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Abstract. In the previous paper with a similar title (see Shtakser in Stud Log 106(2):311–

344, 2018), we presented a family of propositional epistemic logics whose languages are

extended by two ingredients: (a) by quantification over modal (epistemic) operators or over

agents of knowledge and (b) by predicate symbols that take modal (epistemic) operators

(or agents) as arguments. We denoted this family by PEL(QK). The family PEL(QK)

is defined on the basis of a decidable higher-order generalization of the loosely guarded

fragment (HO-LGF) of first-order logic. And since HO-LGF is decidable, we obtain the

decidability of logics of PEL(QK). In this paper we construct an alternative family of

decidable propositional epistemic logics whose languages include ingredients (a) and (b).

Denote this family by PELalt
(QK). Now we will use another decidable fragment of first-

order logic: the two variable fragment of first-order logic with two equivalence relations

(FO2+2E) [the decidability of FO2+2E was proved in Kieroński and Otto (J Symb Log

77(3):729–765, 2012)]. The families PELalt
(QK) and PEL(QK) differ in the expressive power.

In particular, we exhibit classes of epistemic sentences considered in works on first-order

modal logic demonstrating this difference.
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1. Introduction

There are two basic decidable fragments of first-order logic such that propo-
sitional modal logic can be embedded to these fragments: (1) the two variable
fragment; (2) the guarded fragment (see, for example, [2, pp. 83–91, 448–
460]). We consider more expressive logics (between propositional modal logic
and first-order modal, more precisely, term modal logic) whose languages are
extended by two ingredients: (a) by quantification over modal operators and
(b) by predicate symbols that take modal operators as arguments. And we
want these logics to remain decidable. Therefore we need more expressive
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(but decidable) fragments of first-order logic. In [24], we used the loosely
guarded fragment (LGF) of first-order logic instead of the simple guarded
fragment. And moreover, we generalized LGF to a higher-order decidable
loosely guarded fragment (HO-LGF). On the basis of HO-LGF, we con-
structed a family of decidable propositional epistemic logics whose languages
are extended by (a) and (b). This family was denoted by PEL(QK).

In this paper we will use the extended two variable fragment of first-order
logic: the two variable fragment with two equivalence relations (FO2+2E). It
is clear that expressing that E is an equivalence relation requires three vari-
ables. Thus if we need equivalence relations in addition to the two variable
fragment, we must either (1) add transitivity formulas to the two variable
fragment; or (2) consider restricted classes of structures, in which some bi-
nary relations are interpreted as equivalence relations. We will use the second
option.

The decidability of FO2+2E was proved in [18,19]. In [17], the upper com-
plexity bound for satisfiability of FO2+2E was improved.1 Using FO2+2E,
we construct an alternative family of decidable propositional epistemic log-
ics whose languages include ingredients (a) and (b). Denote this family
by PELalt

(QK). The families PELalt
(QK) and PEL(QK) differ in the expressive

power. In particular, we exhibit classes of epistemic sentences considered
in works on first-order modal logic demonstrating this difference (see Sec-
tion 4).

Recently, new interesting expressive and decidable fragments of first-order
logic containing basic modal logic has been defined, for example, (1) the
unary negation fragment (UNF) of first-order logic and some generalizations
of UNF: the guarded negation fragment, the decidable extension of UNF by
arbitrary many equivalence relations (see [1,5,25]); and (2) monodic frag-
ments of first-order temporal logic (see [13,14,16]). We consider extensions
of the two variable and guarded fragments as basic decidable fragments for
our purpose. But UNF (and its generalizations) and monodic fragments can
also be used to construct some families of decidable propositional modal
logics whose languages include ingredients (a) and (b). For instance, the
paper [21] (forthcoming in Studia Logica) presents an interesting decidable
monodic fragment of propositional term modal logic. This fragment contains
quantification over modal operators (more precisely, over indexes of modal
operators), but now does not contain predicate symbols that take modal
operators as arguments.

1We will specify properties of FO2+2E (proved in these papers) in Section 3.
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It is worth noting that expressive decidable fragments of first-order logic
allow us to define families of propositional modal logics with desired prop-
erties.

The paper is organized as follows. In Section 2 we begin with a logic
E(QK) of PEL(QK). Denote the language of this logic by L(QK). Further,
we transform a possible-world structure of E(QK) to an alternative structure
such that (I) the resulting structure is a structure for propositional epistemic
logics with quantification over agents of knowledge and (II) this structure
is simultaneously a structure for the first-order correspondence language
(FOL(QK)) for L(QK) such that FOL(QK) is a part of FO2+2E. We prove
that the problem of deciding whether a formula in L(QK) is valid with respect
to the class of alternative structures is Pspace-complete. In Section 3 we
give a formal definition of the family PELalt

(QK) and present an expressive
logic of PELalt

(QK). And finally, in Section 4 we consider epistemic sentences
expressible in this logic of PELalt

(QK). We also compare the expressive power
of PELalt

(QK) with the expressive power of PEL(QK).

2. Alternative Structures for Propositional Epistemic Logics with
Quantification over Agents of Knowledge

In [24, Section 2], we presented a logic E(QK) of PEL(QK).2 The language
of E(QK) was denoted by L(QK). The alphabet of L(QK) consists of: a set
Φ: {p1, p2, . . .} of propositional variables; the propositional connectives ¬,∧;
n modal (epistemic) operators {K1, . . . , Kn}; one modal (epistemic) variable
K; the existential quantifier (∃) over K; a set of unary predicate symbols
{N1,N2, . . .}. (The connectives ∨,→ are defined in terms of ¬ and ∧; and
the quantifier ∀ is defined in terms of ¬ and ∃ in the usual way.)

Formulas of L(QK) are recursively defined as follows:

– all propositional variables p1, p2, . . . of Φ are formulas of L(QK);

– if ϕ and ψ are formulas of L(QK), then so are ¬ϕ, ϕ ∧ ψ, Kjϕ,
(∃K){Nt(K) ∧ Kϕ}, (∀K){Nt(K) → Kϕ}.

Definition 2.1. A possible-world structure for L(QK) is a tuple M =
〈W,R, {p1, p2, . . .}, {r1, . . . , rn}, {N1, N2, . . .}〉, where

• W is a non-empty set of worlds;

• R is a non-empty subset of the powerset of W × W ;

2The satisfiability problem for E(QK) is Pspace-complete.
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• {p1, p2, . . .} are unary predicates on W ;

• {r1, . . . , rn} is a finite set of binary predicates on W ;

• {N1, N2, . . .} are predicates on R × W ;

• with every propositional variable pi ∈ L(QK) is associated the subset
Wi ∈ W such that w ∈ Wi iff pi(w) holds.

Let ϕ be a formula of L(QK) and let w ∈ W . The truth-relation (M, w) |=
is defined by induction on the construction of ϕ as follows:

(M, w) |= pi (for pi ∈ Φ) iff pi(w) holds in M;

(M, w) |= ¬ϕ iff not (M, w) |= ϕ;

(M, w) |= ϕ ∧ ψ iff (M, w) |= ϕ and (M, w) |= ψ;

(M, w) |= Kjϕ iff (M, w′) |= ϕ for all w′ such that (w, w′) ∈ rj ;

(M, w) |= (∃K){Nt(K) ∧ Kϕ} iff, for some r ∈ R such that Nt(r, w) holds,
we have (M, w′) |= ϕ for all w′ with (w, w′) ∈ r;

(M, w) |= (∀K){Nt(K) → Kϕ} iff, for all r ∈ R such that Nt(r, w) holds,
we have (M, w′) |= ϕ for all w′ with (w, w′) ∈ r.

Denote by C the class of all structures M as above. A formula ϕ is said
to be true in a structure M, written M |= ϕ, if (M, w) |= ϕ for all worlds
w ∈ W ; ϕ is said to be valid with respect to C if M |= ϕ for all M ∈ C.

Note that n modal (epistemic) operators {K1, . . . ,Kn} correspond to the
set of n binary (accessibility) relations {r1, . . . , rn}; and the quantifiers ∃K
and ∀K range over modal (epistemic) operators corresponding to binary
(accessibility) relations of R.

