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Abstract. We recast subjective probabilities by rejecting behaviourist accounts of belief

by explicitly distinguishing between judgements of uncertainty and expressions of those

judgements. We argue that this entails rejecting that orderings of uncertainty be complete.

This in turn leads naturally to several generalizations of the probability calculus. We

define probability-like functions over incomplete algebras that reflect a subject’s incomplete

judgements of uncertainty. These functions can be further generalized to (partial) inner

and outer measures that reflect approximate elicitations.
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1. Introduction

A calculus for degrees of belief should determine how partial beliefs can be
singly and jointly well-proportioned: given a specification of degrees of belief
over some propositions, the degrees of beliefs of other propositions should be
calculable. The calculus would serve as a key to rationality, as it would show
how to properly adjust beliefs in light of new beliefs arising from evidence.
The question then arises of how to determine particular degrees of belief.

The most influential proposal comes from Ramsey: potential behaviour
can be employed by taking the degree of a belief to be “a causal property of
it, which we can express vaguely as the extent to which we are prepared to
act on it”. Ramsey [16, p. 169]. This account of partial belief also provides
a standard for rationality by placing a subject in a gambling situation: if
belief leads to action, then, in certain situations, having beliefs can lead to
offering publicly available betting quotients. But, of course, if degree of belief
causes action, then it should be harnessed to our desired ends—“Reason is,
and ought only to be the slave of the passions. . . ”. However, offering betting
quotients that automatically lead to loss (technically: betting quotients that
are not fair) leads to undesirable outcomes—sure losses of money. To avoid
these undesirable outcomes it is necessary and sufficient, by the Ramsey-de
Finetti theorem, to conform our public actions in terms of offering betting
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quotients, and hence our degrees of belief, to the probability calculus. Thus
consistency of partial belief becomes consistency of action by conformation
to the probability calculus.1

As is well known, accounts of belief based on interpreting potential action
face severe difficulties. Chisholm [1] and Geach [7] famously pointed out that
beliefs cannot be correlated with actions unless we know that a subject also
has certain desires. Geach succinctly puts the objection thus: “But is there in
fact any behaviour characteristic of a given belief? Can action be described
as ‘acting as if you held such-and-such a belief’ unless we take for granted,
or are somehow specially informed about, the needs and wants of the agent?
. . . When Dr. Johnson did penance in Uttoxeter market-place, he may have
begun by standing around bareheaded until the threatened shower should
fall; this would not be recognizable as rain-expecting behaviour without a
knowledge of Johnson’s wish to do penance.” Geach [7, p. 8].

This objection applies equally to behavioural accounts of partial belief.
As is well known, attitudes towards gambles are notoriously sensitive to
attitudes towards risk (the Allais ‘paradox’ being perhaps the most famous
example). Responses to proposed bets change with the size of the stakes, a
result of the non-linear utility of currency. The possibility of large losses lead
the risk averse to hedge their bets; but if the losses are too small elicitation
may be too much of a bother, and so will be inaccurate. These problems
are particularly acute in the case of sets of gambles, as Schick [18] has made
forcefully clear. This means that elicited betting quotients may have little to
do with degrees of belief. Such a link requires knowledge of a subject’s other
attitudes, and so cannot be determined by behaviour alone (Christensen [2]
also makes this point).

Attempts to liberalize the behavioural account face a dilemma: if we
abstract too far from actual behaviour it is hard to see what force any argu-
ments based on it could have; but if too close to actual behaviour it will
face the usual objections. For example, Christensen [2] proposes a “deprag-
matized” version of the Dutch Book that relies on a “simple agent”, one so
simple it does not have interfering beliefs and dispositions, to highlight a
pre-theoretic link between fair betting odds and beliefs. But it is hard to see
what lessons can be learned from agents with so little in common with us,
since we are hardly simple. Or perhaps a subject need not actually enter into
a bet, which would allow us to bracket their other dispositions. For example,
Howson and Urbach [9] consider a counterfactual reading of the Dutch Book

1Ramsey [16, p. 172], regards the use of bets as measures of partial belief to be “fun-
damentally sound”, but “insufficiently general and . . . inexact”.
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argument where we consider a more pliable counterpart of our subject: we
consider what odds she gives in the nearest possible world in which she does
bet. But if the opposition to gambling forms a deeply important part of
her personality, information about how she would bet at some distant world
need have nothing to do with her beliefs in the actual world.2

It should come as no surprise that arguments linking behaviour to unde-
sirable consequences must take into account more than publicly observable
behaviour—they must also take into account a subject’s other beliefs and
desires. To stress: there is no getting around the Chisholm–Geach prob-
lem. The lesson we should draw from this is not that any attempt to elicit
probabilities is hopeless, but that we must take into account a subject’s
internal judgements of uncertainty along with their public expressions of
those judgements.

