
Reinhard Kahle Is There a “Hilbert Thesis”?

Abstract. In his introductory paper to first-order logic, Jon Barwise writes in the Hand-

book of Mathematical Logic (1977):

[T]he informal notion of provable used in mathematics is made precise by the formal

notion provable in first-order logic. Following a sug[g]estion of Martin Davis, we refer

to this view as Hilbert’s Thesis.

This paper reviews the discussion of (different variations of) Hilbert’s Thesis in the liter-

ature. In addition to the question whether it is justifiable to use Hilbert’s name here, the

arguments for this thesis are compared with those for Church’s Thesis concerning com-

putability. This leads to the question whether one could provide an analogue for proofs of

the concept of partial recursive function.
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1. Introduction

The relation of informal and formal notion(s) of proof is currently under
discussion due to the challenges which modern computer provers present to
mathematics. While mathematical proofs, as given in research papers and
textbooks, are far from being formal in any sense of formalized proofs, it is
generally assumed that they could be formalized in principle.

The assumption that formal proofs can faithfully represent all mathemat-
ical arguments was, in some sense, the very basis of Hilbert’s Programme,
the foundational enterprise with which Hilbert aimed to secure mathemati-
cal reasoning from the threat of paradoxes by giving consistency proofs for
formal mathematical theories. Barwise coined, on the suggestion of Martin
Davis, the term “Hilbert’s Thesis” for such an assumption, narrowing it to
first-order logic.

The term “Hilbert’s Thesis” was taken up by other researchers only oc-
casionally and also for certain variations of this Thesis. In the following
section we review carefully the different uses of the term “Hilbert’s Thesis”
together with different arguments which were put forward to support such
theses. In Section 3 we discuss whether it is justifiable to attribute such a
Thesis, in one or another form, to David Hilbert. Section 4 compares (the
justifications of) Church’s Thesis with (those of the different variations of)
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“Hilbert’s Thesis”. The last section is devoted to a discussion of a particular
argument for Church’s Thesis stemming from the failure of diagonalization
due to the partiality of recursive function. This leads us to the question
whether there could be an analogous concept of partial proofs.

2. “Hilbert’s Thesis” in the Literature

2.1. Barwise: Handbook of Mathematical Logic, 1977

The term “Hilbert’s Thesis” appears for the first time in a paper of Barwise
in the Handbook of Mathematical Logic [3, p. 41]:

Many logicians would contend that there is no logic beyond first-order
logic, in the sense that when one is forced to make all one’s mathemat-
ical (extra-logical) assumptions explicit, these axioms can always be
expressed in first-order logic, and that the informal notion of provable
used in mathematics is made precise by the formal notion provable in
first-order logic. Following a sug[g]estion of Martin Davis, we refer to
this view as Hilbert’s Thesis.

This Thesis is supported by two claims [3, p. 41]:

The first part of Hilbert’s Thesis, that all of classical mathematics is
ultimatively expressible in first-order logic, is supported by empirical
evidence. It would indeed be revolutionary were someone able to in-
troduce a new notion which was obviously part of logic. The second
part of Hilbert’s Thesis would seem to follow from the first part and
Gödel’s Completeness Theorem.

The arguments for the “first” and “second part” are of quite different na-
ture, namely “empirical evidence” versus a hard mathematical theorem. But
Barwise provides also an important caveat concerning the Thesis [3, p. 41]:

Even those who accept Hilbert’s Thesis in theory, however, are a far
cry from accepting it in practise. It would be completely impractical
and, in fact, counter-productive, to always make all one’s extra-logical
assumptions explicit.

This impracticality is illustrated by the following example:

Example. The axiom ∀x∃n ≥ 1(nx = 0) expressing the torsion prop-
erty for abelian groups is not a first-order axiom [. . . ]. If we were to
apply Hilbert’s Thesis in this case, we would have to axiomatize not
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only group theory but also the properties of natural numbers needed
to carry out the arguments we are after. This would mean that the
theory of torsion groups encompasses all of first-order number theory,
something clearly not in the spirit of modern algebra.

Finally, Barwise gives additional evidence for “Hilbert’s Thesis” by ske-
tching the possibility to encode many-sorted logic in first-order logic.

It is important to note that, in the version given by Barwise, “Hilbert’s
Thesis” is not just about formalizability of proof, but formalizability in first-
order logic. We will see below some other uses of the term “Hilbert’s Thesis”
in the literature,1 but it is not only due to the fact that Barwise coined it
first that one should probably follow first his reading.

2.2. Berk’s Ph.D. Thesis, 1982

In 1982, Lon A. Berk wrote under George Boolos’s supervision at the MIT
a Ph.D. dissertation under the title Hilbert’s Thesis: Some Considerations
about Formalizations of Mathematics2 [5, Abstract]:

In this dissertation I discuss Hilbert’s thesis, the thesis that all ac-
ceptable mathematical arguments can be formalized using no logic
stronger than first-order logic.

