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Abstract. In our paper, monadic modal pseudocomplemented De Morgan algebras (or

mmpM) are considered following Halmos’ studies on monadic Boolean algebras. Hence,

their topological representation theory (Halmos–Priestley’s duality) is used successfully.

Lattice congruences of an mmpM is characterized and the variety of mmpMs is proven

semisimple via topological representation. Furthermore and among other things, the poset

of principal congruences is investigated and proven to be a Boolean algebra; therefore,

every principal congruence is a Boolean congruence. All these conclusions contrast sharply

with known results for monadic De Morgan algebras. Finally, we show that the above

results for mmpM are verified for monadic tetravalent modal algebras.
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1. Introduction and Preliminaries

In 1978, Monteiro introduced tetravalent modal algebras (or TMA for short)
as algebras 〈L,∧,∨,∼,∇, 0, 1〉 of type (2, 2, 1, 1, 0, 0) such that 〈L,∧,∨,∼,
0, 1〉 are De Morgan algebras which satisfy the following conditions:

(i) ∇x∨ ∼ x = 1,

(ii) ∇x∧ ∼ x =∼ x ∧ x.

These algebras arise as a generalization of three–valued �Lukasiewicz al-
gebras by omitting the identity ∇(x ∧ y) = ∇x ∧ ∇y. The variety of TMAs
is generated by the well-known four-element De Morgan algebra expanded
with a simple modal operator ∇ (i.e., ∇1 = 1 and ∇x = 0 for x �= 1. Be-
sides, ∼ 0 = 1 and ∼ x = x for x �= 0, 1). These algebras were studied by
I. Loureiro (see [11,12]) in her Ph. D. studies under Monteiro’s supervision
(for more historical information see [10]).
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TMAs have been studied by different authors. For example, Font and
Rius studied this class of algebras with the methods of abstract algebraic
logic ([10]). More recently, Celani proved that the variety of TMAs has
the Amalgamation and the Superamalgamation Property [4]. Besides, M.
Coniglio and M. Figallo studied them under the perspective of paraconsistent
logics [6].

On the other hand, in [8], Figallo considered the subvariety of pseudo-
complemented De Morgan algebras which verifies:

(tm) x∨ ∼ x ≤ x ∨ x∗.

This author called them modal pseudocomplemented De Morgan algebras
(or mpM -algebras). Recall that a pseudocomplemented De Morgan algebra
A is a De Morgan algebra with a unary operator ∗ such that every a ∈ A
the element a∗ is the pseudocomplement of a; i.e. a ∧ x = 0 if and only
if x ≤ a∗. Later, he showed that all mpM -algebra is a TMA by defining
∇x = ∼ (∼ x ∧ x∗). In [9], the authors have proven that the subdirectly
irreducible mpM -algebras are three as TMAs, in fact Hasse diagrams are
the same in each case, but 3-chain-mpM -algebra is not a subalgebra of four-
elements.

On the other hand, it is worth mentioning that mpM -algebras constitute
a proper subvariety of the variety V0 studied by Sankappanavar in [15].
Furthermore, the variety of mpM -algebras is a proper subvariety of the
variety of classical modal De Morgan algebras introduced by S. Celani in [4].

In order to simplify the reading, we will summarize the main notions and
results needed throughout this work.

If X is a partially ordered set and Y ⊆ X, we will denote by ↑ Y (↓ Y )
the set of all x ∈ X such that y ≤ x (x ≤ y) for some y ∈ Y , and we will
say that Y is increasing (decreasing) if Y =↑ Y (Y =↓ Y ). In particular, we
will write ↑ y (↓ y) instead of ↑ {y} (↓ {y}). Furthermore, we will denote by
max Y the set of maximum elements of Y .

In [14], Priestley described a topological duality for pseudocomplemented
distributive lattices (for short p-algebras). For this purpose, the category
whose objects are d-spaces and whose morphisms are d-functions was con-
sidered. More precisely, a d-space is a Priestley space X which satisfies
the following condition: ↓ U is an open subset of X for all U ∈ D(X),
where D(X) denotes the family of increasing, closed and open subsets of
X. Furthermore, a d-function f from a d-space X1 into another one X2 is
an increasing and continuous function (i.e. a Priestley function) such that
f(maxX1∩ ↑ x) = maxX2∩ ↑ f(x) for each x ∈ X1. Besides, it is proved
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(P1) If A is a p-algebra, then the Priestley space X(A) of all prime filters
of A is a d-space. Moreover, σA : A −→ D(X(A)) defined by σA(a) =
{P ∈ X(A) : a ∈ P} is a d-isomorphism.

(P2) If X is a d-space, then 〈D(X),∪,∩,∗ , ∅, X〉 is a p-algebra where U∗ =
X\ ↓ U for each U ∈ D(X) and εX : X −→ X(D(X)) defined by
εX(x) = {U ∈ D(X) : x ∈ U} is a homeomorphism and an order
isomorphism.

Then, the category of d-spaces and d-functions is naturally equivalent to
the dual of the category of p-algebras and their corresponding homomor-
phisms, where the isomorphisms σL and εX are the corresponding natural
equivalences.

On the other hand, she proved that

(P3) the lattice of all closed subsets Y of X(A) with maxX(A)∩ ↑ Y ⊆ Y
is isomorphic to the dual lattice of all congruences on A.

In 1977, Cornish and Fowler ([7]) restricted Priestley duality for bounded
distributive lattices to De Morgan algebras by considering the De Morgan
spaces (or m-spaces) as pairs (X, g), where X is a Priestley space and g :
X −→ X is decreasing and continuous function satisfying g2 = idX . They
also defined the m-functions f from an m-space (X1, g1) into another one,
(X2, g2) as Priestley functions which satisfy the additional condition f ◦g1 =
g2 ◦ f .

In order to restrict Priestley duality to the case of De Morgan algebras,
these authors defined the unary operation ∼ on D(X) by

(P4) ∼ U = X\g(U) for each U ∈ D(X),

and the homeomorphism gA : X(A) −→ X(A) by

(P5) gA(P ) = A\{∼ x : x ∈ P}.

Then, the category of m-spaces and m-functions is naturally equivalent
to the dual of the category of De Morgan algebras and their corresponding
homomorphisms. In addition, these authors showed that:

(P6) the lattice of all involutive closed subsets of X(A) is isomorphic to the
dual of the lattice of all congruences on the De Morgan algebra A,
where Y ⊆ X(A) is involutive if gA(Y ) = Y .

