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Andrzej Pietruszczak

A Study in Grzegorczyk
Point-Free Topology Part I:
Separation and Grzegorczyk
Structures

Abstract. This is the first, out of two papers, devoted to Andrzej Grzegorczyk’s point-

free system of topology from Grzegorczyk (Synthese 12(2–3):228–235, 1960. https://doi.

org/10.1007/BF00485101). His system was one of the very first fully fledged axiomatiza-

tions of topology based on the notions of region, parthood and separation (the dual notion

of connection). Its peculiar and interesting feature is the definition of point, whose inten-

tion is to grasp our geometrical intuitions of points as systems of shrinking regions of

space. In this part we analyze (quasi-)separation structures and Grzegorczyk structures,

and establish their properties which will be useful in the sequel. We prove that in the class

of Urysohn spaces with countable chain condition, to every topologically interpreted repre-

sentative of a point in the sense of Grzegorczyk’s corresponds exactly one point of a space.

We also demonstrate that Tychonoff first-countable spaces give rise to complete Grzegor-

czyk structures. The results established below will be used in the second part devoted to

points and topological spaces.

Keywords: Grzegorczyk structures, Point-free topology, Region-based topology,

Foundations of topology, Mereology, Mereological fields, Mereological structures.

1. Introduction

Andrzej Grzegorczyk’s paper “Axiomatizability of geometry without points”
[10] is devoted to construction of points and topological spaces thereof.1

The presentation is based on a theory of mereological fields, whose primitive
notions are spatial body and containment of one body in another (see Sec-
tion 2). These two are enriched with the binary relation of being separated
characterized by additional postulates.

1 Although in the title of the paper the word ‘geometry’ is used, the paper itself does
not have any reference whatsoever to the typical geometrical concepts, such us the ternary
betweenness relation or the quaternary relation of congruence. Thus what the paper deals
with is rather “axiomatizability of topology without points”.
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About the theory developed in [10, p. 231] Grzegorczyk writes:

The specific axioms of theory T say that:

(i) the basic elements which are named spatial bodies [. . . ] constitute a mereological

field (a boolean algebra without zero-element) with a primitive predicate x ⊂ y (the

body x is contained in the body y);

(ii) x )( y is the relation of being separated: [further are stated the specific axioms

A1–A4 for )(].

From the content of [10] (especially from the isomorphism theorem on
p. 235) we infer that for the author mereological fields are mereological
structures in the sense of Tarski’s, i.e., relational structures which can be
obtained from complete Boolean algebras by removing the zero-element.2

Our strategy is different, since at the outset we assume rather weak mere-
ological theory and point to its strengthenings in case they are needed to
prove any results. For us, mereological fields are partially ordered sets 〈R,�〉,
where R is a set of regions and � is a parthood relation such that for all
regions x and y:3

2The aforementioned isomorphism theorem aside, interpretation of mereological fields
based on the quoted passage above poses some difficulties. Grzegorczyk himself points
to two papers: Leonard and Goodman [14] and Grzegorczyk [9], which contain theories
of different classes of structures. Leonard and Goodman [14] write about mereological
structures obtained from complete Boolean lattices by removing the zero-element, which
are the same (although axiomatized in a different way) structures as used by Tarski [22].
On the other hand, in [9] broader class of structures is studied, some of them do not
correspond to complete Boolean lattices, others do not correspond to Boolean lattices at all.
The author’s intention is to study structures which do not have to have the unit element,
since from his theory the axiom of existence of the unity is absent, yet there is nothing
which excludes it from the domain. Among models of his theory there are such which have
the unity (none of them, on the other hand, has the zero-element). Similarly, Grzegorczyk
mereologies from [9] do not have to be (yet may be) complete, i.e., the counterpart of
our (∃sum) (see page 10) does not figure among the axioms from the paper. It is not
explicitly assumed in [10] either, however it is needed to prove the isomorphism theorem
(which will be included in the second installment of this paper). The theorem in question
can be found in [10] with its proof appealing to completeness of the underlying structures,
so it is reasonable to admit that (∃sum) is implicitly assumed in [10].

3In the sequel we adopt widespread terminology tradition and our regions replace
spatial bodies from [10]. In case x � y we say that x is part of y. In [9, p. 91] ‘ingr ’ is a
syntactical counterpart of our ‘�’ and the author says: “The proposition “A ingr B” can
be read “A is contained in B” or, after Leśniewski, “A is an ingredient of B” [i.e., either
A is a proper part of B or A is identical with B]”.
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(i) if x � y then there exists the difference of x and y, i.e., the largest
region x − y which is part of x and is incompatible with y (x and y do
not have a common part);

(ii) x and y have the least upper bound which is their mereological sum
x � y.

Note that, by (i), for all x and y from R we obtain:

(iii) if x and y have at least one common part, then they have the greatest
lower bound x � y.

These conditions correspond directly to the theory from [9], composed of the
axioms M1–M6, as denoted in the paper. The above-mentioned strengthen-
ings we have in mind concern existence of mereological sums of infinite
sets and existence of the unity. For example, the proofs of propositions 5.9
and 6.6, and of Corollary 6.7 witness applications of a bounded version
of sum existence axiom from page 28 (w∃sum) for infinite sets (finite sets
always have sums due to accepted axioms), and some of the representation
theorems in the second part of the paper will require its stronger version
(∃sum), which we introduce on page 10.

We proceed along the similar line of thought with proofs concerning sep-
arations structures, i.e., we prove as much as we can with only three axioms
put upon separation relation, since these are enough to demonstrate inter-
esting results.

The main achievement of the first part is analysis of the notion of rep-
resentative of a point (intuitively: the collection of regions shrinking to a
unique location in space), with the proofs of facts, that under some standard
topological interpretation of regions, parthood and separation (see (df ][)):

• in the class of Urysohn spaces with countable chain condition, to every
representative of point of a space S corresponds a unique point of S,

• the class of regular open sets of any first-countable Tychonoff space sat-
isfies all axioms of Grzegorczyk’s from [10]; this, in a nutshell, means
that any first-countable Tychonoff space has enough point representa-
tives in the sense that the place of contact of regions of the space is
represented by at least one pre-point in the sense of Grzegorczyk’s (in
consequence it is also represented by a point, but this will be the object
of our study in the second part).

Terminology and properties of topological spaces we make use of in the
paper are presented in the “Appendix” on page 39.
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2. Mereological Fields and Mereological Structures

2.1. Basic Properties of Parthood

We assume that R �= ∅ is a set of regions and � ⊆ R × R is a parthood
relation which is reflexive, antisymmetric and transitive. These postulates
correspond directly to the axioms M1–M3 from [9, p. 91].

By means of � we introduce three auxiliary relations: of being proper part,
of overlapping and of being exterior to, respectively:

x � y :⇐⇒ x � y ∧ x �= y , (df �)

x � y :⇐⇒ ∃z∈R(z � x ∧ z � y), (df�)

x � y :⇐⇒ ¬x � y. (df �)

In the case x � y (resp. x � y; x � y) we say that x is proper part of y (resp.
x overlaps y; x is exterior to y). By definitions, � and � are symmetric; so if
x � y (resp. x � y), then we also say that x and y overlap (resp. are exterior
to each other). Moreover, � is reflexive and � is irreflexive, and, of course, �
is irreflexive, transitive, and asymmetric.

The next axiom:

∀x,y∈R

(
x � y =⇒ ∃z∈R(z � x∧ z � y ∧∀u∈R(u � x∧u � y ⇒ u � z))

)
, (∃−)

says that if x is not part of y then there is part z of x which not only is
exterior to y but is also the largest among all parts of x which are exterior
to y. By means of simple logical transformations and (df �) one may show
that (∃−) is equivalent to the axiom M4 from [9, p. 91].

So for all regions x and y such that x � y, the axiom (∃−) postulates
existence of unique region which can be treated as the difference of x and y
(or the relative complement of y with respect to x), and will be denoted by
‘x − y’. Moreover, the region x − y is equal to the least upper bound of the
set {u ∈ R | u � x ∧ u � y}. Thus, for any x, y ∈ R such that x � y we put:4

x − y := (ι z)
(
z � x ∧ z � y ∧ ∀u∈R(u � x ∧ u � y ⇒ u � z)

)

= sup�{z ∈ R | z � x ∧ z � y}
(df −)

4The Greek letter ‘ι’ stands for the standard description operator. The expression
(ι x) ϕ(x) is read “the only object x which satisfies the condition ϕ(x)”. To use ‘ι’ we first
have to ensure both existence and uniqueness of the object that satisfies ϕ, i.e., we have:
∃1
x∈S ϕ(x).
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In an obvious way, from (∃−) we obtain that the partial order � is sepa-
rative:

∀x,y∈R

(
x � y =⇒ ∃z∈R(z � x ∧ z � y)

)
. (sep�)

The formula (sep�) traditionally bears the name of Strong Supplementation
Principle. From (sep�) we obtain the so-called Weak Supplementation Prin-
ciple:

∀x,y∈R

(
x � y =⇒ ∃z∈R(z � y ∧ z � x)

)
. (WSP)

If R has at least two members, then the set R has at least two members
which are exterior to each other5:

|R| > 1 =⇒ ∃x,y∈R x � y.

From this we obtain that non-trivial structures do not have zero-element,
i.e.:

|R| > 1 =⇒ ¬ ∃x∈R∀y∈R x � y.

Our last basic axiom has the following form:

∀x,y∈R∃z∈R

(
x � z ∧ y � z ∧ ∀u∈R(x � u ∧ y � u ⇒ z � u)

)
. (∃sup2)

(∃sup2) is a direct counterpart of Grzegorczyk’s M5 from [9] (where it was
formulated only by means of primitive notions) and it says that any regions
x and y have the least upper bound.

Due to the absence of zero there cannot exist unrestricted infimum oper-
ation. Yet still—thanks to the following lemma—we can define a partial
operation of mereological product.

Lemma 2.1. ([17]) The following condition:

∀x,y∈R

(
x � y =⇒ ∃z∈R(z � x ∧ z � y ∧ ∀u∈R(u � x ∧ u � y ⇒ u � z))

)

(∃inf2)
is a consequence of antisymmetry, transitivity and (∃−).

Proof. Indeed, if x � y then we put z := x. If x � y and x � y, then we put
z := x−(x−y), since x � x−y. We have x−(x−y) � x and x−(x−y) � y.
Moreover, assume towards contradiction that for some u: u � x, u � y, and
u � x−(x−y). Hence, by (∃−), for some v we have: v � u and v � x−(x−y).
So v � x and v � y; and also v � y. Hence v � x − y; so v � y.

(∃inf2) says that any overlapping regions x and y have the greatest lower
bound. This condition (again, formulated in the primitive terms only) is

5|A| is the cardinal number of a set A.
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found in [9] as the axiom M6, and due to Lemma 2.1, it is redundant.
Therefore, naming the structures satisfying M1–M6 Grzegorczyk mereologies
we see that the class MF defined by antisymmetry, transitivity, (∃−), and
(∃sup2) is nothing but the class of all Grzegorczyk mereologies.

The classical Leśniewski mereology is based on the notion of mereological
sum (not that of supremum). We now show that the theory of the class MF
is closely related to the aforementioned notion.

2.2. Mereological Sums

We define a relation sum ⊆ R × P(R) by means of the following formula:6

z sum X :⇐⇒ ∀x∈X x � z ∧ ∀y∈R

(
y � z =⇒ ∃x∈X x � y

)
(df sum)

and say that z is a mereological sum of all members of X in case z sum X.
By reflexivity we have that sum ⊆ R × P+(R), i.e.:

¬ ∃z∈R z sum ∅.

It is known that (cf. e.g. [15–17]) antisymmetry, transitivity and (sep�) guar-
antee the uniqueness of mereological sum:

∀X∈P(R)∀y,z∈R(y sum X ∧ z sum X =⇒ y = z) (usum)

and we obtain:

∀X∈P(R)∀z∈R

(
z sum X ⇐⇒ ∀y∈R(y � z ⇔ ∃x∈X x � y)

)
.