We can associate with Nt (in the expression Nt(K)) a group of agents (a
name of this group), since every K corresponds to some agent. For example,
let us interpret Nt as ‘a group of witnesses to the event t’. Then the formula
(∃K){Nt(K)∧Kϕ} will mean ‘there is a witness K to the event t such that
K knows ϕ’.

Let M be an arbitrary structure of C. We are going to transform M and
obtain an alternative structure Tr(M) such that (I) Tr(M) is a structure
for propositional epistemic logics with quantification over agents of knowl-
edge and (II) Tr(M) is simultaneously a structure for the first-order corre-
spondence language (FOL(QK)) for L(QK) such that FOL(QK) is a part of
FO2+2E.
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2.1. A Domain of Tr(M)

We transform the structure M using the following key idea of [11]: the
proposal that knowledge should be regarded as a relation between pairs
which consist of a world and a view point (agent) in that world (see [11,
Sections 4.2–4.5]; see also [12, Sections 2, 4]). This proposal implies that
agents consider (world, agent) pairs to be possible, rather than just collection
of possible worlds alone.3 To realize the above mentioned idea, possible world
structures defined in [11] contain a set of agents A besides a set of worlds W .

In the structure M, the set R corresponds to A. So we regard r ∈ R

(instead of a ∈ A) as an agent. Let us define the following domain Ω of
Tr(M) using the domains W and R of M:

(def1) Ω = { 〈w, r〉 | w ∈ W, r ∈ R}.

Different authors consider different advantages of replacing a collection of
worlds by a collection of (world, agent) pairs (see, for example, [11, Section
4.5]). In our case, the main advantage is the following. When we quantify
over Ω, we simultaneously quantify over worlds and over agents.

In [11], pairs are used in the explicit form 〈w, a〉 (see [11, Section 4]). In
contrast, we will represent a pair of Ω as a single element. Pairs of Ω will
be denoted by the symbols ω, ω1, ω2. And we will reveal parts of a pair of
Ω using the following two equivalence relations EW and ER defined on Ω.

Definition 2.2. EW,ER are the equivalence relations on Ω such that for
arbitrary pairs ω1 and ω2 of Ω, we have EW (ω1, ω2) holds iff ω1 and ω2

contain the same world, and ER(ω1, ω2) holds iff ω1 and ω2 contain the
same agent.

Let us define the set of unary predicates {P1, P2, . . .} on the domain
Ω of Tr(M) such that this set corresponds to the set of unary predicates
{p1, p2, . . .} defined on W .

Definition 2.3. For every ω = 〈w, r〉 and for every i, we define: Pi(ω1)
holds in Tr(M) for some ω1 with EW (ω, ω1) iff pi(w) holds in M.

2.2. Accessibility Relations Defined on Ω

Denote by U the following binary relation defined on Ω.

3Note that recently, in works on epistemic logic, there is an increasing tendency to
represent knowledge as a relation between (world, agent) pairs (see, for example, [20, p.
81], [7, pp. 139–140], [22, pp. 196–198], [3, p. 1165]).
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Definition 2.4. For every ω1 = 〈w1, r1〉 and ω2 = 〈w2, r2〉, we define:
〈ω1, ω2〉 ∈ U iff r1 = r2 and 〈w1, w2〉 ∈ r1.

It is easy to see that for every pairs ω1 and ω2 of Ω, if U(ω1, ω2) holds,
then we have ER(ω1, ω2).

Let ω be an arbitrary pair of Ω. Then the accessibility relation corre-
sponding to the agent in ω is defined as follows:

(def2) R(ω) = { 〈ω1, ω2〉 | ω1, ω2 ∈ Ω, ER(ω, ω1), U(ω1, ω2) }.

Rewrite an arbitrary pair of R(ω) in terms of worlds and agents. Let ω =
〈w, r〉, ω1 = 〈w1, r〉, ω2 = 〈w2, r〉. Then

〈ω1, ω2〉 = 〈〈w1, r〉, 〈w2, r〉〉 .

And this pair can be represented as4

w1
r−→ w2.

It is not hard to prove that R(ω) represents the set of all pairs of the
accessibility relation r. Hence the binary relation U can be considered as
the union of all relations r ∈ R, and each individual relation is singled out
using (def2). It is obvious that for every non-empty subset R of the powerset
W × W , we can define the corresponding binary relation U .

Note that definition (def2) contains three pairs ω, ω1, ω2. Therefore we
need three variables to express this definition in first-order logic, and the
corresponding formula does not belong to FO2+2E. But in possible-world
structures of propositional modal logics, for a given world w and for ev-
ery accessibility relation r, we consider only the worlds accessible from the
current world w via the relation r. Thus we regard only pairs of the kind
〈w,w′〉 ∈ r. In our terms, for an arbitrary current pair ω and an arbitrary
accessibility relation R(ω), we consider only pairs of the kind 〈ω, ω1〉 ∈ R(ω).
Clearly, the set of these pairs can be expressed in first-order logic using only
two variables.

Besides the set R, the structure M includes the finite set {r1, . . . , rn} of
accessibility relations on W .5 Denote by {C1, . . . , Cn} the following set of
unary predicates on Ω corresponding to {r1, . . . , rn}. Let rj ∈ {r1, . . . , rn}
and let ω = 〈w, rj〉 for some w ∈ W . Then

4Notice that a similar expression is used in [3,7]: a ternary relation is introduced be-

tween a world w1, an agent of that world and another world w2; w1
a−→ w2 meaning that

w2 is a-reachable from w1 (see, [7, p. 139] and [3, p. 1165]).
5Note that the sets R and {r1, . . . , rn} are defined in M independently of each other.
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(def3) Cj = { ω1 | ω1 ∈ Ω, ER(ω, ω1) }.

Thus Cj is an equivalence class induced on Ω by ER. The accessibility
relation corresponding to agent rj can be defined as follows:

R(ω) = { 〈ω1, ω2〉 | ω1, ω2 ∈ Ω, Cj(ω), ER(ω, ω1), U(ω1, ω2) }.

2.3. Names of Agents Defined on Ω and a Full Definition of Tr(M)

In the structure M, we interpret names of agents Nt using predicates Nt

defined on R × W . It is known that in first-order modal logic, we allow the
interpretations of predicate symbols to vary from world to world in a given
possible-world structure (see, for example, [6, pp. 84–86]). The interpreta-
tions of predicate symbols Nt have the same property, since corresponding
predicates Nt take as argument not only an accessibility relation (an agent)
r but also a world w. This means that we introduce non-rigid general names
Nt such that some agent K may have a name Nt in a world w and may not
have this name in another world w′.

Similarly, we will interpret predicate symbols Nt as non-rigid general
names in the alternative structure Tr(M). Denote by {N ′

1, N
′
2, . . .} the set

of unary predicates on Ω corresponding to the set {N1, N2, . . .} of M. Let
ω = 〈w, r〉. Then the expression N ′

t(ω) will mean that ‘agent r has name N ′
t

in world w’.
We define the interpretation of unary predicates {N ′

1, N
′
2, . . .} in the

structure Tr(M) as follows: for every w ∈ W and for every r ∈ R, let
ω = 〈w, r〉; then

(def4) Nt(r, w) holds in M iff N ′
t(ω) holds in Tr(M).

Let us define the resulting structure Tr(M) and interpret formulas of L(QK)

in this structure.

Definition 2.5. The alternative possible-world structure Tr(M) for L(QK)

is 〈 Ω, {P1, P2, . . .}, EW,ER,U, {C1, . . . , Cn}, {N ′
1, N

′
2, . . .} 〉, where

• Ω is the domain defined by (def1);

• {P1, P2, . . .} is the set of unary predicates on Ω that satisfy Defini-
tion 2.3;

• EW, ER are the equivalence relations on Ω that satisfy Definition 2.2;

• U is the binary relation on Ω that satisfies Definition 2.4;

• {C1, . . . , Cn} is the finite set of unary predicates on Ω defined by (def3);

• {N ′
1, N

′
2, . . .} is the set of unary predicates on Ω defined by (def4).
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• with every propositional variable pi ∈ L(QK) is associated the subset
Ωi ∈ Ω such that ω ∈ Ωi iff, for some ω1 with (ω, ω1) ∈ EW , Pi(ω1)
holds.