In our work, we consider monadic modal pseudocomplemented De Mor-
gan algebras (M-algebra) as an algebraic model of monadic predicate four
valued logic, following Halmos’ studies on monadic Boolean algebras. With
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the addition of an existential quantifier ∃ the variety of M-algebra is no
longer finitely generated as occurs in monadic boolean algebras.

The main objective of this paper is to study the lattice of congruences
of given M-algebra. Also, the properties of generating algebras were inves-
tigated and the poset of principal congruences was proven to be a Boolean
algebra. Our results are not verified in monadic De Morgan algebra despite
the fact that an M-algebra is special monadic De Morgan algebras, this
is because the variety of monadic De Morgan algebras are not semisimple
and the intersection of two principal congruences for a given algebra is not
always principal congruence (see [1,13]).

2. M-Algebras

Definition 1. A M-algebra is an algebra (A,∧,∨,∼,∗ ,∃, 0, 1), where the
reduct (A,∧,∨,∼,∗ , 0, 1) is an mpM -algebra and the unary operator ∃ (ex-
istential quantifier) verifies the following conditions:

(m1) x ∧ ∃x = x,

(m2) ∃(x ∧ ∃y) = ∃x ∧ ∃y,

(m3) ∃ ∼ ∃x =∼ ∃x,

(m4) ∃((∼ x)∗ ∧ x) = (∼ ∃x)∗ ∧ ∃x,

(m5) ∃ ∼ x∗ =∼ (∃x)∗.

We will denote the variety of M-algebras by M and as usual, we denote
an algebra of the variety by (A,∃) or simply A.

Next, we indicate some properties of M-algebras.

Proposition 2. For every M-algebra the following properties hold:

(m6) x ≤ ∃x, (m7) ∃1 = 1, ∃0 = 0, (m8) ∃∃x = ∃x,

(m9) x ≤ y implies ∃x ≤ ∃y,

(m10) ∼ x ∨ ∇∃x = 1, where ∇x =∼ � ∼ x and �x = (∼ x)∗ ∧ x,

(m11) ∃x ∨ ∇ ∼ x = 1

(m12) ∃A = {x ∈ A : ∃x = x} is an mpM -subalgebra of A,

(m13) ∃(x ∨ y) = ∃x ∨ ∃y, (m14) x ≤ ∇x, (m15) ∇(x ∨ y) = ∇x ∨ ∇y,

(m16) �∇x = ∇x, (m17) ∇�x = �x, (m18) ∃∇x = ∇∃x.

Proof. We only prove (m12) and (m18), the others can be seen in [16].
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(m12): From (m2) and (m3), it is easy to see that ∃A is a subalgebra
of De Morgan algebra A. Besides, let a ∈ ∃A, then a∗ = (∃a)∗. According
to (m5), we have ∼ a∗ =∼ (∃a)∗ = ∃ ∼ a∗ and so, ∼ a∗ ∈ ∃A. Therefore,
a∗ ∈ ∃A.

(m18): We will show that ∃∇x ≤ ∇∃x. Firstly, we note that (1) ∃∇∃x =
∇∃x. Indeed, as ∃∇∃x = ∃ ∼ � ∼ ∃x, from (m3) and (m4) we infer ∃∇∃x =
∃ ∼ �∃ ∼ ∃x = ∃ ∼ ∃� ∼ ∃x =∼ ∃� ∼ ∃x =∼ �∃ ∼ ∃x =∼ � ∼ ∃x =
∇∃x. On the other hand, according to (m6) and (m15), we conclude that
∇x ≤ ∇∃x. Therefore, by (m9) we can write ∃∇x ≤ ∃∇∃x. Hence, from (1)
we have ∃∇x ≤ ∇∃x.

On the oher hand, from x ≤ ∇x and (m9), we have ∃x ≤ ∃∇x and
therefore, by (m15) we infer (2) ∇∃x ≤ ∇∃∇x. Furthermore, as (3) ∇∃∇x =
∃∇x holds and according to (m16), (m4) and (m17), we write ∇∃∇x =
∇∃�∇x = ∇�∃∇x = �∃∇x = ∃�∇x = ∃∇x. Therefore, from (2) and (3)
the proof is complete.

From Proposition 2, we can see that (A,∧,∨,∼,�,∃, 0, 1) is a monadic
tetravalent modal algebra according to [16]. As a consequenceof this, from
(m1), (m2) and (m3), we have the reduct (A,∧,∨,∼,∃, 0, 1) is a monadic De
Morgan algebra. Also, if M-algebra (A,∃) verifies ∇(x∧y) = ∇x∧∇y, then
(A,∃) is a monadic 3-valued �Lukasiewicz-Moisil algebra (see for example [3]).
The latter assertions were our motivations to define an M-algebra.

Definition 3. Let A ∈ M and x ∈ A. We say that x is a regular element if
∼ x = x∗ holds, and we denote the set of regular elements of A by Reg(A).

Lemma 4. If A ∈ M, then the following properties hold:

(m19) �A = ∇A = Reg(A) where �A = {�x : x ∈ A} and ∇A = {∇x :
x ∈ A},

(m20) Reg(A) ⊆ B(A), where B(A) = {x ∈ A : x ∨ x∗ = 1} is the set of
boolean elements of A,

(m21) x is a fixed point of A iff ∇x = 1 and �x = 0, where x is a fixed
point if ∼ x = x,

(m22) if ∃A � T2, then ∼ x is a boolean complement of x for all x ∈ A,

(m23) (�A,∃) is a monadic Boolean algebra,

(m24) ∃�A is a Boolean algebra,

(m25) if ∃A � T3 and z is a fixed point of A, then z is a unique fixed point
of A and it is not a boolean element,
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(m26) if ∃A � T4, then there exist two fixed points of A such that each one
is a boolean complement of the other, where

T2 = {0, 1} where 0 < 1, ∼ 0 = 0∗ = 1, ∼ 1 = 1∗ = 0,
T3 = {0, a, 1}, where 0 < a < 1, ∼ a = a, a∗ = 0, ∼ 0 = 0∗ = 1,
∼ 1 = 1∗ = 0,
T4 = {0, a, b, 1} where a �≤ b, b �≤ a and 0 < a, b < 1, ∼ b = a∗ = b,
∼ a = b∗ = a, ∼ 0 = 0∗ = 1, ∼ 1 = 1∗ = 0.

Proof. The proof of (m19), (m20), (m21) and (m22) are easy to get and
left to the reader.