From the same conditions it follows that (see [8,15,17]):

∀X∈P(R)∀z∈R(z sum X ⇐⇒ X �= ∅ ∧ z = sup� X),

|R| > 1 ⇐⇒ sum = sup�.
(2.1)

Thus, for any mereological field 〈R,�〉 we have that: the field is non-trivial
iff the relation sum is equal to the relation of being the least upper bound.

In light of (2.1), on the base of the remaining axioms, our last axiom
(∃sup2) is equivalent to:

∀x,y∈R∃z∈R z sum {x, y}. (∃sum2)

So, via (∃sup2), we postulate existence of mereological sums for arbitrary
pairs of regions. Moreover, by (df−), for all regions x and y such that x � y

6For any set S let P(S) (resp. Pfin(S)) be the family of all (resp. of all finite) subsets
of S. We put P+(S) := P(S)\{∅} and P+

fin(S) := Pfin(S)\{∅}. In general, for any family F
of sets we put F+ := F\{∅}, i.e., F+ is the family all non-empty sets from F .
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we obtain:

x − y sum {z ∈ R | z � x ∧ z � y}.

2.3. Binary Operations of Sum and Product

By (∃sup2), (∃sum2), and (2.1) for all x, y ∈ R we can put:

x � y := sup�{x, y} = (ι z) z sum {x, y}. (df�)

For all regions x, y and z we have (cf. e.g. [17]):

x � y = y � x x � x � y (2.2)

z � x � y ⇐⇒ z � x ∨ z � y z � x � y ⇐⇒ z � x ∧ z � y. (2.3)

For all overlapping regions x and y, the infimum of the set {x, y} will be
denoted by ‘x � y’ and will be called the mereological product of x and y.
Formally, for all x, y ∈ R such that x � y we put:

x � y := inf�{x, y} = sup�{z ∈ R | z � x ∧ z � y}
= (ι z) z sum {z ∈ R | z � x ∧ z � y}.

(df�)

For all overlapping regions x and y we have (cf. e.g. [17]):

x � y = x � x , x � y � x , (2.4)

z � x � y ⇐⇒ z � x ∧ z � y , (2.5)

x � y ⇐⇒ x � y = x. (2.6)

2.4. The Unity

We call the unity (sometimes the space) the maximum region in a mereolog-
ical field M, if such a maximum exists (and in such case it will be denoted
by ‘1’). For example:

Model 2.1 ([17, p. 118]). For any set S the structure 〈P+(S), ⊆〉 is a mereo-
logical field with the unity S. But if S is infinite, then 〈P+

fin(S), ⊆〉 is a mereo-
logical field without unity. It is also interesting that 〈P+

fin(S)∪{S}, ⊆〉 /∈ MF
(cf. Remark 2.1).

Convention. If K is a class of structures and ϕ1, . . . , ϕn are conditions for-
mulated in their language, then:

K + ϕ1 + · · · + ϕn

is a subclass of K which consists of all structures from K which additionally
satisfy all ϕ1, . . . , ϕn. Moreover, if among structures from K there are such
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that have unity, K1 is a subclass of K restricted to its elements with the
unity. �

According to the above convention, if (∃1) is the condition which pos-
tulates existence of unity, MF1 := MF + (∃1) and thanks to Model 2.1 we
have: MF1 � MF.

It is worth observing that structures from MF\MF1 are not only infinite,
but also have a property postulated by Whitehead [25]:

Proposition 2.2. If M ∈ MF\MF1 then M has no maximal element with
respect to �, i.e.,: ∀x∈R∃y∈R x � y.

Proof. For any x ∈ R there is z ∈ R such z � x. So x �= x�z and x � x�z,
by (2.2).

Lemma 2.3. Let 〈R,�〉 ∈ MF and for any x ∈ R we put R � x := {y ∈
R | y � x}. Then the structure 〈R � x,�|R�x〉 is a mereological field with the
unity x.

Proof. By (df�) the subset R � x is closed under �. By (2.5), R � x is
closed under � for any two overlapping members of R � x. Moreover, if
y � x, z � x, and y � z, then y − z � y � x.

2.5. Mereological Complement

Let 〈R,�〉 be any mereological field with the unity 1. Then for any x ∈ R
we have:

x �= 1 ⇐⇒ x � 1 ⇐⇒ 1 � x.

Hence, by (WSP), since all members of R overlap 1, we have:

∀x∈R

(
x �= 1 =⇒ ∃y∈R(y �= 1 ∧ y � x)

)
, (2.7)

∀x,y∈R

(
x � y =⇒ x �= 1 �= y

)
. (2.8)

For any x ∈ R such that x �= 1 we can define:

−x := 1 − x.

The object −x will be called the mereological complement of x. The opera-
tion of complement has the following properties (cf. e.g. [17]):

∀x∈R\{1} x � −x,

∀x∈R\{1} − x �= 1,

∀x∈R\{1} x = − − x,

∀x∈R\{1} x � −x = 1,
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∀x,y∈R\{1}(−x = −y ⇐⇒ x = y),

∀x,y∈R\{1}(x � y ⇐⇒ −y � −x),

∀x,y∈R\{1}(x � y ⇐⇒ −y � −x),

∀x,y∈R(x � y ⇐⇒ y �= 1 ∧ x � −y),

∀x,y∈R(x � y ⇐⇒ y �= 1 ∧ x � −y),

∀x∈R∀y∈R\{1}(x � −y =⇒ x − y = x � −y).

2.6. Mereological Fields and Boolean Lattices

There is a strong kinship between mereological fields with unity and Boolean
lattices (i.e. lattices that are bounded, complemented and distributive),
expressed in the following theorems.

Theorem 2.4 ([17]). Let 〈B,≤, 0, 1〉 be a non-trivial Boolean lattice (i.e.,
0 �= 1). We put R := B\{0} and � := ≤|R := ≤ ∩ (R × R). Then 〈R,�〉 is a
mereological field with the unity 1.

Theorem 2.5 ([17]). Let 〈R,�〉 be a mereological field with the unity 1 and
0 be an arbitrary object such that 0 /∈ R. We put R0 := R ∪ {0} and
�0 := � ∪ ({0} × R0 ), i.e., for any x, y ∈ R0 : x �0 y :⇐⇒ x � y ∨ x = 0 .
Then:

(i) 〈R0 ,�0 , 0 , 1〉 is a non-trivial Boolean lattice.

(ii) Let 〈R0 , +, ·, –, 0 , 1〉 be the non-trivial Boolean algebra obtained from
the Boolean lattice 〈R0 ,�0 , 0 , 1〉. Then for all x, y ∈ R0 we have:

x + y =

⎧
⎪⎨

⎪⎩

x � y if x, y ∈ R

x if y = 0
y if x = 0

– x =

⎧
⎪⎨

⎪⎩

−x if x ∈ R\{1}
0 if x = 1

1 if x = 0

x · y =

{
x � y if x, y ∈ R and x � y

0 otherwise.

In consequence, if in the set R0 we define three operations +, ·, and –,
using equations from (ii), then from the mereological field 〈R,�, 1〉 we obtain
a non-trivial Boolean algebra 〈R0 , +, ·, –, 0 , 1〉, the same that we obtain from
the Boolean lattice 〈R0 ,�0 , 0 , 1〉.

In light of Theorems 2.4 and 2.5 we have the following theorem.

Theorem 2.6 ([17]). For any non-empty set R and for any binary relation
� in R the following conditions are equivalent :
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(a) 〈R,�〉 is a mereological field with the unity 1.

(b) For any 0 /∈ R, R0 := R ∪ {0} and �0 := �∪ ({0} × R0 ) the structure
〈R0 ,�0 , 0 , 1〉 is a non-trivial Boolean lattice.

(c) For some non-trivial Boolean lattice 〈B,≤, 0, 1〉 we have R = B\{0},
� = ≤|R, and 1 = 1.

(d) For some non-trivial Boolean algebra 〈A, +, ·, −, 0, 1〉 we have R =
A\{0}, 1 = 1, and � = ≤|R, where ≤ is defined by : x ≤ y :⇐⇒
x + y = y.

Remark 2.1 ([17]). We assume that 〈R,�〉 ∈ MF\MF1.
(i) Let 1 be an arbitrary object such that 1 /∈ R. We put R1 := R ∪ {1}

and �1 := �∪(R×{1}), i.e., for any x, y ∈ R1 : x �1 y :⇐⇒ x � y∨y = 1 .
Then 〈R1 ,�1 〉 is not a mereological field (cf. Model 2.1).

Indeed, assume towards contradiction that 〈R1 ,�1 〉 is a mereological
field. Then 1 is the unity of 〈R1 ,�1 〉, �1 = �, �1 |R = �, and for any x ∈ R:
1 −1 x ∈ R and x � 1 −1 x. So we get a contradiction: 1 = x � (1 −1 x) �= 1
(since for any x, y ∈ R, x � y ∈ R).

(ii) Notice that 〈R,�〉 cannot be created from any mereological field
〈R′,�′〉 with the unity 1 by deleting this unity.

Indeed, assume towards contradiction that for 〈R′,�′〉 we have R :=
R′\{1} and � := �′|R. Then � = �′|R and 1−′ x ∈ R, for any x ∈ R. Hence
x � (1 −′ x) ∈ R and 1 = x � (1 −′ x) /∈ R. �

2.7. Mereological Structures

A mereological structure is any separative poset 〈R,�〉 that satisfies the
following condition:

∀X∈P+(R)∃z∈R z sum X. (∃sum)
Since (usum) holds in all separative posets, so we also have:

∀X∈P+(R)∃1
z∈R z sum X. (∃1sum)

Let 〈R,�〉 ∈ MS. Since every nonempty subset of the domain R has
the unique sum, we can introduce a unary operation on P+(R) of being the
mereological sum of all members of a given non-empty set :

⊔
X := (ι z) z sum X. (df

⊔
)

All mereological structures satisfy (df−) and (2.1) (cf. e.g. [8,15]). So for
any X ∈ P+(R) we have

⊔
X = sup� X. Moreover:

Theorem 2.7 ([15,17]). MS ⊆ MF1. In more detail : if 〈R,�〉 ∈ MS then
〈R,�〉 ∈ MF1, where 1 =

⊔
R and for all x, y ∈ R:
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(a) x � y =
⊔

{x, y},
(b) if x � y then x � y =

⊔
{z ∈ R | z � x ∧ z � y},

(c) if x � y then x − y =
⊔

{z ∈ R | z � x ∧ z � y},
(d) if x �= 1 then −x =

⊔
{z ∈ R | z � x}.

Again, as in case of mereological fields, there is a strong dependence
between mereological structures and complete Boolean lattices, expressed in
theorems which we obtain, respectively, from Theorems 2.4–2.6 replacing the
term ‘mereological field with the unity’ by the term ‘mereological structure’
and adding to the term ‘Boolean lattice (algebra)’ the word ‘complete’.7

Theorem 2.8 ([15–18,23]). For any non-empty set R and any binary rela-
tion � in R, the following conditions are equivalent :

(a) 〈R,�〉 is a mereological structure, were 1 is its unity.

(b) For some (equivalently : any) 0 /∈ R, for R0 := R ∪ {0} and for �0 :=
� ∪ ({0} × R0 ) the structure 〈R0 ,�0 , 0 , 1〉 is a non-trivial complete
Boolean lattice.

(c) For some non-trivial complete Boolean lattice 〈B,≤, 0, 1〉 we have R =
B\{0}, � = ≤|R, and 1 = 1.

(d) For some non-trivial complete Boolean algebra 〈A, +, ·, −, 0, 1〉 we have
R = A\{0}, 1 = 1, and � = ≤|R, where ≤ is defined by : x ≤ y :⇐⇒
x + y = y.

Thus, mereological structures may be called complete mereological fields.