Cognitive science has long abandoned any attempt to exclude internal
mental states, and we should as well. In what follows we take on the task
of (re)describing arguments for partial belief to conform to (something like)
the probability calculus: we consider a subject with a certain structure of
judgements of uncertainty, a means of expressing elements of that structure
publicly, and a way of relating the two. The arguments then establish the
conditions under which the structure of judgements and of expressions of
those judgements are in harmony.

In the next section, for the purpose of developing our formal framework,
we will assume that judgements and expressions match (as they are assumed
to in traditional arguments for subjective probabilities). This is, of course,
a very strong condition. The following sections concern some cases when
we relax the requirement that the two match. In Section 3, we lessen the
burden of elicitation on the subject by requiring only partial elicitation. In
Section 4 we consider approximate elicitations.

2. Eliciting Uncertainty

Standard cognitive science takes subjects to have internal structured repre-
sentations over which the mind operates, belief being one of those operations.
We will approach the foundations of subjective probability in this spirit, and
so this paper is organized as follows: in this section we specify the structure
of representations, and the subject’s judgements of uncertainty with respect

2Eriksson and Hajek [4] offer much the same criticisms aimed at a broader range of
behavioural accounts of belief.
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to those representations. We then discuss how to model the elicitation of
those judgements. In the following sections we explore the implications of
this picture, which lead naturally to generalizations of probability measures.3

We begin with modelling the subject’s representations: an obvious, and
even standard, starting point is to model them as as propositions forming
a Boolean algebra, which is essentially the same as assuming the subject
uses a classical logic. A more general approach would be to leave open the
possibility that the operations of the structure might be non-classical, but
this would be beyond what a single paper could cover.

There are of course two broad choices for modelling a subject’s represen-
tations of uncertainty. The first is attach numbers to each representation,
where the numbers could be understood as e.g. betting quotients attached to
propositions. The second is to use a comparative notion of likeliness. There
are many reasons to prefer the latter over the former, but we need not go
into these: we choose the comparative conception it allows us to more natu-
rally develop our account. However, at the end it will become clear that we
could also begin with a quantitative conception.

Putting these two pieces—the internal propositional structure and the
internal judgements of relative likeliness of those propositions—together
completes the subject’s internal structure:

Definition 1. (Representational structure—qualitative) A qualitative rep-
resentational structure is a couple 〈F ,�〉 where F = (F,0F ,1F ,∨,∧) is a
Boolean algebra and � is a total relation on the elements of F , i.e., either
A � B or B � A or both.

The symbol � is a primitive relation ordering the subject’s degrees of
belief. The only restriction on � is that it is defined over all pairs of rep-
resentations.4 The representational structure constitutes the subject’s (very
simple) outlook on the world.

The next step is to detail how the the subject could express internal
assessments of likeliness: we use the well-known device of an ‘auxiliary’ or
‘reference experiment’, as in von Neumann and Morgenstern [20] or DeGroot
[3]. A reference experiment serves as a standard that the subject can employ
to express their uncertainty by substituting familiar quantities such as length
or area for the less familiar quantity of probability. The quantities used in
the experiment depend on what the subject is comfortable using (as long as
they can be normalized into probabilities).

3This paper thus is in the tradition of Krantz et al. [12].
4As usual A ∼ B denotes A � B and B � A, and A ≺ B denotes A � B and B �� A.
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Although our treatment will be general, the reader may wish to keep in
mind a particular reference device namely, a probability wheel (one classic
description of the use of the probability wheel is Spetzler and Holstein [19]).
This is a perfectly balanced arrow which serves to indicate points on the
circumference of the wheel. The events of the experiment are generated by
landings of the arrow in an arc; probabilities are generated by a uniform
distribution over the circumference.

The reference experiment provides events that can be put in correspon-
dence to the subject’s internal representations in such a way that the
probabilities of the reference events correspond to her uncertainty order-
ing (exactly how they are put in correspondence is the subject of the next
section). In other words, a reference experiment is an idealized device fully
understood by the subject, in that she accepts that it can be used to express
her comparisons of likelihood. The reference experiment thus provides a
standard of measurement for the subject’s uncertainty:

Definition 2. (Reference structure) a reference structure is a couple 〈G, p〉
where G = (G,0G ,1G ,∨G ,∧G) is a Boolean algebra and p is a probability
distribution over G.

When there is no risk of ambiguity we omit the subscripts. We denote by �G
an ordering on the elements of G induced by p. In the case of the probability
wheel the ordering is given by the lengths of the arcs.

The subject has some views of the world which they express via the ref-
erence experiment. That expression is successful when it is in harmony with
the subject’s views; elicitation is the process of harmonizing the two. Tech-
nically, elicitation is the process of identifying counterparts to propositions
in a reference structure while preserving the structure and ordering of the
subject’s representations:

Definition 3. (Elicitation function—qualitative probability) A function e
from a representational structure 〈F ,�〉 to a reference structure 〈G, p〉 is an
elicitation function iff it satisfies the following conditions:

(i) if A � B then e(A) �G e(B),
if A ≺ B then e(A) ≺G e(B) (monotonicity),

(ii) e(A ∧ B) = e(A) ∧ e(B),
e(A ∨ B) = e(A) ∨ e(B) (structure preservation),

(iii) e(1F) = 1G ,
e(0F) = 0G (scale).
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Definition 3 ensures the reference structure is rich enough to provide the
subject with means equal to expressing her representations. Technically, as
elicitation is a mapping of the representational structure into the reference
structure, it is a homomorphism, not an isomorphism.