From his rather comprehensive work we would like to highlight two dif-
ferent aspects. The first one concerns a standard argument for “Hilbert’s
Thesis”, not before mentioned by Barwise:

I present and criticize an argument for Hilbert’s thesis that is often
found in the literature. The argument concludes that Hilbert’s thesis
is true since all mathematics is reducible to set theory and set theory
is a first-order theory.

The empirical fact, that essentially every mathematical argument can
be coded in ZFC,3 is, indeed, used as argument for one or another form of
“Hilbert’s Thesis”; we will come back to this in Sections 3.4 and 5.2.

1In fact, the term shows up in many contexts for totally different theses related to
Hilbert, such as, for instance, in invariant theory. It was also used for Hilbert’s conviction
that consistency implies existence. Here we are dealing, of course, only with different
understandings concerning formalizability of informal proof. We should, however, clarify
that this does not include the “Hilbert’s Thesis” proposed by Parsons [39] which concerns
the epistemic status of finitary reasoning.

2Available at: http://hdl.handle.net/1721.1/15650.
3In [35] one can find a detailed account how such an encoding works.

http://hdl.handle.net/1721.1/15650
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The second aspect concerns his placing of “Hilbert’s Thesis” in a broader
context, namely by identifying two more general theses:

Leibniz’s Thesis. [5, p. 17]

(i) Every acceptable argument of (informal) mathematics is a proof; and

(ii) Every proof can be formalized as a derivation.

Frege’s Thesis. [5, p. 19]

(i) Leibniz’s thesis is true.

(ii) There is a formal language and a set of rules of inference that can be
used to formalize adequately all proofs.

Only now, he presents “Hilbert’s Thesis” as an particular instance of
Frege’s Thesis: [5, p. 19]

I shall be especially interested in one version of Frege’s thesis called
Hilbert’s thesis. It is, roughly, the view that all arguments of informal
mathematics can be formulated adequately using only the first-order
predicate calculus.

There are subsequent uses of the term “Hilbert’s Thesis” in terms of
formalizability of proof without reference to first-order logic, such as, for
instance, by Rav (see Section 2.6) or Shapiro.4 It would probably by more
appropriate to follow in these instances Berk and use terms like Leibniz’s or
Frege’s Thesis—if at all.

Attributing such theses to certain personal names is, in fact, rather prob-
lematic; in this sense, Berk provides the following caveat, [5, p. 19]:

Three warnings should be given, perhaps unnecessarily. Leibniz’s the-
sis was not explicitly endorsed by Leibniz, and Frege’s thesis was not
explicitly endorsed by Frege. Nor was Hilbert’s thesis explicitly en-
dorsed by Hilbert.

For “Church’s Thesis”—or better for the jumble of “Church’s Thesis”, “Tur-
ing’s Thesis”, “Post-Turing Thesis”, and “Church–Turing Thesis”—Soare
argues vigorously in [46, pp. 244 and 246] for replacing the names by the
subject matter:

4“We might define ‘Hilbert’s thesis’ to be the statement that a text constitutes a proof
if and only if it corresponds to a formal proof (although any of half a dozen other names
would have done just like well—including that of Alonzo Church).” [42, p. 158].
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Why all the fuss over names? Why not simply use the term “Church’s
thesis” invented by Kleene [[29]], and let it refer to the “computability
thesis”? This is in fact what is widely (and incorrectly) done.

and later:

Why not call it simply, “the computability thesis” and not “Church’s
thesis”, or the “Church–Turing thesis?”

In the very same way, it would also be more accurate to call “Hilbert’s
Thesis”, as promoted by Barwise, the “First-Order Formalizability The-
sis”; and what Bark called “Leibniz’s Thesis” the (simple) “Formalizability
Thesis”—and we will tactically do so in the following. But if you like to
stick to names, we think it would be advisable to follow at least Bark’s dis-
ambiguation. As far as Hilbert is concerned, we will discuss his relation to
the “First-Order Formalizability Thesis” below in Section 3.

2.3. Kripke, 1996/2006/2013

Saul Kripke briefly addresses a version of “Hilbert’s Thesis” in a paper
published in 2013 [33, p. 81], but going back to talks given in 1996 and
2006:

Now I shall state another thesis, which I shall call “Hilbert’s thesis”,
namely, that the steps of any mathematical argument can be given in
a language based on first-order logic (with identity).

He uses it to reduce Church’s Thesis to this form of “Hilbert’s Thesis”.
For the present paper, a note [33, endnote 21, p. 97f] added by Kripke to
“Hilbert’s thesis” is of particular interest. It first stresses a certain weakening
in comparison with Barwise:

Martin Davis originated the term “Hilbert’s thesis”; see Barwise (1977,
41). Davis’s formulation of Hilbert’s thesis, as stated by Barwise, is
that “the informal notion of provable used in mathematics is made pre-
cise by the formal notion provable in first-order logic (Barwise 1977,
44). The version stated here, however, is weaker. Rather than refer-
ring to provability, it is simply that any mathematical statement can
be formulated in a first-order language. Thus, it is about statability,
rather than provability.