(m23): It is easy to see that �A is a Boolean algebra, and from (m4) we
infer that ∃x ∈ �A, for each x ∈ �A. Besides, from (m7), (m1) and (m2)
we have complete the proof.

(m24): It is a direct consequence of (m23).
(m25): Let z ∈ A be a fixed point, then ∃z ∈ {0, c, 1}. Let us see that

∃z = c. Indeed, suppose that ∃z = 0, then 0 = ∇∃z. On the other hand,
from the hypothesis, (m21) and (m18) we conclude ∇∃z = 1, which is a
contradiction. Analogously, we can prove that ∃z �= 1. Furthermore, by
(m6) we have z ≤ ∃z = c, and as c =∼ c ≤∼ z = z holds, we obtain z = c.

Suppose now that z is a boolean element of A. Then, since z is a fixed
point, we have z �= 0 and z �= 1, and so, z′ �∈ ∃A, where z′ is the complement
element of z. Therefore, from ∃z = z, (m7) and (m2) we infer that 0 =
∃(z ∧z′) = ∃z ∧∃z′ = z ∧∃z′. Besides, according to (m7) and (m13) we have
1 = ∃(z ∨ z′) = z ∨ ∃z′. Hence, ∃z′ = z′ which is a contradiction.

(m26): Let z be a fixed point of A. Following an analogous reasoning
to (m25), we prove that ∃z �= 0 and ∃z �= 1. Hence, ∃z = a or ∃z = b.
Suppose that ∃z = a, then z ≤ a and therefore, a =∼ a ≤∼ z = z. From the
latter, we have z = a. It is clear that if ∃z = b, we have the proof of z = b
analogously to the last case.

3. Relationship Between Special Subalgebras and Quantifiers

In this section, we will indicate how to obtain all quantifiers that can be
defined over an mpM -algebra A by special family of subalgebras.

Let us note that (m9), (m6), (m8) and (m13) are both conditions to
define a quantifier on bounded distributive lattices (for short, Q-lattices)
(see [5]) and an additive closure operator (see [2, pag. 47]). Therefore, the
quantifier ∃ is determined by its range ∃A.

Proposition 5. Let (A,∃) ∈ M, then ∃A verifies the following conditions:



On Monadic Operators on Modal Pseudocomplemented 597

(i) for each x ∈ A, ∃x is the smallest element of [x) ∩ ∃A, where [x) =
{y ∈ A : x ≤ y},

(ii) for each x, y ∈ ∃A, if x ⇒ y exists in A, then x ⇒ y ∈ ∃A, where
x ⇒ y is the pseudocomplemented element of x relative to y,

(iii) ∃x ∈ �A, for each x ∈ �A

(iv) [�x) ∩ (∃x] ∩ ∃A ∩ �A has a unique element,

(v) ∼ (∃x)∗ ∈ [∃ ∼ x∗).

Proof. According to [5, Proposition 1.2], the conditions (i) and (ii) hold.
Besides, from (m4) and (m5) we have that (iii) and (v) are verified. Then,
we only have to prove (iv).

(iv): Let us put B = [(∼ x)∗ ∧ x) ∩ (∃x] ∩ ∃A ∩ �A. From (m4), we infer
that ∃�x ∈ B. Hence, if z ∈ B, then ∃z = z = �z and �x ≤ z ≤ ∃x. From
the latter, we conclude ∃�x ≤ z = ∃z. On the other hand, z = �z ≤ �∃x
and according to (m4), we have z ≤ ∃�x. Therefore, z = ∃�x.

Proposition 6. Let A be an mpM -algebra and let M be a subalgebra of A.
Assume that the following conditions hold:

(i) the set [x) ∩ M has the smallest element, for each x ∈ M ,

(ii) if x, y ∈ M and exists x ⇒ y in A, then x ⇒ y ∈ M ,

(iii) for each x ∈ �A, then ∃Mx ∈ �A, where ∃Mx is the smallest element
of [x) ∩ M ,

(iv) [�x) ∩ (∃Mx] ∩ �A ∩ M has an unique element,

(v) ∼ (∃Mx)∗ ∈ [∃M ∼ x∗).

Then (A,∃M ) is an M-algebra and ∃MA = M .

Proof. According to [5, Proposition 1.3], we have that ∃M verifies (m1),
(m2) and ∃MA = M . We shall see that (m3), (m4) and (m5) are verified.
Indeed,

(m3): Since ∃Mx ∈ M and M is a subalgebra of A, then ∼ ∃Mx ∈ M .
Hence, ∼ ∃Mx ∈ [∼ ∃Mx)∩M and from the latter, we have ∃M ∼ ∃Mx ≤∼
∃Mx. The other inequality is obtained analogously.

(m4): From (iii) and the fact that M is a subalgebra of A, we infer
that ∃M�x ∈ [(∼ x)∗ ∧ x) ∩ (∃Mx] ∩ �A ∩ M . Furthermore, �∃Mx ∈ [(∼
x)∗ ∧ x) ∩ (∃Mx] ∩ �A ∩ M . From this last assertion and (iv), we conclude
the proof.

(m5): Let x ∈ A. Since ∃M is an operator which verifies (m1), we have
x ≤ ∃Mx and so, ∼ x∗ ≤∼ (∃Mx)∗. Hence, ∼ (∃Mx)∗ ∈ [∼ x∗) ∩ M . Then,
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by definition of ∃M , we infer that ∃M ∼ x∗ ≤∼ (∃Mx)∗ and from (v), we
conclude ∃M ∼ x∗ =∼ (∃Mx)∗, which completes the proof.

4. Topological Representation for M-Algebras

Next, we are going to show a topological duality for M-algebras. For this
task, we will extend the dualities for Q-lattices [5] and for mpM -algebras
[9] to our case. Firstly, we will make a synthesis of the duality obtained in
[9] and to simplify reading, we summarize the fundamental concepts.

Recall from [9] that (X, g) is a mpM -space if it is a De Morgan space and
a d-space, which satisfies the following condition:

(pm1) x ≤ y implies x = y or g(x) = y.

An mpM -function from an mpM -space to another one is both a De Mor-
gan function and an d-function. Furthermore, we have

(DmpI) If (X, g) is an mpM -space, then 〈D(X),∪,∩,∼,∗ , ∅, X〉 is an mpM -
algebra where ∼ U = X\g(U) and U∗ = X\(U ], for each U ∈
D(X). Besides, the function εX : X −→ X(D(X)) is a homeo-
morphism and order isomorphism.