From the definitions it follows immediately that successful elicitation
yields probabilities: that is, if the subject faithfully expresses herself using
the reference experiment her internal judgements of uncertainty are proba-
bilities:

Theorem 2.1. (Quantitative probability from elicitation) Let 〈F ,�〉 be a
representational structure and 〈G, p〉 a reference structure. If an elicitation
function from F to G exists then there is probability function f on F pre-
serving �, i.e. a function such that for A,B ∈ F :

1. if A � B, then f(A) ≤ f(B),

2. f(A) ≥ 0,

3. f(1F) = 1,

4. f(A ∨ B) = f(A) + f(B), if A ∧ B = 0F .

Moreover f is unique for a given elicitation function e.

Proof of Theorem 2.1. Let e be an elicitation function from F to G, and
let f(A) = p(e(A)). Since p is fixed, f is unique for a given elicitation e.

1. By condition (i) that elicitation preserves the qualitative ordering and
the fact that �G is induced by p, if A � B, then e(A) �G e(B) and
p(e(A)) ≤ p(e(B)), i.e., f(A) ≤ f(B).

2. p is a probability function, and so is non-negative. Hence 0 ≤ p(e(A)) =
f(A).

3. By condition (iii), e(1F) = 1G . Moreover since p is a probability function,
p(1G) = 1 = p(e(1F)) = f(1F).

4. Since A,B are disjoint, e(A), e(B) are as well. By (ii) and (iii): e(0F) =
e(A ∧ B) = e(A) ∧ e(B) = 0G . By the probability calculus, p(e(A) ∨
e(B)) = p(e(A)) + p(e(B)) = f(A) + f(B).

We have proceeded by using elicitation via a reference structure to deter-
mine that the subject’s representational structure must have associated
probabilities. This places the burden on the reference structure and the
elicitation relation, on which representation theorems concerning the sub-
ject’s internal structure will be based. Taking the subject’s judgements and
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their expression of those judgements to be two separate structures related
by elicitation is in opposition to the usual approach, where the aim is to
impose conditions on the subject’s internal representations to ensure that
their orderings will have a unique corresponding probability. An example
is the use of an auxiliary experiment (e.g., von Neumann and Morgenstern
[20]) or a flat reference distribution (e.g., DeGroot [3] or Savage [17]) to
supplement a subject’s internal structure with events that serve as a mea-
surement standard. This provides a formally simple framework with a single
structure and a single qualitative ordering. When the subject considers a
reference experiment she can be interpreted as considering a set of events to
which she is willing to assign a uniform probability distribution. As the prob-
ability ordering is total, the supplemental events can be compared to every
other event. But these new events have the special property that they have
an associated quantitative probability distribution. It can then be proved
that there is a unique ordering over the subject’s internal structure, since
the ordering of the supplemental events is a probability ordering. That is,
the ordering of the events, in conjunction with full comparability, imposes a
total probability ordering on the elements of the subject’s internal structure
(this is the approach of DeGroot [3]—it is rejected by French [6]).

There are two ways to interpret this procedure. First, for any event A in
the (original) representational structure there is a reference event e(A) in the
enriched representational structure that is equally likely, that is e(A) ∼ A.
Since the reference event e(A) has by definition some quantitative probabil-
ity r, we can conclude that the event A has probability r, that is p(A) = r.
Second, for any representational proposition A, there is always an equivalent
reference event e(A), and so we can effectively ignore the representational
events. Given the structure of the reference experiment this implies that
there is an r such that p(e(A)) = p(A) = r, where p is a normalization of
the quantities of the reference experiment.

The former is an introspectionist reading which takes the reference struc-
ture to be subsumed into the representational structure. This is very strong,
requiring the subject be able to contemplate a full probability measure over
all propositions. The latter, more mainstream behaviourial reading, does the
opposite. The subject’s internal representational structure is made entirely
public, with representational events identified as observable reference events.
This is also a very strong reading—it reduces introspection to expression,
and so equates belief with action in exactly the same way that vitiates the
Dutch Book argument.

However, note that our formal framework is compatible with both of these
interpretations: the requirement of completeness of the subject’s uncertainty
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ordering in Definition 1 ensures that whatever is said about one structure
can be said about the other. This clearly shows that the requirement of
completeness obscures the distinction between the two structures. Moreover,
imposing completeness is against the spirit of our programme, as we aim to
place all the requirements on elicitation using a reference structure, leaving
the internal uncertainty ordering completely unspecified.