Remark 2.2. Biacino and Gerla [2] interpret the term ‘mereological field’
as “the structure obtained from a complete Boolean algebra B by deleting
the zero-element, i.e., R = B − {0}” (p. 432). Therefore, their mereological
fields are mereological structures, i.e., our complete mereological fields (cf.
Theorem 2.8). �

Lemma 2.9. Let = 〈S,O〉 be any topological space and let rO be the family
of all regular open sets of T .8 Then the pair 〈rO, ⊆〉 is a complete Boolean
lattice with the zero-element ∅, the unity S, and such that for all U, V ∈ rO:
U ⊆ V iff Cl U ⊆ Cl V (see e.g. [13]). So, in the light of Theorem 2.8,
the pair 〈rO+, ⊆〉 is a mereological structure with � := ⊆, where for all
U, V ∈ rO+ we have: U � V iff U ∩ V �= ∅; U � V = Int Cl(U ∪ V );

7Concerning these theorems see footnote 1 in ([23, pp. 333–334]).
8For all relevant data concerning topological spaces see e.g. [5] and Appendix A.
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U �V = U ∩V , if U � V ; −U = Int(S\U), if U �= S; and
⊔

U = Int Cl
⋃

U ,
for any U ∈ P+(rO+).

By Theorems 2.6 and 2.8, we have MS � MF1. However:

Proposition 2.10 ([15,17]). All finite mereological fields are mereological
structures.

2.8. Atoms in Mereological Fields

Let M = 〈R,�〉 ∈ MF. Due to absence of zero-element we have a “natural”
notion of atom, according to which an atom is a member of R that has
no proper parts. Let AtM be the set of all atoms of M. We have that:
a ∈ AtM ⇐⇒ ∀x∈R(a � x ∨ a � x).

We say that M is atomic iff for any x ∈ R there exists a ∈ AtM such
that a � x.

Lemma 2.11. M is atomic iff for every x ∈ R, x sum {a ∈ AtM | a � x}.
We say that M is atomistic iff for every x ∈ R, x = sup�{a ∈ AtM |

a � x}. If M = 〈R,�〉 is trivial, then R = {1} = AtM and 1 sum {1} and
1 = sup�{1}. So, by the above lemma and (2.1), we obtain: M is atomistic
iff M is atomic.

If M has the unity 1 then: M is atomic iff the non-trivial Boolean lattice
〈R0 ,�0 , 0 , 1〉 is atomic. Existence of atoms is independent from all axioms
listed above.

A subset of R is an antichain iff its any two distinct elements are exte-
rior to each other. We say that a structure 〈R,�〉 has the countable chain
condition (abbrv.: c.c.c.) iff every antichain of its regions is countable.

Lemma 2.12. If M is infinite, then:

1. Either M is atomic and has infinitely many atoms, or for some x ∈ R
the set R � x is infinite.

2. M has some infinite antichain.

Proof. Suppose that R is infinite.
Ad 1. If for any x ∈ R the set R � x is finite, then M is atomic and AtM

is infinite, in light of Lemma 2.11.
Ad 2. If M is atomic and has infinitely many atoms then AtM is an

infinite antichain. Otherwise, by the previous point, for some x ∈ R the set
R � x is infinite. Then, by Lemma 2.3 and Theorem 2.5, respectively, 〈R �
x,�|R�x, x〉 is a mereological field with the unity x and 〈(R � x)0 ,�|0R�x, 0 , x〉
is a Boolean lattice to which we can apply Proposition 3.4 from Koppelberg
[13] and obtain an infinite antichain in M.
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We say that x ∈ R is atomless iff there is no atom a such that a � x. M
is atomless iff all its elements are atomless (iff AtM = ∅).

2.9. Filters and Ultrafilters in Mereological Fields

A non-empty subset F of R is a filter in M ∈ MF iff F fulfills the following
two conditions:

• if x, y ∈ F , then both x � y and x � y ∈ F ;

• if x ∈ F and x � y, then y ∈ F .

If M has the unity 1 then, obviously, 1 belongs to all filters in M.
We say that a filter F is an ultrafilter in M iff F is a maximal filter in

M with respect to set theoretical inclusion. Let Ult(M) be the family of all
ultrafilters of M. The Stone map of M is the function s : R → P(Ult(M))
defined by s(x) := {F ∈ Ult(M) | x ∈ F}. Standardly we obtain the follow-
ing fact (as for Boolean lattices; cf. Theorems 2.4–2.6):9

Proposition 2.13. Let M ∈ MF1 and let F be any filter in M. Then the
following conditions are equivalent :

(a) F ∈ Ult(M);

(b) for any x ∈ R\{1}, either x ∈ F or −x ∈ F ;

(c) for all x, y ∈ R, if x � y ∈ F then either x ∈ F or y ∈ F ;

(d) F is an ultrafilter in the non-trivial Boolean lattice 〈R0 ,�0 , 0 , 1〉.
We say that a non-empty subset X of R has finite intersection property

(abbrv.: f.i.p.) iff for all x1, . . . , xn ∈ X (n > 0) there exists the product
x1 � · · · � xn. If X has f.i.p., then X generates the filter FX := {y ∈ R |
∃x1,...,xn∈X x1 � · · · � xn � y} in M. If X = {x} then Fx := {y ∈ R | x � y}
is called a principal filter generated by x. Moreover, Fa ∈ Ult(M), for any
a ∈ AtM. We also have:

Lemma 2.14. If M is finite then the set Ult(M) is equal to the set of all
principal filters generated by atoms in M, i.e., Ult(M) = {Fa | a ∈ AtM}.

We now give general conditions for ultrafilters in structures from MF:10

Proposition 2.15. For any filter F in M ∈ MF the following conditions
are equivalent :
(a) F ∈ Ult(M);

9For the class MS see e.g. [7,15].
10For MF1 Proposition 2.15 follows from Proposition 2.13 and the definition of a filter.
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(b) for any x ∈ R, either x ∈ F or there is y ∈ F such that y � x;

(c) for all x, y ∈ R such that x � y ∈ F , either x ∈ F or y ∈ F .

Proof. (a) ⇒ (b) Let F ∈ Ult(M), x ∈ R and assume that for any y ∈ F
we have y � x. Thus F ∪ {x} has f.i.p. and generates the filter FF∪{x} such
that x ∈ FF∪{x} and F ⊆ FF∪{x}. So x ∈ F = FF∪{x}, by maximality of F .

(b) ⇒ (a) Assume that F /∈ Ult(M). Then there is a filter G in M such
that F � G. Hence for some x ∈ G we have x /∈ F . Moreover, for any
y ∈ F ⊆ G we have y � x.

(b) ⇒ (c) Suppose that x � y ∈ F . Assume towards contradiction that
x, y /∈ F . Then there are zx, zy ∈ F such that zx � x and zy � y. Hence
zx � zy and zx � zy ∈ F . But zx � zy � x and zx � zy � y, so zx � zy � x � y
by (2.3), a contradiction.

(c) ⇒ (b) Suppose x ∈ R and x /∈ F . We take any z from F . Suppose
that z � x. Then, we have z = (z−x)�(z�x), because z � x. Since z�x � x,
so z � x /∈ F . Therefore, by (c), z − x ∈ F . Of course, z − x � x.

3. Quasi-separation Structures

3.1. Definition and Basic Properties

Let R be any non-empty set and � and )( be binary relation in R. A triple
〈R,�, )( 〉 is a quasi-separation structure iff it satisfies the following condi-
tions:

〈R,�〉 ∈ MF, (MF)

∀x,y∈R

(
x )( y =⇒ x � y

)
, (S1)

∀x,y∈R

(
x )( y =⇒ y )( x

)
, (S2)

∀x,y∈R

(
x � y =⇒ ∀z∈R(z )( y ⇒ z )( x)

)
. (S3)

So � is a parthood relation, )( will be called a relation of being separated and
in the case x )( y we say that x is separated from y or that x and y are
separated, since the relation )( is symmetric, by (S2).

The condition (S1) says that the relations � and )( are disjoint. Thus,
from (S1) we obtain that the relation )( is irreflexive, i.e.:

∀x∈R ¬ x )( x. (irr)()

Moreover, the relation )( is included in the relation � , i.e.:

∀x,y∈R

(
x )( y =⇒ x � y

)
. (I�)()
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Figure 1. In both pairs regions are external to each other. Regions x and

y are separated, but regions v and z are not—they are externally tangent

to each other. The relation � does not differentiate between these two

situations

Indeed, assume towards contradiction that x )( y and x � y, i.e., for some z
both z � x and z � y. Then, by (S2) and (S3): z )( y and z )( x. So z � y,
by (S1).

Finally, by (2.2) and (S3), we obtain:

∀x,y,z∈R

(
z )( x � y =⇒ z )( x ∧ z )( y

)
. (3.1)

The class of all quasi-separation structures is defined as:

qSep := MF + (S1) + (S2) + (S3). (dfqSep)

The reason behind introducing )( is that the relation � does not differenti-
ate between two kinds of situations that may hold between regions. The first
kind involves regions that are separated, the second one such that are exter-
nally tangent to each other (see Figure 1). Clearly, it must be the case that
)( ⊆ �; cf. (I�)(). The notion of external tangency can be thus expressed by
the following difference: �\)(. So the motivation for introducing )( could be
justified as follows: find a binary relation in R, which will share the essential
properties of � and will differentiate between regions that are external but
are not tangent to each other and those that are both external and tangent
(of course in the case there exist such regions in some structure 〈R,�, )( 〉).

Note that (I�)() “allows for two extreme cases”: one in which )( = ∅, and
the other in which )( = �. Namely:

Proposition 3.1. Let 〈R,�〉 ∈ MF and either )( := ∅ or )( := � . Then in
both cases the conditions (S1)–(S3) are satisfied.

A quasi-separation structure 〈R,�, )( 〉 has the unity iff 〈R,�〉 ∈ MF1.
In general, we say that a quasi-separation structure 〈R,�, )( 〉 is complete iff
〈R,�〉 ∈ MS. Let qSepc be the class of all structures from qSep which are
complete. Since MS � MF1 � MF, the inclusions qSepc � qSep1 � qSep
hold by Proposition 3.1.
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Let 〈R,�, )( 〉 belongs to qSep1. Since all regions overlap the unity 1,
then by (I�)() we have:

∀x∈R ¬ x )( 1. (3.2)
Moreover, if x � y, then x �= 1 �= y and x � −y, by (2.8) and the properties
of the operation of complement from pp. 8–9. By (S3) therefore we have:11

∀x∈R∀y∈R\{1}
(
x � y ∧ y )( −y =⇒ y )( x

)
.

3.2. The Relation of Connection of Regions

Let R = 〈R,�, )( 〉 be any quasi-separation structure. We introduce the
following auxiliary binary relation C in R:

xC y :⇐⇒ ¬x )( y , (dfC)

which is called a relation of being connected ; in the case xC y we say that
regions x and y are connected. Of course, by (dfC) and, respectively, (S1)–
(S3), (irr)(), (I�)(), (3.1) the following conditions hold:

∀x,y∈R

(
x � y =⇒ xC y

)
, (C1)

∀x,y∈R

(
xC y =⇒ y Cx

)
, (C2)

∀x,y∈R

(
x � y =⇒ ∀z∈R(z Cx ⇒ z C y)

)
, (C3)

∀x∈R xCx , (rC)

∀x,y∈R

(
x � y =⇒ xC y

)
, (IC�)

∀x,y,z∈R

(
z Cx ∨ z C y =⇒ z Cx � y

)
. (3.3)

The conditions (rC), (C2), (C1), and (IC�) say, respectively, that the relation
C is reflexive, symmetrical, and it includes the relations � and �.

For any quasi-separation structure 〈R,�, )( 〉 with the unity 1, by (3.2),
we obtain:

∀x∈R xC1. (3.4)
Every relational structure 〈R,�,C〉 satisfying (MF) and (C1)–(C3) is

called a quasi-connection structure.