(DmpII) If A is an mpM -algebra, then (X(A), gA) is an mpM -space. More-
over, the function σA : A −→ D(X(A)) is an mpM -isomorphism.

Therefore, using the usual procedures, we conclude that the category of
mpM -spaces and mpM -functions is naturally equivalent to the dual of the
category of mpM -algebras and their corresponding homomorphisms.

Remark 7. ([9]) By virtue of (pm1) we infer that any mpM -space is the
cardinal sum of chains, each of them with two elements at most. Then, any
totally ordered mpM -space has two elements at most.

Theorem 8. Let (A,∃) be an M-algebra and let S, T ∈ X(A) such that
S ∩ ∃A ⊆ T . Then, there exists Q ∈ X(A) such that

(i) S ⊆ Q,

(ii) Q ∩ ∃A = T ∩ ∃A.

Proof. Firstly, let us consider the filter F generated by {S ∪ (T ∩ ∃A)} as
F = F (S∪(T ∩∃A)) and the ideal J generated by {∃A\T} as J = I(∃A\T ),
then it is clear that F ∩ J = ∅. Indeed, suppose x ∈ F ∩ J then, there are
(1) k ∈ ∃A\T , s ∈ S and ∃t ∈ T ∩ ∃A such that s ∧ ∃t ≤ x ≤ k. Hence,
∃(s ∧ ∃t) ≤ ∃k = k and form (m2), we infer that (2) ∃s ∧ ∃t ≤ k. Since
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∃s ∈ S ∩∃A and by the hypothesis, we have ∃s ∈ T and so, by (2), we write
k ∈ T , which contradicts (1). Furthermore, according to Birkhoff-Stones
Theorem we know that there exists Q ∈ X(A) such that (3) F ⊆ Q and
Q ∩ J = ∅. By (3), we have that S ⊆ Q and T ∩ ∃A ⊆ Q. Therefore,
T ∩ ∃A ⊆ Q ∩ ∃A. On the other hand, let us consider x ∈ Q ∩ ∃A and
suppose that x �∈ T then, we obtain x ∈ ∃A\T ⊆ J and so, Q∩J �= ∅ which
is a contradiction.

Theorem 9. Let (A,∃) be an M-algebra and let R∃ an equivalence relation
on X(A) defined by R∃ = {(P,Q) ∈ X(A) × X(A) : P ∩ ∃A = Q ∩ ∃A}.
Then, the following properties hold:

(i) the equivalence classes for R∃ are closed in X(A).

(ii) (P,Q) ∈ R∃ implies (g(P ), g(Q)) ∈ R∃.

(iii) If for each (P,Q) ∈ R∃ there exists R ∈ X(A) such that g(R) ⊆ P ,
then there are S, T ∈ X(A), such that (g(S), T ) ∈ R∃ and T ⊆ Q.

(iv) If S, T,Q ∈ X(A) such that (g(S), T ) ∈ R∃ and T ⊆ Q, then there
exist P,R ∈ X(A) such that (P,Q) ∈ R∃ and g(R) ⊆ Q.

Proof. (i) and (ii): It follows immediately from [5] and [13], respectively.
(iii): Let P,Q ∈ X(A) such that (1) P ∩ ∃A = Q ∩ ∃A and suppose that

there exists R ∈ X(A) such that g(R) ⊆ P . Hence, g(P )∩∃A ⊆ R and by (1)
and (ii), we have that g(Q)∩∃A ⊆ R. According to Theorem 8, there exists
W ∈ X(A) such that (2) g(Q) ⊆ W and (3) W ∩∃A = R∩∃A. Therefore, let
us put g(W ) = T and R = S and so, by (2), we infer that T ⊆ Q. Besides,
from the latter and from (3) and (ii), we obtain g(S) ∩ ∃A = T ∩ ∃A.

(iv): Let S, T,Q ∈ X(A) such that g(S)∩∃A = T ∩∃A and T ⊆ Q. Let us
put R = g(T ) then, it is clear that g(R) ⊆ Q and therefore, g(R) ∩ ∃A ⊆ Q.
By Theorem 8, there is P ∈ X(A) such that P ∩ ∃A = Q ∩ ∃A, which
completes the proof.

Recall that in [5], Cignoli defined q-space as a pair (X,R) where X is
a Priestley space, R is a equivalence relation such that R(U) ∈ D(X) for
every U ∈ D(X), and the equivalence classes for R are closed in X. Besides,
if (X1, R1) and (X2, R2) are q-spaces, then f : X1 → X2 is an q-function iff
f−1(R2(U)) = R1(f−1(U)) for every U ∈ D(X2).

Definition 10. A monadic space (or M-space) is a triple (X, g,R), where
(X, g) is an mpM -space and (X,R) is a q-space that satisfies the following
conditions:

(ms1) if (x, y) ∈ R, then (g(x), g(y)) ∈ R,
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(ms2) R(U) ∩ R(g(U)) ⊆ R(U ∩ g(U)) for every U ∈ D(X),

(ms3) if for each U ∈ D(X) there exist (x, y) ∈ R and u0 ∈ U such that
g(u0) ≤ y, then there is t0 ∈ X such that (t0, g(u0)) ∈ R and t0 ≤ x,

(ms4) if for each U ∈ D(X) there are s0 ∈ U and x, t ∈ X such that t ≤ x
and (t, g(s0)) ∈ R, then there exist u0 ∈ U and y ∈ X such that
g(u0) ≤ y and (x, y) ∈ R.

If (X1, g1, R1) and (X2, g2, R2) are M-spaces, then f : X1 → X2 is an
M-function iff f is an mpM -function and a q-function, simultaneously.

Remark 11. Let (X, g) be a De Morgan space and let W ∈ D(X). Then,
g(↓ W ) =↑ g(W ). Indeed, suppose that x ∈ g(↓ W ) then, there is w0 ∈
W such that g(x) ≤ w0. Hence, we have g(w0) ≤ x and so, x ∈↑ g(W ).
Analogously, we have the other inclusion.

Lemma 12. If (X, g,R) is an M-space, then it verifies the following prop-
erties:

(i) g(R(x)) = R(g(x)) for every x ∈ X

(ii) g(R(Y )) = R(g(Y )) for every Y ⊆ X, where it is clear that R(T ) =⋃

x∈T

R(x) for all T ⊆ X,

Proof. (i): It follows immediately from (ms1).
(ii): It follows immediately from (i) and the fact that g = g−1.

Definition 13. Let (X, g,R) be an MS-space and let Y be an subset of X
is said to be an involutive if g(Y ) = Y .