Let ϕ be a formula of L(QK) and let ω be a pair of Ω. The truth-relation
(Tr(M), ω) |= is defined by induction on the construction of ϕ as follows:

(Tr(M), ω) |= pi (for pi ∈ Φ) iff ω ∈ Ωi;

(Tr(M), ω) |= ¬ϕ iff not (Tr(M), ω) |= ϕ;

(Tr(M), ω) |= ϕ ∧ ψ iff (Tr(M), ω) |= ϕ and (Tr(M), ω) |= ψ;

(Tr(M), ω) |= Kjϕ iff, for some ω1 with (ω, ω1) ∈ EW ,
we have ω1 ∈ Cj and, for all ω such that (ω1, ω) ∈ U ,

we have (Tr(M), ω) |= ϕ;

(Tr(M), ω) |= (∃K){Nt(K) ∧ Kϕ} iff, for some ω1 such that
(ω, ω1) ∈ EW and N ′

t(ω1) holds, we have (Tr(M), ω) |= ϕ
for all ω with (ω1, ω) ∈ U ;

(Tr(M), ω) |= (∀K){Nt(K) → Kϕ} iff, for all ω1 such that
(ω, ω1) ∈ EW and N ′

t(ω1) holds, we have (Tr(M), ω) |= ϕ
for all ω with (ω1, ω) ∈ U.

Denote by Tr(C) the following set of structures: Tr(C) = { Tr(M) | M ∈ C }.
A formula ϕ is said to be true in a structure Tr(M), written Tr(M) |= ϕ,
if (Tr(M), ω) |= ϕ for all pairs ω ∈ Ω; ϕ is said to be valid with respect to
Tr(C) if Tr(M) |= ϕ for all Tr(M) ∈ Tr(C).

Note that in the interpretations of Kjϕ, (∃K){Nt(K) ∧ Kϕ}, and (∀K)
{Nt(K) → Kϕ}, we re-use the symbol ω: first we use ω as the current pair;
and secondly we use the same symbol to denote other pairs in the expression
‘for all ω with (ω, ω1) ∈ U ’ (in this case, we can directly see that structures of
Tr(C) are based on the two variable fragment). Similarly, we re-use variables
in the standard translation of modal formulas into first-order language (see,
for instance, [8, pp. 18–19]). For example,

(∀y){R(x, y) → (∃x){R(y, x) ∧ ϕ†(x)}}.

In this formula, x is a free variable in the first occurrence and a bound
variable in the second occurrence.

Definition 2.6. Let ω be a pair of Ω and let ϕ be a formula of L(QK). We
have a bound occurrence of ω in the interpretation of ϕ if ω occurs in the
scope of ‘for some ω’ or ‘for all ω’. Otherwise we have a free occurrence.
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Definition 2.7. Let Cl be a class of structures and L be an appropriate
language. By L(Cl, L) we will denote the logic that is the set of all sentences
of L valid in Cl.

2.4. An Embedding of the Logic L(Tr(C),L(QK )) into the Logic
L(C,L(QK ))

Lemma 2.1. For every structure Tr(M) ∈ Tr(C), for every ϕ ∈ L(QK), and
for every ω ∈ Ω of the form ω = 〈w, r〉 (for some r), we have

(Tr(M), ω) |= ϕ iff (M, w) |= ϕ

Proof. We will prove this assertion by induction on the length of ϕ.
Basis step. Suppose ϕ is a propositional variable pi and (Tr(M), ω) |= pi

for some ω = 〈w, r〉. Then Pi(ω1) holds in Tr(M) for some ω1 with (ω, ω1) ∈
EW (by Definition 2.5). Then pi(w) holds in M by Definition 2.3. This yields
that (M, w) |= pi (by Definition 2.1).

The converse is proved similarly
Inductive step. The proofs of the cases ¬ϕ, ϕ ∧ ψ, are trivial. Suppose

(Tr(M), ω) |= Kjϕ for some ω = 〈w, r〉. Then for some ω1 with (ω, ω1) ∈
EW , we obtain ω1 ∈ Cj and, for all ω such that (ω1, ω) ∈ U , we have
(Tr(M), ω) |= ϕ.

Since (ω, ω1) ∈ EW and ω1 ∈ Cj , we obtain that ω1 = 〈w, rj〉 by Def-
inition 2.2 and by (def3). As mentioned above, we re-use the symbol ω in
the interpretation of Kjϕ. Secondly we use ω to denote an arbitrary pair
such that (ω1, ω) ∈ U . Since (ω1, ω) ∈ U , we have (ω1, ω) ∈ ER (see Defi-
nition 2.4). Thus we can represent ω as 〈w′, rj〉, and (Tr(M), 〈w′, rj〉) |= ϕ
for all 〈w′, rj〉 with (〈w, rj〉, 〈w′, rj〉) ∈ U .

Then (M, w′) |= ϕ for all w′ with (w,w′) ∈ rj , by the inductive hypoth-
esis. Hence (M, w) |= Kjϕ.

The converse is proved similarly.
Let (Tr(M), ω) |= (∃K){Nt(K) ∧ Kϕ} for some ω = 〈w, r0〉. Then for

some ω1 such that (ω, ω1) ∈ EW and N ′
t(ω1) holds, we have (Tr(M), ω) |= ϕ

for all ω with (ω1, ω) ∈ U .
Since (ω, ω1) ∈ EW , we obtain that ω1 = 〈w, r〉 for some r, by Defini-

tion 2.2. As mentioned above, we re-use the symbol ω in the interpretation
of (∃K){Nt(K) ∧ Kϕ}. Secondly we use ω to denote an arbitrary pair such
that (ω1, ω) ∈ U . Since (ω1, ω) ∈ U , we have (ω1, ω) ∈ ER (see Defini-
tion 2.4). Thus we can represent ω as 〈w′, r〉, and (Tr(M), 〈w′, r〉) |= ϕ for
all 〈w′, r〉 with (〈w, r〉, 〈w′, r〉) ∈ U .
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Then (M, w′) |= ϕ for all w′ with (w,w′) ∈ r, by the inductive hypothesis.
Besides, Nt(r, w) holds in M, since N ′

t(ω1) holds in Tr(M) (see definition
(def4)). Hence (M, w) |= (∃K){Nt(K) ∧ Kϕ}.

The converse is proved similarly.
The case (∀K){Nt(K) → Kϕ} is proved in the same way.

In [24, Section 2], we proved the following theorem.

Theorem 2.2. The problem of deciding whether a formula in L(QK) is valid
with respect to C is Pspace-complete.

Lemma 2.1 and Theorem 2.2 imply the following theorem.

Theorem 2.3. The problem of deciding whether a formula in L(QK) is valid
with respect to Tr(C) is Pspace-complete.

2.5. An Alternative Correspondence Language for L(QK )

In [24], we defined the higher-order correspondence language HOLE for
L(QK). Using the class of structures Tr(C), we can construct an alterna-
tive first-order correspondence language for L(QK).6 Denote the alternative
correspondence language by FOL(QK).

When no confusion arises, we will denote a predicate symbol and its value
in a structure by the same symbol.

The alphabet of FOL(QK) consists of: two individual variables x, y; a set
of unary predicate symbols {P1, P2, . . .}; a set of unary predicate symbols
{N ′

1, N
′
2 . . .}; a finite set of unary predicate symbols {C1, . . . , Cn}; two binary

predicate symbols EW , ER, which are interpreted as equivalence relations;
the binary predicate symbol U ; the propositional connectives ¬,∧; and the
quantifier ∃. (The connectives ∨,→ are defined in terms of ¬ and ∧; and
the quantifier ∀ is defined in terms of ¬ and ∃ in the usual way.)

Formulas of FOL(QK) are recursively defined as follows:7

– P1(x), P2(x), . . . are formulas of FOL(QK);

6The notions ‘first-order correspondence language’ and ‘higher-order correspondence
language’ are defined in [2, pp. 83, 127].

7We omit analogous formulas with the free variable y for the sake of simplicity.
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– if ϕ(x) and ψ(x) are formulas of FOL(QK),
then so are ¬ϕ(x), ϕ(x) ∧ ψ(x),

(∃y){EW (x, y) ∧ Cj(y) ∧ (∀x){U(y, x) → ϕ(x)}},

(∃y){EW (x, y) ∧ N ′
t(y) ∧ (∀x){U(y, x) → ϕ(x)}},

(∀y){(EW (x, y) ∧ N ′
t(y)) → (∀x){U(y, x) → ϕ(x)}}.