And in the continuation, it reflects briefly on the attribution of such a thesis
to Hilbert:
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Very possibly the weaker thesis about statability might have originally
been intended. Certainly Hilbert and Ackermann’s famous textbook
(Hilbert and Ackermann 1928 [[25]]) still regards the completeness
of conventional predicate logic as an open problem, unaware of the
significance of the work already done in that direction. Had Gödel not
solved the problem in the affirmative a stronger formalism would have
been necessary, or conceivably no complete system would have been
possible. It is true, however, that Hilbert’s program for interpreting
proofs with ε-symbols presupposed a predicate calculus of the usual
form. There was of course “heuristic” evidence that such as a system
was adequate, given the experience since Frege, Whitehead and Russell
and others.

Note also that Hilbert and Ackermann do present the “restricted cal-
culus,” as they call it, as a fragment of the second-order calculus, and
ultimately of the logic of order ω. However, they seem to identify even
the second-order calculus with set theory, and mention the paradoxes.
Little depends on these exact historical points.

Surely, “little depends on these exact historical points”, except, maybe,
the name (see below, Section 3).

Insofar as Kripke’s weakened version—“statability rather than provabili-
ty”—is concerned, statability and provability will differ—for true formulas—
only in the case of incompleteness.5 As far as semantic (in)completeness—
for first-order logic!—is concerned, Gödel’s Completeness Theorem would
actually show that Kripke’s version is only apparently weaker.6

But if we consider syntactic incompleteness, Gödel’s First Incompleteness
Theorem, gives us, for every fixed first-order axiom system, a true first-order
sentence, not provable in this system (but, of course, first-order statable).
However, “Hilbert’s Thesis” (as given by Barwise) is not bound to one fixed
first-order system. On the contrary, as the mathematical assumptions of a
given proof have to be made explicit, one can clearly choose different sets
of axioms for different proofs (see Sections 2.5 and 3.4).

5Bernays [6, p. 60f] identified this as one of the lessons of Gödel’s incompleteness the-
orems: “die Behauptung der Widerspruchsfreiheit [läßt] sich im finiten Sinne formulieren
[. . . ]. Daraus aber ergibt sich noch keineswegs, daß das Problem mit finiten Methoden
lösbar ist.” (“the assertion of consistency can be formulated in a finitistic sense. But this
does not at all mean that the problem is solvable by finitistic methods.”)

6And Kripke’s historical remarks support the idea that after the completeness result,
the difference may be disregarded; but this applies, of course, only to first-order logic.
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Thus, the distinction of statability and provability appears to be mar-
ginal and Kripke might have argued for the weaker version only, because
he doesn’t need a stronger one in the particular argument of his paper.7 It
could be of interest, however, when one fixes just one particular first-order
theory, with Zermelo–Fraenkel set theory as the most natural candidate. In
this case, for instance, the Continuum Hypothesis is not provable, but stat-
able; but even for this case, Kripke’s distinction of statability and provability
left no further trace in the literature.

2.4. Boolos, Jeffrey. Computability and Logic, 3th Edition, 1989

“Hilbert’s Thesis” might have received attention from a broader audience
when it was addressed in the textbook on Computability and Logic by Boolos
and Jeffrey [8]8. In a chapter called “Proofs and Completeness” the 4th
edition [7] contains a paragraph “14.3 Other Proof Procedures and Hilbert’s
Thesis”. There “Hilbert’s Thesis” is given as the

assertion, that if there is a proof in the ordinary sense, then there will
be a deduction in our very restrictive format.

The restricted format is, indeed, first-order logic. And the authors then give
three arguments for “Hilbert’s Thesis”:

Before the completeness theorem was discovered, a good deal of evi-
dence of two kinds had already been obtained for the thesis. On the one
hand, logicians produced vast compendia of formalizations of ordinary
proofs. On the other hand, various independently proposed systems
of formal deducibility, each intended to capture formally the ordinary
notion of provability, had been proved equivalent to each other by di-
rectly showing how to convert formal deductions in one format into
formal deductions in another format; and such equivalence of propos-
als originally advanced independently of each other, while it does not
amount to a rigorous proof that either has succeeded in capturing the
ordinary notion of provability, is surely important evidence in favor of
both.

The completeness theorem, however, makes possible a much more de-
cisive argument in favor of Hilbert’s thesis.

7He writes [33, endnote 21, p. 97]: “For the purposes of the present paper, [the Hilbert
Thesis] could be restricted to steps of a computation.”

8As far as we were able to verify, it was first included in the 3rd edition; references are
to the 4th edition published by John P. Burgess.
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The first argument (empirical evidence) is as in Barwise. The second
is, however, new, but we will reject it later, as we don’t see the alleged
independence of the formal systems. The third argument is, again, as in
Barwise. But it is also used, by contraposition, to dismiss explicitly ordinary
proofs in second-order logic, when the authors write:

And when in later chapters we show that there can be no formal
deduction in certain circumstances, it will follow that there can be no
ordinary proof, either.