Corollary 14. Let (X, g,R) be an M–space. If Y is an involutive subset
of X, so is R(Y ) too.

Proof. It is a direct consequence of Lemma 12.

Proposition 15. If (X, g,R) is an M-space, then M(X) = (D(X),∪,∩,
∼,∗ ,∃R, ∅, X) is an M-algebra where for each U ∈ D(X), U∗ = X\ ↓ U ,
∼ U = X\g(U) and ∃R(U) = R(U).

Proof. By the hypothesis, (DmpI) and from [9], we only have to prove that
(m3), (m4) and (m5) hold:

(m3): Let x ∈ ∃R ∼ ∃RU . Then, there is y ∈∼ ∃RU such that (x, y) ∈ R.
From the latter and (ms1), we have (1) (g(x), g(y)) ∈ R and (2) g(y) �∈ ∃RU .
Hence, g(x) �∈ ∃RU . Indeed, suppose that there exists z ∈ U such that
(g(x), z) ∈ R, then from (1) we infer that (g(y), z) ∈ R from which it
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follows g(y) ∈ ∃RU , which contradicts (2). Therefore, x ∈∼ ∃RU . The other
inclusion follows similarly.

(m4): It is a direct consequence of (ms2) and Lemma 12.
(m5): According to Remark 11 and Lemma 12, we have that (1) ∼

(∃RU)∗ = X\g((∃RU)∗) = X\g(X\ ↓ ∃RU) = g(↓ ∃RU) =↑ g(∃RU) =↑
g(

⋃

s∈U

R(s)) =↑ ⋃

s∈U

R(g(s)). Therefore, (2) ∃R ∼ U∗ =
⋃

s∈∼U∗
R(s) =

⋃

s∈↑g(U)

R(s).

On the other hand, let x ∈ ∼ (∃RU)∗, then as a consequence of (1) there
is t0 ∈ ⋃

s∈U

R(g(s)) such that t0 ≤ x. Hence, from (ms4) there exist u0 ∈ U

and y ∈ X such that g(u0) ≤ y and (x, y) ∈ R. From the latter, we have
that y ∈↑ g(U), from which it follows by (2) that x ∈ ∃R ∼ U∗. Vice versa,
let x ∈ ∃R ∼ U∗. Then, from (2) we infer that there exists s0 ∈↑ g(U)
such that (x, s0) ∈ R and besides, there is u0 ∈ U such that g(u0) ≤ s0.
From the last assertions and (ms3), we obtain that there exists t1 ∈ X
such that (t1, g(u0)) ∈ R and t1 ≤ x. Therefore, t1 ∈ ⋃

s∈U

R(g(s)) and so,

x ∈↑ ⋃

s∈U

R(g(s)) =∼ (∃RU)∗, which completes the proof.

Proposition 16. If (A,∃) is an M-algebra, then m(A) = (X(A), gA, R∃)
is the associated M-space where for each P ∈ X(A), gA(P ) = A\ ∼ P
and R∃ = {(P,Q) ∈ X(A) × X(A) : P ∩ ∃A = Q ∩ ∃A}. Furthermore, the
function σA is an M-isomorphism.

Proof. From the hypothesis, we have that (X(A),∃R) is a q-space and
(X(A), gA) is an mpM -space. Then, (ms1) is verified.

(ms2): As a consequence of σA(a) = U for some U ∈ D(X(A)) and
a ∈ A, we only have to prove that R∃(σA(a))∩R∃(gA(σA(a))) ⊆ R∃(σA(a)∩
gA(σA(a)) holds. Which is an immediately consequence of Lemma 12 and
σA(∃�a) = σA(�∃a).

The conditions (ms3) and (ms4) follow immediately from Theorem 9.

From Propositions 15 and 16 and using the usual procedures, we conclude
the following theorem.

Theorem 17. The category of the M-space and of the M-function is nat-
urally equivalent to the dual of the category of the M-algebras and their
corresponding homomorphisms.



602 A. Figallo Orellano, I. Pascual

5. Congruences

Bearing in mind the above results, our next task is to characterize the lattice
Con(A) of M-congruences on M-algebra A.

Definition 18. Let (X, g,R) be an MS-space and let Y be an subset of
X. We will say that Y is R-saturated if Y = R(Y ).

Theorem 19. Let (A,∃) be an M-algebra. Then, the lattice CIRS
(X(A))

of all closed, involutive and R∃-saturated subsets of X(A) is isomorphic
to the dual lattice Con(A), and the isomorphism is the function ΘCIRS

:
CIRS

(X(A)) −→ Con(A) defined by ΘCIRS
(Y ) = {(a, b) ∈ A × A : σA(a) ∩

Y = σA(b) ∩ Y }.
Proof. Suppose Y ∈ X(A) then, from [9] we know that ΘIRS

(Y ) is a
mpM -congruence. So, by virtue of the results established [5, Lemma 3.1],
we have that the congruence is compatible with ∃.

Conversely, suppose now that θ ∈ Con(A) and Y = {P ∈ X(A) : |1|θ ⊆
P}. Then, we will prove that Y ∈ CIRS

(m(A)) and θ = Θ(Y ). Indeed,
(i) Y is closed: if Q �∈ Y , then by the hypothesis we infer that |1|θ �⊆ Q

and therefore, a ∈ |1|θ\Q. As consequence from the latter, we have that Q ∈
X(A)\σA(a). Furthermore, it is simple to verify that (X(A)\σA(a))∩Y = ∅.
Hence, we obtain that X(A)\σA(a) is an open set that contains Q and
X(A)\σA(a) ⊆ X(A)\Y . Therefore, Y is closed.

(ii) Y is involutive: let P ∈ Y and let x ∈ |1|θ. Since �x ∈ |1|θ and then,
we can conclude that ∼ x �∈ P . Hence, |1|θ ⊆ gA(P ) and so, gA(P ) ∈ Y .
The other inclusion follows similarly.

(iii) Y is R∃-saturated: We only prove that R(Y ) ⊆ Y because the other
inclusion is immediate. Let us suppose (1) P ∈ Y , then R(P ) ⊆ Y . Indeed,
let (2) Q ∈ R(P ) and let t ∈ |1|θ. So, ∼ ∃ ∼ t ∈ |1|θ and then, from (m3), (1)
and (2) we have that ∼ ∃ ∼ t ∈ P ∩ ∃A = Q ∩ ∃A. And, since ∼ ∃ ∼ t ≤ t
then, we can write t ∈ Q. Therefore, |1|θ ⊆ Q and as consequence we
infer that Q ∈ Y . Finally, according to Priestley representation for bounded
distributive lattices and from Theorem 2.4.6 of [9], we conclude that θ =
Θ(Y ), then the proof is now complete.

