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Abstract. We take a logical approach to threshold models, used to study the diffusion of
opinions, new technologies, infections, or behaviors in social networks. Threshold models
consist of a network graph of agents connected by a social relationship and a threshold
value which regulates the diffusion process. Agents adopt a new behavior/product/opinion
when the proportion of their neighbors who have already adopted it meets the threshold.
Under this diffusion policy, threshold models develop dynamically towards a guaranteed
fixed point. We construct a minimal dynamic propositional logic to describe the threshold
dynamics and show that the logic is sound and complete. We then extend this framework
with an epistemic dimension and investigate how information about more distant neigh-
bors’ behavior allows agents to anticipate changes in behavior of their closer neighbors.
Overall, our logical formalism captures the interplay between the epistemic and social
dimensions in social networks.

Keywords: Social network theory, Threshold models, Diffusion in networks, Social epis-
temology, Formal epistemology, Dynamic epistemic logic, Opinion dynamics, Opinion

dynamics under uncertainty.

1. Introduction

An individual’s actions or opinions are often influenced by the actions of
people around her. The way a new product or fashion gets adopted by
a population depends on how agents are influenced by others, which in
turn depends both on the way the population is structured and on how
influenceable agents are.

This paper focuses on one particular account of social influence, threshold-
limited influence, as presented in e.g. [15,37]. Threshold-limited influence
relies on an imitation or conformity pressure effect: agents adopt a behav-
ior/product/opinion/fashion whenever a critical fraction of their neighbors
in the network have adopted it already. In this sense, diffusion in social
networks can be seen as a study of local influence, triggering agents to
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adopt a similar behavior/opinion/product as their neighbors [19,38]. So-
called threshold models, having gained early, wide-spread attention through
[18,33,34], are used precisely to represent the dynamics of diffusion under
threshold-limited influence. This type of models has received a lot of atten-
tion in the recent literature [1,15,17,20,23,25,26,36], also within the logic
community [8-12,24,28,29,32,35,39].

This paper has two goals. Our first goal is to propose logics for reasoning
about threshold models and their dynamics. Our second goal is to investigate
how the agents’ knowledge affects such dynamics. After recalling standard
threshold models in Section 2.1, a dynamic logic for modeling threshold
influence within social networks is introduced in Section 2.3. While con-
ceptually in line with [10,11,24,28,32,35,39] in using logic to model social
influence effects within network structures, our new framework distinguishes
itself by avoiding the use of static modalities or hybrid logic tools. In this
sense, the logical setting we introduce is “minimal”: propositional logic is
used to specify both the network structure and the agents behavior, and a
single dynamic modality is used to represent the threshold-limited influence.
Moreover, while [10,11,24,35,39] focus on the limit thresholds of 100% (all
neighbors) and non-0% (at least one neighbor), we allow here for any (uni-
form) adoption threshold, as is standard within the literature on threshold
models. Section 2.4 shows how the logic captures the relationship between
clusters and diffusion of a behavior to the whole network.

In Section 3 we introduce epistemic threshold models. These models come
equipped with a specific knowledge-dependent update procedure, called
“informed adoption”, where agents must possess sufficient information about
their surroundings before they adopt the behavior. This is a conceptual jump
from the initial minimal modeling of influence from Section 2 to a more
sophisticated (information dependent) diffusion policy: Agents change from
adopting the behavior whenever sufficiently many neighbors have done so
to adopting the behavior only if they know that sufficiently many neighbors
have done so. We then relate these two diffusion policies by showing under
which epistemic conditions their diffusion dynamics is step-wise identical.
The section is concluded by extending the logic to a sound and complete
dynamic epistemic logic for the epistemic threshold models and the informed
update procedure.

We further notice an interesting feature of the informed update proce-
dure. Even though the “informed update” requires that agents have enough
information to be influenced, the update does not require them to use all
their available information when making their choices. Hence, if we consider
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threshold models as representing reflecting agents who are driven by a coor-
dination goal, the new knowledge dependent update procedure makes our
agents choose an action even when they know they could do better. To over-
come this shortcoming, in Section 4, we introduce a third adoption policy,
a “prediction update”, where agents utilize all the available information to
predict the future behavior of other agents in the network, and act upon their
predictions. In other words, they anticipate, and it is common knowledge
that they do. We show that the agents’ reasoning about other predicting
agents always reaches a fixed point and that making adoption dependent on
this very fixed point captures the best response of agents trying to coordi-
nate to the best of their knowledge. We give an example illustrating how
knowledge about the network and about the behavior of other agents can
be interpreted as an “accelerator” of diffusion dynamics, under this last pre-
diction policy: the fixed point of the diffusion process under the prediction
update is the same as under the informed update, but it can be reached
faster if agents know more about the network around them.

Finally, Section 5 discusses the in-built assumptions of the introduced
updates as well as several alternative diffusion policies and Section 6 gives
some directions for further research.

2. Threshold Models and Their Dynamic Logic

This section introduces the notion of threshold models and designs a logic
to capture their dynamics.

2.1. Threshold Models for Social Influence

A social network may be seen as a graph, where nodes represent agents
and edges represent a binary social relationship among them. This paper
restricts itself to finite and undirected graphs without self-loops, that is,
to symmetric and irreflexive social relationships, e.g. being neighbors or
friends.! Moreover, we impose that each agent has at least one neighbor
in the network, as isolated agents are irrelevant to a discussion of social
influence:

"While the case of networks without symmetry is also interesting, for instance to model
influence on “followers”, most of the existing literature on threshold models mentioned
in the introduction concerns the symmetric and irreflexive case only. This is why these
restrictions are imposed here.
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DEFINITION 2.1. (Network) A network is a pair (A, N) where A is a non-
empty finite set of agents and the function N : A — P(A) assigns a set
N(a) to each a € A, such that

e a ¢ N(a) (Irreflexivity)
e b€ N(a) if and only if a € N(b) (Symmetry)
e N(a) # 0 (Seriality)

The simplest type of threshold model consists of a network together with
the extension of a unique behavior (or opinion, fashion, or product) dis-
tributed over the agents, and a fixed uniform adoption threshold. A thresh-
old model thus represents the current spread of the behavior throughout the
network, while containing the adoption threshold which prescribes how this
spread will evolve.

REMARK 2.2. Throughout the text, we identify the behavior with its exten-
sion, i.e., with a designated subset B of A of agents that have adopted the
behavior. Moreover, the verb “adopt” is used with “the behavior” as implicit
object: When writing “Agent a has adopted”, we imply that a has adopted
the unique behavior in question.

DEFINITION 2.3. (Threshold Model) A threshold model is a tuple
M = (A, N, B,0) where (A, N) is a network, B C A is a behavior and
0 € [0,1] is a uniform adoption threshold.

It is assumed throughout this paper that both the network structure and
the adoption threshold stay constant under updates. Therefore, the spread
of the behavior (i.e., the extension of B) at ensuing time steps may be
calculated using the fixed threshold and network structure as follows:

DEFINITION 2.4. (Threshold Model Update) The update of threshold model
M = (A, N, B,6) is the threshold model M" = (A, N, B’,0), where B’ is
given by

i le e @B
B_Bu{ A= >9}. (1)

This definition captures the idea that the new set of agents B’ who
adopted the behavior (in the new updated model M) does include the set
of agents B who had already adopted the behavior before and it includes
those agents who have enough neighbors (given by the number 6) that have
adopted already. This definition is set in line with the standard approach
on adoption rules in the literature [15].
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By repeatedly applying this update rule in an initial threshold model,
we obtain a unique sequence of threshold models, which we call a diffusion
sequence:

DEFINITION 2.5. (Diffusion Sequence) Let M = (A, N, B,0) be a thresh-
old model. The diffusion sequence Sj4 is the sequence of threshold models
Mo, My, Ms, ... such that, for any n € N, M,, = (A, N, B,,6) where B,
is given by:

BO = B and Bn+1 = B;L

Note that any such diffusion process reaches a fixed point, and that the
number of agents in the initial model gives an upper bound on the number
of updates that can be performed before reaching the fixed point:

PROPOSITION 2.1. Let Sy be a diffusion sequence. For some n € N < |A|,
we reach a fixed point M,, = M, 11 in the sequence S.