Proposition 3.2. Any quasi-separation structure 〈R,�, )( 〉 is definition-
ally equivalent to the quasi-connection structure 〈R,�,C〉 via (dfC) and the
following formula:

11If there exists region u such that u and −u are separated, then the space 1 is not
coherent, since 1 = u � −u and u )( −u. Generally, we say that a region x is coherent iff x
is not the sum of any separated regions, i.e., ¬ ∃y,z∈R(x = y � z ∧ y )( z). The term and its
definition come from [20]; see also [7]. For some complete G-structures there are regions
that are separated from their complements (see e.g. Proposition 6.8).
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Figure 2. Geometrical interpretation of non-tangential inclusion: x is

non-tangentially included in y, while z touches the complement of v

∀x,y∈R

(
x )( y ⇐⇒ ¬ xC y

)
. (df )()

3.3. Non-tangential Inclusion of Regions

From the point of view of developing topology on the basis of quasi-sepa-
ration structures we need the binary relation � of non-tangential inclusion
between regions (i.e., if x � y then we say that x is non-tangentially included
in y or that x is a non-tangential part of y). Intuitively, we want to express
the situation in which a region x is part of a region y and is separated
from its complement (see Figure 2).12 The following formula concerns such
a situation in any quasi-separation structure R = 〈R,�, )( 〉:

x � y :⇐⇒ ∀z∈R(z � y ⇒ z )( x), (df�)

i.e., x is non-tangentially included in y iff all regions exterior to y are sepa-
rated from x. Of course, from (df�), (df �), and (dfC) we have:

∀x,y∈R

(
x � y ⇐⇒ ∀z∈R(z Cx ⇒ z � y)

)
, (df ′�)

i.e., x is non-tangentially included in y iff all regions connected to x also
overlap y.

The relation � is included in the relation �, i.e., we have:

∀x,y∈R

(
x � y =⇒ x � y

)
. (I��)

12 The notion of non-tangential inclusion expresses inclusion of one region in the interior
of another. This is an intuitive interpretation, since the notion of being the interior of a
region concerns abstract objects, which are represented by non-empty subsets of P+(R),
i.e., elements of P+(P+(R)). Namely, the interior of a given region is to be a non-empty set
of points which will be represented as sets of regions. “Natural” topological interpretation
of the relation in question is the following: x is non-tangentially included in y iff the closure
of the interior of x is a subset of the interior of y. To speak about the closure of the set we
of course need some topology, and this will be introduced via construction of points which
will be described in the second part. Then we will be able to show that the aforementioned
property is indeed preserved in Grzegorczyk structures.
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Indeed, assume that x � y and x � y. Then x − y � y and x − y � x, by
(MF). Hence we obtain a contradiction: x − y )( x and x − y Cx, by (df�)
and (C1), respectively.

Moreover, the relation � has the following properties:

∀x,y∈R

(
∀u∈R u � y =⇒ x � y

)
, (3.5)

∀x,y∈R

(
x � y =⇒ ∀u∈R u � y ∨ ∃z∈R(z � y ∧ z )( x)

)
. (3.6)

Indeed, for (3.5): If ∀u∈R u � y, i.e., if y is the unity, then there is no z ∈ R
such that z � y. For (3.6): Suppose that x � y and there is u ∈ R such that
u � y. Then for z := u − y we have z � y, by (MF). Hence z )( x, by (df�).

Now notice that from (I��) and parthood antisymmetry we obtain:

∀x,y∈R(x � y ∧ y � x =⇒ x = y). (antis�)

Moreover, we have the following two conditions:
∀x,y,z∈R

(
x � y ∧ y � z =⇒ x � z

)
, (3.7)

∀x,y,z∈R

(
x � y ∧ y � z =⇒ x � z

)
. (3.8)

Indeed, for (3.7): Let (a) x � y and (b) y � z, and (c) u � z. Then u � y,
by (b), (c), and (MF). Hence u )( x, by (a) and (df�). Therefore x � z,
by (df�). For (3.8): Let (a) x � y, (b) y � z, and (c) u � z. Then u )( y,
by (b), (c), and (df�). Hence u )( x, by (a) and (S3). Therefore x � z, by
(df�).

Thus, by (I��) and one of (3.7) and (3.8), we have:

∀x,y,z∈R

(
x � y ∧ y � z =⇒ x � z

)
, (t�)

Now we prove:

Proposition 3.3. For any quasi-separation structure R = 〈R,�, )( 〉:
1. � is reflexive iff )( = � iff � is included in )( iff � is included in �

iff � = � .

2. If R has the unity 1 then R × {1} ⊆ �.

3. If )( = ∅ and � �= ∅, then R has the unity 1 and � = R × {1}.
4. If R has the unity 1 and � ⊆ R × {1}, then )( = ∅.

Proof. Ad 1. By (df�) and (I�)(): � is reflexive iff � ⊆ )( iff )( = � . But, by
(I��): � = � iff � ⊆ � . Moreover, if � ⊆ )( then � ⊆ �. Indeed, let x � y.
Suppose that z � y. Then z � x, by (MF). So also z )( x. Thus, x � y, by
(df�).

Finally, suppose that � ⊆ � . Then, since x � x, so x � x. Hence, by
(df�), we have ∀z∈R(z � x ⇒ z )( x)), i.e., � ⊆ )( .
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Ad 2. If R has the unity 1, then R × 1 ⊆ �, by (3.5).
Ad 3. If )( = ∅ and R does not have the unity, then for any y ∈ R there

is z ∈ R such that z � y. So � = ∅, by (df�).
Thus, if )( = ∅ and � �= ∅, then R has the unity 1. If x � y and y �= 1,

then for some z ∈ R we have z � y. So, by (df�), we obtain a contradiction:
z )( x. Thus, � ⊆ R × 1. Hence � = R × 1, by 2.

Ad 4. Suppose that R has the unity 1 and � ⊆ R×{1}. Assume towards
contradiction that )( �= ∅, i.e., for some x, y ∈ R we have x )( y. Hence
y �= 1 �= −y, by (3.2). If z � −y, then z � y. So z )( x, by (S2) and (S3).
Thus, x � −y, by (df�). And this entails a contradiction: −y = 1.13

If 〈R,�, )( 〉 has the unity 1, then (3.5) and (3.6) have the following forms:
∀x∈R x � 1 , (3.5′)

∀x,y∈R

(
x � y =⇒ y = 1 ∨ ∃z∈R(z � y ∧ z )( x)

)
. (3.6′)

We also have the following characterization of the relation � :

∀x,y∈R

(
x � y ⇐⇒ y = 1 ∨ (y �= 1 ∧ x )( −y)

)
. (3.9)

Indeed, for “⇒” suppose that x � y and y �= 1. Then −y � y. So x )( −y, by
(df�) and (S2). “⇐” If y = 1, then we use (3.5′). Now suppose that y �= 1,
x )( −y, and z � y. Then z � −y. So z )( x, by (S3). Thus, x � y.

Finally, by Proposition 3.3 and (3.9), we obtain:

Proposition 3.4. For any quasi-separation structure 〈R,�, )( 〉 with the
unity 1:

1. � is included in � iff ∀y∈R\{1} y )( −y.

2. )( = ∅ iff � ⊆ R × {1} iff � = R × {1}.

Proof. Ad 1. Let � ⊆ � . Then � is reflexive, by Proposition 3.3. If y �= 1
then y )( −y, by (df�), since y � −y. Conversely, let for any y �= 1: y )( −y.
Suppose that x � y. Then x )( −y, by (S2) and (S3). Hence x � y, by (3.9).

Ad 2. Let )( = ∅ and x � y. Then y = 1. Otherwise, by (3.5′), it would
be x )( −y, which is contrary to )( = ∅. Conversely, we use Proposition 3.3
(or (3.9) and (3.5′)).

13Notice that from (MF), (S1)–(S3) we cannot infer: if � = ∅, then )( = ∅. Cf. Propo-
sition 3.4(2).
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4. Separation Structures

A quasi-separation structure 〈R,�, )( 〉 will be called a separation structure
iff it satisfies both implications converse to (S3) and (3.1), i.e.:

∀x,y,z∈R

(
z )( x ∧ z )( y =⇒ z )( x � y

)
, (S4)

∀x,y∈R

(
∀z∈R(z )( y ⇒ z )( x) =⇒ x � y

)
. (S5)

We define:

Sep := qSep + (S4) + (S5).

A separation structure 〈R,�, )( 〉 is complete (resp. has the unity) iff 〈R,�〉 ∈
MS (resp. 〈R,�〉 ∈ MF1). Let Sepc be the class of complete separation
structures. We have Sepc � Sep1 � Sep.

In all structures from Sep, by (S3) and (S5), the relation � is definable
by )( , i.e.:

∀x,y∈R

(
x � y ⇐⇒ ∀z∈R(z )( y ⇒ z )( x)

)
. (4.1)

Note that Sep � qSep, Sep1 � qSep1, and Sepc � qSepc. Indeed, there is
a finite quasi-separation structure that fulfills neither (S4) nor (S5).

Model 4.1. Let 〈R,�〉 be any mereological structure whose domain contains
exactly seven elements, that is 〈R,�〉 is obtained from the eight element
atomic Boolean lattice by deleting zero. AtR has three members a, b, c.
For all x, y ∈ R we put: x )( y :⇐⇒ x, y ∈ AtR ∧ x �= y. We have
∅ �= )( � AtR × AtR � � and it is easy to check that the conditions (S1)–
(S3) are satisfied. But this model does not satisfy (S4), since c )( a and c )( b,
but cC a�b. Moreover, (S5) is not satisfied either. Indeed, since a�b /∈ AtR,
∀z∈R(z )( a � b ⇒ z )( 1) is trivially true. But 1 � a � b. �

The conditions (S4) and (S5) are absent from Grzegorczyk’s axiomati-
zation, but they are consequences of (MF), (S1)–(S3) and his own axiom
(G), that we call Grzegorczyk axiom (see Theorem 6.4). For this reason, we
establish some properties of separation structures which will be useful later
in examination of Grzegorczyk structures.

By (dfC), (S4), and (S5), respectively, we obtain the implications con-
verse to (S3) and (3.3), i.e.:

∀x,y,z∈R

(
z Cx � y =⇒ z Cx ∨ z C y

)
, (C4)

∀x,y∈R

(
∀z∈R(z Cx ⇒ z C y) =⇒ x � y

)
. (C5)

Thus, by (C3) and (C5) (or by (dfC) and (4.1)), � is also definable by C,
i.e.:
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∀x,y∈R

(
x � y ⇐⇒ ∀z∈R(z Cx ⇒ z C y)

)
. (4.2)

All quasi-connection structures that satisfy (C4) and (C5) are called con-
nection structures. Of course, not all quasi-connection structures are connec-
tion structures, and this can be seen via Model 4.1, in which: xC y ⇐⇒ x /∈
AtR ∨ y /∈ AtR ∨x = y. This model fulfills neither (C4) nor (C5) (cf. Propo-
sition 3.2).

Finally, by application of (3.1), (3.3), (S4), and (C4), we get:

∀x,y,z∈R

(
z )( x � y ⇐⇒ z )( x ∧ z )( y

)
,

∀x,y,z∈R

(
z Cx � y ⇐⇒ z Cx ∨ z C y

)
.

Remark 4.1. In the literature there is no standard definition of a sepa-
ration (resp. connection) structure. The axioms chosen by us may be con-
sidered as “natural” properties of separation (resp. contact) derived from
basic geometrical intuitions concerning the space. Moreover, the axioms are
either postulates or theorems of theories which are known as some standard
approaches to the problem in the literature (see e.g. [1,2,7,20,24]). �

Proposition 3.1 says that for any mereological field 〈R,�〉 the triple 〈R,
�, ∅〉 is a quasi-separation structure, where )( := ∅. The situation is different
in case of non-trivial separation structures.

Proposition 4.1. If a non-trivial quasi-separation structure 〈R,�, )( 〉 sat-
isfies (S5), then ∅ �= )( ⊆ � and � ⊆ C �= R × R.

Proof. If )( = ∅, then for all x, y ∈ R the condition ∀z∈R(z )( y ⇔ z )( x)
is trivially true. So x = y, by (S5), i.e., the structure is trivial. By (I�)() and
(IC�), respectively, we have suitable inclusions.

It is not difficult to notice that the relation � shares all the properties
expressed in the axioms (MF), (S1)–(S5).

Proposition 4.2. 〈R,�〉 ∈ MF iff 〈R,�, � 〉 ∈ Sep (with )( := � ).

More interesting quasi-separation (resp. separation) structures are
obtained from topological spaces by means of the following well-known
method, which will be useful in various constructions further in the paper.