It is obvious that FOL(QK) is a part of the two variable fragment of first-
order logic with two equivalence relations (FO2+2E).8

Clearly, Tr(C) can be considered as the class of structures for FOL(QK).
By Definition 2.7, the logic L(Tr(C), FOL(QK)) is the set of all sentences of
FOL(QK) valid in Tr(C).

Predicates of structures of Tr(C) satisfy certain conditions (see Defini-
tion 2.5). This yields that the following formulas must be true in the logic
L(Tr(C), FOL(QK)):

(Cond1) (∀x)(∀y){(Cj(x) ∧ Cj(y)) → (ER(x, y)

∧ (∀y){ER(x, y) → Cj(y)})}, where j = 1, . . . , n.

(Cond1) means that the unary predicate symbols {C1, . . . , Cn} are inter-
preted as equivalence classes induced on Ω by ER.

(Cond2) (∀x)(∀y){U(x, y) → ER(x, y)}.

This formula expresses the consequence of Definition 2.4.
Besides, EW and ER satisfy all the conditions of equivalence relations.

It is easy to see that the formulas (Cond1), (Cond2) belong to FO2+2E.
Let us define the standard translation ·† from L(QK) into FOL(QK).9

p†
i = Pi(x), (¬ϕ)† = ¬ϕ†, (ϕ ∧ ψ)† = ϕ† ∧ ψ†,

(Kjϕ)† = (∃y){EW (x, y) ∧ Cj(y) ∧ (∀x){U(y, x) → ϕ†(x)}},

((∃K){Nt(K) ∧ Kϕ})† =(∃y){EW (x, y) ∧ N ′
t(y)

∧ (∀x){U(y, x) → ϕ†(x)}},

((∀K){Nt(K) → Kϕ})† =(∀y){(EW (x, y) ∧ N ′
t(y))

→ (∀x){U(y, x) → ϕ†(x)}}.

8The equivalence relation ER is used in definitions of predicate symbols {C1, . . . , Cn}
and U in FOL(QK). See (Cond1), (Cond2) below.

9The standard translation from a modal language into its first-order correspondence
language is defined, in particular, in [8, pp. 18–19]) and in [2, pp. 83–91].
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Let ϕ be an arbitrary formula in L(QK) and let ϕ†(x) be the standard
translation of ϕ into FOL(QK). By induction on the length of ϕ, it is easy
to prove the following. For every structure Tr(M) of Tr(C) and for every
pair ω ∈ Ω, we have

(Tr(M), ω) |= ϕ iff Tr(M) |= ϕ†(x)[ω],

where [ω] means that ω is assigned to the free variable x of ϕ†(x).
Therefore ϕ is valid with respect to Tr(C) iff ϕ†(x) is valid with respect

to Tr(C), i.e.,

ϕ ∈ L(Tr(C),L(QK)) iff (∀x){ϕ†(x)} ∈ L(Tr(C), FOL(QK)).

3. A Formal Definition of PELalt
(QK ) and an Expressive Logic of

PELalt
(QK )

Definition 3.1. Let L(Cl, LE) be any propositional epistemic logic with
quantification over modal (epistemic) operators and with predicate symbols
that take modal (epistemic) operators as arguments. Let FOLE be the first-
order correspondence language for LE . Then L(Cl, LE) ∈ PELalt

(QK) if the
language FOLE is a part of FO2+2E.

The paper [17] establishes the following properties of FO2+2E:

• the satisfiability problem (SAT) and the finite satisfiability problem
(FINSAT) for FO2+2E are decidable;

• both SAT and FINSAT for FO2+2E are 2-Nexptime-complete.

Using these properties of FO2+2E, we obtain the decidability and the
2-Nexptime upper complexity bound for satisfiability and finite satisfiabil-
ity of all logics of the family PELalt

(QK).
Note that in proofs of [17], the fragment FO2+2E includes equality.
In this section we are going to present an expressive logic of PELalt

(QK).
But first we construct some auxiliary logic. Denote by L0 the language of
this logic. The alphabet of L0 consists of: a set Φ: {p1, p2, . . .} of propo-
sitional variables; the propositional connectives ¬,∧; n modal (epistemic)
operators {K1, . . . , Kn}; two modal (epistemic) variables K1 and K2; the
existential quantifier (∃) over K1 (and over K2); a set of unary predicate
symbols {N1,N2, . . .}; a set of unary predicate symbols {D1,D2, . . .}; a set
of binary predicate symbols {Q1,Q2, . . .}; and the equality symbol ‘=’ .
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(The connectives ∨,→ are defined in terms of ¬ and ∧; and the quantifier
∀ is defined in terms of ¬ and ∃ in the usual way.)

Formulas of L0 are recursively defined as follows:

– all propositional variables p1, p2, . . . of Φ are formulas of L0;

– Nt(K1), Dk(K1), Ql(K1,K2), K1 = K2, K1 = Kj are formulas of L0;

– if ϕ and ψ are formulas of L0, then so are ¬ϕ, ϕ ∧ ψ, K1ϕ, (∃K1){ϕ};

– let ϕ be a formula of L0; if we replace an arbitrary occurrence of K1
by K2 or (and) replace an arbitrary occurrence of K2 by K1 in ϕ, then
the resulting formula is a formula of L0.

Denote by s a function (a variable-assignment) from the variables K1,K2
to Ω. Let s(K1) be a pair ω of Ω, and let ω = 〈w, r〉. Then we interpret K1
as ‘agent r in world w’.

Definition 3.2. A possible-world structure for L0 is a tuple

M = 〈 Ω, {P1, P2, . . .}, =, EW,ER,U, {C1, . . . , Cn}, {N1, N2, . . .},

{D1, D2, . . .}, {Q1, Q2, . . .} 〉, where

• Ω is a nonempty set;10

• {P1, P2, . . .} are unary predicates on Ω;

• EW, ER are equivalence relations on Ω such that for all ω, ω1 ∈ Ω, if
(ω, ω1) ∈ EW and (ω, ω1) ∈ ER, then ω = ω1;

• U is a binary relation on Ω that satisfy (Cond2);

• {C1, . . . , Cn} are unary predicates on Ω that satisfy (Cond1);

• {N1, N2, . . .} are unary predicates on Ω;

• {D1, D2, . . .} are unary predicates on Ω such that for all ω, ω1 ∈ Ω, we
have if Dk(ω) and Dk(ω1) holds, then (ω, ω1) ∈ ER;

• {Q1, Q2 . . .} are binary predicates on Ω;

• with every propositional variable pi ∈ L0 is associated the subset Ωi ∈ Ω
such that ω ∈ Ωi iff, for some ω1 with (ω, ω1) ∈ EW , Pi(ω1) holds.

Let ϕ be a formula of L0 and let ω be a pair of Ω. The truth-relation
(M,ω), s |= is defined by induction on the construction of ϕ as follows:

10Formally, Ω is a set of arbitrary elements. But we implicitly regard these elements as
(world, agent) pairs.
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(M,ω), s |= pi (for pi ∈ Φ) iff ω ∈ Ωi;

(M,ω), s |= Nt(K1) iff Nt(s(K1)) holds;

(M,ω), s |= Dk(K1) iff Dk(s(K1)) holds;

(M,ω), s |= Ql(K1,K2) iff (s(K1), s(K2)) ∈ Ql;

(M,ω), s |= (K1 = K2) iff s(K1) = s(K2);

(M,ω), s |= (K1 = Kj) iff Cj(s(K1)) holds;

(M,ω), s |= ¬ϕ iff not (M,ω), s |= ϕ;

(M,ω), s |= ϕ ∧ ψ iff (M,ω), s |= ϕ and (M,ω), s |= ψ;

(M,ω), s |= K1ϕ iff, for all ω such that (s(K1), ω) ∈ U ,
we have (M,ω), s |= ϕ;

(M,ω), s |= (∃K1){ϕ} iff, for some ω1 with (ω, ω1) ∈ EW ,
we have (M,ω1), s′ |= ϕ, where s′(K1) = ω1

and s′(K2) = s(K2).