PRrROOF. The fact that there is a n € N such that M,, = M, 1 follows
immediately from the fact that A is finite and B,, C B, for all n € N.
The fact that n < |A| is given by considering the slowest possible diffusion
scenario, i.e. where |By| = 1 and only one agent adopts per round, i.e. for
each m <n €N, |B,,| =m + 1. In this case ’B\A\—ﬂ =|A4]. |

2.2. Interpretation

Threshold models and their dynamics may be interpreted in two ways. One
interpretation assumes that agents are mere automata and that their behav-
ior is forced upon them by their environment. This interpretation suits
the models that are used in e.g. epidemiology, where agents are undelib-
eratively infected through viral contagion. Under this interpretation, the
update procedure corresponds to that of a deterministic Susceptible-Infected
(SI) model. It is closely related to a deterministic Susceptible-Infected-
Susceptible (SIS) model, which also allows unadoption of the behavior in
question. An SIS model diffusion policy given by Equation 2, where the
right term in the union captures a conservative tie-breaking rule:

BIZ{G;W>e}u{a:w=eamaeg}. )

Since Equation 2 does not cause B to inflate, this alternative rule allows the
possibility of loops in behavior, i.e. where B = B” # B’. Thereby repeated
updates according to Equation 2 do not necessarily reach a fixpoint.
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Dynamics as Induced by Game Play. Alternatively, agents may be inter-
preted as rational beings aiming towards coordination with their neighbors.
In fact, Egs. 1 and 2 correspond to the best response dynamics of agents
playing an instance of a coordination game

B —-B
B|z,z|0,0
-B| 0,0 |y,y

with each of their neighbors at each timestep, under the constraint that at
each timestep, each agent may pick only one strategy to play simultaneously
in all instances. The utility of a play round for an agent a is the sum of
utilities of the individual coordination games played by a in that round.
With B the set of agents currently playing action B, B is thus a best response
for agent a iff

IN@OB| 5 IN@OSB|  IN@OB] 5 _y

. | Yy
T TN 2 IN@T & TIN@[ 2wty

Defining 6 as %ﬂ, we specifically obtain that Equation 2 captures such plays’
best response dynamics with conservative tie-breaking [26]: B’ as given by
Equation 2 is exactly the set of agents for whom B is a best response. Hence
the diffusion dynamics arising from updating a network using best response
analysis is step-wise equivalent with those given by Equation 2. Moreover,
for any 6 € [0,1], there exists coordination game payoffs that yield best
response dynamics equivalent to those of Equation 2 instantiated with the
given 0.

Equation 1, which we stick to as the foundation for the main diffusion
policies of this paper, captures the same game-theoretic dynamics, but with
two variations: First, the tie-breaking rule in Equation 1 favors adopting
the behavior over not doing so, in contrast with Equation 2’s conservative
tie-breaking.? Second, with discriminating tie-breaking, but also the added
assumption that the initial agents playing B will never stop doing so, either
do to irrationality or because they sufficiently mutually support one another
in that choice, cf. the Cluster Theorem of Section 2.4. See [15,26] for game-
theoretic details and [28] for action model-based logical treatments.

This paper focuses on the dynamics given by Equation 1, for which we
find the game-theoretic interpretation natural as a basis for rationality con-
siderations.

?Note that with a finite set of agents, the adoption threshold/coordination game payoffs
could always be chosen as to eliminate any possibility that tie-breaking need be used.
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Model Variations. There are several variations to threshold models as given
by Definition 2.3 that one may wish to consider, given the application in
mind. Numerous such exist in the literature, including infinite networks [26],
networks with non-inflating behavior adoption [26], agent-specific thresholds
[20], weighted links [20] and multiple behaviors [1]. For simplicity, we stick to
the finite threshold models defined. This also holds throughout the epistemic
extensions.

For the results presented, of these variations, only assuming the network
infinite would give rise to revisions, cf. the comments concerning finiteness
and reaching fixed points when applying predictive update polices in Sec-
tion 4. In particular, both weighted links and agent-specific thresholds may
be incorporated from the game-theoretic underpinnings of Equation 1 by
setting agents to play game with non-symmetric payoffs, possibly varying
across neighbors. This will be relevant when modeling diffusion in networks
where the relation is non-symmetric. Then a lower—or zero—weighting may
be chosen for given interactions, thus obtaining non-symmetry. Though
details should be revised, this variation would not cause significant diffi-
culties for the presented.

2.3. The Logic of Threshold-Limited Influence

This section introduces a minimal logic to express the standard notion of
threshold-limited influence introduced in the section above. To describe the
situation of a social network at a given moment, the static language needs
to capture two things: who is related to whom and who is displaying the
contagious behavior B. In this paper, both features will be encoded using
propositional variables.? To describe the change of situation of a social net-
work, the language includes a dynamic modality. This modality represents
how agents adopt the behavior of their neighbors, whenever the given adop-
tion threshold is reached, i.e., whenever enough neighbors have adopted.

DEFINITION 2.6. (Languages L) and L) Let A be a finite set and let atoms
be given by ® = {Ny : a,b € A} U {8, : a € A}. The language Ly is then
given by:

= Nabp | Ba | =9 [ ¢ A @ | ladopt]p
The formulas of £ are those of £y that do not involve the [adopt]-modality.

3Informationally, both features could be broken down using more fine-grained modelling
tools, using e.g. hybrid [39] or term-modal logical [16,27] approaches. For simplicity, we
refrain from doing so.
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Disjunction and material implication are defined in the standard way.
Ly is an extension of propositional logic with a unary dynamic modality,
denoted [adopt]. The language is interpreted over threshold models, using the
behavior set and the social network to determine the extension of the atomic
formulas. The [adopt] modality is interpreted as is standard in dynamic
epistemic logic* [3,4,6,14]: Intuitively, we evaluate [adopt]p as true in a
given model if and only if ¢ is true in the model after a given change occurs.
Here, this change is that all agents simultaneously update their behavior
according to the threshold update of Definition 2.4.

DEFINITION 2.7. (Truth Clauses for L) Given a model M = (A, N, B, 0),
Nyp, B4 € ®, and QD,K/J € ,C[]:

ME B, iff a€B

ME N iff b e N(a)

ME —p iff ME

ME AN iff ME ¢ and M E 9

M E [adopt]p iff M’ E ¢, where M’ is the updated
threshold model (Definition 2.4).

Let us also introduce some abbreviations:

Abbreviation. We introduce the formula [adopt]™ ¢ as an abbreviation which
is defined recursively:

ladopt]°
]n+1

=

[adopt]" ™ ¢ := [adopt][adopt]™ ¢

Abbreviation. We introduce the following abbreviation:

PP (/\ Noh A\ - abA/\ﬁb)

{GCNCA: G >0} \bEN bgN beG

This formula By (,) > 6 expresses that the proportion of agent a’s neighbors
who have adopted is equal to or above the threshold 6.

The following proposition captures within our language the fact (as noted
in Proposition 2.1) that all diffusion sequences stabilize after some finite

4The dynamic operators in Dynamic Epistemic Logic are taken to be model transform-
ers, they transform a given model into a new model.
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Table 1. Hilbert-style proof system Ly. In Replacement of Equivalents,
©[¥/x] is the formula resulting from replacing, in ¢, every occurence of
the subformula 1) with the formula y

Network axioms

- Nya Irreflexivity
Nap < Npg Symmetry

V Nab Seriality

be A

Reduction axioms

[adopt] Ny < Nayp Red. Ax.N
[adopt]—p «— —[adopt]p Red.Ax.—
[adopt]p A — [adopt]e A [adopt]tp  Red.Ax.A
ladopt] By < Ba V Bn(a) > 0 Red.Ax.(8
Inference rules

From ¢ and ¢ — 1, infer ¢ Modus Ponens
From ¢, infer [adopt]y Necidopt]
From ¢ and ¢ < x, infer ¢[1)/x] Repl. of Equiv.

number of updates, illustrating how our language allows for capturing fea-
tures of threshold model dynamics, such as stability and stabilization of the
diffusion sequence:

PROPOSITION 2.2. Let M = (A, N, B,0) be a threshold model. There exists
n € N < |A| such that, for any v € L:

[adopt]" ¢ « [adopt]"*
PROOF. As noted in the proof of Proposition 2.1, in the diffusion sequence
Sm, for some n € N < |A|, M,, = M,,+1. Hence M,, and M, are guaran-
teed to satisfy the same formulas, whereby M = [adopt]™¢ < [adopt]" L.
|

Axiomatization. We obtain an axiomatization of the logic for threshold
models and their update dynamics by using the standard method of reduc-
tion rules from dynamic epistemic logic [3,4,6,14].

DEFINITION 2.8. (The Logic of Threshold-Limited Influence, Lg) The logic
Ly is comprised of any axiomatization of the propositional calculus and of
the axioms and derivation rules of Table 1, for a given threshold 6 € [0, 1].

The static logic consists of the axioms of propositional logic, the net-
work axioms of Table 1 and the rule of Modus Ponens. These capture the
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constraints imposed on the networks. In the dynamic part of the logic, we
define rules that reduce formulas that contain the [adopt] modality to for-
mulas without it. This is possible as the update procedure is deterministic:
all the information required to determine the update threshold model is
present in the current model. Hence the next state is pre-encoded in the
present state.

As the [adopt] modality only affects the extension of B, the reduction
axioms are trivial in all cases except those involving (,. The correspond-
ing reduction axiom, Red.Ax.3, relies on the mentioned pre-encoding. The
axiom Red.Ax.( states that a has adopted B after the update just in case
1 (she had already adopted it before the update or 2) the proportion of her
neighbors who had already adopted it before the update was above thresh-
old 6.

DEFINITION 2.9. (Cp) Let the threshold 6 € [0,1] be given. The class of
threshold models Cy contains all and only models with the same threshold 6.

For any given threshold 6 € [0, 1], the minimal logic Ly is sound and complete
with respect to the corresponding class of models Cy:®

THEOREM 2.1. (Completeness) Let 6 € [0,1]. For any ¢ € L,

l:(fe ‘2 iﬁ l_Ls 2

PROOF. Soundness Let M = (A, N, B,0) be an arbitrary threshold model
with a,b € A. Then M satisfies Irreflexivity (Symmetry/seriality) directly
by the semantics and the assumption of irreflexivity (symmetry /seriality)
of the network. M =ladopt]|Nu, < Ngp, as the adoption operation never
alters the network. Soundness of Red.Ax.— and Red.Ax.A may be shown
straightforwardly using induction on the length of formulas.