In the next sections we will show what happens when the two structures
are kept separate. In so doing we provide natural generalizations of the prob-
ability function, while also allowing for the use of other more general rep-
resentation theorems of qualitative probability orderings without complete-
ness. Having developed our approach fully we will be in a position to see that
there are other varieties of elicitation, which will be explored in Section 4.

3. The Partial Subject

In this section we consider a subject upon whom no prior constraints, other
than willingness to conform to a reference experiment, are imposed. Obvi-
ously, this requires changing Definition 1 to exclude totality.

Definition 4. (Representational structure—partial qualitative ordering)
A representational structure with a partial qualitative ordering is a couple
〈F ,�〉 such that F is a Boolean algebra and � is a relation on the elements
of F which satisfies A � A, 0 � A � 1 and 0 ≺ 1.

Definition 4 effectively models a subject who does not, for whatever rea-
son, possess judgements of likeliness for all pairs of propositions. This of
course leads to significant differences with a total ordering: When the sub-
ject provides judgements for all pairs of propositions it is a simple matter
to determine what properties the internal ordering must have given faithful
elicitation using a reference experiment. But if the subject provides only
some judgements of uncertainty adjustments will be needed to infer the
structure of her representations. As an illustration take the axioms of qual-
itative probability (as in e.g., Savage [17], Section 3.2):

Definition 5. (Qualitative probabilities) A relation � is a qualitative prob-
ability associated with a Boolean algebra F iff for any A,B,C ∈ F :

(Pre) Preorder (reflexivity, transitivity)
A � A;
If A � B and B � C then A � C,

(Tot) Totality
Either A � B or B � A or both,
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(Non) Nontriviality
0 � A, moreover 0 ≺ 1,

(Add) Additivity (Independence of disjoint events)
If A � B then A ∨ C � B ∨ C, given A ∧ C = 0 = B ∧ C.

Since elicitation guarantees harmony between the reference and representa-
tional expressions, totality ensures all properties of the reference structure
are also present in the representational structure. Technically, this follows
from the fact that elicitation is a homomorphism and both structures are
total. Hence:

Lemma 3.1. (Qualitative probability from elicitation) Let 〈F ,�〉 be a qual-
itative representational structure. If there is an elicitation function e from
〈F ,�〉 to a reference structure 〈G, p〉 such that e satisfies (i) − (iii) from
Definition 3, then � is a qualitative probability.

Proof of Lemma 3.1

Tot Totality is assumed.

Pre Reflexivity trivially follows from Tot. Transitivity: assume for con-
tradiction that A � B � C but not A � C, that is C ≺ A, which by
monotonicity of elicitation is equivalent to e(A) �G e(B) �G e(C)
and e(C) ≺G e(A), which contradicts the transitivity of �G . Hence
it cannot be the case that C ≺ A, and totality gives us A � C as
required.

Non Both 0 � A and 0 ≺ 1 follow from Tot and (iii).

Add We need to show that if A ∧ C = 0F = B ∧ C, and A � B
then A ∨ C � B ∨ C. Assume for contradiction that B ∨ C ≺
A ∨ C. Then according to (i) e(B ∨ C) ≺G e(A ∨ C) and from
(ii) we get e(A) ∧ e(C) = 0G = e(B) ∧ e(C) and e(B) ∨ e(C) ≺G
e(A)∨e(C). As the ordering ≺G on the reference structure satisfies
the qualitative probability axioms, in particular additivity, we get
e(B) ≺G e(A). But we assumed A � B which implies e(A) �G e(B).
Contradiction.

Yet even if the the subject does not provide judgements for all pairs we
can still proceed (almost) as in the previous section. The reference structure
remains as above. Elicitation is obtained by substituting the representational
structure from Definition 4 into Definition 3. The result of Theorem 2.1 then
applies as totality is used neither in its formulation or proof.
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We can then explicate the properties of the subject’s internal ordering (as
in Lemma 3.1). Since the order is incomplete it cannot be directly proven
that the subject’s internal ordering satisfies the axioms of qualitative prob-
ability, since it might not exist for some pairs. But it can be shown that the
internal ordering does not violate the axioms:

Lemma 3.2. (Partial qualitative probability from elicitation) 〈F ,�〉 be a
representational structure with a partial qualitative ordering from the previ-
ous definition. If there is a function e from 〈F ,�〉 to a reference structure
〈G, p〉, such that e satisfies conditions (i) − (iii) from the definition of an
elicitation function, then it holds for any A,B,C ∈ F :

(Pre′) Preorder (reflexivity, transitivity)

A � A;

If A � B and B � C then not C ≺ A,

(Non′) Nontriviality

0 � A � 1, moreover 0 ≺ 1,

(Add′) Additivity (independence of disjoint events)

If A � B then not B ∨ C ≺ A ∨ C, given A ∧ C = 0 = B ∧ C.

Proof. Reflexivity and nontriviality replace totality in the definition of the
partial representational structure. The proofs of the other properties differ
only trivially from the proofs in Lemma 3.1.