Let T = 〈S,O〉 be a topological space. Then 〈rO+, ⊆ 〉 ∈ MS, by
Lemma 2.9. In rO+ we define the separation relation ][ by:

U ][ V :⇐⇒ Cl U ∩ Cl V = ∅. (df ][)
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Proposition 4.3. For any topological space T = 〈S,O〉:
1. [6, p. 87] 〈rO+, ⊆, ][ 〉 belongs to qSepc and satisfies (S4).14

2. [6, p. 92] The relation � in rO+, defined by (df�), meets:15

U � V ⇐⇒ Cl U ⊆ V.

3. [4, Proposition 3.7] If T is semiregular, then: 〈rO+, ⊆, ][ 〉 satisfies
(S5) iff T is weakly regular.

4. [2, Proposition 5.2] If T is normal, then the relation � in rO+ is dense,
i.e., satisfies the so-called interpolation axiom:

∀U,V ∈rO+

(
U � V =⇒ ∃W∈rO+(U �W ∧ W � V )

)
,

∀U,V ∈rO+

(
Cl U ⊆ V =⇒ ∃W∈rO+(Cl U ⊆ W ∧ Cl W ⊆ V )

)
.

(IA)

Proof. Ad 1. Clearly, 〈rO+, ⊆, ][ 〉 satisfies (MF) and (S1)–(S3). For (S4):
For all A, B, C ∈ P(S): A∩Cl(B∪C) = A∩(Cl B∪ClC) = (A∩ClB)∪(A∩
Cl C). So for all U, V, W ∈ rO+: Cl W ∩Cl(U�V ) = Cl W ∩Cl Int Cl(U∪V ) =
Cl W ∩ Cl(U ∪ V ) = (Cl W ∩ Cl U) ∪ (Cl W ∩ Cl V ). Hence: W ][ (U � V ) iff
W ][ U and W ][ V .

Ad 2. By 1. and (3.9) for all U, V ∈ rO we obtain: U � V iff V = S or
both V �= S and U ][ −V iff V = S or Cl U ∩ Cl(−U) = ∅ iff V = S or
Cl U ⊆ S\ Cl(−V ) iff V = S or Cl U ⊆ Int(S\Cl(−V )), but − Cl −V :=
Int(S\Cl(Int(S\U)) = Int(S\(S\ Int(S\ − U))) = Int Int(S\ Int(S\U)) =
Int(S\ Int(S\U)) = Int(S\ Int(S\U)) = Int ClU = U . Thus, we obtain:
U � V iff V = S or Cl U ⊆ V iff Cl U ⊆ V .

Remark 4.2. Given a topological space T = 〈S,O〉 what we are mainly
interested in are its non-empty regular open sets. So instead of T we can take
its semi-regularization Tsr := 〈S,Osr〉, where the topology Osr is generated
on S by the basis consisting of all sets from rO. If T is semiregular, then
Osr = O and Tsr = T . The space Tsr = 〈S,Osr〉 itself is of course semiregular
and rOsr = rO (see Lemma A.6). �

The complete structure 〈rO+, ⊆, ][ 〉 will be called the quasi-separation
structure associated with T and we write: qsepT . We have qsepT = qsepTsr,
for any topological space T (see Remark 4.2).

14Düntsch and Winter [4] prove this for regular closed sets, for which (S4) reduces to:
C ][ D ⇐⇒ C ∩ D = ∅. As it can be seen in the proof of ours, the transition to regular
open sets is not immediate and requires some effort.

15Biacino and Gerla [2] state this fact without proof (as Theorem 3.3) unnecessarily
requiring that T be a Hausdorff space.
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Figure 3. The set X of cross-like regions is not a pre-point

Moreover, by Proposition 4.3, if T is weakly regular, then qsepT belongs
to Sepc and so it will be called the separation structure associated with T ;
so we write: sepT . Notice that in this case we have sepT = sepTsr.

5. Representatives of Points and Points in Quasi-separation
Structures

Let R = 〈R,�, )( 〉 be a quasi-separation structure. Every non-empty subset
X of R which satisfies the following three conditions:

∀u,v∈X(u = v ∨ u � v ∨ v � u) , (r1)

∀u∈X∃v∈X v � u , (r2)

∀x,y∈R

(
∀u∈X(u � x ∧ u � y) =⇒ xC y

)
, (r3)

will be called a representative of a point in R, or a pre-point of R, for short.
Let QR be the family of all pre-points of R.

Let us analyze a couple of examples in order to grasp the geometrical
meaning hidden in the definition of pre-points. For their formal description
we may assume that our underlying structure is the Cartesian space R2,
regions are its regular open non-empty subsets and non-tangential inclusion
is interpreted as in Proposition 4.3.

In Figure 3 a descending set X of cross-like regions is not a pre-point,
since x and y overlap all regions in X, but are not connected with each
other. So X does not meet the condition (r3). What X represents is rather
a pair of perpendicular lines than a point.

Assuming completeness, in Figure 4 a descending set S of “unbounded”
regions is not a pre-point, since both x :=

⊔
i∈ω xi and y :=

⊔
i∈ω yi (where

ω is the set of all natural numbers) overlap all regions in S, but are not
connected with each other. In consequence, S does not meet the condition
(r3). Intuitively, the intention of the third condition is to eliminate points in
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Figure 4. The descending set S of “unbounded” regions is not a pre-point

Figure 5. The set of rectangular regions is not a pre-point

Figure 6. The set of pairs of circles with the same diameter is not a pre-point

infinity, and as we will show later, this works in the case of quasi-separation
structures associated with a certain class of topological spaces.

If we treat the whole sheet of paper as the space, then the set of rectan-
gular regions in Figure 5 is not a pre-point, since the relation ordering the
rectangles is not non-tangential inclusion (only parthood). So this set does
not meet the condition (r1).

In Figure 6 we consider pairs of circles with the same diameter as regions
(which are not coherent). The set depicted above is not a pre-point. The
regions x and y overlap all regions in this set but are separated. So the set
does not meet the condition (r3). In this case the intention is to eliminate
those sets of regions that represent more than one location in space.

Since the role of pre-points is to represent points, what are the points
themselves? These are, in a given quasi-separation structure, all filters gen-
erated by pre-points.16

16We characterize the notion of point in quasi-separation structures similarly to Biacino
and Gerla [2]. Grzegorczyk himself introduced the definition solely for G-structures (see
the definition D1 in [10, p. 232]).
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Figure 7. Q1 and Q2 represent the same point

Let R = 〈R,� )( 〉 be any quasi-separation structure. In the light (r1),
(I��), and (2.6) all pre-points from QR have the finite intersection property
(see p. 13). So we obtain:

Proposition 5.1. Every pre-point in R generates some filter in mereological
field 〈R,�〉. For any Q ∈ QR the filter generated by Q has the form FQ :=
{ x ∈ R | ∃u1,...,un∈Q u1 � · · · � un � x } = { x ∈ R | ∃u∈Q u � x }.

By a point in R we will mean any filter in the mereological field 〈R,�〉
generated by some pre-point in R. Let PtR be the set of all points in R.
Thus, for any X ∈ P(R):

X ∈ PtR :⇐⇒ ∃Q∈QR
X = FQ. (dfPtR)

We will denote elements of PtR by means of small Gothic letters.
The situation depicted in Figure 7 justifies the definition of point. If we

agreed to treat pre-points as points then we would have the situation in
which two pre-points representing the same location in space were different
points. In other words, we would (usually) have more than one point in the
same location, in extreme cases even uncountably many of them.

More formally, there is a class of topological spaces (e.g. first-countable
Tychonoff spaces having the countable chain condition; which includes
Euclidean spaces) such that for any space T = 〈S,O〉 from this class and for
any point p ∈ S there are distinct pre-points Q1 and Q2 in qsepT (where
Q1 and Q2 are non-empty subsets of rO+) which correspond to p in the fol-
lowing sense:

⋂
Q1 = {p} =

⋂
Q2. But in such case we obtain: FQ1 = FQ1 ,

i.e., pre-points Q1 and Q2 generate the same point (cf. Proposition 5.2 and
Theorem 5.13).

Already for quasi-separation structures we get the following interesting
facts:
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Proposition 5.2 (cf. [10]). Let R = 〈R,�, )( 〉 ∈ qSep. Then:

1. For all Q1, Q2 ∈ QR: if for all x ∈ Q1 and y ∈ Q2 we have x � y, then
Q1 and Q2 generate the same point, i.e., FQ1 = FQ1.

2. For all p, q ∈ PtR: if for all x ∈ p and y ∈ q we have x � y, then p = q.

Proof. Ad 1. Assume towards contradiction that for all x ∈ Q1 and y ∈ Q2

we have x � y, but FQ1 �= FQ1 . Then either for some x0 ∈ FQ1 we have
x0 /∈ FQ2 , or for some y0 ∈ FQ2 we have y0 /∈ FQ1 .

In the first case for any y ∈ FQ2 , y � x0. Note that for some u ∈ Q1 we
have u � x0. So, by (r2), for some x1 ∈ Q1, x1 � u. Hence x1 � x0, by
(3.7). Moreover, by assumption, for any z ∈ Q2 we have z � x1. Let y be an
arbitrary member of FQ2 . Then for any z ∈ Q2, z � y − x0 (indeed, either
y − x0 � y � z or both y − x0 � y, z � y, and z � x0, so z − x0 � y − x0).
Hence, by (r3), x1 C y − x0. Thus, we obtain a contradiction. Namely, since
x0 � y − x0, x1 )( y − x0, by (df�).

The second case is proved in an analogous way.
Ad 2. Directly by 1. and definition of PtR.

Thanks to Proposition 5.2(2), by definition of filters, we also have:

Corollary 5.3. Let R = 〈R,�, )( 〉 ∈ qSep. For all p, q ∈ PtR: if p ⊆ q

then p = q.

In this way we obtain the next:

Corollary 5.4. For all Q ∈ QR and p ∈ PtR: if Q ⊆ p then p = FQ.

Proof. Let Q ∈ QR and p ∈ PtR, i.e., p = FQp := {y ∈ R | ∃z∈Qp z � y},
for some Qp ∈ QR. Assume Q ⊆ p. Let x ∈ FQ, i.e., there is y0 ∈ Q such
that y0 � x. Since Q ⊆ p = FQp , so there is z0 ∈ Qp such that z0 � y0. Hence
z0 � x. So x ∈ FQp . Thus, we obtain FQ ⊆ FQp . Hence, by Corollary 5.3,
FQ = FQp .

Generally, the theory of quasi-separation structures is too weak to prove
that QR �= ∅. For example, the seven-element structure from Model 4.1 has
no pre-points. However, in light of Lemma 5.5 below, in order to show sepa-
ration structures without pre-points we must resort to atomless structures.
Existence of such structures is a consequence of Proposition 5.9 (see also
Proposition 5.10).

For G-structures existence of pre-points is guaranteed axiomatically and
entails that PtR �= ∅. In Theorem 6.10 we prove that for any first-countable
Tychonoff space T the separation structure sepT is a G-structure. Points
of G-structures will be the object of our study in the second installment to
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this paper, for now we move on to formal description of representatives of
points and their properties.

Atoms (resp. atomless elements) in a quasi-separation structure 〈R,�, )( 〉
are exactly atoms (resp. atomless elements) in the mereological field 〈R,�〉.
Thus, 〈R,�, )( 〉 is atomic (resp. atomless) iff 〈R,�〉 is atomic (resp. atom-
less).

The following lemmas will be used in the sequel. Firstly, in the light of
Proposition 4.2, for any mereological field 〈R,�〉, we have the separation
structure 〈R,�, � 〉 with )( := � and C = � and � = � (see Proposition 3.3).

Lemma 5.5. For any separation structure R = 〈R,�, � 〉: if a ∈ AtR then
{a} ∈ QR.

Proof. For any atom a the singleton {a} trivially satisfies (r1) and (r2).
For (r3): If a � x and a � y, then a � x and a � y. Hence x � y, i.e., xC y.

Let R = 〈R,�, )( 〉 ∈ qSep. For given X, Y ∈ P(R) we say that X is
coinitial with Y iff ∀y∈Y ∃x∈X x � y.