2.5. Beklemishev and Visser, 2005

As Kripke, Beklemishev and Visser discuss a “Hilbert’s Thesis” in connec-
tion with the Church–Turing Thesis (and an additional Gurevich’s Thesis).
In course of this discussion they make explicit a distinction which we already
identified as relevant for the (non-)applicability of Gödel’s First Incomplete-
ness Theorem [4, p. 85f]:

the non-uniform version of Hilbert’s Thesis – stating that every proof
can be represented in a suitable axiomatic system – as opposed to a
uniform version related to, say, a fixed system of set theory ZFC.

As we will discuss below, a uniform version of a “Formalizability Thesis” can
hardly be attributed to Hilbert; but it deserves some attention and could
probably be better subsumed under the term “Set-theoretical Formalizabil-
ity Thesis”.9

2.6. Rav, 1999

With a paper entitled Why Do We Prove Theorems?, Yehuda Rav triggered
a discussion on “Hilbert’s Thesis” in the more philosophical community.
Without referring to first-order logic, he proposes a non-uniform—as we
read it—Formalization Thesis:

it has been suggested to name Hilbert’s Thesis the hypothesis that
every conceptual proof can be converted into a formal derivation in a
suitable formal system.

It is his goal to argue that normal mathematical proofs carry important
information which is allegedly lost when moving to the formal derivations.
For this he uses the picture of a bridge:

9In this way, Shapiro [42, p. 159] treats “ZF-proofs” explicitly apart from his earlier
mentioned “Hilbert’s thesis” (see Footnote 4).
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One immediately observes [. . . ] that [. . . ] Hilbert’s Thesis is [. . . ] a
one-way bridge: from a formalized version of a given proof, there is
no way to restore the original proof with all its semantic elements,
contextual relations and technical meanings.

For this bridge he coins the term Hilbert Bridge.
We will not enter into the discussion concerning epistemological and onto-

logical differences of informal and formal proofs. But it goes without saying
that Hilbert himself was not a näıve formalist; in consequence the term
“Hilbert Bridge” is dangerous if it suggests that Hilbert would invite you to
cross it blindly—or, even worse, if you would place Hilbert just on the formal
side of the bridge. Rav explicitly warns the reader of his paper not to dismiss
proof theory which is acknowledged as an important branch of mathematical
logic, and the subsequent discussion—initiated by a reply of Jody Azzouni
[2]—is just concerned with the conceptional questions regarding informal
and formal proofs, but not with Hilbert’s own views. The problem is that
the somehow careless use of his name in this discussion might place him on
a side he doesn’t really belong to.

This impression is caused, for instance, by Weir, who suggested the fol-
lowing expanded version of Rav’s “Hilbert’s Thesis” [49, p. 30]:

Hilbert’s Thesis II: In any cogent mathematical practice there is a
systematic process of transformation (not necessarily known to the
practitioners) which turns any correct proof into a (suitably related)
finite derivation in a formal system S. The system S in question is
determined by the informal practice and its transformation process;
in particular, the formal rules of S are rules which are implicit in the
mathematical practice.

At a first glance, one could think of a non-uniform reading of this Thesis,
choosing different formal systems S for different proofs; the following discus-
sion, however, makes clear that the author thinks of just one formal system,
and dismisses the Thesis on the bases of Gödel’s First Incompleteness The-
orem. We will argue below that Hilbert could be associated, at best, with a
non-uniform version; thus it is, at least, unfortunate to use his name in this
context. And using Gödel’s First Incompleteness Theorem to argue against
a (necessarily) uniform version of “Hilbert’s Thesis” comes to nothing when
one considers a non-uniform version.10

10This problem appears to be repeated, in particular, in the philosophical discussion.
We just like to mention Marfori who writes [34, p. 263]:
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3. Hilbert and a “Hilbert Thesis”

Is it accurate to attribute the “First-Order Formalizability Thesis” to David
Hilbert? Let us first look at the first-order aspect of the thesis.

3.1. First Order

Both Berk and Kripke made a caveat concerning Hilbert and first-order
logic. And it is, indeed, beyond question that Hilbert himself never explicitly
identified first-order logic as against higher-order logic as the distinguished
formal framework for mathematical arguments. On the contrary—and as
clearly stated by Kripke—Hilbert and Ackermann, in their seminal textbook
[25], were advocating second-order logic.11 While Gödel’s Completeness The-
orem shows that first-order logic is a suitable framework for formalization,
it was only a corollary of his First Incompleteness Theorem, that second-
order logic does not admit a complete axiomatization.12 Certainly, this was
not known to Hilbert at the time he was working on his foundational pro-
gramme, and it would be mere speculation to consider what Hilbert would
think about the fundamental difference between first- and second-order logic
with respect to axiomatizability. But it seems to be conceivable that, if
second-order logic were to admit an axiomatization,13 Hilbert would actu-
ally subscribe a “Second-Order Formalizability Thesis”. In any case, we are
not aware of any textual evidence which would link Hilbert to a “first-order
restriction” in a “Formalizability Thesis”. At best, one could argue that he

Footnote 10 continued

the incompleteness theorems undermined the claim that mathematical provability
was indeed reducible to provability within a formal system.