To see that M satisfies Red.Ax.3, let M’ be the adoption update of
M. Then M = [adopt]B, iff M' |= B, iff a € B’ = B U{peA: ¥ @02 >0} iff
M = B, or a €{peA:XQ5E >0}, A syntactic decoding following Definition 2.3
of the large, right-hand disjunct of Red.Ax.3 (called By (4)>¢) shows that

it is satisfied iff a €{pea:XQ)5E>0}: The outer disjunction requires/ensures

the existence of two sets of agents, G and A/, such that G C N and % > 0.
The inner conjunction in Definition 2.3 is satisfied iff N' = N(a) and G C B.
Hence ¢ is satisfied iff 3G C N(a) N B : % > 0 iff |A|71(\?()O)F| > 0 iff

a €{beA: N5 >0}, Hence M = [adopt] B, iff M |= B, or M = B (a)>0-

5The proof system and model class are further parameterized by the set of agents A
used to define the corresponding language.
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Completeness The proof goes via translation of the dynamic language into
the static part of the language, in the usual way (see e.g. [14, Ch. 7]). =

2.4. Clusters and Cascades

An agent adopting a new behavior may influence some of her neighbors
to adopt it at the next moment, which in turn may cause further agents
to adopt it, and so on. Such a chain reaction is termed a cascade in the
literature (see e.g. [15, Ch. 19]), and a cascade is said to be complete when
it results into a state where all agents have adopted the new behavior.
Because the above given updates of threshold models always reach a fixed
point, any cascade will eventually stop. However, a cascade may stop before
all agents have adopted, i.e. without being complete. The following recalls
a known result about how cascading effects are constrained by the network
structure and shows how the suitable constraint may be captured by the
minimal logic Ly.

First of all, our language can express that a diffusion sequence will reach
a complete cascade, given the upper bound on the number of updates before
stabilization of the diffusion process noted in Proposition 2.1:

DEFINITION 2.10. The sentence abbreviated by ‘cascade’ expresses that all
agents will have adopted eventually:

cascade = [adopt] A1~ /\ Ba
acA

Some parts of a network structure may be more “dense” than others.
Strongly connected groups of agents are more resilient to external influence.
E.g., a tightly knit group may be hard to convert to a particular opinion if
all its members support one another in disagreeing with the opinion. Tightly
connected components of a network might therefore block the diffusion of
a behavior when it stems from outside this component. Briefly put, dense
components of a network may prevent complete cascades and the denser a
group, the better it resists change induced from the outside. The required
precise notion of a “dense” group is that of a d-cohesive set [26], also referred
to as a cluster of density d [15]. A cluster of density d is a set of agents
such that for each agent in the set, the proportion of her neighbors which
are also in the group is at least d.

DEFINITION 2.11. (Cluster of density d) Given a network (A, N), a cluster
of density d is any group C' C A such that for all a € C,
[N(a) " C]

N =
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o0—@

Figure 1. A social network with a cluster of density %

Notice that any network will contain at least one cluster of density 1, namely
the group A, and that each singleton {a} C A is a cluster of density 0 (by
irreflexivity).
Example: Clusters. Let M be the model illustrated in Figure 1, with B =
{d}. In this model, C' = {a,b, ¢} is a cluster of density Z, in which no member
belongs to B.

The language £ can express the existence of a cluster: if C' is a cluster of
density d then for each a in C, there is a big enough subset of C' which are
a’s neighbors.

PROPOSITION 2.3. The group C' is a cluster of density d in (A, N) iff M =
(A, N, B,0) satisfies

/\ V (/\ A ab) (3)

acC {ggNgA:\glm?\Zd} beN b§£./\/

PROOF. Left to right: let M = (A, N, B,0) and assume C' is a cluster of
density d in (A, N). Then by definition, for all a € C, “\(](\7()5'0‘ >d. As M
is based on (A, N), {b: M ENu} = N(a) for all a € A. Let a be given and
pick N = N(a) and G = N(a) N C. Then % > d. Given the choice of N,
M E Npen Nav A Nygnr 7Nab. So M satisfies (3).

Right to left: Assume that M satisfies (3) for some C' C A and some
d € [0,1]. Then for each a € C, there is are sets G and N with G C N and

C = T
SN = d, such that ' = {M |= Nup} = N(a). Hence 3 = 957 > d.

AsGNC C N = N(a), u\lfj(\?()(gfl > d. As a was arbitrary from C', C is indeed

a cluster of density d in (A, N). ]

Given Proposition 2.3, it is easy to see that the sentence below charac-
terizes the existence of a cluster of density d among agents who have not
adopted (abbreviated 3C>4—0):
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3Csa-8:=\/ N\ \/ (/\ Nay A J\ =Ny A /\m)

CCAaeC {QQNQAW‘Q?\Zd} beN b%]\/’ beg

Note that we can express in the same way that there is a cluster of density
greater than d, by replacing > by the strict > in the formula (abbreviated
C~a=P).

Example: Clusters, continued. The model illustrated in Figure 1 contains
a cluster C' = {a,b,c} of density %, such that no agent in C' has adopted.
Hence, the model should satisfy 3C' 2 =0

VA V (/\NabA/\ﬂ abA/\ﬁﬁb) (4)

CCAacC {ggNgA\CTm?\E%} beN bgN beg

To verify this, assume C is a group that satisfies the outmost disjunction.

Then for each a € C there is a G and N such that |g|;/?| > % for which M

satisfies
/\Nab/\ /\_‘ ab/\/\_'ﬁlr (5)

beN b¢N beg

To see that M satisfies (5), regard first agent ¢, for whom the appropriate
N is {a,b,d}. As |IN| = 3, we must identify a group G C C with |G| > 2 such
that for all b € G, M |=N. Such a G exists, being {a, b}. Finally, indeed
M E—=B4 N =0, and hence the conjunct for ¢ is satisfied. Similar reasoning
shows that the conjuncts for a and b also hold. This gives us (4).

The Cluster Theorem. The following theorem from [26], [15, Ch. 19.3] char-
acterizes the possibility of a complete adoption cascade in a network:

Given a threshold model M with threshold 6 # 0 and a set B C A of
agents who have adopted, all agents will eventually adopt if and only
if there does not exist a cluster of density greater than 1 — 6 in A\ B.

As both the complete cascade and the existence of the relevant clusters are
expressible in £y, the cluster theorem can also be encoded in our setting, in
the following way:

Let M = (A, N, B,0) with 6 # 0. Then
M = cascade — =3C51_g—0.
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2.5. Logics for Generalizations of Threshold Models

So far, we have considered the “simplest” possible network structures: the
networks are finite, symmetric, irreflexive and serial. The constraints of sym-
metry and irreflexivity could easily be relaxed in the initial definition of
threshold models (Definition 2.3) to generalize the logics to different types
of social relationships (for instance a hierarchical network).

For simplicity, we work with uniform thresholds. Obtaining logics for
settings without this uniformity constraint is unproblematic: (1) define 6 not
as a constant but as a function assigning a particular threshold to each agent;
ie., set §: A — [0,1] in the definition of threshold models (Definition 2.3);
(2) replace 6 by 6(a) in the definition of the update (Definition 2.4) and
in the reduction axiom Red.Ax.3 (in Table 1). This will generate a logic
for each such function 6, that is, for each distribution of thresholds among
agents.

The logical setting may also be generalized to capture the spread of sev-
eral behaviors and their interaction. This amounts to: (1) modify the defini-
tion of threshold models (Definition 2.3) to let B be a finite set of behaviors
(B = {B1,Bs,...B,}) and define 0 : A x B — [0,1]; (2) Relativize the
definition of the update to each behavior B;; (3) extend our set of atomic
propositions: ® = {Ny : a,b € A} U{Bin:a € A,i € 1,...n}; (4) relativize
the semantic clause in the obvious way: M E (;, iff a € B;, and replace
the reduction axiom Red.Az.3 by Red.Az.3; accordingly. The “signature”
of the resulting logic will then be given by [0, A, B]. Such a logic allows rea-
soning about the diffusion of a fixed number of behaviors, given a specific
distribution of thresholds for each behavior to each agent, for any particular
network structure.

Furthermore, we consider the proportion of neighbors who have adopted
as the only relevant factor for decision making. This makes every neighbor
as influential as any other. To generalize, weighted links representing differ-
ent “degrees of influence” could be used instead. The condition for being
influenced into adopting would become: the weighted sum of my neighbors
which have adopted is at least 6. Alternatively, we could fix an ordering
of neighbors of each agent a with b >, ¢ stating that agent b influences
agent a at least as much as agent ¢ does. Based on such an ordering, one
possible update policy would be that a adopts when a given proportion of
>q.-maximal agents have adopted.

Additional alternative policies will be discussed in Section 5. These will
also involve epistemic considerations, the topic to which we turn next.
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Figure 2. A situation of uncertainty. Agent a cannot tell whether world

w or world v is the actual one, as indicated by the dashed line (when rep-
resenting indistinguishability relations we omit reflexive and transitive
links). Hence, a does not know whether ¢ has adopted or not. Assume
that the threshold is § > 1/2 and that v is the actual world. Then,
according to the ‘threshold model update’, a should adopt—but a does
not know that!