Lemma 5.6. Let R ∈ qSep and Q ∈ QR. All subsets of Q which are coinitial
with Q also belong to QR. In consequence, for any x ∈ Q we have Q � x ∈
QR.

Proof. Suppose that X ⊆ Q and X is coinitial with Q ∈ QR. Then (r1) is
immediate, since Q satisfies (r1). For (r2) take x ∈ X. Q satisfies (r2) and
x ∈ Q, so there is y ∈ Q such that y � x. Since X is coinitial with Q, there
is z ∈ X such that z � y. But then z � x, by (3.8). For (r3) assume that
regions y and z are given such that ∀u∈X(u � y ∧ u � z). Let v ∈ Q. Again,
we use the assumption that X is coinitial with Q and take some x0 ∈ X for
which x0 � v. Moreover, x0 � y and x0 � z. So, by (MF), we get that v � y
and v � z. Thus, xC y, by (r3) for Q, since v was arbitrary.

For the sake of the presentation, as we are interested in descending chains
(with respect to �) being the representatives of points, we define the set X
of regions to be well-ordered iff X is linearly ordered by � and such that its
every non-empty subset has the largest element with respect to � (thus it
may be said that X is dually well-ordered with respect to parthood).

For a limit non-zero ordinal λ, 〈xα | α < λ〉 is a transfinite sequence of
regions indexed by elements of λ. For a given ordinal α, if there is an ordinal
β such that α = 2 · β (where the dot is the ordinal multiplication), then α
is even ordinal number, otherwise it is odd. For a given limit ordinal λ, Eλ

is the set of all even ordinals below λ and Oλ is the set of all odd ordinals
below λ. In the sequel we will use the standard set-theoretical result:
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Lemma 5.7 ([11] Exercise on p. 68 and Counting Theorem on p. 80). Every
linearly ordered set 〈L,≤〉 has a coinitial well-ordered subset 〈W, ≤′〉 with
≤′ := ≤ ∩ (W × W ). Since every well-ordered set is order-isomorphic to an
ordinal α, the set 〈W, ≤′〉 may be arranged into a sequence 〈wβ | β < α〉
such that for all β1, β2 < δ, if β1 < β2, then wβ1 ≤′ wβ2 and wβ1 �= wβ2.

Thanks to this we can prove:

Lemma 5.8. For any Q ∈ QR there is Q′ ∈ QR such that Q′ ⊆ Q, Q′ is
coinitial with Q, and Q′ is well-ordered by � . Moreover, for any x ∈ Q there
is y ∈ Q′ such that y � x.

Proof. By (r1), since � ⊆ �, Q is linearly ordered by �. Therefore, by
Lemma 5.7, there is Q′ ⊆ Q which is well-ordered by � and coinitial with Q.
Hence, Q′ ∈ QR, by Lemma 5.6. Now let x ∈ Q. Since Q′ is coinitial with
Q, there is z ∈ Q′ such that z � x. By (r2) for Q′, there is y ∈ Q′ such that
y � z. Hence y � x, by (3.7).

Proposition 5.9. For each separation structure R = 〈R,�, � 〉 satisfying
the following weakened version of (∃sum):17

∀X∈P+(R)( ∃y∈R∀x∈X x � y =⇒ ∃z∈R z sum X ), (w∃sum)

no atomless region from R belongs to
⋃
QR.

Proof. Since )( = � , we have that C = �, � = �, and � is reflexive.
Suppose that R satisfies (w∃sum) and assume towards contradiction that

x ∈ R is an atomless region which belongs to some pre-point Q in R. We
consider two cases.

First, assume that (†) Q has the minimal element y with respect to �.
Then y /∈ AtR, y � x, and for some u we have u /∈ Q and u � y. Hence
y − u � y and y − u � u, so y � u and y � y − u. By (†), for any z ∈ Q we
have z � u and z � y − u, which contradicts (r3), since u )( y − u.

Second, assume that Q does not have the minimal element with respect to
� and consider the set Q � x which belongs to QR by Lemma 5.6. Moreover,
by Lemma 5.8, there is a transfinite sequence 〈yα | α < λ〉 of regions from
Q � x such that y0 = x, yα+1 � yα, and the set Q′ := {yα | α < λ} is coinitial
with Q � x and belongs to QR. For all α < λ there exists zα := yα − yα+1

17(w∃sum) says that every non-empty set which is bounded from above has its mereo-
logical sum (this condition corresponds to (w1∃sum) from [8,17]). It is obvious that (∃sum)
is equivalent to the pair (∃1) and (w∃sum). Hence every mereological field with unity sat-
isfying (w∃sum) is a mereological structure. Yet the axioms of the class MF1 do not entail
(w∃sum) (see [17]).
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and 〈zα | α < λ〉 is an antichain. We divide it into 〈zα | α ∈ Eλ〉 and
〈zβ | β ∈ Oλ〉. Both sequences are bounded by x. Thus, by (w∃sum), there
are z1 and z2 such that z1 :=

⊔
{zα | α ∈ Eλ} and z2 :=

⊔
{(zβ | β ∈ Oλ}.

By construction, z1 � z2, i.e., z1 )( z2. Of course, for any yα ∈ Q′ both yα � z1
and yα � z2. So, by (r3) for Q′, we obtain a contradiction: z1 C z2.

Directly by the above proposition we have:

Proposition 5.10. For each atomless separation structure R = 〈R,�, � 〉
satisfying the condition (w∃sum) we have QR = ∅.

For any topological space T = 〈S,O〉, qsepT is the quasi-separation struc-
ture associated with T . In qsepT representatives of points are non-empty
subfamilies of rO+, which satisfy (r1)–(r3). Note that, by (df ][) and Propo-
sition 4.3, for any family X ∈ P+(O+) the conditions (r1)–(r3) have the
following form:

∀U,V ∈X

(
U = V ∨ Cl U ⊆ V ∨ Cl V ⊆ U

)
, (R1)

∀U∈X ∃V ∈X Cl V ⊆ U , (R2)

∀A,B∈rO(∀U∈X U ∩ A �= ∅ �= U ∩ B ⇒ Cl A ∩ Cl B �= ∅). (R3)

These conditions can also be used for any non-empty family X of non-empty
subsets of the set S.

Lemma 5.11. Let T = 〈S,O〉 be a T1-space and p ∈ S. Suppose that there
is a base Bp at p satisfying (R1). Then Bp also satisfies (R2) and (R3).
Moreover, if Bp ⊆ rO+, then Bp is a pre-point of qsepT .

Proof. For (R2): Let B ∈ Bp. If B = {p} then Cl B = B, since T is a
T1-space. So suppose that for some p, q ∈ B and Up ∈ Op we have p �= q and
q /∈ Up. Hence B∩Up ∈ Op and B∩Up � B. Moreover, for some Bp ∈ Bp we
have Bp ⊆ B ∩ Up, since Bp is a base at p. Therefore Bp � B and B � Bp.
So Cl B � Bp, since B ⊆ Cl B. Thus, Cl Bp ⊆ B, by (R1).

For (R3): Let U and V be members of rO+ such that for any B ∈ Bp

we have B � U and B � V , i.e., B ∩ U �= ∅ �= B ∩ V . Then p ∈ Cl U and
p ∈ Cl V , since Bp is a base at p. So ClU ∩ Cl V �= ∅.

Finally, if Bp ⊆ rO+, then Bp is a pre-point in sepT , since rBp ⊆ rO+.

Proposition 5.12. Let T = 〈S,O〉 be a T1-space such that for any point p
there is a base Bp at p satisfying (R1). Then:

1. T is a Hausdorff space, so T is weakly regular.

2. If T is second-countable, then T is perfectly normal.
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3. qsepT belongs to Sepc (and therefore we refer to this structure as sepT ).

4. For any p ∈ S the family rBp := {Int Cl B | B ∈ Bp} is a base at p
and a pre-point in sepT .

Proof. Ad 1. By Lemmas A.2 and A.1. Ad 2. By Lemma A.3. Ad 3. By 1
and Proposition 4.3(3) (see Remark 4.2). Ad 4. By Lemma A.2(2), for any
p ∈ S, the family rBp is a base at p which satisfies (R1). The rest by
Lemma 5.11.

Generally it does not have to be the case that to every point of a given
topological space T corresponds some pre-point Q of qsepT which uniquely
determines this point. To be more precise, the following is not always true:
for any point p of T there is a pre-point Q in qsepT such that

⋂
Q = {p}.

In the extreme case, we may take any set S with at least two points with
the anti-discrete topology {∅, S}. Then sepT is based on the degenerate
mereological field 〈{S}, ⊆〉, where � = {〈S, S〉} = C, and for the only pre-
point {S} in sepT we have

⋂
{S} = S. However, in the next theorem we

demonstrate for which class of topological spaces we may establish such
correspondence.

Theorem 5.13. Let T = 〈S,O〉 be a first-countable Tychonoff space. Then:

1. For any point p ∈ S there is a base Q at p such that Q ⊆ rO+, Q is
a pre-point in sepT , and

⋂
Q = {p}. So to any p ∈ S corresponds a

pre-point Q in sepT such that
⋂

Q = {p}.
2. If in addition T is second-countable, then T is perfectly normal and has

c.c.c., so in consequence sepT satisfies (IA) and has c.c.c. as a structure.

Proof. Ad 1. Let p ∈ S. By Lemma A.4 for some continuous function
f : S → [0, 1] we have that f(p) = 0 and the family Bp := {f−1[[0, 1

2n )] |
n ∈ ω+}18 is a base at p such that

⋂
Bp = {p}. For any n ∈ ω we put

Un := f−1[[0, 1
2n )] and we show (∗): Cl Un+1 ⊆ Un.

Indeed, assume that q /∈ Un. Then f(q) /∈ [0, 1
2n ), i.e., f(q) ∈ [ 1

2n , 1].
Take t ∈ ( 1

2n+1 , 1
2n ). We have: f(q) ∈ (t, 1], the set (t, 1] is open in natural

topology on [0, 1], and [0, 1
2n+1 ) ∩ (t, 1] = ∅. Hence Un+1 ∩ f−1

[
(t, 1]

]
= ∅.

Note that f−1
[
(t, 1]

]
belongs to Oq. Thus, q /∈ Cl Un+1.

By (∗) the base Bp satisfies (R1). Hence, by Proposition 5.12, the family
rBp := {Int Cl B | B ∈ Bp} is a base at p and a pre-point in sepT . Since T
is T1-space, we obtain that

⋂
rBp = {p}.

18We put ω+ := ω\{0}, i.e., ω+ is the set of all positive integers.
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Ad 2. We use 1, Lemma A.3, and Proposition 4.3(4), plus Lemma A.5
for c.c.c. for sepT .

Theorem 5.13 does not resolve the problem of uniqueness of points deter-
mined by intersections of pre-points, i.e., we would like to know as well for
which class of spaces topologically interpreted pre-points are unambiguous
in “pin-pointing unique locations in space”, in the sense that for every pre-
point there is exactly one point of the space which there is within every
regular open set from the pre-point. In Theorem 5.17 we prove that all sep-
aration structures based on Urysohn spaces with c.c.c. have this property.
In consequence we have that in the class of separation structures for first-
countable Tychonoff spaces with c.c.c.19 every pre-point determines a unique
point of the space, and to every point p corresponds a pre-point Q such
that

⋂
Q = {p}. This, in particular, shows that Grzegorczyk’s definitions

of pre-points and points are “correct” in the sense, that the aforementioned
properties hold in the class of separations structures for Euclidean spaces
(see Corollary 5.18), which is of course the subclass of the former class of
structures.

For all ordinals κ and λ, a function f : κ → λ is monotone iff for all
α, β ∈ κ, if α � β than f(α) � f(β). Moreover, for a given limit ordinal
λ, the cofinality of λ (in symbols: cf(λ)) is the smallest ordinal κ such that
there is a monotone function f : κ → λ with f [κ] unbounded in λ, i.e., for
any α ∈ λ there is β ∈ κ such that α < f(β).

In the proof of Lemma 5.15 we use the standard fact from set theory:

Lemma 5.14. If λ > 0 is a countable limit ordinal, then cf(λ) = ω.