This sentence would have profited from replacing “a formal system” by “one formal
system”.

11The opening section of of Chapter 4 is entitled: Necessity of an extension of the
calculus (“Notwendigkeit einer Erweiterung des Kalküls”) [25, p. 82]; the title was changed
for the second edition [26] (see also the following footnote).

12Gödel actually mentions this result (at least, according to the surviving manuscript)
as early as 1930 when he presented the Completeness Theorem in his talk at the history-
making conference in Königsberg, [15, pp. 28/29]. But it doesn’t seem to have received
any particular attention (maybe because the discussion turned soon to Gödel’s Second In-
completeness Theorem). One can find it emphasized and with explicit reference to Gödel,
but without proof, in the second edition of Hilbert and Ackermann’s textbook Grundzüge
der Theoretischen Logik [26, p. 104] which was published in 1938. Some historical consid-
erations concerning this result can be found in [28].

13We understand “axiomatization” always as “recursive axiomatization”.
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must have had a complete calculus in mind when he argued for formaliza-
tion of mathematical arguments. With hindsight, knowing Gödel’s results,
we know now that this amounts essentially to first-order logic.

An immediate lesson is that it would be, of course, a historical miscon-
struction to direct arguments against the first-order aspect of the Formal-
izability Thesis to Hilbert. A more subtle argument could be constructed,
however, against formalizability in general, if second-order logic could be
shown to be necessary for mathematical reasoning. Such a claim is often
attributed to Georg Kreisel, who argued forcefully for informal rigor [32,
p. 138f]: “Informal rigour wants [. . . ] not to leave undecided questions which
can be decided by full use of evident properties of these intuitive notions.”
And he puts forward a specific example: the Continuum Hypothesis might
be decidable as a second-order consequence from additional intuitive axioms.
As second-order logic is not axiomatizable, we may simply overlook it: “most
people in the field are so accustomed to working with the restricted [first-
order] language that they may simply not succeed in taking other properties
seriously” [32, p. 152]. But one may observe that Kreisel is discussing here
the choice of the appropriate set-theoretical axioms, but not any notion of
proof. Only if one would consider arguments for the “evidence of properties
of intuitive notions”—that is what Kreisel’s is chasing—as parts of math-
ematical proofs one could get out of Kreisel’s informal rigour an argument
against a Formalizability Thesis. If, however, the choice of the axioms is
separated from the proofs within the resulting axiom system, there is no
further point here.14

3.2. Formalizability and Finiteness

Insofar as any general Formalizability Thesis is concerned, there exists over-
whelming evidence that Hilbert promoted such a Thesis (as much as Leibniz
and Frege and many others before and after him). As an example we may
cite from his second Hamburg lecture [23, p. 464; our emphasis]:

With this new way of providing a foundation for mathematics, which
we may appropriately call a proof theory, I pursue a significant goal, for
I should like to eliminate once and for all the questions regarding the
foundations of mathematics, in the form in which they are now posed,

14Of course, the very use of “axioms” suggests that one already subscribes to some
kind of formalization; but we would like to make the point that axioms are not allowed to
be questioned and, thus, don’t require a proof—whether they are understood traditionally
as evident truths or being taken in a modern sense as arbitrary hypotheses.
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by turning every mathematical proposition into a formula that can be
concretely exhibited and strictly derived, thus recasting mathematical
definitions and inferences in such a way that they are unshakable and
yet provide an adequate picture of the whole science.

We have also textual evidence where Hilbert stresses that proofs have to
be finite, see, for instance, [18, p. 184] and [17, p. 264]. This appears to be
rather part of the definition of proof than any form of Thesis; in this way
Hilbert commented polemically in his talk Über das Unendliche [24, p. 370]:

some stress the stipulation, as a kind of restrictive condition, that, if
mathematics is to be rigorous, only a finite number of inferences is
admissible in a proof—as if anyone had ever succeeded in carrying out
an infinite number of them!

In a Post-Gödelian perspective, a “Finiteness Thesis” could, however, be
taken as another evidence for the “First-Order Formalizability Thesis”: we
know now that second-order logic would require, to be formalized in a com-
plete way, infinite proofs. Such proofs Hilbert had ruled out.15

Interestingly, it was Hilbert himself who suggested, in 1930 [22, p. 491],
to consider infinitary derivations which are today rendered by use of an
ω-rule.16 Such a rule is obviously incompatible with the finiteness condi-
tion. The ω-rule became later an important tool in proof theory, but as
a purely technical instrument, and the resulting theories are intentionally
called “semi-formal”.