3. Epistemic Threshold Models and Their Dynamic Logic

By the definition of the above given update on threshold models, agents react
to their environment: they are always influenced by the actual behavior of
their direct neighbors. In many situations, this “nomothetic” update style
seems to pose unrealistic requirements. The update requires that agents
act in accordance with the facts of others’ behavior, even in the face of
uncertainty. Hence, the above threshold model update may require of agents
that they act in accordance with information that they do not actually
possess. For an example, see Figure 2.

To accommodate this shortcoming, we extend the standard threshold
models with an epistemic dimension and define a refined adoption policy
where agents’ behavior change depends on their knowledge of others’ behav-
ior. We moreover define a logical system suitable to reason about epistemic
threshold models and their dynamics.

To add an epistemic dimension to threshold models, we add for each
agent a subjective epistemic indistinguishability relation, as illustrated in
Figure 2. Or equivalently, following [2], each agent is given an “information
partition” over a given set of possible worlds. Each information cell in this
partition indicates the uncertainty of the agent: i.e. the things she cannot
tell apart. This modeling of uncertainty is commonplace in logic, economics
and computer science.

3.1. Epistemic Threshold Models

The most general version of threshold models with an epistemic dimension
that we will work with in this paper is the following:
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DEFINITION 3.1. (Epistemic Threshold Model (ETM)) An epistemic thresh-
old model (ETM) is a tuple M = W, A, N, B,0,{~q}aca) where

e W is a finite, non-empty set of possible worlds (or states),
e A is a finite non-empty set of agents,

e ~,C W x W is an equivalence relation, for each agent a € A,

e N: W — (A— P(A)) assigns a neighborhood N(w)(a) to each a € A in
each w € W, such that:

—a¢ N(w)(a) (Irreflexivity)
~be N(w)(a) & ae€ N(w)(b) (Symmetry)
~ N(w)(a) # 0 (Seriality)

e B: W — P(A) assigns to each w € W a set B(w) of agents who have
adopted.

e 0 €0,1] is a uniform adoption threshold.

To reason about the impact of knowledge on diffusion in network situa-
tions, we want to impose limiting assumptions regarding the agents’ uncer-
tainty. It is for example natural to assume that agents know who their direct
neighbors are, though cases exist where it is natural that agents know more
about the network. Agents may know who the neighbors of neighbors are, or
maybe the whole network is even common knowledge. Likewise, the uncer-
tainty about agents’ behavior might be subject to various constraints: agents
may know the behavior of their neighbors, of their neighbors’ neighbors, of
everybody, etc.®

One way to impose restrictions on uncertainty is by giving agents an ego-
centric “sphere of sight”, corresponding to how far they can “see” in the
network, assuming that if they can see further, they can see closer. We will
say that an agent has sight n when she can “see” at least n agents away, i.e.,
when she knows at least both the network structure and the behavior of all
agents within distance n. To provide a formal definition, we first fix what is
meant by “distance n”:

DEFINITION  3.2. (n-reachable, n-distant) Let be given an ETM
M=W,A N,B,0,{~}aca) and let n € N. Define N" : W — A — P(A)
as follows, for any w € W and any a,b,c € A:

SUncertainty concerning the adoption threshold could also be considered, as one
reviewer points out. Mathematically, this would be straightforward, and if our remain-
ing assumption below are kept in effect, nothing hinders this extension. We omit it in the
name of simplicity, cf. Section 2.2.
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o N%w)(a) = {a}
o N (w)(a) = N"(w)(a) U{b e A:3ce N"(w)(a) and b € N(w)(c)}

If b € N*"(w)(a), then b belongs to the set of agents that a has within her
n sight at world w. Morever, if b € N"(w)(a) we say that b is n-reachable
from a in w.

DEFINITION 3.3. (Sight n Model’) An ETM M = W, A, N, B,0,{~.}acA)
of sight n is an epistemic threshold model such that, for n € N and for any
a,be Aand w,v e W :

o If w~, vandbe N"(w)(a), then b € B(w) iff b € B(v) (agents know
the behavior of others at least up to distance n).

o If w~,vand b € N !(w)(a), then N(w)(b) = N(v)(b) (agents know
the network at least up to distance n)

In other words: in an ETM of sight n, the structure of the network and
the others’ behavior are known at least up to distance n, and this is common
knowledge. Note, though, that the n sight is common knowledge does not
imply that all agents have equal sight: Some may see further.

3.2.  Knowledge-Dependent Diffusion

To remedy the problem of agents acting on information they may not pos-
sess, we introduce a revised adoption policy. It captures the intuitive idea
that an agent should only be influenced by what she knows about other
agents around her. This amounts to a knowledge-dependent adoption pol-
icy: agents adopt whenever they know that enough of their neighbors have
adopted already. We call this update policy informed update:

DEFINITION 3.4. (Informed Update) Let M = (W, A, N, B,0,{~s}aca) be
an ETM with sight n. The (n sight) informed adoption update of M pro-
duces results in an ETM M* = (W, A, N, B*,0,{~%},c4) where for all
a € A and all w,w’ € W, we put:

o B (w) = B(w)U {a e A:Vu~, w% > 9} and

o w~Lw iff i) w~,w andii) Vb € N"(w)(a): b € B'(w) & b€ Bi(uw').

"Note that we lump two notions of sight under one heading. A more general definition
would be of sight (n,m), where n specifies the sight of network structure, while m specifies
sight of behavior.
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Figure 3. Adoption de re versus adoption de dicto. We illustrate an ETM
with threshold 6 = 1/2 and two possible worlds. Should b adopt or not?
He knows de dicto that enough neighbors have adopted, but he does not
know so de re; he knows that at least half of his neighbors have adopted,
but he doesn’t know which half

The first condition tells us that the new set of adopters at world w includes
the previous set of adopters B(w) (hence agents do not give up their previ-
ously adopted behavior) and it includes also all agents who, as far as they
know, are certain of the fact that enough of their own neighbors (given by
0) have adopted already. The second condition ensures that the informed
update of an ETM with sight n is again an ETM with sight n, i.e., agents
can still see the (new) behavior of n-distant neighbors after the update.

Updating de Dicto and Updating de Re. The above informed update policy
is defined using de dicto knowledge of others’ behavior: if an agent knows
that enough others will adopt, so should she, ignoring that she might not
know exactly who will adopt. For an illustration, see Figure 3.

A de re update is definable by setting

i) — Blw " beA: Vv~ w,|N(v)(a) N B(v)|
B'(w) = B( )U{ cA: N (o) (@) 20}.

While both rules are interesting, in the remainder of this paper we opt for
the de dicto version as it expresses in a stronger sense that agents can fully
utilize all their information while staying in the spirit of threshold models.

Learning the Distribution. When performing informed updates, agents may
learn about the initial distribution of behavior in the network. Figure 4
provides an example. The learning occurs as agents’ information cells may
be restricted when other agents change their behavior. If such sufficient such
restrictions occur, an agent may be left with a singleton information cell that
allows only for a unique initial state. In this case, the agent will have learned
the initial distribution. This occurs in the initial state wy of Figure 4, but
not in wi. The information conveyed through perceiving the dynamics of the
informed update policy may thus teach agents of the network at distances
greater than their initial sight.
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Figure 4. The learning process for agent d (bottom center) under
informed adoption, in an ETM with threshold 6 < % and sight 1. With
sight 1, the ETM contains the 8 depicted possible worlds/states. The
last states to reach fixed points at time 5 are states w2 and wy. Epis-
temic relations are drawn only for d to simplify representation. Note the
development of the indistinguishability relation from Mg to Ms: as the
updated ~/; is a restriction of ~ 4 to states where both ¢ and e’s behav-
iors are identical, d learns about the initial distribution. Learning may
or may not be complete: compare the development of states w1 and wa

Implicit Information and Redundant Knowledge. Under some epistemic
conditions, the epistemic and non-epistemic diffusion policies are equivalent.
If each agent always knows at least who her neighbors are and how they are
behaving, then the two policies give rise to the same diffusion dynamics,
in the following sense: the diffusion dynamics resulting from the informed
update on an ETM reduces to the diffusion dynamics under the initial (non-
epistemic) update applied to each possible world of the ETM. This is the
content of Proposition 3.1 below.

Proposition 3.1 relates two important insights. The first is that standard
threshold models make the implicit epistemic assumption that agents know
their neighborhood and its behavior. The second is that knowledge about
more distant agents is redundant as it will not affect behavior.

To prove the result, we first define how to generate a (non-epistemic)
threshold model from a possible state of an epistemic threshold model:

DEFINITION 3.5. (State-Generated Threshold Model (SGM)) Let an ETM
M= (W, A N,B,0,{~ .} aca) be given and let w € W and a € A. The
state-generated threshold model M(w) = (A, Npq(w), Bar(w), ) is given by:

Npgw)(a) = N(w)(a), and
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a € BM(w) = ac B(w)

ProposITION 3.1. Let M = W, A N,B,0,{~ ,}aca) be an ETM and
w € W. Let M* and M(w) be respectively the informed update and state-
generated models of M. Let M*(w) be the state-generated model of M* and
let M(w)" be the non-epistemic threshold update of M(w). Then

if M has sight n > 1, then
Mi(w) = M(w)'.

PROOF. As neither the non-epistemic threshold update nor the informed
update changes the set of agents, the network or the threshold, it need only
be shown that B*(w) = B(w)" where Bi(w) is the behavior set of M®(w)
and B(w)’ is the behavior set of M(w)’.