The following version of Theorem 19 will facilitate to determine the lattice
of principal congruences of an given M-algebra. Firstly, let us remark the
following:

(i) Y ⊆ X(A) is a closed (open) and involutive set if only if X(A)\Y is an
open (closed) and involutive one,
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(ii) σA(a) ∩ Y = σA(b) ∩ Y if only if σA(a) �σA(b) ⊆ X(A)\Y , where
W � Z = (W\Z) ∪ (Z\W ).

Next, we will give another characterization of the lattice of congruences
via open sets.

Theorem 20. Let A be an M-algebra. Then, the lattice OIRS
(X(A)) of all

open, involutive and R∃-saturated set of X(A) is an isomorphism to lattice
Con(A); and this isomorphism is defined as follows: ΘOIRS

: OIRS
(X(A))

−→ Con(A) where ΘOIRS
(G) = {(a, b) ∈ A × A : σA(b) �σA(a) ⊆ G}.

6. The Semi-simplicity of the Variety of M-Algebras

Our next task is to prove that subdirectly irreducible algebras are simple
in the variety of M-algebras, that is to say, the variety is a semisimple one.
For this specific purpose, we recall some properties from [9].

Lemma 21. [9] If (X, g) is an mpM -space, then min X ∪ max X = X.

Lemma 22. [9] Let (X, g) be an mpM -space, and let Y be a non-empty and
involutive set of X, then Y is increasing and decreasing.

As direct consequence from Lemma 22, we have the following:

Corollary 23. Let (X, g) be an mpM -space. If Y is a non-empty and
involutive subset of X, then min Y ∪ max Y ⊆ Y .

Proposition 24. Let (X, g,R) be an MS-space, and let Y be an non-empty
and involutive subset of X. Then, the followings conditions are equivalent:

(i) min R(y) ⊆ Y , for each y ∈ Y ,

(ii) Y is R-saturated.

Proof. (i)⇒ (ii): Since R is a reflexive relation, we have that Y ⊆ R(Y ).
On the other hand, let us suppose z ∈ R(Y ), then there is y ∈ Y such that
z ∈ R(y). As R(y) is a closed set, then min R(y) �= ∅. Therefore, there exists
m ∈ min R(y) such that m ≤ z and by (i), we conclude that m ∈ Y . So,
from Lemma 22, we can infer that z ∈ Y and then, R(Y ) ⊆ Y .

(ii)⇒ (i): It is an immediate consequence of (ii).

Proposition 25. Let (X, g,R) be an MS-space. Then X is the only closed
and involutive set which contains min X.
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Proof. Suppose now Y ⊆ X, Y �= ∅ a closed and involutive set such that
(1) min X ⊆ Y . Let us consider x ∈ X then, from Lemma 21 we obtain (2)
x ∈ min X or (3) x ∈ max X. If (2) holds, we have X ⊆ Y , and if (3) holds,
we infer that there exists t ∈ min X such that t < x, then t ∈ Y . From
the latter, Lemma 22 and since Y is involutive, we can conclude that Y is
increasing and therefore, x ∈ Y .

Theorem 26. Let (X, g,R) be an MS-space such that D(X) is an sub-
directly irreducible M-algebra. If Y is a non-empty, closed and involutive
subset of X, then the following conditions are equivalent:

(i) Y is R-saturated,

(ii) min X ⊆ Y .

Proof. (i) ⇒ (ii): Let Y ∈ CIRS
(X) and suppose that Y �= ∅. If min X �⊆ Y ,

then Y �= X and therefore Y ∈ CIRS
(X)\{∅, X}. From Theorem 19 and

since D(X) is a subdirectly irreducible algebra, we have that there exists
M0 ∈ CIRS

(X)\{∅, X} such that (1) S ⊆ M0 for each S ∈ CIRS
(X)\{X}.

As M0 �= X and from Proposition 25, we infer that there is m ∈ min X
such that m �∈ M0. Besides, as M0 is involutive then, g(m) �∈ M0. Now, let
us put W = R(m) ∪ g(R(m)). Then, W is a closed and involutive subset
of X. Furthermore, from Lemma 12 we have that R(W ) = W . From the
last assertions, we can infer that R(m) ∩ M0 = ∅ and g(R(m)) ∩ M0 =
R(g(m))∩M0 = ∅. Consequently, W ∩M0 = ∅ and so, W ∈ CIRS

(X)\{∅, X}
and W �⊆ M0, which contradicts (1). Therefore, min X ⊆ Y .

(ii) ⇒ (i): It is a direct consequence from Proposition 25.

Now, we are in a position to prove that subdireclty irreducible algebras
are each a simple algebra. Indeed,

Corollary 27. The variety of M-algebras is semisimple.

Proof. Let us suppose Y ∈ CIRS
(X) such that Y �= ∅ then, from Theorem

26 we have that min X ⊆ Y and as, Y increasing we infer Y = X. Therefore,
CIRS

(X) = {∅, X} and so, D(X) is simple. The proof is now complete.

7. Principal and Boolean Congruences

In this section we will investigate the poset of principal congruences and
prove to be a Boolean algebra.

Let us remark if a, b ∈ A and suppose θ(a, b) is a principal congruence
generated by (a, b), then since θ(a, b) = θ(a∧b, a∨b), we can suppose without
loss of generality that a ≤ b.
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Remark 28. Let us suppose that A is an M-algebra, a, b ∈ A and G is an
open, involutive and R∃-saturated subset of X(A). According to Theorem
20, we have that (a, b) ∈ ΘOIRS

(G) if only if σA(b)�σA(a) ⊆ G. If we
suppose that a � b, then we can infer that (a, b) ∈ Θ(G) iff σA(b)\σA(a) ⊆
G.

Proposition 29. Let A be an M-algebra and let (X(A), gA, R∃) be the M-
space associated with A. Let G be an open and involutive subset of X(A). If
a, b ∈ A are such that a � b, then the following conditions are equivalent:

(i) ΘOIRS
(G) = θ(a, b), where ΘOIRS

is defined in the Theorem 20,

(ii) G is the smallest subset of OIRS
(X(A)), in the sense of set inclusion,

which contains σA(b)\σA(a).