The formulas Nt(K2), Dk(K2), Ql(K1,K1), Ql(K2, K1), Ql(K2,K2),
(K2 = Kj), K2ϕ, (∃K2){ϕ} are interpreted in the same way.

Denote by C the set of all structures M as above. A formula ϕ is said to be
true in a structure M , written M |= ϕ, if (M,ω), s |= ϕ for all pairs ω ∈ Ω
and for every variable-assignment s; ϕ is said to be valid with respect to C
if M |= ϕ for all M ∈ C.

Note that it is easy to prove that

• if (M,ω), s |= pi, then (M,ω1), s |= pi for all ω1 with (ω, ω1) ∈ EW ;

• if (M,ω), s |= (∃K1){ϕ}, then (M,ω1), s |= (∃K1){ϕ} for all ω1 with
(ω, ω1) ∈ EW . And similarly for (∃K2){ϕ}.

Note also that we re-use the symbol ω in the interpretation of K1ϕ:
first we use ω as the current pair in the expression (M,ω), s |=; and then
we have bound occurrences11 of ω. Similarly, in the standard translation of
modal formulas into first-order language, first we use x as a free variable;
and secondly as a bound variable (see comments on Definition 2.5).

As mentioned above (see Section 2.3), we interpret predicate symbols
Nt as non-rigid names in alternative structures. Let ω = 〈w, r〉. Then the
expression Nt(ω) means that ‘agent r has name Nt in world w’. Clearly,
in another world, agent r may not have name Nt. In the same way, we

11The notions ‘free occurrence of ω’ and ‘bound occurrence of ω’ are defined in Defini-
tion 2.6.
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interpret binary predicate symbols Ql as non-rigid names. Let ω = 〈w, r〉
and ω1 = 〈w1, r1〉. Then the expression Ql(ω, ω1) means that ‘agent r from
world w is Ql-connected to agent r1 from world w1’.

In contrast, a predicate symbol Dk is a rigid designator, since the corre-
sponding predicate (name) Dk denotes the same agent in every world (see
Definition 3.2):

(Cond3) (∀x)(∀y){(Dk(x) ∧ Dk(y)) → ER(x, y)}, where k = 1, 2, . . . .

Similarly, (K1 = Kj) means that K1 has a rigid value, since the correspond-
ing predicate Cj also fixes the same agent in every world (see (Cond1)).

In addition to the predicates U , Cj , and Dk of M , the equivalence rela-
tions EW and ER also satisfy a certain condition:

(Cond4) (∀x)(∀y){(EW (x, y) ∧ ER(x, y)) → (x = y)}.

Denote by FOL0 the following first-order correspondence language for L0.
The alphabet of FOL0 consists of: three individual variables x, y

K1 , yK2 ; a
set of unary predicate symbols {P1, P2, . . .}; sets of unary predicate symbols
{C1, . . . , Cn}; {N1, N2, . . .}; {D1, D2, . . .}; a set of binary predicate symbols
{Q1, Q2, . . .}; two binary predicate symbols EW , ER, which are interpreted
as equivalence relations; the binary predicate symbol U ; the propositional
connectives ¬,∧; the quantifier ∃; and the equality symbol ‘=’. (The con-
nectives ∨,→ are defined in terms of ¬ and ∧; and the quantifier ∀ is defined
in terms of ¬ and ∃ in the usual way.)

Formulas of FOL0 are recursively defined as follows:

– Pi(x), Cj(yK1), Nt(yK1), Dk(y
K1), Ql(yK1 , yK2), y

K1 = y
K2 are formulas

of FOL0;

– if we replace all occurrences of y by y
K1 in (Cond1), (Cond2), (Cond3),

and (Cond4), then the resulting formulas are formulas of FOL0;

– if ϕ and ψ are formulas of FOL0, then so are ¬ϕ, ϕ∧ψ, (∀x){U(y
K1 , x) →

ϕ}, (∃y
K1){EW (x, y

K1) ∧ ϕ};

– let ϕ be a formula of FOL0; if we replace an arbitrary occurrence of y
K1

by y
K2 or (and) replace an arbitrary occurrence of y

K2 by y
K1 in ϕ, then

the resulting formula is a formula of FOL0.

Let us define the following translation function ·‡ from L0 into FOL0.

(1) (pi)‡ = Pi(x),

(2) (Nt(K1))‡ = Nt(yK1),

(3) (Dk(K1))‡ = Dk(y
K1),
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(4) (Ql(K1,K2))‡ = Ql(yK1 , yK2),

(5) (K1 = K2)‡ = (y
K1 = y

K2),

(6) (K1 = Kj)‡ = Cj(yK1),

(7) (¬ϕ)‡ = ¬ϕ‡,

(8) (ϕ ∧ ψ)‡ = ϕ‡ ∧ ψ‡,

(9) (K1ϕ)‡ = (∀x){U(y
K1 , x) → ϕ‡},

(10) ((∃K1){ϕ})‡ = (∃y
K1){EW (x, y

K1) ∧ ϕ‡}.

The formulas Nt(K2), Dk(K2), Ql(K1,K1), Ql(K2, K1), Ql(K2,K2),
(K2 = Kj), K2ϕ, (∃K2){ϕ} are translated in the same way.

Observe that in the translation defined above, for every formula ϕ ∈ L0,
at each stage of the translation of ϕ, we do not re-use (do not change)
variables in the first-order formulas of (1) – (10). Consider, for example, the
formula

(f) (∃K1){K1((∃K2){Ql(K2,K1)})}.

The formula (f)‡ is

(∃y
K1){EW (x, y

K1) ∧ (∀x){U(y
K1 , x)

→ (∃y
K2){EW (x, y

K2) ∧ Ql(yK2 , yK1)}}}.

Given this property of the translation function ·‡, for every formula ϕ ∈ L0,
we obtain the 1-1 correspondence between occurrences of the variable K1
in ϕ and occurrences of y

K1 in ϕ‡. And similarly for the variables K2 and
y
K2 .

Note that the formula (f)‡ has the following epistemic interpretation. In
the scope of (∃y

K1), let a pair 〈w, r1〉 be an assignment to the free variable
y
K1 , where w denotes the current world. In the scope of (∀x), suppose x is

interpreted by a pair 〈w1, r1〉, where w1 denotes an arbitrary world that r1
considers possible. Note that the value of x includes r1, since U(y

K1 , x) im-
plies ER(y

K1 , x). In the scope of (∃y
K2), let a pair 〈w1, r2〉 be an assignment

to the free variable y
K2 . Then this formula is read as ‘there is an agent r1 in

the current world w such that in all the worlds that r1 considers possible,
there is an agent r2 who is Ql-connected to r1’.

Lemma 3.1. Let s be an arbitrary variable-assignment: s(K1) = ω1 and
s(K2) = ω2. Denote by s̃ the variable-assignment corresponding to s such
that s̃(y

K1) = ω1 and s̃(y
K2) = ω2. For every structure M ∈ C, for every

ϕ ∈ L0, and for every ω ∈ Ω, we have:
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(M,ω), s |= ϕ iff (M), s̃ |= ϕ‡(x)[ω]

where [ω] means that ω is assigned to the free variable x of the formula
ϕ‡(x).

Proof. This lemma is easily proved by induction on the length of ϕ.

Now we define a language Lalt
(QK) as follows. The alphabet of Lalt

(QK) co-
incides with the alphabet of L0. To define the set of formulas of Lalt

(QK), we
need the following definition.

Definition 3.3. Let K be a variable that ranges over the set {K1, K2}.
Let ϕ be an arbitrary formula of L0 (we assume that ϕ is expressed in the
basic connectives, i.e., ¬, ∧, and ∃). A quantifier (∃K) is called an outermost
quantifier in ϕ if (∃K) is not in the scope of another quantifier and is not in
the scope of a modal operator. A modal operator K is called an outermost
modal operator in ϕ if K is not in the scope of another modal operator and
is not in the scope of a quantifier.12

Definition 3.4. Let ϕ be an arbitrary formula of L0 expressed in the basic
connectives ¬, ∧, and ∃. The formula ϕ belongs to Lalt

(QK) iff ϕ satisfies the
following conditions:

(a) ϕ does not contain K1 and K2 free;

(b) if K1 is a modal operator in ϕ, then in the scope of K1, only the variable
K1 can occur free; and similarly for K2;

(c) if ϕ = (∃K1){ψ}, or (∃K1){ψ} is a subformula of ϕ, or K1ψ is a sub-
formula of ϕ, then ψ does not contain an outermost quantifier of the
form (∃K1){φ}.13 And similarly for (∃K2){ψ} and K2ψ.