3.3. Formalizability in Principle

When we attribute a Formalizability Thesis to Hilbert, we have to stress that
he thought of such a formalization in principle only. Hilbert’s work in proof
theory leaves no doubt that concrete formalizations of existing proofs are
not his business. The rationale is evidently something else, based on a modus
tollens argument: if (informal) mathematical reasoning would be subject to
hidden contradictions—as the set-theoretical paradoxes around the turn of
the 20th century suggested—such contradictions would carry over to the
formalized mathematical definitions and inferences. If one could show—as it

15In this perspective, Boolos, Burgess, and Jeffrey (see Section 2.4) are in line with
Hilbert.

16It remains unclear whether Hilbert was already informed of Gödel’s incompleteness
result by the time of his talk in December 1930 and, if so, if his infinitary rule was an
“answer” to it; we consider it as quite possible that it came to Hilbert’s mind independently
of Gödel’s result. For his infinitary rule (and the modern ω-rule) see also [44, p. 160ff].
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was the aim of Hilbert’s Programme—that formalized Mathematics is free
of contradiction, informal mathematical reasoning would be secured.17

The aim of Hilbert’s proof theory is to be able to investigate mathe-
matical proof(s) by mathematical means; investigations which may consider
correctness or consistency or other “meta-properties”.18 Outside of such an
investigation, however, the original informal proof does not lose anything of
its interest, and it is not supposed to be replaced by a formal proof.

3.4. Non-uniformity

Finally, Hilbert should also only be related to a non-uniform Thesis (in the
sense of Beklemishev and Visser, see Section 2.5 above). There are no in-
dications that Hilbert thought of one universal formal theory to formalize
(encode) all kind of mathematics; he is, in fact, surprisingly silent concern-
ing ZFC. Tapp [48] points out that Ackermann, in his (flawed) proof of the
consistency of Arithmetic, which was his Ph.D. thesis under Hilbert’s su-
pervision, does not even properly specify the formal system he is concerned
with, but allows picking-out certain axioms “as needed” ([48, § 10.2] with
reference to [1, p. 5]).

Thus, although uniform versions of a “Hilbert’s Thesis”, in particular
based on ZFC or the like, are of interest (see also below Section 5.2), they
can hardly be attributed to Hilbert.

4. Church’s Thesis

“Hilbert’s Thesis” may be associated with Church’s Thesis, the well-known
thesis that informal computability is captured by any Turing-complete for-
mal notion of computability as, for instance, λ-calculus, partial recursive
functions, or Turing machines. Kleene, who coined the term “Church’s The-
sis”, gave the authoritative discussion of it in his seminal book Introduction
to Metamathematics, [29, § 62].19

17From this perspective, it is obvious that a “Hilbert bridge” as proposed by Rav
(see Section 2.6) is without further relevance for mathematical practice, which—also for
Hilbert—can, of course, differ substantially from formalized mathematics.

18A list of such “meta-properties” was already presented by Hilbert in 1917, [19,
p. 412f].

19Today the thesis also comes under the name “Church–Turing Thesis”, stressing cor-
rectly Turing’s contribution in the clarification of the notion of computability. One may
note that Kleene reserved the term “Turing’s Thesis” for Turing’s justification of his ma-
chine model [29, §70], which is explicitly used as strong support for his Church’s Thesis
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The fact that a “Hilbert’s Thesis” tries to give a formal definition (formal-
ized proof) of an informal notion (mathematical proof) is a rather superficial
parallel with Church’s Thesis. An association of them would be better sup-
ported by analogous justifications. Kleene, in his book, gives four arguments,
under the following titles (of course, with substantial arguments spelled out
in detail):

(A) Heuristic evidence.

(B) Equivalence of diverse formulations.

(C) Turing’s concept of a computing machine.

(D) Symbolic logics and symbolic algorithms.

Let’s have a look for similar arguments in the case of a “Hilbert’s Thesis”.
(A) One can only agree with Barwise, that the heuristic evidence for

“Hilbert’s Thesis” in its non-uniform first-order version is overwhelming. In
contrast to computability, a notion which has barely 100 years of history,
there is no example known in the several 1000 years history of mathematics,
which would contradict this form of “Hilbert’s Thesis”. Even recent devel-
opments concerning “big” proofs support, in some way, such a Thesis rather
than questioning it.20

(B) It was argued—see Section 2.4—that also the different formaliza-
tions of first-order logic give support for “Hilbert’s Thesis” (in the first-
order version). In our view, this argument is rather weak. In the case of
computability, the different formalization were developed independently and
largely unrelated, but turned out to be equivalent only later. In the case of
calculi for first-order logic, namely Hilbert-style calculi (based on Frege’s
and Whitehead–Russell’s axiomatizations), Gentzen-style sequent calculi,
and natural deduction, the development was not based on independent ap-
proaches but rather by explicit reflection on shortcomings of one or the
other, notably in the work by Gentzen himself.21

Footnote 19 continued
[29, p. 321, item (C)]. Kleene also pointed out that Post [40] arrived at a similar formulation
(see also [9]).