Proof. (i) ⇒ (ii): According to hypothesis and Remark 28, we have that
σA(b)\σA(a) ⊆ G. On the other hand, if H ∈ OIRS

(X(A)) is such that
σA(b)\σA(a) ⊆ H, then we can infer (a, b) ∈ ΘOIRS

(H). Therefore, from
(i) we obtain that ΘOIRS

(G) ⊆ ΘOIRS
(H) and from Theorem 20, we have

G ⊆ H.
(ii) ⇒ (i): From the hypothesis and Remark 28, we can write (a, b) ∈

ΘOIRS
(G). Besides, if ϕ ∈ Con(A) is such that (a, b) ∈ ϕ, then from Theo-

rem 20 there exists H ∈ OIRS
(X(A)) such that ΘOIRS

(H) = ϕ. From the
latter, we have that σA(b)\σA(a) ⊆ H. Hence, according to (ii) and from
Theorem 20, we conclude that ΘOIRS

(G) ⊆ ϕ and so,
ΘOIRS

(G) = θ(a, b).

Recall that the poset P is convex iff for each S ⊆ P and for every a, b ∈ S,
then {x ∈ P : a ≤ x ≤ b} ⊆ S ([2, p. 41]).

Lemma 30. Let X be an mpM -space and let R ⊆ X. Then the following
conditions are equivalent:

(i) R is a closed, open (henceforth clopen) and convex subset of X,

(ii) there exist W,V ∈ D(X) such that W ⊆ V and R = V \W .

Proof. (i)⇒ (ii): From the hypothesis and [9, Lemma 3.1.1], we have that
↑ R\R is closed and increasing. On the other hand, from [9, Lemma 3.1.2]
there exists W ∈ D(X) such that ↑ R\R ⊆ W and R∩W = ∅. Let V = R∪W
and V is increasing. Indeed, let x ∈ V and y ∈ X such that x ≤ y. If x ∈ W ,
then y ∈ W ⊆ V and if x ∈ R, we have that y ∈ R or y �∈ R. In the first
case, it is clear that y ∈ V and in the second case, we infer that y ∈ (↑ R)\R,
therefore y ∈ W ⊆ V . From the latter, V,W ∈ D(X).

(ii)⇒ (i): It is an immediate consequence of hypothesis.
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Next, we we will describe with more precision the open, involutive and
R-saturated subset of the space that determine a principal congruence.

Proposition 31. Let (A,∃) be an M-algebra and let (X(A), gA, R∃) be the
M-space associated. Let G be an open and involutive subset of X(A). If
a, b ∈ A is such that a ≤ b, then the following conditions are equivalent:

(i) ΘOIRS
(G) = θ(a, b),

(ii) G = R∃((σA(b)\σA(a)) ∪ gA(σA(b)\σA(a))),

(iii) there is a clopen subset T , of X(A), such that G = R∃(T ∪ gA(T )).

Proof. (i) ⇒ (ii): It is clear that σA(b)\σA(a) ⊆ G, and since G is an invo-
lutive subset of X(A), we conclude that (σA(b)\σA(a))∪gA(σA(b)\σA(a)) ⊆
G. Furthermore, as G is R∃-saturated, we have that R∃((σA(b)\σA(a)) ∪
gA(σA(b)\σA(a))) ⊆ G.

On the other hand, as (σA(b)\σA(a))∪gA(σA(b)\σA(a)) is a clopen and in-
volutive subset of X(A), then from Lemma 22, we can infer that it is increas-
ing of X(A). Hence, R∃((σA(b)\σA(a)) ∪ gA(σA(b)\σA(a))) ∈ OIRS

(X(A)).
As σA(b)\σA(a) ⊆ R∃(σA(b)\σA(a)) ∪ gA(σA(b)\σA(a))), then according to
Proposition 29 we have that G ⊆ R∃((σA(b)\σA(a)) ∪ gA(σA(b)\σA(a))).

(ii) ⇒ (iii): If we put T = σA(b)\σA(a), then the proof is easy to get
and left to the reader.

(iii) ⇒ (ii): Now, we have that T is a clopen and convex subset of X(A).
Besides, from Lemma 30 there exist U, V ∈ D(X(A)) such that U ⊆ V and
T = V \U . From the latter, we have that there exist a, b ∈ A such that a ≤ b,
U = σA(a) and V = σA(b). Therefore, T = σA(b)\σA(a) which completes
the proof.

(ii) ⇒ (i): It is a direct consequence of Proposition 29.

Theorem 32. Let A be an M-algebra and (X(A), gA, R∃) the M-space asso-
ciated. Then, there exists an isomorphism from COIRS

(X(A)) (the clopen,
involutive and R∃-saturated subsets of X(A)) into ConP (A) (the poset of
principal M-congruences of A).

Proof. Let G ∈ COIsX(A). Then, it is easy to see that G = R∃(G∪gA(G)).
Hence, according to Proposition 31, we have ΘOIRS

(G) ∈ ConP (A).
Vice versa, if ρ ∈ ConP (A), then from Theorem 20 we have there is

G ∈ OIRS
(X(A)) such that ρ = ΘOIRS

(G). Then, from Proposition 31 we
infer that there exists T ⊆ X(A) clopen such that G = R∃(T ∪ gA(T )) and
so, G ∈ COIRS

(X(A)).
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Let us note that in general two principal congruences of a given De Mor-
gan algebra has non-principal intersection ([1]). In our case, from Theorem
32, we have ConP (A) is an isomorphic order to a special lattice. Moreover,

Corollary 33. If A is an M-algebra, then ConP (A) is a boolean algebra.

Proof. It follows as a consequence of Theorem 32 and Lemma 12.

According to Corollary 33, every principal M-congruence is a boolean
M-congruence, now we will show the reciprocal condition.

Proposition 34. Let A be an M-algebra and ϕ ∈ Con(A). Then, ϕ is a
boolean M-congruence iff ϕ is a principal M-congruence.

Proof. From Theorem 20, we have that ϕ = ΘOIRS
(G). On the other

hand, there is ρ ∈ Con(A) such that ρ ∨ ΘOIRS
(G) = A × A and ρ ∧

ΘOIRS
(G) = IdA. Furthermore, according to Theorem 20, we infer that

there exists H ∈ OIRS
(X(A)) such that ρ = ΘOIRS

(H). From the latter,
we can conclude that G∪H = X(A) and G∩H = ∅, and so G = X(A)\H is a
closed subset of X(A). Therefore, G ∈ COIsX(A)) and from Theorem 20, we
obtain that ϕ ∈ ConP (A). The reciprocal condition is a direct consequence
from Corolary 33.