It is known from the literature [2, pp. 87–89] that in the standard trans-
lation from modal formulas to first-order formulas, we keep flipping between
two variables x and y. That is, in this translation, we use x and y as new
bound variables in the following sequence: x, y, x, y, x, y, . . .. Note that the
variable x does not occur twice in a row. Similarly for y. Condition (c) means
that, in the same way, we keep flipping between two variables K1 and K2
in the recursive definition of a formula of Lalt

(QK).
Since formulas of Lalt

(QK) do not contain K1 and K2 free, we obtain that
variable-assignments make no difference. And therefore we can use the usual

12The definition of an outermost modal operator will be used in the proof of Lemma 3.3.
13That is, if we have an outermost quantifier in the scope of (∃K1) or in the scope of

a modal operator K1, then this quantifier is (∃K2).
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truth-relation (M,ω) |= instead of (M,ω), s |=; and Lemma 3.1 yields the
following corollary.

Corollary 3.2. For every structure M ∈ C, for every ϕ ∈ Lalt
(QK), and for

every ω ∈ Ω, we have:

(M,ω) |= ϕ iff M |= ϕ‡(x)[ω]

where [ω] means that ω is assigned to the free variable x of the formula
ϕ‡(x).

Definition 3.5. Let M be an arbitrary structure of C. Let ϕ be an arbitrary
formula of Lalt

(QK). By ϕ‡‡ denote a formula obtained from ϕ‡ by re-using
variables such that

• ϕ‡‡ contains only two individual variables;

• ϕ‡‡ and ϕ‡ have the same interpretation in M .

The formula ϕ‡‡ is called the two-variable equivalent of ϕ‡.

For example, we again consider the formula

(f) (∃K1){K1((∃K2){Ql(K2,K1)})}.

This formula belongs to Lalt
(QK) (see Definition 3.4). The two-variable equiv-

alent of (f)‡ is

(∃y){EW (x, y) ∧ (∀x){U(y, x) → (∃y){EW (x, y) ∧ Ql(y, x)}}}.

The epistemic interpretation of this formula is as follows. In the scope of
the first occurrence of (∃y), let a pair 〈w, r1〉 be an assignment to the free
variable y, where w denotes the current world. In the scope of (∀x), suppose
x is interpreted by a pair 〈w1, r1〉, where w1 denotes an arbitrary world that
r1 considers possible. And in the scope of the second occurrence of (∃y), let
a pair 〈w1, r2〉 be an assignment to the free variable y. As a result, (f)‡‡ is
read as ‘there is an agent r1 in the current world such that in all the worlds
that r1 considers possible, there is an agent r2 who is Ql-connected to r1’.
That is, this interpretation coincides with the interpretation of (f)‡.

Lemma 3.3. For an arbitrary formula ϕ of Lalt
(QK), the formula ϕ‡ has the

two-variable equivalent.

Proof. Formulas of Lalt
(QK) contain only two modal variables K1 and K2,

but we can re-use these variables. Within the framework of this proof, we
assume to distinguish between different usages of these variables with the
help of superscripts. Let a pair 〈w, r1〉 be an assignment to the free variable
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K1 in the scope of (∃K1). Then we mark K1 as follows: K1(w,r1). And
similarly for K2. In the same way, we will mark different usages of variables
x, y, y

K1 , and y
K2 corresponding to K1 and K2.

Let ϕ be an arbitrary formula of Lalt
(QK) (we assume that ϕ is expressed

in the basic connectives, i.e., ¬, ∧, and ∃). The transformation from ϕ‡ to
ϕ‡‡ can be represented as follows:

• take two variables: x and y;

• for every bound variable x, y
K1 , and y

K2 , replace this variable by x or
y;

• verify that the interpretation of the resulting formula coincides with the
interpretation of ϕ‡.

It is obvious that this procedure depends only on the quantifiers (∃x),
(∃y

K1), and (∃y
K2) that occur in the formula ϕ‡ and on combinations of

these quantifiers. Note that the translation function ·‡ produces new quanti-
fiers in the formula ϕ‡ when we translate subformulas of the kind (∃K1){ψ},
(∃K2){ψ}, K1ψ, K2ψ in the formula ϕ. Thus we will consider only such
subformulas.

Since formulas of Lalt
(QK) do not contain K1 and K2 free, we assume that

ϕ begins with (∃K1){. . .}. Therefore the translation taking ϕ to the formula
ϕ‡ begins with (∃y

K1){EW (x, y
K1) . . .}. Let a pair 〈w, r1〉 be an assignment

to the free variable K1(w,r1) in the scope of (∃K1(w,r1)), where w denotes the
current world. Then we assign the same pair to the free variable y(w,r1)

K1
in

the scope of (∃y(w,r1)
K1

). Let us replace y(w,r1)
K1

by y(w,r1) without changing the
interpretation; and mark x with the superscript (w,r). Thus the formula ϕ‡‡

begins with (∃y(w,r1)){EW (x(w,r), y(w,r1)) . . .}. In the scope of (∃K1(w,r1)),
we allow:

‖1‖ an outermost quantifier (∃K2);

‖2‖ an outermost modal operator K1(w,r1);

(see Definitions 3.3 and 3.4).14

Consider case ‖1‖. Let ϕ be (∃K1(w,r1)){φ}. Then in the interpreta-
tion of φ, the current pair is 〈w, r1〉 (see Definition 3.2). The translation of
(∃K2){. . .} begins with (∃y

K2) {EW (x(w,r1), y
K2) . . .}. Let a pair 〈w, r2〉 be

an assignment to the free variable K2(w,r2) in the scope of (∃K2(w,r2)). Then

14K2 cannot be an outermost modal operator in the scope of (∃K1(w,r1)), since other-
wise ϕ contains K2 free.
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we assign the same pair to the free variable y(w,r2)
K2

in the scope of (∃y(w,r2)
K2

).
Let us replace y(w,r2)

K2
by x(w,r2) without changing the interpretation. We

use x(w,r1) as a variable representing the current world. But y(w,r1) has the
same property. Hence we can replace x(w,r1) by y(w,r1). As a consequence,
we obtain (∃x(w,r2)) {EW (x(w,r2), y(w,r1)) . . .}. Note that the variable y(w,r1)

represents not only the current world w, but also the agent r1. Therefore we
can refer to r1 in the scope of (∃x(w,r2)) using y(w,r1). And we do not need
the variable y(w,r1)

K1
for this purpose.

If there is another outermost quantifier of the form (∃K2) in the scope
of (∃K1(w,r1)), then we must make the same transformations provided that
another pair 〈w, r3〉 is assigned to the free variable K2(w,r3) in the scope of
this quantifier (∃K2(w,r3)).

In the scope of (∃K2(w,r2)), we allow:

‖1.1‖ an outermost quantifier (∃K1);

‖1.2‖ outermost modal operators K1(w,r1) and K2(w,r2).

Consider case ‖1.1‖. We do not need to move to the next levels of this
branch, since we keep flipping between two variables K1 and K2 in the
recursive definition of a formula of Lalt

(QK). Hence on the next levels the
same combinations of (∃K1){ψ}, (∃K2){ψ}, K1ψ, K2ψ are repeated.

Let us consider case ‖2‖. Given that we replace y(w,r1)
K1

by y(w,r1), the
translation of K1(w,r1)(. . .) begins with (∀x) {U(y(w,r1), x) . . .}. Let a pair
〈w1, r1〉 be an assignment to the free variable x in the scope of (∀x), where w1

is an arbitrary world that r1 considers possible. Note that the pair 〈w1, r1〉
contains r1, since U(y(w,r1), x) implies ER(y(w,r1), x). Let us mark x with
the superscript (w1,r1). As a consequence, we obtain (∀x(w1,r1)) {U(y(w,r1),
x(w1,r1)) . . .}. In the scope of the modal operator K1(w,r1), we allow:

‖2.1‖ an outermost quantifier (∃K2);

‖2.2‖ an outermost modal operator K1(w1,r1).