We stress that while we use qualitative probabilities as illustration, other
representation theorems can of course be employed.

We have so far explored the consequences of a partial uncertainty order-
ing arising from removing all constraints on the subject’s uncertainty order-
ing. There is, however, another constraint we can remove, namely, that the
subject’s representations be complete. This allows us to consider a sub-
ject who might have ‘isolate’ beliefs about tangerines and about tsunamis,
but not about tangerines and tsunamis. A standard, and obvious, way of
modelling this would use sub-algebras of the representational structure.5

However, the sub-algebra approach imposes much more structure than is
necessary. It would be better to allow a subject to have individual views
that they are unwilling to combine. To this end, we introduce a much more
general approach using structures where the operations are partial, i.e., they
may not be defined for all elements of the structure.

5As in Koopman [11].
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Not just any partial operations will do, of course: they should be com-
patible with their complete counterparts. We can secure this by requiring
that the partial structure be in principal completable, i.e. there is a map-
ping of the partial structure into a corresponding full structure respecting
the partial operations (in this paper we consider only finite cases to avoid
unnecessary technical complications):

Definition 6. (Boolean partial algebra) A Boolean partial algebra is a
partial structure F = (F, 1′, 0′,∨′,∧′,c

′
) such that there is a Boolean

algebra S = (S, 1, 0,∨,∧,c ) which is a completion of F . A structure
S = (S, o1, . . . , on) is a completion of a partial structure F = (F, q1, . . . , qn)
iff for each i, qi is an operation of arity ki on F , oi is a (complete) opera-
tion of arity ki on S and there is a homomorphism h from F to S, i.e., for
any x1, . . . , xki

∈ F and any qi, h(qi(x1, . . . , xki
)) = oi(h(x1), . . . , h(xki

))
whenever qi(x1, . . . , xki

) defined.

To give an example of a Boolean partial algebra, consider the structure F
where the only defined operations are for each Ai, Ai ∨ 1 = 1, Ai ∧ 0 = 0.
This partial algebra is indeed very partial: none of the Ai have comple-
ments, everything is disconnected, excepting the top and the bottom ele-
ments. Clearly, however, the partial algebra can be completed as, for exam-
ple, the Boolean algebra generated by taking the Ai to be disjoint (obviously
there are many more possible completions).

The internal uncertainty ordering is as in Definition 4, as it must be,
since imposing a total order on a partial Boolean structure would constrain
the previously undefined operations. For example, suppose that A ∨ B is
undefined and that the representational structure is totally ordered, e.g.
A � B. Since the likelihood ordering must respect the algebraic structure,
it cannot be the case that A > B, because than it must hold B ≺ A, contrary
to what we assumed. This implies that A ∨B �= A and hence the operation
A ∨ B is undefined but not unconstrained.

These considerations give us a representational structure in keeping with
our programme:

Definition 7. (Partial representational structure) A partial representa-
tional structure is a couple 〈F ,�〉 such that F is a partial Boolean algebra
and � is a relation on the elements of F satisfying: A � A, 0 � A � 1 and
0 ≺ 1.

The reference structure, Definition 2, remains the same, as it has all the
resources needed for expression (we will consider the case where it is not
rich enough in the next section). The elicitation function requires the minor
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modification that elicitation preserves each operation in the representational
structure:

Definition 8. (Partial elicitation function) A function e from a partial
representational structure 〈F ,�〉 to a reference structure 〈G, p〉 is a partial
elicitation function iff it satisfies the following conditions:

(i) If A � B then e(A) �G e(B),
if A ≺ B then e(A) ≺G e(B) (monotonicity),

(ii) e(A ∧ B) = e(A) ∧ e(B),
e(A ∨ B) = e(A) ∨ e(B),
e(Ac) = e(A)c if the corresponding operations are defined
(structure preservation),

(iii) e(1F) = 1G ,
e(0F) = 0G (scale).

A substantial generalization of Theorem 2.1 follows:

Theorem 3.1. (Existence of partial probability functions) Let 〈F ,�〉 be a
partial representational structure, 〈G, p〉 a reference structure, and e a partial
elicitation function from F to G. Then there is a partial probability function
f from F to [0, 1] which is unique for a given e, i.e. a function such that for
A,B ∈ F :

1. if A � B, then f(A) ≤ f(B), if A ≺ B, then f(A) < f(B),

2. f(A) ≥ 0,

3. f(1F) = 1,

4. f(A ∨ B) = f(A) + f(B), if both A ∨ B,A ∧ B exist and A ∧ B = 0F .

Proof of Theorem 3.1. The proof is almost the same as that of Theorem
2.1. We again put f(A) = p(e(A)). Clearly f is unique.

1. The monotonicity of partial elicitation in Definition 8 is the same as
Definition 3, and so the partiality of operations plays no role. Since the
elicitation function must preserve the qualitative probability ordering,
if A � B, then e(A) �G e(B) and p(e(A)) ≤ p(e(B)), i.e., f(A) ≤ f(B).
Similarly in the case A ≺ B.