When A is a finite M-algebra, we have an important consequence:

Corollary 35. If A is a finite M-algebra, then Con(A) = ConP (A) =
ConB(A), where ConB(A) is the lattice of boolean M-congruences of A.

Next, we are to indicate some facts about mpM -spaces:

(N1) Let (X, g) be an mpM -space and let {Ci}i∈I be the set of all maximal
chains of X. Then, the following conditions hold for every U ∈ D(X):

(i) �U = U ∩ g(U) =
⋃

Ci ⊆U ∩g(U)

Ci,

(ii) ∇U = U ∪ g(U) =
⋃

Ci ∩ U �= ∅
or

Ci ∩ g(U) �= ∅

Ci.

(N2) Let (X, g) be an mpM -space and let U ∈ D(X). Then, we have the
following:

(i) U ∈ ∇(D(X)) iff U = ∇U ,
(ii) U ∈ �(D(X)) iff U = �U ,
(iii) ∇(D(X)) = �(D(X)).

(N3) Let (X, g) be an mpM -space and U ∈ D(X). Then, the following is
verified:
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(i) U ∈ �(D(X)) iff U is a closed, open and involutive subset,
(ii) U ∈ B(D(X)) iff U is a clopen and U =

⋃

x∈U

Cx, where Cx is a

maximal chain which contains to x,
(iii) ∇(D(X)) = �(D(X)) ⊆ B(D(X)).

Proposition 36. Let (X, g,R) be an M-space and U ∈ D(X). Then, U ∈
∃R(∇(D(X))) if only if U is a clopen, involutive and R-saturated of X.

Proof. If U ∈ ∃R(∇(D(X))), then from (N3) and Lemma 22 we have that
U is a clopen, involutive and R-saturated of X. The reciprocal condition is
a direct consequence of the (N2) and (N3).

Theorem 37. Let A be an M-algebra. Then, the lattices ∃∇(A) and ConP

(A) are isomorphic.

Proof. It is a direct consequence of Proposition 36 and Theorem 32.

Corollary 38. Let A be a finite M-algebra and let (X(A), gA, R∃) be the
M-space associated. If X(∃(A)) is the cardinal sum of n chains with two
elements, m involutive chains with one element, and 2l non-involutive chains
(n,m, l positive integers). Then, |ConP (A)| = |Con(A)| = 2n+m+l.

Proof. It is a direct consequence of Theorem 37 and the fact that |ConP

(A)| = |∇∃(A)| = |ConmpM
(∃A)| = 2n+m+l.

8. Another Characterization of Principal M-congruences

Our next task is to obtain a new characterization of principal M-congruences
via certain subset of given algebra.

It is well-know that, given a bounded distributive lattice L, we have
the congruence determined by a proper filter F of L in the follow way:
S(F ) = {(a, b) ∈ L × L : there exist f ∈ F and a ∧ f = b ∧ f}. Then,
it is verified that YF = {P ∈ X(L) : F ⊆ P} is a clopen and increasing
subset of the Priestley space of L and Θ(YF ) = S(F ). Furthermore, if a ∈ L
and F =↑ a, then Y↑a = {P ∈ X(L) :↑ a ⊆ P} = σL(a). Therefore, (#)
Θ(σL(a)) = S(↑ a).

Proposition 39. Let A be an M-algebra. Then, the following conditions
are equivalent:

(i) ϕ is a principal M-congruence of A,

(ii) there is a ∈ ∃∇(A) such that ϕ = S(↑ a).
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Proof. (i)⇒ (ii): From Theorem 32 there exists G, a clopen, involutive
and R∃-saturated of X(A), such that ΘOIRS

(G) = ϕ. On the other hand,
from Lemma 22 and Corolary 36, we infer that G ∈ ∃R∃∇D(X(A)). From
Theorem 37, it is verified that ∃∇(A) and ∃R∃∇D(X(A)) are isomorphic.
Hence, there is a ∈ ∃∇(A) such that G = σA(a). From the latter, we can
conclude that ϕ = ΘOIRS

(σA(a)). Bearing in mind that the application
ΘOIRS

is a restriction of Θ over COIRS
(X(A)) and from #, we have that

ϕ = S(↑ a).
(ii)⇒ (i): Let ϕ = S(↑ a) and as a ∈ ∃∇(A), then from (m18) we

have that σA(a) ∈ ∇(∃R∃D(X(A))). From (N3), we infer that σA(a) ∈
COIRS

(X(A)). On the other hand, from # it is verified that S(↑ a) =
Θ(σA(a)) = ΘOIRS

(σA(a)). From the latter and Theorem 32, we conclude
that ϕ is a principal M-congruence.

Proposition 40. Let A be an mpM -algebra and let (X(A), gA) be the mpM -
space associated. If a, b ∈ A such that a ≤ b, then:

θ(a, b) = S(↑ ((∇a∨ ∼ ∇b) ∧ (�a∨ ∼ �b)))

= ΘCOI(σA((∇a∧ ∼ ∇b) ∨ (�a∧ ∼ �b))).

Proof. According to [9, Theorem 3.4.6, Theorem 2.4.6], we can infer that
θ(a, b) = S(|1|θ(a,b)) = S(↑ d) with d = (∇a∨ ∼ ∇b) ∧ (�a∨ ∼ �b). On
the other hand, from (#) and [9, Corolario 3.3.9], and bearing in mind that
�d = d, we can conclude that S(↑ d) = ΘCOI(σA(d)).

Proposition 41. Let A be an M-algebra and let (X(A), gA, R∃) be the
M-space associated. If a, b ∈ A such that a ≤ b, then:

θ(a, b) = S(↑ (∃((∇a∨ ∼ ∇b) ∧ (�a∨ ∼ �b))))

= ΘCOIRS
(∃R∃(σA((∇a∧ ∼ ∇b) ∨ (�a∧ ∼ �b)))).

Proof. It follows from Theorem 32, and Propositions 40 and 39.

9. Final Conclusions

It is not hard to see that the congruence properties of the variety of mpM -
algebras are verified for variety of tetravalent modal algebras. For instance,
for every mpM -algebra A, the lattice of congruences of A is isomorphic to the
lattice of �-filters; i.e., filters that verify �F = F . The same occurs for every
tetravalent modal algebra. Moreover, the proof of properties for congruences
in an mpM -algebra are the same for a tetravalent modal algebras, which can
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be transferred to the monadic case. Therefore, all above results are verified
in monadic tetravalent modal algebras.
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