Now we consider case ‖1.2‖.15 For an outermost modal operator K1(w,r1),
we must make the same transformations as in case ‖2‖. Given that we re-
place y(w,r2)

K2
by x(w,r2), the translation of K2(w,r2)(. . .) begins with (∀y)

{U(x(w,r2), y) . . .}. Let a pair 〈w2, r2〉 be an assignment to the free variable
y in the scope of (∀y), where w2 is an arbitrary world that r2 considers
possible. Let us mark y with the superscript (w2,r2). As a consequence, we
obtain (∀y(w2,r2)) {U(x(w,r2), y(w2,r2)) . . .}.

15Case ‖1.2‖ is proved after case ‖2‖ for technical convenience.
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Consider case ‖2.1‖. The translation of (∃K2){. . .} begins with (∃y
K2)

{EW (x(w1,r1), y
K2) . . .}. Let a pair 〈w1, r4〉 be an assignment to the free

variable K2(w1,r4) in the scope of (∃K2(w1,r4)). Then we assign the same
pair to the free variable y(w1,r4)

K2
in the scope of (∃y(w1,r4)

K2
). Let us replace

y(w1,r4)
K2

by y(w1,r4) without changing the interpretation. As a consequence,
we obtain (∃y(w1,r4)) {EW (x(w1,r1), y(w1,r4)) . . .}.

And finally we consider case ‖2.2‖. The translation of K1(w1,r1)(. . .) be-
gins with (∀y) {U(x(w1,r1), y) . . .}. Let a pair 〈w3, r1〉 be an assignment to
the free variable y in the scope of (∀y), where w3 is an arbitrary world that
the agent r1 consider possible from w1. Let us mark y with the superscript
(w3,r1). As a consequence, we obtain (∀y(w3,r1)) {U(x(w1,r1), y(w3,r1)) . . .}.

We do not need to move to the next levels of all the branches that we
consider above, since on the next levels the same combinations of (∃K1){ψ},
(∃K2){ψ}, K1ψ, K2ψ are repeated.

So we have shown that for an arbitrary formula ϕ of Lalt
(QK), we can

replace the variables x, y
K1 , and y

K2 by the variables x and y in the formula
ϕ‡ such that the interpretation of the resulting formula coincides with the
interpretation of ϕ‡. That is, the resulting formula is ϕ‡‡.

Corollary 3.2 and Lemma 3.3 imply the following theorem.

Theorem 3.4. For every structure M ∈ C, for every ϕ ∈ Lalt
(QK), and for

every ω ∈ Ω, we have:

(M,ω) |= ϕ iff M |= ϕ‡‡(x)[ω]

where [ω] means that ω is assigned to the free variable x of the formula
ϕ‡‡(x).

Since every formula of the kind ϕ‡‡(x) belongs to FO2+2E, it follows
that the logic L(C,Lalt

(QK)) ∈ PELalt
(QK) by Definition 3.1. We obtain the

decidability and the 2-Nexptime upper complexity bound for satisfiability
of L(C,Lalt

(QK)). But the following observation16 in proofs of [17] allows us to
improve this bound. The equivalence relations EW and ER satisfy (Cond4)
which says that the intersections of the equivalence classes of EW and ER
are of size at most 1. To show the 2-Nexptime upper and lower complexity
bounds for satisfiability of FO2+2E, the paper [17, Section 6 and 7] employs
intersections of exponential size. If we restrict the class of structures to
those with intersections of size at most 1, then the satisfiability problem

16This observation was proposed by anonymous referee 1.
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for FO2+2E becomes Nexptime-complete. Thus we obtain the Nexptime

upper complexity bound for satisfiability of L(C,Lalt
(QK)).

Denote by FOLalt
(QK) the first-order correspondence language for Lalt

(QK).
The alphabet of FOLalt

(QK) coincides with the alphabet of FOL0. Formulas
of FOLalt

(QK) are defined as follows:

– (Cond1), (Cond2), (Cond3), (Cond4) are formulas of FOLalt
(QK);

– if ϕ is an arbitrary formula of Lalt
(QK), then ϕ‡‡ belongs to FOLalt

(QK).

4. Sentences Expressible in the Logic L(C,Lalt
(QK ))

The paper [4, p. 29] presents some epistemic sentences expressible in the first-
order epistemic language defined in [4]. We consider one of these sentences
(the other sentences are formalized in the logic L(C,Lalt

(QK)) in the same
way).

Someone knows that all Peter’s friends know that he likes Mary

(∃K1){K1((∃K2){(K2 = KPeter) ∧ (∀K1){Qfriend(K1, K2)

→ K1((∃K2){(K2 = KPeter) ∧ (∃K1){(K1 = KMary)

∧Qlikes(K2,K1)}})}})}.

The corresponding first-order formula is

(∃y){EW (x, y) ∧ (∀x){U(y, x) → (∃y){EW (x, y) ∧ CPeter(y)

∧ (∀x){(EW (x, y) ∧ Qfriend(x, y)) → (∀y){U(x, y) → (∃x){EW (x, y)

∧ CPeter(x) ∧ (∃y){EW (x, y) ∧ CMary(y) ∧ Qlikes(x, y)}}}}}}}.

Note that (K2 = KPeter) means that K2 has the rigid value (agent
‘Peter’), since the corresponding predicate CPeter denotes the same agent in
every world (see (Cond1)). Note also that Qfriend and Qlikes are non-rigid
names.

As in the paper [24], let us consider the following classical example:

(Ex) ‘Ralph knows that someone is a spy’.

This sentence has the following two readings:

• Ralph knows that there are spies, but it is possible that he does not
know any real spy (de dicto).
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• Let X be some particular person. Ralph knows of X that he is a spy
(de re).

The de dicto reading of (Ex) is expressed by the formula

(Ex-dicto) (∃K1){NRalph(K1) ∧ K1((∃K2){Nspy(K2)})}.

The corresponding first-order formula is

(∃y){EW (x, y) ∧ NRalph(y) ∧ (∀x){U(y, x) → (∃y){EW (x, y) ∧ Nspy(y)}}}.

The de re reading of (Ex) is expressed by the formula

(Ex-re) (∃K1){NRalph(K1) ∧ (∃K2){Dman(K2)

∧ K1((∃K2){Dman(K2) ∧ Nspy(K2)})}}
The corresponding first-order formula is

(∃y){EW (x, y) ∧ NRalph(y) ∧ (∃x){EW (x, y) ∧ Dman(x)

∧ (∀x){U(y, x) → (∃y){EW (x, y) ∧ Dman(y) ∧ Nspy(y)}}}}.

In this formula, we fix the same person in the current world and in all the
worlds that Ralph considers possible using rigid name Dman (see (Cond3)).
And then for this particular person, we use non-rigid name Nspy.

In first-order modal logic, the notions of de re and de dicto readings
of epistemic sentences have specific definitions in terms of different scopes
that can be used in evaluating non-rigid names (see [12, p. 313–315]). We
have outer scope (corresponding to de re) if a non-rigid name is evaluated
– its referent determined – just once in the actual world. And further, this
non-rigid name has the same referent in all the worlds that some agent r
considers possible from the actual world. We have inner scope (correspond-
ing to de dicto) if a non-rigid name can be re-evaluated in each situation
that r considers possible.

Clearly, the logic L(C,Lalt
(QK)) does not have the expressive power of first-

order modal logic. Therefore we redefine the notions of outer and inner
scopes in a simpler form.

Definition 4.1. Let K1 be a bound variable in the scope of some modal
operator in a formula of Lalt

(QK). Suppose also that K1 denotes an agent with
a non-rigid name (for example, Nt(K1) or Ql(K1, K2)). Then the non-rigid
name of K1 has outer scope reference if, in addition, K1 has a rigid name,
i.e., (K1 = Kj) or Dk(K1); otherwise we have inner scope. And similarly
for K2.
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It is obvious that if K1 has a rigid name, then we can refer to the same
agent out of the scope of the modal operator, in particular, in the actual
world. Therefore using rigid names, we mimic the first-order modal notion
of outer scope in evaluating non-rigid names.