Assume a € B(w). Then it follows that a € B(w)" within M?, by mono-
tonicity of the informed update. Hence we also obtain a € Bay:(y) in Mt (w)
by Definition 3.5 of SGMs. From a € B(w) it also follows that a € Bay(.) by
defintion of SGMs. By monotonicity of the non-epistemic threshold update,
we have a € B, in M(w)".

Assume that a ¢ B(w). Then a ¢ Bay(y) by Definition 3.5 of SGMs. By

definition, a € B(w)® iff Vo ~ qw : W > 6. As M has sight n > 1,
Vo ~ qw, N(v)(a) = N(w)(a) and b € N(w)(a) implies b € B(w) < b €
B(v). Hence NGB > As N(w)(a) = Nagw)(a) and B(w) = B,

[N (w)(a)]

. Naq(w) (@) |UBAf (w0 .
it follows that | MI(JV/)\EW)J)(&)JIM( L >0 iffa e Bam(w)- u

Proposition 3.1 provides a precise, but partial, interpretation of the
dynamics of non-epistemic threshold models as a process of information-
dependent behavior diffusion. As witnessed by its proof, only the immedi-
ate neighborhood of agents matters for the adoption behavior in a thresh-
old model. A next step is to investigate how this changes when agents are
equipped with predictive abilities; see Section 4.

The interpretation is partial, since the restriction to the case of sight
n > 1 does not fully characterize the standard threshold dynamics as given
in Definition 2.4. In the case of no sight (n = 0), the agent may have
uncertainty about some neighbor b’s behavior, and might not even know
exactly who are all her neighbors; but she might still know that a large
enough proportion of these neighbors have adopted B: in which case she
will still update according to the standard threshold dynamics!

Situations in which neighbors lack knowledge of some direct neighbors’
behavior are interesting in that they may cause the diffusion process to slow
down compared to the standard update policy:
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PROPOSITION 3.2. There exists an ETM M = W, A, N,B,0,{~ ,}aca)
with sight n < 1 such that

Biw) € Bamw)

where M® and M(w) are respectively the informed update and state-gen-
erated models of M, and M (w) is the state-generated model of M' and
M(w)" is the non-epistemic update (Definition 2.4) of M(w).

PROOF. By construction: let M = W, A, N, B,0,{~ ,}aca) with W =
N B N B

(1,0}, 0 ~q v, N(w)(a) = N(e)(a) but 20050 55 SN0

Then a g BM"(w)’ but a € BM(w)/- |

Figure 5 illustrates this “slower” diffusion process.

3.3. Knowledge and Cascades

In Section 2.4, we have shown how our language can capture complete cas-
cades and the existence of clusters able to block diffusion, as captured by
the Cluster Theorem: a cascade will be complete if and only if the network
does not contain a cluster of non-yet-adopters of density greater than 1 — 6.

Given Proposition 3.1 above, the cluster theorem still holds for any epis-
temic threshold model with sight at least 1. Moreover, the existence of a
relevant cluster will still block a cascade under the informed update policy,
independently of how much agents know. However in general, considering
any epistemic threshold model with any sight, the cluster theorem cannot
be maintained as it was stated. What we observe is that the left to right
direction of the cluster theorem still holds for epistemic threshold models
with sight less than 1: indeed, if a complete cascade occurs, then the net-
work does not contain a cluster of density greater than 1 — 0. However, the
converse does not hold in these models with sight less than 1. We briefly
explain this point in more detail. Given Proposition 3.2 above, we know that
the diffusion process, via the informed update rule, in an ETM with sight
< 1 might be “slower” than the process based on the non-epistemic thresh-
old update policy. Indeed, the lack of knowledge may for instance block a
cascade, despite the absence of a cluster-obstacle. Figure 6 illustrates this
difference.

3.4. The Epistemic Logic of Threshold-Limited Influence

To reflect the epistemic dimension in a formal syntax, the language L is
extended by adding the standard K, modalities reading “agent a knows
that”, for each agent a € A.
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Figure 5. A diffusion process “slowed down” by the uncertainty of agent
b, with threshold 6 = % Consider the situation in world w: agent a has
adopted, but agent b does not know it. Therefore, agent b will not adopt
immediately. The diffusion according to the informed update policy in
state w will only stabilize after applying the informed update rule twice.
Note that under the non-epistemic threshold update, or if agent b knew
whether a has adopted, the situation depicted in w would stabilize after
only one step (i.e. the non-epistemic threshold update of Mo(w) gives
us directly Mz (w))

Figure 6. A diffusion process “blocked” by the uncertainty of agent b,

with 0 = % Consider the situation in world w: agent a has adopted, but
agent b does not know it. Therefore, agent b will not adopt (under the
informed adoption rule). Note that under the non-epistemic threshold
update, or if agent b knew that a has adopted, the situation depicted in
state w would evolve into a complete cascade
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DEFINITION 3.6. (Languages Ly and Lk ) Let the set of atomic proposi-
tions be given by {Ny, : a,b € A} U{B, : a € A} for a finite set A. Where
a,b € A, the formulas of L are given by

@:=Nap | Ba| ~0 |9 Ne| Kaup | [adopt]p

The formulas of the “static” fragment Ly are those of Ly that do not
involve the [adopt] modality.

As standard, we can use the given language to define the other Boolean
operators for disjunction and implication and introduce (adopt) as the dual
of [adopt].

DEFINITION 3.7. (Semantics for Ly with Informed Update) Formulas o, 1)
from L are interpreted over an ETM M = (W, A, N, B, 0, {~a}ac4) With
sight n, and w,v € W:

M, w E Ba iff a € B(w)

M, w = Ngp iff be N(w)(a)

M,w = —p iff M,wk ¢

MwE AP iff M,w = ¢ and M,w =1

Mw = Ky iff for all v € W such that v ~4 w,
M,v =

M, w [= [adopt]p  iff M’ w = ¢, where M’ is the informed
update of M as specified in
Definition 3.4.

3.4.1. Axiomatization In the specification of the epistemic reduction
axioms, the following two syntactic shorthands are used:

Abbreviation. For any k € N > 1, we introduce the abbreviation N, by
induction, with the formula N¥ expressing that b is k-reachable from a.

1. _
Nb‘_ ab

NEFY = NEV ) (NE A Ne)
ceA

Abbreviation. For B C A, we introduce the abbreviation B = N¥37 refering
to the set of agents which are 1) k-reachable from a and 2) will have adopted
after the next update:
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Table 2. Axioms and rules for the Epistemic Logic of Threshold-Limited
Influence for sight n. Subscripts a, b are arbitrary over A. Entries marked
(x) are new or modified relative to Table 1

Network axioms

- Nga Irreflexivity

Ny < Ny, Symmetry

\V Nab Seriality

be A

Knowledge axioms

Kop — (¥x) Ax.T

Kop — K Ko (x) Ax.4

Koo — K- Kyp (x) Ax.5
Knowledge-network axioms

(N2 A By) — Kofp (x) Known Behavior
(N A Npe) — Ko Npe (¥) Known Neighbors
Reduction axioms

[adopt| Nap < Nap Red.Ax.N
[adopt]—p «— —[adopt|p Red.Ax.—
[adopt] A1) — [adopt]p A [adopt] Red.Ax.A
ladopt] B < Ba V Ko(Bn(a) > 0) (¥x) Ep.Red.Ax.(
[adopt]

adopt) Koo — \| (B=NIBT ANK, (B =N, — [adopt]p))
BCA
(¥) Ep.Red.Ax.K sight.n

Inference rules

From ¢ and ¢ — 9, infer ¢ Modus Ponens
From ¢, infer K,p for any a € A (%) Nec.K,

From ¢, infer [adopt]p Nec.[adopt]
From ¢ and 9 < y, infer ¢[¢/x] Repl. of Equiv.

(B = Nfﬁ'*') = /\ (Nfb A [adopt]ﬂb) A /\ (Nfb — [adopt]ﬁﬁb) .
beB be A\B

Using these shorthands, the axioms for Epistemic Threshold Models and
the dynamics of Informed Update are given in Table 2.

The reduction law Ep.Red.Az.3 states that a has adopted § after the
update just in case she had already adopted it before the update, or she
knew that she had a large enough proportion of neighbors who had already
adopted it before the update. Ep.Red.Az.K.sight.n captures that an agent
knows that ¢ will be the case after the update if, and only if, she knows



Logics of Diffusion and Prediction in Social Networks 513

that, if those very agents who actually are going to adopt do adopt, then ¢
will hold after the update.

DEFINITION 3.8. (Epistemic Logic of Threshold-Limited Influence) The logic
Ly, is comprised of the axioms and rules of propositional logic and the
axioms and rules of Table 2.

DEFINITION 3.9. (Class: Cyy,) For 6 € [0,1] and n € N, the class Cy,, consists
of all ETM’s with threshold 6 and sight n.

The logic Ly, is sound and complete with respect to the corresponding
class of models Cyy,:

THEOREM 3.1. (Soundness, Completeness, Expressivity and Decidability)
Let 0 € [0,1] and n € N. For any ¢ € Ly,

):Cen ¥ fo l_L9n P

The language Ly, endowed with the informed update semantics, has the
same expressivity as its static counterpart Ly . Moreover, Ly, is decidable.

