residuated lattice A, we
write a → b for the common result of a\b and b/a; we also define ¬a := a → f
and a + b := ¬a → b and say that A is involutive if it satisfies ¬¬x ≈ x. We

1Note, however, that our definition of the Glivenko property for pointed residuated
lattices now diverges from the definition of [17], which considers the operations a �→ f/(a\f)
and a �→ (f/a)\f.
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call an involutive commutative integrally closed pointed residuated lattice
satisfying f → e ≈ e (or equivalently f · f ≈ f) a Casari algebra (called a
lattice-ordered pregroup in [7]). We denote the variety of Casari algebras by
CA and the variety of abelian �-groups (Casari algebras satisfying f ≈ e) by
AbLG. The reasoning described above yields the following Glivenko-style
property for Casari algebras, first established in [27].

Proposition 5.1. ([27, Prop. 1]) For any pointed residuated lattice terms
s,t,

AbLG |= s ≤ t ⇐⇒ CA |= ¬¬s ≤ ¬¬t.

A sequent calculus for Casari algebras was defined in [27]. We consider
here multiple-conclusion sequents defined as expressions of the form Γ⇒Δ
where Γ and Δ are finite (possibly empty) sequences of pointed residuated
lattice terms. Generalizing our definition for single-conclusion sequents, we
say that a multiple-conclusion sequent s1, . . . , sn ⇒ t1, . . . , tm is valid in a
class K of pointed residuated lattices, denoted by |=K s1, . . . , sn ⇒ t1, . . . , tm,
if K |= s1 · · · sn ≤ t1 + · · · + tm, where the empty product is understood as
e and the empty sum as f.

The multiple-conclusion sequent calculus CA consists of the calculus
InCPRL for involutive commutative pointed residuated lattices defined in
Figure 3 extended with the rule

Γ1 ⇒ Δ1 |=AbLG Γ2 ⇒ Δ2

Γ1, Γ2 ⇒Δ1, Δ2
(AbLG-w)

.

The next proposition collects some results from [27], noting that these can
also be easily established using the methods of the previous sections.

Proposition 5.2. ([27, Thms. 3, 4, and 7])

(a) A multiple-conclusion sequent is derivable in CA if and only if it is valid
in CA.

(b) CA admits cut-elimination.

(c) The equational theory of Casari algebras is decidable.

We are now able to establish the main result of this section.

Theorem 5.3. The equational theory of Casari algebras is a conservative
extension of the equational theories of commutative integrally closed residu-
ated lattices, sircomonoids, and BCI-algebras.

Proof. The equational theory of commutative integrally closed residuated
lattices is a conservative extension of the equational theories of sircomonoids
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s ⇒ s
(ID)

Γ2 ⇒ s,Δ1 Γ1,s,Γ3 ⇒ Δ2
Γ1,Γ2,Γ3 ⇒ Δ1,Δ2

(CUT)

Structural Rules

Γ1,Π2,Π1,Γ2 ⇒ Δ
Γ1,Π1,Π2,Γ2 ⇒ Δ

(EL)
Γ ⇒ Δ1,Σ2,Σ1,Δ2
Γ ⇒ Δ1,Σ1,Σ2,Δ2

(ER)

Identity Axioms Cut Rule

Left Operation Rules Right Operation Rules

Γ1,Γ2 ⇒ Δ
Γ1,e,Γ2 ⇒ Δ

(e⇒) ⇒ e
(⇒e)

f ⇒ (f⇒)
Γ ⇒ Δ1,Δ2

Γ ⇒ Δ1, f,Δ2
(⇒ f)

Γ2 ⇒ s,Δ2 Γ1, t,Γ3 ⇒ Δ1
Γ1,s → t,Γ2,Γ3 ⇒ Δ1,Δ2

(→⇒)
Γ,s ⇒ t,Δ

Γ ⇒ s → t,Δ
(⇒→)

Γ1,s, t,Γ2 ⇒ Δ
Γ1,s · t,Γ2 ⇒ Δ

(·⇒)
Γ1 ⇒ s,Δ1 Γ2 ⇒ t,Δ2

Γ1,Γ2 ⇒ s · t,Δ1,Δ2
(⇒·)

Γ1,s,Γ2 ⇒ Δ
Γ1,s∧ t,Γ2 ⇒ Δ

(∧⇒)1
Γ ⇒ Δ1,s,Δ2

Γ ⇒ Δ1,s∨ t,Δ2
(⇒∨)1

Γ1, t,Γ2 ⇒ Δ
Γ1,s∧ t,Γ2 ⇒ Δ

(∧⇒)2
Γ ⇒ Δ1, t,Δ2

Γ ⇒ Δ1,s∨ t,Δ2
(⇒∨)2

Γ1,s,Γ2 ⇒ u Γ1, t,Γ2 ⇒ Δ
Γ1,s∨ t,Γ2 ⇒ Δ

(∨⇒)
Γ ⇒ Δ1,s,Δ2 Γ ⇒ Δ1, t,Δ2

Γ ⇒ Δ1,s∧ t,Δ2
(⇒∧)

Figure 3. The sequent calculus InCPRL

and BCI-algebras by Theorem 4.7. Hence it suffices to show that the equa-
tional theory of Casari algebras is a conservative extension of the equational
theory of commutative integrally closed residuated lattices.

Let CIcRL be the sequent calculus CA restricted to single-conclusion
sequents (i.e., sequents of the form Γ⇒ t where f does not occur in Γ or
t). Then a single-conclusion sequent is derivable in CIcRL if and only if it
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is valid in all commutative integrally closed residuated lattices. It therefore
suffices to show that if a single-conclusion sequent is derivable in CA, it is
derivable in CIcRL.

To this end, a simple induction on the height of a cut-free derivation
shows that whenever a sequent Γ ⇒ Δ not containing any occurrence of
f is derivable in CA, the sequence Δ must be non-empty. In particular, no
sequent of the form Γ⇒ , where f does not occur in Γ, is derivable in CA. But
then a straightforward induction on the height of a cut-free derivation shows
that any single-conclusion sequent derivable in CA, must also be derivable
in CIcRL.
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