2. p is a probability function, and so is non-negative. Hence 0 ≤ p(e(A)) =
f(A).

3. By condition (iii) of Definition 8, e(1F) = 1G . Moreover since p is a
probability function, p(1G) = 1 = p(e(1F)) = f(1F).
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4. As e commutes with both ∨ and ∧, we have e(A∨B)) = e(A)∨e(B) and
e(A∧B) = e(A)∧e(B). Hence f(A∨B) = p(e(A∨B)) = p(e(A)∨e(B)).
Since we assume A ∧ B = 0F , e(A) and e(B) must be disjoint as well:
e(0F) = e(A ∧ B) = e(A) ∧ e(B) = 0G . By the probability calculus,
p(e(A) ∨ e(B)) = p(e(A)) + p(e(B)) = f(A) + f(B).

Theorem 3.1 establishes that f is a partial version of a standard probabil-
ity function (and that the representation theorem is a partial version of the
standard representation theorems of, e.g., Narens [15, p. 36], Krantz et al.
[12, p. 432]). At one extreme, if all operations are defined over the elements
of the representational structure, f is a standard probability function. At
the other extreme, f is still recognizably a probability-like function, as the
following lemma illustrates:

Lemma 3.3. Let 〈F ,�〉, 〈G, p〉, e be as before and f a partial probability func-
tion from Theorem 3.1. Then for A,B ∈ F :

1. f(0F) = 0,

2. f(A ∨ B) ≤ f(A) + f(B) if A ∨ B is defined,

3. f(Ac) = 1 − f(A), if Ac is defined.

Proof of Lemma 3.3

1. Using the scale condition, 0 = p(0G) = p(e(0F)) = f(0F).

2. If A∨B is defined then according to condition (ii) for elicitation e(A∨
B) = e(A)∨e(B). By the probability calculus, f(A∨B) = p(e(A∨B)) =
p(e(A) ∨ e(B)) ≤ p(e(A)) + p(e(B)) = f(A) + f(B).

3. By condition (ii) of the definition of partial elicitation function e(Ac) =
e(A)c if Ac is defined. Then it easily follows that f(Ac) = p(e(Ac)) =
p(e(A)c) = 1 − p(e(A)) = 1 − f(A).

As before, we can explicate the properties of the subject’s uncertainty
ordering. For example, as in the previous section, we will now show (the
partial versions of) the axioms of qualitative probabilities hold.

By definition, partial representational structures possess Preorder and
Nontriviality. Of course, Additivity cannot be proved, so we shall concentrate
on a partial version of Additivity:

(Add*) Additivity for partial structures

For any A,B,C ∈ F such that A ∧ C = 0F = B ∧ C, if A � B
and both A ∨ C,B ∨ C are defined then it is not the case that
B ∨ C ≺ A ∨ C.
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This change is significant. In the full case the compatibility of the uncer-
tainty ordering with the Boolean is guaranteed by Additivity.6 This guar-
antee does not hold in the partial case.7 We therefore need to establish that
the following condition holds:

(Com*) Compatibility for partial structures

For each A,B ∈ F :

1. if A ∨ B is defined, then neither A ∨ B ≺ A nor A ∨ B ≺ B,
2. if A ∧ B is defined, then neither A ≺ A ∧ B nor B ≺ A ∧ B.
3. if Ac is defined, then not A ∨ Ac ≺ 1F and A ∧ Ac ≺ 0F

To put it differently, in the partial case Additivity splits into Partial Addi-
tivity and Compatibility.

We can now prove that the subject’s uncertainty ordering is a partial
version of qualitative probability:

Lemma 3.4. (Partial Qualitative probability from partial elicitation) Let
〈F ,�〉 be a partial representational structure from Definition 7. If there is
a partial elicitation function e from 〈F ,�〉 to a reference structure 〈G, p〉
such that e satisfies (i)–(iii) from Definition 8 then � satisfies Pre′, Non′,
Add*, and Com* i.e., is a partial qualitative probability.

Proof of Lemma 3.4. Com and Non′ are assumed in the definition of
partial representational structures.

Pre′ As reflexivity is assumed we need only to establish transitivity, the
proof of which is the same as in Lemma 3.2.

Add* The proof is again the same as in Lemma 3.2, with the assumption
that all operations are defined.

Com* By the properties of the elicitation function, if A ∨ B is defined
then e(A ∨ B) = e(A) ∨ e(B). Assume for contradiction that
A ∨ B ≺ A. Then by monotonicity e(A ∨ B) ≺G e(A), and so
e(A)∨e(B) ≺G e(A). But the qualitative ordering on G respects the
Boolean operations—contradiction. The proof for ∧ is completely
analogous.

6We show e.g. A � A ∨ B. Denote B − A = B ∧ Ac. By Non, 0F � B − A. By Add,
0F ∨ A � (B − A) ∨ A. Finally we have A = 0F ∨ A � (B − A) ∨ A = A ∨ B.