PROOF. Soundness Let M = W, A,N,B,6,{~,}aca) be an epistemic
threshold model with sight n. Let a,b € A and w,v € W. Then (M,w)
satisfies the S5 axioms as all ~, are equivalence relations and satisfies the
axioms reoccuring from Table 1 for the same reasons non-epistemic thresh-
old models satisfy them. To see that (M, w) satisfies Ep.Red.Ax.(3, let M?
be the informed update of M. Then M,w [= [adopt]3, iff M w = 3,

iffaEBi(w):B(w)U{bGA:vawa20} iff M,w = B,

or a €{beA:vv~yw NS>, Using the same syntactic decoding as in
the proof of Theorem 2.1, we obtain that a G{bGA:VvawWZO}
ifft Myw | K, (BN(G) > 9). Hence M, w = [adopt]3, iff M,w = B, or

M, w ): K, (ﬁN(a) > 9)

For Ep.Red.Ax.K .sight.n, let again M’ be the informed update of M.
Then

Maw V (B=NgB%) N Ki((B=Nuf*)— [adopt]p))

BCA
iff
BC A Muw e (B= NG A K (B=Nag+) — adopt)e)
iff

ABCA: MwE= A (NI Aladopt]By) A N\ (NI — [adopt]—=5,) and
beB be A\B



014 A. Baltag et al.

M,w =
Kq (( N (NG Aladopt]Be) A N (NG, — [adopt]ﬂﬁb)> - [adopt]so>
beB be A\B
iff

IBC A: B = N"(w)(a) N B* and
for all v ~, w, if B= N"(v)(a) N B, then M* v = ¢
(%)
iff
dBC A:B=N"(w)(a)N B and
if B= N"(w)(a) N B*, then M*, w = K,
(from (%) as M is sight n, so N*(v)(a) N B* = N"(w)(a) N B for all
v~ W)
iff
Mt w = Ky
(as such a B always exists)
iff
M, w = [adopt| K .

Completeness (sketch) It can be shown by induction that for all ¢ € Lk,
there exists a ¢’ € Lk such that Fy , ¢ < ¢'. Completeness then fol-
lows from the standard proof of completeness for S5 over Kripke models
with equivalence relations and the straightforward insight that the network
axioms characterize the imposed network conditions.
Ezxpressivity and Decidability (sketch) May be shown by the reduction
axioms. [ |

4. Prediction Update

In defining our informed update rule based on epistemic threshold models,
we ensure that agents do not act on information they do not possess. Such
agents are however still limited, in that they do not take all their available
information into account. This section investigates effects of agents that are
allowed to reason about more than only the present behavior of the network.
In particular, we focus on providing agents with predictive power.

Consider the ETM illustrated in Figure 7, with a given dynamics that
runs according to a non-epistemic or informed adoption policy.
If one assumes that agents (nodes) are not merely nomothetically influ-
enced by their neighbors, but rather are rational agents seeking to coordi-
nate behavior with their neighbors [26], the dynamics in Figure 7 seems to
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Wyt W, W,y: Ws: Wyt

Figure 7. An ETM with no uncertainty about the actual state w, devel-

oping according to informed update. B is marked by gray, and a thresh-
old 6 = 1/2 is assumed. At time O (wo), only a has adopted. According
to informed adoption, b adopts at time 1. At time 2, ¢ also adopts the
behavior, etc.

miss the target. In particular, as the network and behavior distribution are
known to ¢ (and if the new behavior is considered the most valuable), the
choice of ¢ not to adopt during the first update is irrational. As ¢ knows that
a has adopted, he knows that b will adopt during the next update round.
Hence c also knows that he will successfully coordinate with more neighbors
and thus be better off in round 1 if he, too, has chosen to adopt. To represent
this “predictive rationality” we define a new, predictive, update mechanism.

Prediction Update as the Least Fixed Point. In defining “prediction update”,
we make use of the notion of a least fixed point. This is necessary because
of the circular character of prediction update: an agent adopts based on the
predicted behavior of her neighbors, but that behavior is in its turn based
on their predictions about the first agent’s behavior (among others), etc.

This fixed point may be approximated using a chain of lower level pre-
dictions. The intuitive idea of the approximation may be illustrated using
Figure 7:

Consider agent d’s reasoning about the behavior of agent ¢, with d
assuming that ¢ acts in accordance with the (non-predictive) informed
update policy. Then d may predict that ¢ will adopt during the second
round of updates. Hence, as d seeks to coordinate with ¢ and e and has
an adoption threshold of # = 1/2, d may act preemptively: To maximize
the number of rounds in which she has adopted if a 6 fraction of
neighbors have adopted, d may update already in round 2, together
with c.

In this case, d may be thought of as a level I predictor: She assumes
no-one else makes predictions, that the others are of level 0. However,
d may come to think that c is as smart as she is, i.e., that also c is a
level 1 predictor. Assuming this, d now foresees that ¢ will not wait
till round 2 to adopt, but will instead adopt B already in round 1;
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based on this prediction about ¢’s predictions, d may now also adopt
in round 1. In this case, d is a level 2 predictor, etc.

If this reasoning is pushed to its fixed point, it will “catch up with itself”: in
the fixed point, every agent will be a level w predictor, predicting under the
assumption that all others are the same. This is the trick we use to ensure
that agents draw the most powerful conclusion available.

Common Knowledge of Predictive Rationality and of Complete Information
Use. Prediction update incorporates two epistemic assumptions. One is that
it is common knowledge that all agents act in accordance with the prediction
update policy. This assumption means that agents do not only predict the
systems behavior as if everybody else was acting in accordance with informed
update. Rather, agents foresee the behavior of other predictors.

The second assumption is that it is common knowledge that predictors
use all their available information (about the network structure, the current
behavior spread and information available to others) as far into the future
as possible when determining their next action.

Prediction Update Preliminaries. Before we define the prediction update, a
few preliminaries are required. An example of prediction update is given in
Figure 8 which follows the definitions.

DEFINITION 4.1. (The Lattice of Behaviors and the Informed-Update Map)
For a given ETM M = W, A, N, B,0,{~4}aca) let P(A)" be the set of
all possible “behaviors”, i.e. all functions f : W — P(A). We can convert
this set into a lattice, by defining a partial order < on P(A)"Y, given by:

f=ge flw) Cg(w)
The informed-update map is a function
I'p: P(A)Y — PA)Y,

mapping any behavior f € P(A)"Y to some behavior I'g(f), given by, for
all w e W,

I'p(f)(w) = B(w)U {a €A: Vv ~, w, [N(w)(a) N f(v)] > 9} .

[N (v)(a)l
LEMMA 4.1. Let M, P(A)"Y, < and T'p be as in Definition 4.1. Then

(1) (P(A)Y, =) is a finite, and hence complete, lattice.

(2) Informed update T'p is an order-preserving (monotonic) map.
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PROOF. (1) For any finite set A, (P(A),C) is a finite and hence complete
lattice with the order given by the set-theoretic inclusion. If (L,C) is a
finite lattice and W a finite set, then (LYY, <) is also a finite lattice when
LYW = {f|f : W — L} and f < g iff Yw € W, f(w) C g(w). Hence, given
that W is a finite set, also (P(A)", <) is a finite lattice with the order given
by definition of <. Every lattice over a finite set is also complete.

(2) Let f, f € P(A)Y, and let f < f’. Hence YVw € W, f(w) C f'(w). Pick
an arbitrary v € W. Then

Ts(f)(w) =B(u) U {a N OO YGRS 0}

[N (v)(a)]

/ o IN(@)(@) N f(0)]
Ta(f)(u) B(u)U{aEA.VU a U, N 20}.
Let the second terms of the unions be denoted A and A’, respectively.
For all veW, as f(v) C f'(v), WEH implies WEO.
Hence A C A, so T'p(f)(w) < Tp(f')(u). As u was arbitrary,
I's(f) < Tpr(f’"). Hence I'p is order-preserving. ]

DEFINITION 4.2. (Least Fized Point) Let M = W, A, N, B,0,{~,}aca) be
an ETM, and P(A)", < and I'p be as in Definition 4.1. The least fived point
of I'g, denoted by 1£p(I'g), is the unique behavior x € P(A)"Y such that

I'p(r) =, and
vy € P(A)Y, if Tp(y) =y, then z <y

THEOREM 4.1. (1fp Existence, Uniqueness and Approximation) Let be given
M, (P(AY, =) and T'g as in Definition 4.1. Then 1£fp(I'g) exists. More-
over, this least fized point is unique, and it can be reached by finite iterations
of the informed-update map starting on the bottom element of the lattice.
More precisely: if we put

I'% = 1, where L(w) =0 for allw e W,
It =Tp(I%), foralln>1,

then there exists some N € N, such that the sequence stabilizes at stage N,
and we have: 1£p(T'g)(w) = T'Y (w) = T3 (w).

ProoF. By Lemma 4.1, I'g is a monotonic map on the complete lattice
(P(A)Y,=). Hence, the least fixed point 1fp(I'g) exists by the Knaster-
Tarski Fixed Point Theorem (see e.g. [13, p. 50]). Moreover, since our lattice
is finite, the proof of that theorem shows in fact that 1fp(I'p) is reached at
some finite iteration I'}Y. o
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Defining Prediction Update. Given the previous paragraph, we may now
define prediction update as follows:

DEFINITION 4.3. (Prediction Update) Let M = W, A, N,B,0,{~u}aca)
be an ETM of sight n, and let (P(A)"Y, <) be as in Lemma 4.1. Let
I'p:P(A)Y — P(A)Y be given as in Definition 4.1.