20We are thinking here of the successful computer-aided verification of Thomas Hales’s
proof of the Kepler Conjecture. A brief overview of the state of the art in this respect is
given in [16].

21Thus, we plainly deny the independence alleged by Boolos, Burgess, and Jeffrey (see
Section 2.4). Even if they refer to developments before the discovery of the Completeness
Theorem, which would exclude Gentzen, it is evident that already the approaches of Frege,
Whitehead–Russell, and Hilbert (Ackermann/Bernays) are build on each other. Boole and
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(C) As the name “natural deduction” suggests, Gentzen thought of an
analysis of how proofs are actually carried out, [12, p. 176].22 Still, there is
a huge difference with the very detailed step-by-step analysis of computa-
tion provided by Turing. In addition, Gentzen is only concerned with logical
reasoning, not mathematical; and the former one is even the part usually
suppressed in mathematical arguments.23 We, thus, don’t see that “Hilbert’s
Thesis” is supported by any analysis similar to Turing’s, nor do we expect
that it could be done: it is widely acknowledged that the way Mathemati-
cians perform proofs is far away from any formalized notion of proof. But
formalized proofs are not even intended to mimic the Mathematician’s work
while carrying out a proof, but rather to represent the end product of this
procedure.

(D) Any reference to symbolic logic would, in the case of “Hilbert’s The-
sis”, be circular. Thus, there is no direct counterpart of (D) for a “Hilbert’s
Thesis”. But, at another occasion, Kleene put forward an interesting, albeit
quite heuristic, argument for Church’s Thesis which we will discuss in detail
in the next section.

Before, we still like to recall the difference of the non-uniform and uniform
version of “Hilbert’s Thesis” (see Section 2.5). Church’s Thesis speaks about
one concrete model of computation—“one” in the sense that each of λ-
definability, partial recursive functions, Turing machines, etc., fixes one well-
defined class of functions. It, therefore, corresponds at best to a uniform
version of “Hilbert’s Thesis”.24

In its non-uniform form, “Hilbert’s Thesis” speaks about first-order logic,
which is open to add non-logical axioms, and, thus, allows for a set of highly
different theories (like Peano–Arithmetic or Zermelo–Fraenkel Set Theory).
This gives it an open texture,25 and, in particular, makes it immune to

Footnote 21 continued
Schröder, which developed the impressive Algebra of Logic, however, do not even have a
proper theory of quantification and could, therefore, not be used as argument here.

22See [41] for the authoritative modern presentation of natural deduction.
23We do not claim that Gentzen was not interested in mathematical reasoning (see, for

instance, [13, §4. Example of a proof from elementary number theory]). It is rather a result
of the study of mathematical proofs that provides the detailed analysis of the (hidden)
logical reasoning used in mathematical arguments.

24Beklemishev and Visser introduce the distinction of uniform and non-uniform explic-
itly to obtain a parallel to their “Gurevich’s Thesis” which is presented as a non-uniform
version of the (uniform) “Church–Turing Thesis” [4, p. 85].

25We borrow this term from Shapiro [42] who uses it in a discussion of Church’s Thesis
with explicit reference to earlier work by Waismann.
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counter arguments using Gödel’s First Incompleteness Theorem: albeit that
there is, for every concrete first-order axiomatic theory, an unprovable true
sentence, we may always switch to a stronger—but still first-order—theory,
which decides this sentence.

One could try to put in parallel the different first-order axiom systems
with the different functions calculated by different Turing machines, such
that the different non-logical axioms would correlate to the different states
and transition tables of a Turing machine. This parallel is insofar defective,
as there exist a universal Turing machine which can encode the different
machines in just one, while—due to Gödel—such a unified first-order axiom
system cannot exist.

5. Diagonalization

In a paper on the origins of recursive function theory [30], Kleene recalls his
first reaction to Church’s Thesis:

When Church proposed this thesis, I sat down to disprove it by di-
agonalizing out of the class of the λ-definable functions. But, quickly
realizing that the diagonalisation cannot be done effectively, I became
overnight a supporter of the thesis.

Since Cantor diagonalization is one of the most powerful tools to reason
about formal notions; it is applied, as a rule, to show the unboundedness
of formal notions, by passing any proposed bound by an appropriately con-
structed diagonal element.

Thus, a formal counterpart of an informal notion proposed in theses like
“Hilbert’s” and Church’s should be, in one or the other way, immune to
diagonalization.