7For example A ∨ B might be defined in F , but not B ∧ Ac, which is needed for the
previous derivation.
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We now have completed the framework for exploring a subject’s internal
judgements of uncertainty with respect to elicitation via a reference exper-
iment, and have already seen that it provides a novel characterization of
probabilities. In the next section we will further demonstrate the power of
this approach by exploring different forms of elicitation.

4. Approximate Elicitation

In the previous sections we began with a representational structure and a
minimal characterization of the subject’s judgements of uncertainty, deriving
the properties of a subject’s judgements via elicitation, where elicitation
provided perfect matching. This section provides a further generalization: we
explore imperfect elicitation of partial structures. We consider two cases in
which the elicitation procedure can be imperfect: first, in which the reference
experiment is not rich enough to fully express the subject’s judgements;
second, in which a subject might be unable or unwilling to provide exact
matches in the reference experiment.

4.1. Imperfect Reference Experiments

The case of a coarse-grained reference experiment is the easier of the two.
In this case, the subject would be able to give an exact match between a
proposition and an element were a fine-grained reference experiment avail-
able. But if the only available reference experiment is coarse-grained, the
subject can only provide approximations. We can give a simple example:

Example 1. Suppose a subject considers two propositions A and B, and
uses a twelve-sided die, that is, a reference structure G generated by out-
comes {1, . . . , 12} and a flat distribution, for elicitation. Further suppose
our subject sets e(A) = {1, . . . , 7} and e(B) = {1, . . . , 5}. Now imagine
that in elicitation only a six-sided die is available, that is, a reference
experiment G′ generated in the obvious way. Clearly, G can be mapped
onto G′, by, say, pairing {1} in G′ with {1, 7} in G, {2} to {2, 8} and
so on (it is important to keep in mind the numbers are simply labels
for events in the reference experiment, nothing more). Let e∗(A) denote
the elicitation of ‘it is at most as likely as. . . that A’, and e∗(A) denote
the elicitation of ‘it is at least as likely as. . . that A’. The subject assigns
e∗(A) = {1, 2, 3, 4}, e∗(A) = {1, 2, 3}, e∗(B) = {2, 3, 4}, e∗(B) = {2, 3} as an
approximation.
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Formally we can describe the situation of an imprecise reference experi-
ment as follows: we have a reference experiment G′ (say, a 6 sided die) which
could be extended to a more fine-grained reference experiment G (say, a 12
sided die), e.g., G′ ⊂ G. Although a subject might be in principle able to
find an elicitation x in the fine-grained experiment G that exactly corre-
sponds to a proposition A, there may be no such corresponding elicitation
in the coarse-grained experiment G′, i.e., the element x might be in G − G′.
In this case the subject must find an approximation of x in G′, which will
be the approximate elicitation of A. Consider the case where the subject
gives a best approximation from below by giving the greatest lower bound.
Formally, the subject aims to find an x∗ ∈ G′ such that if G′ is extended
to G, then x∗ ≤G x (it is a lower bound) and for all y ∈ G′, y ≤G x, then
y ≤G x∗ (it is a greatest lower bound).

Requiring the subject give a best approximation to individual elements
of the reference experiment imposes the further condition of giving a best
approximation to their combinations. Consider the elicitations x, y, x∧y ∈ G
of some propositions A,B,A ∧ B. Let the operator ∗ denote the greatest
lower bound of an element from G in G′. It is clear that (x ∧ y)∗ is a lower
approximation of both elements x and y: (x∧y)∗ ≤G x∧y ≤G x, y. But since
x∗, y∗ are the best lower approximations, it must be (x∧ y)∗ ≤G x∗, y∗. But
that entails that (x ∧ y)∗ ≤G x∗ ∧ y∗. In the other direction, if the subject
chooses (x∧y)∗ < x∗∧y∗, then since x∗ ≤ x, y∗ ≤ y we get x∗∧y∗ ≤ x∧y, i.e.
(x∗∧y∗) is a lower approximation of x∧y. We have (x∧y)∗ < x∗∧y∗ ≤ x∧y
so there is a closer approximation of x ∧ y than (x ∧ y)∗, contrary to our
assumption.

Example 2. To continue our earlier example, suppose the subject gives
(A ∧B)∗ = {2}. But (A)∗ ∧ (B)∗ = {2, 3}, and so is a closer approximation
to A∧B, contrary to the assumption that (A∧B)∗ is the best approximation.
A similar argument argument can be made if the subject chooses, say, (A∨
B)∗ = {1, . . . , 5}.

It follows that if the subject wants to provide a consistent closest approx-
imation from below, her lower elicitation function must obey the condition:
if A ∧ B exists, then (A ∧ B)∗ = (A)∗ ∧ (B)∗, i.e. the lower elicitation must
commute with meets. By a similar line of reasoning the upper elicitation
must commute with joins: if A ∨ B exists, then (A ∨ B)∗ = (A)∗ ∨ (B)∗.
Hereafter we will use the notation e∗, e∗ when we wish to stress that the
function is to be taken as an elicitation.