The prediction update of M is the ETM MP = (W, A, N, BP0, {~P}.c4)
where Yw,w’ € W,

BP(w) = 1fp(I'p)(w), and
w ~P w' iff (i) w~, w', and
(ii) Vb € N="(w)(a) : b € BP(w) & b € BP(w')

Theorem 4.1 is important, since it ensures first, that our prediction
update is well-defined, and second that, when engaged in prediction update
agents do not run the risk of falling into infinite chains of reasoning about
each other (which presumably would take an infinite time): they can com-
pute the resulting prediction (and update) in finitely many steps.

Example, Sanity Check and Proof of Concept. The “irrational” behavior
illustrated in Figure 7 is solved by prediction update. The dynamics are
illustrated in Figure 8. Notice that now ¢ adopts B as soon as she knows B
is preferred.

Bounded Rationality. Prediction assumes that agents have unbounded
rationality (maximal predictive and reasoning power given the available
information). A bounded rationality version of prediction update could be
defined, in which agents can only compute a fixed finite number n of steps
of the prediction chain. A natural way of doing this would be by defin-
ing an update that uses I'}; instead of 1fp(I'z). When n is low enough,
the dynamics of bounded-rationality update would differ from the dynam-
ics of unbounded prediction update. We leave the exploration of bounded-
rationality updates for future work.

Iterated Dynamics, Fixed Point, Cascades, Speed of Convergence. When
any of our adoption updates is iterated, a long-term dynamics is produced,
in the form of an infinite sequence of models M, MM M@ . Since all
the update rules considered in this paper are inflationary, a fixed point
is always eventually reached: a stage N such that M) = MO+ The
extent of the cascade produced by each update type on an initial model M
is given by the behavior BY) in the fixed point M), which comprises
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Sot

4
S)
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d,e

d.e
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o}

Figure 8. The prediction update of a sight 2 ETM with actual state
w, 6 = 1/2. Agents a, b, c know the actual state; d, e are uncertain. The
development of the five stages is given according to informed adoption;
states wo—w4 are from Figure 7. The arrow shows the prediction update
of the actual world. With informed update, w reaches a fixed point after
4 updates; with prediction update, it reaches the same fixed point after
only 2 steps. Due to uncertainty, the prediction update does not jump
to the fixed point in 1 step: as d does not know whether a has adopted
at time 0, she does not know that ¢ will adopt under prediction update.
Hence, she will refrain herself from adopting until ws. Similar consider-
ations goes for e
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the set of all agents who will eventually adopt B (in a given world). A full
cascade is produced if all agents will eventually adopt B, i.e. BN (w) = A.
It is easy to see that prediction update accelerates the cascading behavior in
comparison to informed updated: the fixed point of the adoption process is
typically reached earlier if the agents use prediction update than if they use
informed update. A full analysis of the relationship between the three types
of update is left for future work. But a concrete example in this sense is
given in Figure 8.

4.1. On the Fixed-Point Logic of Prediction Update

The above stated prediction update rule in Definition 4.3 can now be used
to give a new semantics to the [adopt] modality in the logic language L.

DEFINITION 4.4. (Prediction Update Semantics) Given 6 € [0,1], n € N
and any ETM M € Cy,,, the satisfaction relation for the prediction update
semantics can be defined using the same truth clauses as in Definition 3.7,
except for the formulas of the form [adopt]p, for which we put:

M, w [ [adopt]p it MP w = ¢, where MP is the prediction update of M.

Axiomatization. We present an axiomatic system that is sound for the logic
of prediction update, although completeness remains an open question. Note
that in this section, the [adopt] modality is a fixed point operator and hence
may no longer be reduced away. In contrast to the informed update logic,
the prediction update logic appears to be strictly more expressive than its
static counterpart.

To state the proof system, we first generalize the syntactic shorthand
introduced in Definition 2.3.
Abbreviation. Given a tuple of formula’s (¢ )pc 4, one for each agent a € A,
we introduce the following abbreviation:

Kao(pn@) 2 0) = K, \ (/\ Nay A\ =Nas A J\ 90b>

.19
{ggNgA.ﬁzg} beN b¢N beg

Here Ko(@n(q) > 0) denotes that a knows that larger than a ¢ fraction of her
neighbors has the property ¢ (where for instance ¢, can stand for Ny, A Gp).
In particular, K,([adopt|Bn () > 0) expresses that a knows that at least a
0 fraction of her neighbors will have adopted [ after the application of the
prediction update rule.
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Table 3. Fixed point laws of prediction update logic L’é:fd”t. The fixed
point axiom takes the place of the informed update reduction axiom and
the least fixed point inference rule is added

Fixed point laws

ladopt] By «— Ba V K, (ladopt|Bn () > 0) Fixed Point Axiom

}_{Soa‘_’ﬂa\/Ka(ﬁﬂN(a) 29)}116./4

F{pa—ladopt]Betoca Least Fixed Point Inference Rule

DEFINITION 4.5. (Prediction Logic) The logic Lg:fdm is comprised of the
axioms and rules of propositional logic and the axioms and rules of Table 2
with the only change that the axiom Ep.Red.Ax.( is replaced by the Fixed
Point Axiom in Table 3 and we extend the set of rules of the logic with the
least fixed point inference rule in Table 3.

The Fixed Point axiom of Table 3 is almost identical to Ep.Red.Ax.5 of
Table 2, except for the inclusion of the [adopt] modality on the right-hand
side. This states that a will adopt after the prediction update iff she has
already adopted, or if she knows that enough of her neighbors will have
adopted after having applied the same predictive reasoning she uses.

The Least Fixed Point Inference rule reflects the fact that prediction
update is defined as a least fixed point operator. '

The proposition below establishes soundness of Lg:fdwt. As for complete-
ness, the proof would not go through the standard methods used in the
previous sections. We therefore leave it for future research. However, we
have reasons to make the following
Conjecture The system Lg;edwt is a complete axiomatization of predictive
update logic over the class Cy,,.

PROPOSITION 4.1. The axziom and derivation rule of Table 8 are sound with
respect to epistemic threshold models with sight n, using the prediction update
as our semantics for the [adopt] modality.

PRrROOF. Let M be a arbitrary finite ETM with sight n, domain W contain-
ing state w and a,b € A.

Fixed Point Axiom. M,w | [adopt|f, if MP,w | [, iff a €
B? = BU {bEA:vabw,WEH} ifft Myw | B, or Yo ~,

[N(v)(®)]
w, % > #. The right disjunct obtains iff

Vv ~q w, 3G, N C A : ggNand‘l%"ZGand
ggéandN:N(v)(a)
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iff
Yo ~, w,AG,N C A : ggNand%ZGand
Vbe G, MP v = B and Vb € N,

Mp’ v ': Nab
iff
V'UNQ’LU,MP,’U): \/ /\Nab/\/\_‘ ab/\/\ﬂb
{genca: >0} \bEN bEN beg
iff
Vv ~aq W, M,’U): V /\ Nab/\ /\ “Ngp A /\[adopt]ﬁb
{gcncAa %29} beN bEN beg
iff
M,’UJ ): K‘l \/ /\ Nab A /\ “WNgp A /\ [adopt]ﬁb
{ocnvca: Y >0} beN bEN beg

iff
M,'UJ ): Ka([adopt]ﬂ]\f(a) > 6)
Hence we conclude M, w |= [adopt] B, iff M, w |= oV Kq([adopt] By 0y > 0).

Least Fixed Point Inference Rule. Let an arbitrary finite ETM M with
sight n and domain W be given. Where {p, }sc.a is a set of sentences from
L, let € P(A)YW with p(w) = {a € A : M,w = ¢,}. Moreover, let
I's: P(A)Y — P(A)Y, given by

I's(f) = h such that

Yw € W, h(w) = p(w) U {a eA: Vv~ w, [N()(a) 1 f()] > 9} .

[N (v)(a)l
The same reasoning used in the proof of Lemma 4.1 shows that each such
I'; is order-preserving.
Let § € P(A)Y be determined by {f,}aca and let [|3 € P(A)"Y be
determined by {[adopt]B3,}aea- Let I'z be given by the above construction.
Given the prediction semantics of [adopt] and the fact (cf. Theorem 4.1)
that BP = 1fp(I'p) = sup{I's"(L) : n € N}, we may conclude that

16 =T3([15) (6)
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is the least fixed point of I'5.
Assume for some {p,}qaca that - {gpa = BaV Ko(on(a) > 9)}aeA' This
implies
F A\ (00 © BaV Ka(on(a) > 0)). (7)
acA

From {¢q}aca and {8, V Ko(©n(a) > 0)}aca we may define functions @
and BK, as specified above. Now notice that 3K = I'5(®). Hence, for (7) to
be satisfied, we have that

?=T53(®).
Given that (6) is the least fixed point of I'z, we have that p = I'() implies

[Tﬁj@,so

YuVa: a€ [|f(w) = a€ p(w) o
VuVa : w = [adopt|B, = w = ¢, SO
YwVa : w = [adopt]Be — ¢a

5. Alternative Adoption Policies

In the previous sections, we have presented three diffusion policies: one
depending solely on whether the agents’ neighbors have adopted (the
“threshold model update” from Definition 2.4); one depending on knowledge
of this fact (the “informed update” of Definition 3.4), and one depending on
the anticipation of this fact (the “prediction update” of Definition 4.3). This
section questions some in-built assumptions of these policies and discusses
possible alternatives.