5.1. Finite Proofs

As example, let us consider the finiteness condition for proofs (see Sec-
tion 3.2); it is immune to diagonalization, as it is not to see which normal
(informal!) proof principles would effectively construct out of finite proofs
an infinite one. One would need something like an ω-rule which, clearly,
is not considered as normal mathematical proof principle (but rather an
idealization to reason in semi-formal systems).26

26The same holds for propositional logic; it is surely immune to diagonalization, in the
sense that one cannot diagonalize over all propositional proofs to obtain a new proposi-
tional proof of a previously unproven propositional formula. From this example, it follows
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5.2. ZFC

If we consider, for a moment, a uniform version of “Hilbert’s Thesis”, one
sees immediately that ZFC—or any of its extensions, considered in higher
set theory—is subject to diagonalization: just propose the existence of a
set (large cardinal), closed under all set-theoretic formation principles used
so far.27 It is, however, an ongoing discussion28 whether extensions of ZFC
are of “mathematical relevance” and whether extensions, which transcend
the initial set-theoretic realm, are indeed needed to formalize mathematical
arguments. Thus, a defender of a uniform “Hilbert’s Thesis” would have to
deny the mathematical relevance of higher set theory (at least from a certain
point on).

5.3. Partial Functions

But let us go back to Kleene’s attempt to diagonalize over the λ-definable
functions. It fails, due to the partiality of the functions; i.e., due to the pos-
sibility that a function may not return a value for all its inputs.29 In our
view, the introduction of partial functions is a necessary condition to make
Church’s Thesis plausible, as any inductive definition of a set of total func-
tions, is subject to diagonalizability.30 By its time, it was seen as essential
that Ackermann’s function was a total function (and one may observe that
it can be constructed by diagonalization over the definition of the primitive-
recursive functions). There existed a strong bias towards total functions in
Mathematics, and Kleene [31, p. 57] reports even about a puzzled Gödel ask-
ing him in 1939: “What is a partial recursive function?” But these partial
recursive functions provide exactly the firm ground for Church’s Thesis.

Footnote 26 continued
that immunity to diagonalization alone is not a sufficient condition to capture the informal
notion of mathematical proof; propositional logic is clearly much too weak for it.

27This could be considered as an echo of Cantor’s Absolute. Even without references
to the construction of large cardinals, one could invoke here Gödel’s First Incompleteness
Theorem.

28See, for instance, [11].
29Tactically, one also needs some form of strictness, which forbids a function to return

a defined value for an “undefined argument”, at least when the argument is, indeed, used
in the function. In general, this form of strictness could only be overturned, if one were
able to solve the halting problem.

30It is, of course, possible to define the set of (total) recursive functions not purely
inductively, invoking additional conditions; see, for instance, [43, p. 109] (it uses the ad-
ditional condition that a function used for the unrestricted μ-operator has the zero one
is searching for). Such a definition, however, looses the conceptional clarity of a purely
inductive definition.
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5.4. Partial Proofs?

Similarly it would be of interest for a “Hilbert’s Thesis” whether it could be
supported by a similar argument; i.e., by one which would block diagonal-
ization, but now over (formal) proofs.

The fact leaps out that Gödel’s First Incompleteness Theorem is based
on diagonalization over his provability predicate;31 it even provoked the
ironical remark of Reinhold Baer in a letter to Zermelo [10, p. 213]: “Hurrah,
logicians have also discovered diagonalization!” But this concerns provability
in a fixed system, rather than (first-order) proofs by themselves.

We like to draw attention to another fact: there is an obvious analogy
between32:

1. The proof of the Diagonalization Lemma;

2. The proof of Kleene’s Second Recursion Theorem;

3. Curry’s Paradoxical Operator Y
(in λ-notation definable as: λy.(λx.y (x x)) (λx.y (x x))).

Arguably, Y can be held responsible for the emergence of partiality in the
λ-calculus; technically, this is related to the possibility of performing self-
application in the type-free λ-calculus.33 For typed λ-calculus, the Curry–
Howard isomorphism provides us with a clear relation between algorithms
and proofs. The question is now whether one could extend the Curry–
Howard isomorphism to the untyped world such that, at least, Y would
correspond to some kind of proof object (in a yet-to-be-defined extended
sense).34 Such proofs objects might show the same immunity to diagonal-
ization as λ-terms, and could help to answer the question:

What is a partial proof?

31According to Gödel, it was Carnap who extracted the useful diagonalization lemma
out of his original proof, [14, Fn. 23, p. 63].

32The relation of 1. and 2. is discussed, for instance, in [45]. The analogy of 2. and 3.
is made explicit in [38, p. 155].

33One may note that self-application occurs twice in Y, by x x and by
(λx.y (x x)) (λx.y (x x)).

34It is, of course, known that Y is typeable in the polymorphic lambda calculus or
by recursive types; a deeper analysis of such types with respect to our question is still a
desideratum. The work of Naibo, Petrolo and Seiller [36,37], which proposed a framework
of Untyped Proof Theory might be a possible starting point for further clarification. A
quite different account of partial proofs could probably be build on the notion of pre-proof
which Jäger [27] introduced as a syntactic counterpart to the pre-models of Streett and
Emerson [47] in order to unfold fixed points in the modal μ-calculus.
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Harvard University Press, 1967, pp. 367–392. English translation of [20].

[25] Hilbert, D., and W. Ackermann, Grundzüge der theoretischen Logik, vol. XXVII
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