Lemma 5.15. Let T = 〈S,O〉 be a topological space having c.c.c. and U be
an infinite chain of open sets satisfying (R1). Then there is a monotone ω-
sequence of elements of U which is coinitial with U and such that Cl Un+1 �

Un, for any n ∈ ω.

Proof. In U we define: U ≤ V iff either U = V or Cl U ⊆ V . Then
〈U , ≤〉 is a linearly ordered set in light of (R1). By Lemma 5.7, 〈U , ≤〉 has
a coinitial well-ordered subset 〈V , ≤′〉, with ≤′ := ≤ ∩ (V × V ), and we
can arrange it into a sequence 〈Uα | α < λ〉, where for any α < λ we have:
Uα+1 ⊆ Cl Uα+1 ⊆ Uα and Uα+1 �= Uα. As a subsequence of U it satisfies
(R1), so Cl Uα+2 ⊆ Uα+1 � Uα.

19We need both first countability and c.c.c. The long line space (see [21] ex. 45) is a first-
countable connected Tychonoff space which does not have c.c.c., while the uncountable
Cartesian product of the unit interval

∏
i∈[0,1][0, 1]i is a connected Tychonoff space with

c.c.c., but not first countable (see [21] ex. 105).
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Let Vα := Uα\ Cl Uα+2. The sequence 〈Vα | α < λ〉 is an antichain of
non-empty open sets of T , and so it is countable. Hence λ is countable and
cf(λ) = ω, by Lemma 5.14. Thus, there is a monotone function f : ω → λ
such that f [ω] is unbounded in λ, and in consequence for any α ∈ λ there
is n ∈ ω such that α < f(n). Hence Uα ⊆ Uf(n). This shows that 〈Uf(n) |
n < ω〉 is coinitial with 〈Uα | α < λ〉, and so with U as well.

Now we take every second element from 〈Uf(n) | n < ω〉, i.e., we put
A0 := Uf(0) and An+1 := Uf(2n). This guarantees that Cl An+1 � An and
〈An | n ∈ ω〉 is a monotone ω-sequence which coinitial with U .

The condition (R3) can be expanded onto the whole family O+:

∀A,B∈O(∀U∈X U ∩ A �= ∅ �= U ∩ B ⇒ Cl A ∩ Cl B �= ∅). (R3◦)

Lemma 5.16. Let T = 〈S,O〉 be a Urysohn space having c.c.c. and U be a
non-empty subfamily of O+ satisfying (R1) and (R3◦). Then |

⋂
U | = 1.

Proof. If |S| = 1, then U = {S} and |
⋂

U | = 1.20 So suppose that
|S| > 1. Then we have U �= {S}. Indeed, assume the opposite. For some
p �= q ∈ S and for some A ∈ Op and B ∈ Oq we have Cl A ∩ Cl B = ∅, since
T is a Urysohn space. But S ∩ A �= ∅ �= S ∩ B and hence, by (R3◦), we
obtain a contradiction: ClA ∩ Cl B �= ∅.

Note that |
⋂

U | � 1. Indeed, assume p �= q ∈
⋂

U . Then for some
A ∈ Op and B ∈ Oq we have Cl A ∩ Cl B = ∅. Moreover, for any U ∈ U we
have U ∩ A �= ∅ �= U ∩ B. So, by (R3◦) again, Cl A ∩ Cl B �= ∅.

Now we show that (∗): U is a chain of open sets. By (R1), for all U, V ∈ U
either U = V , or Cl U ⊆ V , or ClV ⊆ U . So for any U, V ∈ U such that
U �= V , either U ⊆ Cl U ⊆ V or V ⊆ Cl V ⊆ U , and so either U � V or
V � U .

Finally we prove that
⋂

U �= ∅. Assume
⋂

U is empty. Then (∗∗): U
must be infinite, since otherwise, by (∗), it would have to contain the minimal
set V , and then

⋂
U = V �= ∅. So, by (∗), (∗∗), and c.c.c., from Lemma 5.15

follows existence of a monotone sequence 〈Un | n < ω〉 of sets from U which
is coinitial with U and such that ClUn+1 � Un, for any n ∈ ω. For all n ∈ ω

we put Vn := Un\ Cl Un+1 ∈ O+, A :=
⋃

n∈ω V4n, and B :=
⋃

n∈ω V4n+2. By
construction, for any U ∈ U we have U ∩A �= ∅ �= U ∩B. So ClA∩Cl B �= ∅,
by (R3◦). Let p0 ∈ Cl A ∩ Cl B.

Notice that (†): Cl A =
⋃

n∈ω Cl V4n and Cl B =
⋃

n∈ω Cl V4n+2. Indeed,
first,

⋃
n∈ω Cl V4n ⊆ Cl A. Second, for any n ∈ ω we have: A ⊆ V0 ∪ · · · ∪

V4n ∪ U4n+4. So Cl A ⊆ Cl V0 ∪ · · · ∪ Cl V4n ∪ Cl U4n+4. Assume towards

20We reconstruct, mutatis mutandis, the proof of Dorais [3] for Euclidean spaces.
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contradiction that p ∈ Cl A\
⋃

n∈ω Cl V4n. Then p ∈
⋂

n>0 Cl Un. Yet the
sequence 〈Cl Un | 0 < n < ω〉 is coinitial with the sequence 〈Un | n < ω〉
and therefore also with U . Hence we obtain a contradiction: p ∈

⋂
U . In a

similar way we prove that ClB =
⋃

n∈ω Cl V4n+2.
By (†) there are m, k ∈ ω such that the difference between them is at

least two, say k � m + 2, and p0 ∈ Cl Vm ∩ Cl Vk. Hence, by definition
of Vk, we have Cl Vk ⊆ Um+1. So also p0 ∈ Um+1. Since p0 ∈ Cl Vm, ∅ �=
Um+1 ∩ Vm = Um+1 ∩ (Um\ Cl Um+1) = ∅. A contradiction.

Thanks to Lemma 5.16 we obtain:

Theorem 5.17. If T = 〈S,O〉 is a Urysohn space having c.c.c., then for
any pre-point Q in qsepT we have |

⋂
Q | = 1.

Proof. Just note that for any non-empty subfamily X of P+(S): if X
satisfies (R3), then X satisfies (R3◦). Indeed, for any V ∈ O we have (a)
V ⊆ Int Cl V , (b) Int Cl V ∈ rO, and (c) ClV = Cl Int Cl V . We take A, B ∈
O such that for all U ∈ X : U ∩ A �= ∅ �= U ∩ B. By (a), also U ∩ Int Cl A �=
∅ �= U ∩ Int Cl B. Hence, by (b), (c) and (R3), we have Cl A ∩ Cl B �= ∅.

Let n > 0 and E (Rn) be the standard topology on the Cartesian product
Rn of the set of real numbers R. By the topological Euclidean n-space we
mean the space En := 〈Rn,E (Rn)〉. Let rE (Rn) be the family of all regular
open sets of En and let rE+(Rn) := rE (Rn)\{∅}.

Corollary 5.18. 1. For any pre-point Q in sepEn we have |
⋂

Q | = 1.

2. For any p ∈ Rn the family Bp of all open balls with center at p is a
pre-point in sepEn (of course,

⋂
Bp = {p}).

6. Grzegorczyk Structures

After Grzegorczyk [10] we enrich quasi-separation structures with an axiom
which postulates existence of particular pre-points (cf. the axiom A4 in [10],
and also e.g. [7]).

6.1. Definition and Basic Properties

Let R = 〈R,�, )( 〉 be a quasi-separation structure. The Grzegorczyk axiom
says that for all connected x, y ∈ R there exists Q ∈ QR such that:

(g1) either x � y or there is z ∈ Q such that z � x � y,

(g2) for any z ∈ Q we have z � x and z � y.
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Formally:

∀x,y∈R

(
xC y =⇒ ∃Q∈QR

(
(x � y ∨ ∃z∈Q z � x�y) ∧ ∀z∈Q(z � x ∧ z � y)

))
.

(G)
By a G-structure we will mean any quasi-separation structure 〈R,�, )( 〉
satisfying (G). Let G be the class of all G-structures, i.e.:

G := qSep + (G).

Moreover, let Gc be the class of complete G-structures. Then we have Gc �

G1 � G.

Remark 6.1. In [10] in place of (g1) we have:

• there is z ∈ Q such that either x � y or z � x.

In the second part we will prove that replacing both forms with one another
we obtain equivalent versions of the axiom (G). �

Let us notice after Biacino and Gerla [2, p. 435] that thanks to (r3), the
implication ‘⇒’ in (G) can be replaced by equivalence ‘⇔’.

Now we show that:

Proposition 6.1. The axiom (G) can be replaced with the following simpler
conditions:

∀x,y∈R

(
x � y =⇒ ∃Q∈QR

∃z∈Q z � x � y
)
, (G�)

∀x,y∈R

(
xC y ∧ x � y =⇒ ∃Q∈QR

∀z∈Q(z � x ∧ z � y)
)
. (G�)

Proof. For “(G�) ∧ (G�) ⇒ (G)”: Suppose that xC y. If x � y then we
use (G�). If x � y then, by (G�), for some Q0 ∈ QR and z0 ∈ Q0 we have
z0 � x � y. But, by (r1) and (I��), for any z ∈ Q0 either z = z0, or z � z0,
or z0 � z. So z � x � y, and also both z � x and z � y. “(G) ⇒ (G�)” and
“(G) ⇒ (G�)” are obvious in light of (IC�).

21

The relations � and C are reflexive, so in light of (G), (IC�), and (MF) we
obtain:

QR �= ∅ and PtR �= ∅. (6.1)

21Other axiomatizations of G-structures will be presented in the second part of the
paper.
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Moreover we have:

∀x∈R ∃Q∈QR

(
∃z∈Q z � x ∧ ∀z∈Q z � x

)
, (6.2)

∀x,y∈R

(
x � y =⇒ ∃Q∈QR

(∃z∈Q z � x � y ∧ ∀z∈Q(z � x ∧ z � y))
)
, (6.3)

∀x,y∈R

(
x � y =⇒ ∃Q∈QR

(∃z∈Q z � x � y ∧ ∀z∈Q(z � x ∧ z � y))
)
. (6.4)

Indeed, for (6.2): because x � x, xCx, and x � x = x. For (6.3): if x � y,
then also xC y, by (IC�). So we apply (G). For (6.4): by (6.3), (r2), and (3.7).

In all G-structures the following two facts hold.

Proposition 6.2. Every region has at least one non-tangential part.

Proof. By (6.2), for every x ∈ R there is a Q ∈ QR with z ∈ Q such that
z � x. Q has the property (r2), so for some u ∈ Q we have u � z, and thus
u � x, by (3.7).

Proposition 6.3. Every region is the mereological sum of its non-tangential
parts.

Proof. Fix x ∈ R and put S := {z ∈ R | z � x}. First, in light of (I��), for
any z ∈ S we have z � x. Second, let y � x. Then, by Proposition 6.2, for
some u we have u � y. So u � x, by (3.7). Hence u ∈ S and u � y, by (I��).
Thus, x sum S.

6.2. Grzegorczyk Structures versus Separation Structures

Theorem 6.4 below is similar to results that can be found in [2, pp. 435–436].
The differences lie in two facts: in [2] the counterparts of the theorem were
proven after the notion of point had been introduced, and different spaces
were taken into account.

Theorem 6.4. All G-structures are separation structures, i.e., G ⊆ Sep ,
G1 ⊆ Sep1 , and Gc ⊆ Sepc .

Proof. Let R = 〈R,�, )( 〉 be any G-structure.
Ad (S5): Suppose that x � y. Then in R there exists x− y. By reflexivity

of � and (6.4) there are Q ∈ QR and z ∈ Q such that z � x − y. Hence, by
(df�) and (S2), we have z )( y, since y � x − y. On the other hand z � x.
Hence z Cx, by (C1).

Ad (S4): Suppose that z Cx� y. Then, by (G), there exists Q ∈ QR such
that z � x � y ∨ ∃u∈Q u � z � (x � y) and ∀u∈Q(u � z ∧ u � x � y).