Traditionally, de re reading of epistemic sentences is formalized using
quantifying-in over agents, where a free variable is separated from its binding
quantifier by some modality. For example, the first-order modal formula that
expresses the de re reading of the sentence (Ex) is

(∃x){KRalph(SPY (x))}.

This formula differs from the following formula that expresses the de dicto
reading of (Ex):

KRalph((∃x){SPY (x)}).

It is known that in interpretations of these formulas in a given possible-
world structure, we have a rigid valuation for the free variable x in the
scope of (∃x) and a non-rigid interpretation for the predicate symbol SPY .
This means that if x is evaluated in the current world, then x denotes the
same person in the current world and in all the worlds that Ralph considers
possible, while the interpretations of SPY can vary from world to world.
Such combination of rigid and non-rigid designators allows us to distinguish
between the de re and de dicto readings of (Ex) and other similar epistemic
sentences (see [6, pp. 85–86]).

But we do not need to use exactly these designators. In particular, con-
sider the first-order modal logic defined in [12]. This logic is many-sorted,
with two distinguished sorts agent and name. Denote by L the language
of this logic. The language L includes variables of sort agent and variables
of sort name. The syntax of L allows quantifying-in only for sort name;
quantifying-in for sort agent is prohibited. But in spite of this, we can con-
struct formulas of L that express de re reading of epistemic sentences using
variables of sort name as rigid designators. Consider, for example, the fol-
lowing formula of L (see [12, p. 333]):

(∀x){(∃X){Loc(X) ∧ In(me, x,X) ∧ Kme((∃y){In(me, y, X) ∧ P (y)})}}.

In this formula, x is a variable of sort agent; X is a variable of sort name;
Loc(X) means that X is a location-type name; me is the following constant
of sort agent: formulas of L are evaluated at (world, agent) pairs, and if the
current pair is (w, a), then me denotes a; In(me, x,X) means that agent a
calls agent x by name X. As a result, the whole formula is read ‘every agent
x existing in the current world has some location-type name X; a calls x by
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name X; and a knows that there is an agent y such that a calls y by name
X and y has name P ’.

Note that in this formula, y is a bound variable in the scope of the modal
operator Kme; y denotes an agent with non-rigid name P ; in addition, y
has rigid name X. And we obtain that non-rigid name P has outer scope
reference, since X is evaluated just once in the actual world. This is similar
to Definition 4.1. It is clear that instead of the variable X of sort name, we
can use any other name provided that this name is a rigid designator. So
it is easily be checked that rigid name Dman in the formula (Ex-re) plays
the same role as the variable X of sort name. Hence our examples of this
section and Definition 4.1 are given in line with the approach of [12].

Specific epistemic sentences expressible in the logic L(C,Lalt
(QK)) can be

defined as follows. For a given agent K2, another agent K1 can know non-
rigid names of K2 if, in addition, K2 has a rigid name.

Let us compare the expressive power of PELalt
(QK) with the expressive

power of PEL(QK). Examples of this section and of [24, Sections 3.3 and 4]
allow us to conclude:

• logics of PELalt
(QK) give a more natural representation of the de re and

de dicto modalities;

• logics of PEL(QK) offer a better formalization in the case where knowl-
edge is relative, e.g., ‘an agent K1 knows that if he is Q-connected to
other agents K2, . . . ,KN , then a formula ϕ(K1,K2, . . . ,KN) holds’.17

As was mentioned above (see Section 3), the fragment FO2+2E includes
equality. Clearly, equality strengthens the expressive power of FO2+2E, and
thus of PELalt

(QK). Note that we can use equality also for logics of PEL(QK).
We have defined logics of PEL(QK) using a decidable higher-order general-
ization of the loosely guarded fragment (HO-LGF). In [24, Section 3], we
used the following original definition of LGF without equality :

• any atomic formula is in LGF;

• LGF is closed under boolean combinations;

• If (i) G (the ‘guard’) is a conjunction of atomic formulas; (ii) ϕ is in
LGF; (iii) every free variable of ϕ is free in G; (iv) y is a tuple of free

17Such knowledge is essential, in particular, for tasks of dynamic epistemic logic. For
example, the paper [20, p. 70] claims that the knowledge required for action is often relative
to the agent’s perspective – that it is often indexical (or relative) knowledge rather than
objective knowledge. For example, if a robot knows the relative position of an object, he
can go and pick it up.
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variables of G; (v) if x is a free variable of G and y is a variable from y,
then there is a conjunct of G in which x, y both occur;

then (∃y){G ∧ ϕ} and (∀y){G → ϕ} are in LGF (see [15, p. 228]).

The definition of HO-LGF coincides with the definition of LGF provided
that the list of all free variables of the formulas G and ϕ can contain not
only individual, but also second-order variables (see [24, Section 3.2]). It is
known that LGF with equality is also decidable and, in particular, equalities
are allowed as conjuncts of guards (see [9,10], [15, p. 228 (footnotes)]). It
is not hard to prove that if LGF with equality is decidable, then HO-LGF
with equality is also decidable. Structures of logics of PEL(QK) (defined in
[24]) contain a set of worlds W and a set of accessibility relations R (see,
for example, Definition 2.1). These structures are simultaneously structures
for HO-LGF. Note that it is natural to define equality on W and on R sep-
arately. In particular, using equality defined on R, we can extend languages
of PEL(QK) by equalities of the kind KI = KJ , where KI and KJ are
modal variables.

5. Conclusions

In this paper we have presented the alternative family PELalt
(QK) of proposi-

tional epistemic logics with quantification over agents of knowledge. As was
mentioned above (see Introduction), there are two basic decidable fragments
of first-order logic such that propositional modal logic can be embedded to
these fragments: (1) the two variable fragment; (2) the guarded fragment.
The family PEL(QK) is defined on the basis of the guarded fragment (HO-
LGF); and the family PELalt

(QK) is defined on the basis of the two-variable
fragment (FO2+2E). Thus we obtain examples of such families in all the
main directions.

In Section 3 we defined the class C of structures for logics of PELalt
(QK)

(see Definition 3.2). Let M be an arbitrary structure of C. The domain Ω of
M consists of (world, agent) pairs such that a pair ω ∈ Ω is represented as
a single element. We reveal parts of ω using two equivalence relations EW
and ER defined on Ω. In [23] we have considered another case where

• a domain of some class of structures consists of objects that have con-
stituent parts;

• in a given language, we do not have direct access to these parts and we
refer to them indirectly using equivalence relations;



Propositional Epistemic Logics with Quantification. . . 779

• when we quantify over the domain, we simultaneously quantify over the
all constituent parts of objects.

We believe that such an approach can be effective in many areas of logic.
It would be interesting to present other expressive logics of PELalt

(QK)

except L(C, Lalt
(QK)).
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[10] Grädel, E., On the Restraining Power of Guards, Journal of Symbolic Logic 64(4):

1719–1742, 1999.

[11] Grove, A.J., and J.Y. Halpern, Naming and Identity in Epistemic Logics. Part I:

the Propositional Case, Journal of Logic and Computation 3(4): 345–378, 1993.

http://arxiv.org/abs/1802.01318


780 G. Shtakser

[12] Grove, A.J., Naming and Identity in Epistemic Logic. Part II: a First-Order Logic

for Naming, Artificial Intelligence 74(2): 311–350, 1995.

[13] Hodkinson, I., F. Wolter, and M. Zakharyaschev, Decidable Fragments of First-

Order Temporal Logics, Annals of Pure and Applied Logic 106(1-3): 85–134, 2000.

[14] Hodkinson, I., F. Wolter, and M. Zakharyaschev, Monodic Fragments of First-

Order Temporal Logics: 2000-2001 A.D., Proceedings of LPAR, 2001, pp. 1–23.

[15] Hodkinson, I., Loosely Guarded Fragment of First-Order Logic Has the Finite Model

Property, Studia Logica 70(2): 205–240, 2002.

[16] Hodkinson, I., F. Wolter, and M. Zakharyaschev, Decidable and Undecidable

Fragments of First-Order Branching Temporal Logics, Proceedings of LICS, IEEE,

2002, pp. 393–402.
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