5.1. Enlarging the Sphere of Influence

The adoption policies hitherto presented rely on the idea that an agent will
adopt if (she knows that) enough of her direct neighbors (will) have adopted.

For certain applications, decisions are made that are based not only on
actions of direct neighbors, but on the population at large. A case in point
is the decision of whether to support a revolution: the relevant factor is
then whether a big enough fraction of the total population supports the
revolution, not whether enough of one’s direct neighbors do so.

Generally, such policies may be obtained by enlarging the “sphere of
influence” of agents beyond their direct neighbors. A natural choice in the
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epistemic setting is to fit the “sphere of influence” to agents’ “sphere of

sight” (in models of sight n). The influence principles would then become:
the agent adopts if (he knows that) enough of his n-distant neighbors (will)
have adopted.

In the revolution case, agents might be influenced into adopting only
if (they know that) enough agents within the whole network (will) have
adopted. A suitable “globalized” version of the prediction update from Def-
inition 4.3 may be defined as follows:

DEFINITION 5.1. (Global Prediction Update) Let be given a finite sight n
model, M = W, A, N, B,0,{~,}aca), and let (F, <) be as in Definition 4.3.
The global prediction update of M is then M’ = (W, A, N, B,0,{~! }aca)
where:

e B is such that:
~Yw e W, B(w) = B(w) U{a € A: Yo~y w, 20501 > gy
~Vf € F,if Yw e W, f(w) = Bw) U{a € A: Vv ~g w, A4 > 6},
then B < f.
and
o w~ viff i) w~g v and ii) if b € NS"(w)(a), then b € B(w) iff b € B(v).

5.2. Taking Chances

Prediction update has been defined to allow agents to take all their avail-
able information into account in their decision making. In acting upon it,
agents act conservatively, as the information-dependent adoption policies
defined require absolute certainty: agents will adopt only when they know
that enough of the others (will) have adopted.

An alternative to such conservative behavior is a risky one, where agents
adopt whenever they consider it possible that enough people (will) have
adopted. In the revolution example, this means that agents would join the
revolution whenever they see a chance that enough of their neighbors (or of
the general population) would join.

Such chance taking behavior is captured as follows:

DEFINITION 5.2. (Risky Prediction Update) Let a finite sight n model
M=W, A N,B,0,{~a}aca) and (F, <) be as in Definition 4.3. The risky
prediction update of M results in the model M" = W, A, N, B,0,{~! }aca)
where:

e B is such that:
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fVweW,E(w):B(w)U{aeAzﬂvwaw,w29}

[N () ()]

—Vf € F,if Yw €W, f(w) = B(w) U{a € A: Fv ~g w, FQJALOI >
6}, then B < f.

and

o w~l viffi) w~g vand ii) if b € NS"(w)(a), then b € B(w) iff b € B(v).

To suitably capture e.g. a population of “risky revolutionaries”, the risky
prediction update should be suitably “globalized” by replacing N (v)(a) with
A everywhere in the definition.

Betting that just any uneliminated possibility is in fact the case is very
risky behavior. A natural way to weaken the epistemic requirement of abso-
lute certainty while still allowing for uncertainty to exist is to augment our
framework with beliefs. Modeling beliefs using the plausibility orders of [5],
a middle ground between conservative and risky prediction update could be
defined. The natural definition would make agents adopt if enough neighbors
(are predicted to) have adopted in each of the worlds the agent considers
most plausible, i.e, if the agent believes enough neighbors (are predicted to)
have adopted.

5.3. Trendsetters Versus Followers

An assumption build into threshold models in general is that agents are
followers: even when they anticipate others’ behavior with the prediction
update, they only “anticipate their future following of others”. Agents are
thus reacting to others’ behavior, even when they are reacting fast.

An interesting alternative would be to utilize agents’ information to make
them proactive instead; to have trendsetters instead of followers. Adding a
few trendsetters to a network might induce behavior change towards B even
when no-one has adopted initially.

A simple trendsetting adoption policy would state that an agent should
adopt whenever she knows that if she were to adopt, then enough of her
neighbors will adopt afterwards. Such an adoption policy involves both coun-
terfactual and temporal reasoning, which complicates a predictive version.
A non-predictive version may be defined as follows:

DEFINITION 5.3. ((a,w)-Counterfactual Behavior) Let be given an ETM
M = OW, A N,B,0,{~u}aca) with a € A,w € W. Then the (a,w)-
counterfactual behavior of M is

Bw)U{a} ifv~,w
BC(a,w) (U) -
B(v) else
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DEFINITION 5.4. (Trendsetter Update) Let M = W, A, N, B,0,{~u}aca)
be an ETM and let {F,7} be a partition of A into sets of follow-
ers and trendsetters. The trendsetter update of M results in the model
M =W, A N,B" 0,{~u} aca) with B’ given by Yw € W

)= B da e F v, w V@@ B
B(w)_BU{ € F 3V ~q w, s 29}

[N (@)(@) N Bogan @) | 9}

[N (v)(a)l

where BC(a,u)(U), is the (a,v)-counterfactual behavior set of M after
informed update.

U{aET:vaaw,

The trendsetter update may of course also be define in global and risky
versions.

6. Conclusions and Further Research

The paper has focused on two intertwined objectives. On the one hand, we
have developed models for the diffusion dynamics under uncertainty, based
on two natural epistemic variants of the standard threshold adoption rule:
the informed update, and the prediction update. On the other hand, we
presented logical frameworks for reasoning about diffusion dynamics. We
proved soundness and completeness for the logic of informed update, and
proposed a sound system for the logic of prediction update. The problem
of completeness for the later logic is an open question. In the following
paragraphs, we summarize our findings.

Threshold Models. The static setting of threshold models may be described
sufficiently using a propositional logic with proposition symbols that are
indexed by agents. On finite networks, threshold ratios may be encoded
together with other important structural notions, such as clusters of partic-
ular density. As the dynamics of threshold model update is deterministic and
state dependent, these may be described using a dynamic modality reducible
to the static language. The dynamic modality therefore does not add any
expressive power. We have shown that the logic for threshold-limited influ-
ence is sound and complete, and as the static fragment is stated in simple
propositional logic, one sees that this logic is also decidable.
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Epistemic Threshold Models. Given the propositional logical representation
of networks, the epistemic extension of the logic for threshold-limited influ-
ence works as expected. As both the diffusion and learning mechanism in the
informed update are deterministic and state dependent, the dynamic process
that is induced by the dynamic operation can be captured by a reducible
dynamic modality. As such, this modality does not add any expressivity to
the language. We have shown the epistemic logic of threshold-limited influ-
ence to be both sound and complete. Again we can conclude that this logic
is decidable.

In epistemic threshold models, if agents’ behavior is dictated by that of
their direct neighbors, then knowledge of more distant agents is redundant.
To act as under the standard threshold model dynamics, knowledge of neigh-
bors’ behavior is however required. If this information is not available, the
diffusion speed decreases. In the limit case where no information is available,
the diffusion process stops. Taken together, the most economical epistemic
interpretation of standard threshold models is that their dynamics embod-
ies an implicit epistemic assumption that exactly the network structure and
behavior of agents in distance 1 is known.

Epistemic Threshold Models with Prediction Update. Prediction update
allows agents to better coordinate with their neighbors in adopting a spread-
ing behavior, by using their information about the others’ future behavior.
As a result, prediction-update agents increase a network’s speed of conver-
gence. In the extreme case when the network and behavior distribution are
common knowledge, the prediction update jumps in one step to the fixed
point of the standard threshold model update. But in general, even describ-
ing the one-step dynamics of prediction update requires a dynamic fixed
point operator, which is atypical of dynamic epistemic logic. As a conse-
quence, the logic of prediction update does not have full reduction axioms:
the dynamic modality seems to genuinely add expressivity in this case. This
poses technical challenges to obtaining a completeness proof.

Future Work. In future research we plan to work on a full comparative
analysis of the different update processes that we have outlined in this
paper. While convergence can be obtained for all different dynamic pro-
cesses, among the ones we studied, the prediction dynamics will be the
fastest in its convergence. In the limit case, where the network and behav-
ior distribution is common knowledge, the prediction update jumps in one
step to the fixed point of the standard threshold model update. We plan to
tackle in another paper the open problem about completeness of the logic of
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prediction update. Besides this question, there are five other main directions
for further research:

(A) develop the logical apparatus and the epistemic extension of the
possible generalizations of threshold models discussed is Section 2.5; (B)
explore the alternative diffusion processes introduced in Section 5, both on
the logical, set theoretic and game theoretic levels. Their logics may be devel-
oped, and their dynamics may be investigated with respect to limit behav-
ior and speed of possible stabilization; (C) explore the dynamics induced
by boundedly-rational versions of predictive update; (D) explore the game
theoretic perspectives of game play on networks under uncertainty and in
particular the game structure underpinning the intuitive rationality of pre-
diction update; (E) investigate the epistemic and predictive versions of the
non-inflationary adoption rules, such as the policy given by regular coordi-
nation game play on networks [26]. Such rules, that allow agents to unadopt
an already adopted behavior, can lead to very different limit behavior, e.g.
to a cyclic dynamics. Understanding the epistemic aspects of such oscillating
behavior will require logical tools going beyond the fixed point theory used
in this paper.®
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