Consider two sets: Qx := {u ∈ Q | u � x} and Qy := {u ∈ Q | u � y}.
From (2.3) we have Qx ∪ Qy = {u ∈ Q | u � x � y} = Q. We show that
either Qx = Q or Qy = Q.
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Indeed, suppose that Q � Qx. Then for some u0 ∈ Q we have u0 � x.
Hence u0 � y, by (2.3), since u0 � x� y. So u0 ∈ Qy. Let now u be arbitrary
member of Q. In the case when u = u0, u ∈ Qy. Otherwise, by (r1), either
u0 � u or u � u0. So, by (I��), either (a) u0 � u or (b) u � u0. In (a) we
have u � y, since u0 � u and u0 � y. So u ∈ Qy. In (b) we have u � x, since
u � u0 and u0 � x. Hence u � y, since u � x � y. So again u ∈ Qy, and
Q = Qy.

Now let u be an arbitrary member of Q. Suppose that Qx = Q. Then
u � x, u � z and z Cx, by (r3). Similarly, if Qy = Q then z C y. Thus, either
z Cx or z C y, as required.

We will show now that the class of separation structures is broader than
that of G-structures; i.e., G � Sep. By Proposition 5.10 and (6.1) we obtain:

Proposition 6.5. If an atomless separation structure with )( := � satisfies
(w∃sum), then it is not a G-structure.

Thus, since the structure 〈rE+(Rn), ⊆, �〉 is an atomless complete separa-
tion structure, it must be an element of Sep which is not in G.

More generally, by Proposition 5.9, we have:

Proposition 6.6. If a separation structure with )( := � satisfies (w∃sum)
and has at least one atomless element, then it is not a G-structure.

Proof. Assume towards contradiction that R = 〈R,�, � 〉 belongs to G and
x ∈ R is an atomless region. Then, by (6.2), for some Q ∈ QR there is
z ∈ Q such that z � x. Yet then z must be atomless, which contradicts
Proposition 5.9.

In consequence, from Theorem 6.4 and Propositions 4.1 and 6.6 we have:

Corollary 6.7. Let R = 〈R,�, )( 〉 be a non-trivial G-structure. Then:
1. Both )( �= ∅ and C �= R × R.

2. If R satisfies (w∃sum) and has at least one atomless element, then
∅ � )( � � and � � C � R × R.

Therefore for all members of the class G+(w∃sum) (and the more so of Gc)
the counterpart of Proposition 4.2 holds only for atomic structures. Thus,
in (standard) G-structures (see Theorem 6.11) separation is different from
disjointness: )( �= �. However, it is not excluded that in some G-structures
we have )( = �. It will hold true, for example, for all atomic G-structures of
the form 〈R,�, � 〉.
Proposition 6.8. Every atomic separation structure R = 〈R,�, � 〉 is a G-
structure.
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Proof. First, we show that R satisfies (G�). Let x, y ∈ R be such that
x � y. Then in R there are the product x � y and a ∈ AtR such that
a � x�y. But {a} ∈ QR, by Lemma 5.5. Second, since C = �, the condition
‘xC y ∧ x � y’ is false for all x, y ∈ R. Hence (G�) also holds.

The following general result will be used in the sequel:

Theorem 6.9. Let T = 〈S,O〉 be a T1-space such that for any point p ∈ S
there is a base Bp at p satisfying (R1). Then sepT belongs to Gc.

Proof. By Proposition 5.12, for any p ∈ S, the family rBp := {Int Cl B |
B ∈ Bp} is a base at p and it is a pre-point in sepT .

For (G�): Suppose that for U, V ∈ rO+ we have U � V , i.e., U ∩ V �= ∅.
Let p ∈ U ∩ V ∈ rO. Then for some Z ∈ rBp we have Z ⊆ U ∩ V , i.e.,
Z � U � V .

For (G�): Suppose that for U, V ∈ rO+ we have U CV , i.e., Cl U ∩Cl V �=
∅. Let p ∈ Cl U ∩ Cl V . Then for any A ∈ rBp: A ∩ U �= ∅ �= Z ∩ V ; i.e.,
Z � U and Z � V .

By Theorems 6.9 and 5.13 we obtain:

Theorem 6.10. If T is a first-countable Tychonoff space, then sepT belongs
to Gc.

Of course, for any n > 0, the finitely dimensional topological Euclidean
space En (see p. 33) is a Tychonoff space. Thus, by Theorem 6.10, we have:

Corollary 6.11. For any n > 0, the structure sepEn belongs to Gc, satis-
fies (IA), and has c.c.c.

The following is another explanation of this conclusion. Thanks to Corol-
lary 5.18, for any p ∈ Rn the family Bp of all open balls with center at p is
a base at p, which is a pre-point in sepEn, and thus satisfies (R1). So we can
refert Theorem 6.9.

Acknowledgements. The authors would like to thank to anonymous referees
whose remarks helped to improve quality of the paper and eliminate unnec-
essary repetitions. Rafa�l Gruszczyński’s work was supported by National
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A. Appendix: Definitions and Facts from Topology

The set of all real numbers is denoted by R, ω (resp. ω+) denotes the set
of all (resp. all positive) natural numbers.

Let T := 〈S,O〉 be a topological space. Let C be the family of all closed
sets of T , and let Int and Cl be standard interior and closure operations
of T . For any V ∈ O we have V ⊆ Int Cl V and ClV = Cl Int Cl V . For a
given p ∈ S we put Op := {U ∈ O | p ∈ U}.

In the standard way we define T1, T2 (of Hausdorff ), T2 1
2

(or Urysohn),
T3 (or regular), T3 1

2
(or completely regular, or a Tychonoff ), T4 (or normal)

and perfectly normal spaces (we include T1 in the definitions of T3–T4).
We define a base B of T in the standard way. For any point p, a family

Bp ∈ P(O) is called a base for T at p iff Bp ⊆ Op and for any U ∈ Op there
exists V ∈ Bp such that V ⊆ U . If B is a base for T then for any p ∈ S the
family Bp := {U ∈ F | p ∈ U} is a base at p. On the other hand, if for any
p ∈ S a base Bp at p is given, then the union

⋃
p∈S Bp is a base for T .

A subset U of S is regular open of T iff U = Int Cl U . Let rO be the family
of all regular open sets of T . For all U, V ∈ rO: U ⊆ V iff Cl U ⊆ Cl V .

The space T is semiregular iff T has a base consisting of regular open
sets.22 We say that T is weakly regular iff T is semiregular and for any
U ∈ O+ there is V ∈ O+ such that Cl V ⊆ U iff T is semiregular and for
any U ∈ O+ there is V ∈ rO+ such that Cl V ⊆ U . Not all semiregular
Urysohn spaces are regular, nor all connected. Semiregular Hausdorff spaces
are weakly regular, but it is known that all regular spaces are weakly regular:

Lemma A.1. Let T = 〈S,O〉 be a regular space.

1. If Bp is a base at point p, then rBp := {Int Cl B | B ∈ Bp} is a base
at p, too.

2. The sum
⋃

p∈S rBp is a base for T , where for any p ∈ S a family Bp

is any base at p. So T is semiregular.

22Engelking [5] assumes that semiregular spaces are also Hausdorff spaces. We read
([5], p. 58): “Note that there exist T1-spaces in which open domains [regular open sets]
form a base but which are not T2-spaces.” Not all Hausdorff spaces are semiregular (see
e.g. [5], p. 58).
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3. T is weakly regular.

Proof. Ad 1. If U ∈ Op then there are B ∈ Bp and V ∈ Op such that
B ⊆ V ⊆ Cl V ⊆ U . So B ⊆ Cl B ⊆ U . Hence B ⊆ Int Cl B ⊆ Cl B =
Cl Int Cl B ⊆ U . Thus, the family {Int Cl B | B ∈ Bp} is a base at p.

Ad 2. Since every point p ∈ S has a local base (e.g., Op), by 1 the sum⋃
p∈S rBp is a base for T , so rO+ is a base for T either.
Ad 3. Obvious.

Lemma A.2. Let T be a T1-space such that for any point p there is a base
Bp at p satisfying (R1). Then:

1. T is regular.

2. For any point p the family rBp := {Int Cl B | B ∈ Bp} is a base at p
and satisfies (R1).

Proof. Ad 1. Fix U ∈ Op. Let B ∈ Bp be such that B ⊆ U . If B = {p},
then Cl B ⊆ U . Assume there is q ∈ B\{p} and let M ∈ Op\Oq. Then
Op � M ∩B � B and there is B0 ∈ Bp such that B0 ⊆ M ∩B. It cannot be
the case that Cl B ⊆ B0, since this would entail that ClB � B, so Cl B0 ⊆ B
by (R1). In consequence Cl B0 ⊆ U .

Ad 2. By 1 and Lemma A.1(1), for any p ∈ S the family rBp := {Int Cl B |
B ∈ Bp} is a base at p. Moreover, if Bp satisfies (R1) then {Int Cl B |
B ∈ Bp} satisfies (R1) either. Indeed, for all U, V ∈ O, if ClU ⊆ V then
Cl Int Cl U = Cl U ⊆ V ⊆ Int Cl V .

The open interval in R with end-points a and b, where a < b, is denoted
by (a, b), and the closed interval with end-points a and b is denoted by [a, b];
half-open intervals are denoted by (a, b] and [a, b), respectively. For the set
R we take the natural topology. On any closed interval [a, b] we take also the
natural topology which is the family consisting of all sets of the form [a, b]∩U ,
where U is a open set with respect to the natural topology on R. Both R and
[a, b] with natural topologies constitute second-countable topological spaces
(see e.g. [5], p. 16).

T is first-countable iff every one of its points has a countable base.
Moreover, T is second-countable iff it has a countable base. Every second-
countable regular space is perfectly normal (see e.g. [5], pp. 44 and 45]).
Hence, by Lemma A.2:

Lemma A.3. Let T be a second-countable T1-space such that for any point
p there is a base Bp at p satisfying (R1). Then T is perfectly normal.
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Lemma A.4 ([19]). If T = 〈S,O〉 is a first-countable Tychonoff space then
for any p ∈ S there is a continuous mapping f : S → [0, 1] such that f(p) =
0, {f−1[[0, 1

2n )] | n ∈ ω+} is a base at p, and {p} =
⋂

n∈ω+ f−1[[0, 1
2n )].

Proof. Let p ∈ S and {Bn | n ∈ ω+} be a countable base at p ∈ S
such that Bn �= S, for all n ∈ ω+. For all n ∈ ω+ we put Cn := S\Bn;
so ∅ �= Cn ∈ C and p /∈ Cn. Then for all n ∈ ω+, we have a continuous
mapping fn : S → [0, 1] such that fn(p) = 0 and fn[Cn] = {1}. We define
the continuous function f : S → [0, 1] such that f(q) :=

∑∞
n=1

fn(q)
2n , for any

q ∈ S. The collection of all sets Un := f−1[[0, 1
2n )] (with n ∈ ω+) is a base

at p. To see this, we take V ∈ Op. Then, by assumption, for some k ∈ ω we
have Bk ⊆ V . But Uk ∩ Ck = ∅, because for any q ∈ Ck we have f(q) > 1

2k
,

and therefore Uk ⊆ Bk ⊆ V .
Of course, f(p) = 0 and for any q ∈ S: q ∈

⋂
n∈ω+ f−1[[0, 1

2n )] iff f(q) =
0. So p ∈

⋂
n∈ω+ f−1[[0, 1

2n )], and p is the only point in the intersection,
since T is T1.

Let us remind that antichains of open sets of a given topological space
are families of pairwise disjoint open sets (algebraically speaking, these are
antichains in the lattice of open sets of the space). We say that a given
topological space has the countable chain condition (abbrv.: c.c.c.) iff every
antichain of its open sets is countable.

Lemma A.5. Every second-countable topological space has c.c.c.

For T = 〈S,O〉, let us generate the topology Osr on S by means of the
base consisting of all sets from rO, i.e., Osr := OrO . The topological space
Tsr = 〈S,Osr〉 is called the semi-regularization of T , since:

Lemma A.6 ([4,5]). The space Tsr is semiregular and has the same open
regular sets as T , i.e., we have rO = rOsr.

If T = 〈S,O〉 is semiregular then Tsr = T , since rO is a base for T .
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