Together with these two consistency conditions we obviously want the
elicitation to respect the qualitative ordering. This requirement is indeed
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very natural: if A � B and e∗(A) is a lower elicitation of A then the closest
lower elicitation e∗(B) of B should not be below it, i.e. e∗(A) �G e∗(B).
Similarly the closest upper elicitation e∗(A) of A should not be above the
upper elicitation e∗(B) of B, i.e., e∗(A) �G e∗(B). These considerations
result in the following definition:

Definition 9. (Approximate elicitation function) The functions e∗ and e∗

from a partial representational structure F to a reference structure G, are
lower and upper elicitation functions iff for any A,B ∈ F :

(i) if A � B, then e∗(A) �G e∗(B) and e∗(A) �G e∗(B),

(ii) if A ∧ B exists, then e∗(A ∧ B) = e∗(A) ∧ e∗(B),

(iii) if A ∨ B exists, then e∗(A ∨ B) = e∗(A) ∨ e∗(B).

We defer discussion of any resulting probability function until the next
section.

4.2. Imperfect Elicitation

We have shown that if the subject is able to provide best approximations
to some ‘ideal’ elicitation, the corresponding upper/lower elicitation must
satisfy the conditions of Definition 9. The converse, however does not in gen-
eral hold—an elicitation function can satisfy the conditions without being
the best approximation in the sense discussed. It might therefore seem that
we should include the condition of best approximation into the definition of
approximate elicitation.

This solution however, would only cover the case of imprecise elicitation
due to a coarse-grained reference experiment. It would not be applicable in
the case where the reference experiment G is rich enough, but the subject
is not able or willing to determine precise values: there simply would be no
better elicitation to be had, even via a richer reference experiment. We can
address this case by replacing the notion of best approximation in the sense
of closest lower or upper bound with a weaker notion: that the upper approx-
imation cannot be improved using the lower approximation and vice versa.
This condition gives a relative notion of best approximation as opposed to
the absolute notion given by the assumption of an ideal elicitation.

We can explicate this notion as a ‘no improvement’ condition. Formally,
take an x ∈ G. By definition, (xc)∗ ≥G xc, since ∗ is an upper approximation.
By complementation ((xc)∗)c ≤G x. From the assumption that x∗ is a lower
approximation of x that cannot be improved it follows that for any z ≤G x it
must hold that z ≤G x∗, hence ((xc)∗)c ≤G x∗. Assume the last inequality is
a strict inequality: ((xc)∗)c <G x∗. Then by complementation (xc)∗ >G (x∗)c
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and similarly from x∗ ≤G x we get (x∗)c ≥G xc. Hence (xc)∗ >G (x∗)c ≥G xc,
and so (x∗)c would be an improvement of the upper approximation (xc)∗,
contrary to assumption. We should therefore require ((xc)∗)c = x∗, and for
the same reason ((xc)∗)c = x∗.

Example 3. Continuing with the previous examples, the subject assigns an
upper estimate of A of {1, 2, 3, 4}. By the nature of complementation in the
reference experiment, this is a lower estimate of Ac, namely {5, 6}. If the
subject were to offer (Ac)∗ = {6}, we could point out that she has already
in effect given a better estimate.

We term pairs of elicitation functions meeting this consistency criterion
regular :

Definition 10. (Regular elicitation functions) A pair of elicitation func-
tions e∗, e∗ is regular iff e∗(A) = (e∗(Ac))c and e∗(A) = (e∗(Ac))c whenever
Ac defined.

Regularity also holds for best approximations with a coarse-grained refer-
ence experiment. If e∗(A) is the best lower approximation of A, it cannot
be improved—in particular it cannot be improved using its upper approxi-
mation e∗.

These conditions lead to a probability-like function:

Theorem 4.1. (Approximate quantitative probabilities) Let 〈F ,�〉 be a
partial representational structure, 〈G, p〉 a reference structure and e∗, e∗ a
lower (upper) elicitation function. Then there are functions f∗, f∗ such that:

1. if A � B, then f∗(A) ≤ f∗(B) and f∗(A) ≤ f∗(B)

2. f∗(0F) = 0 = f∗(0F), f∗(1F) = f∗(1F)

3. f∗(A∨B) ≥ f∗(A)+f∗(B) if both A∨B,A∧B are defined and A∧B = 0F
4. f∗(A∨B) ≤ f∗(A)+f∗(B) if both A∨B,A∧B are defined and A∧B =

0F
5. f∗(A) = 1 − f∗(Ac) if e∗, e∗ is a regular pair.

6. Let us denote F ′ = {A ∈ F , e∗(A) = e∗(A)}. Then the function f(A) =
f∗(A) = f∗(A) from F ′ to G is a partial probability function satisfying
conditions 1–5 from Theorem 3.1.

Proof of Theorem 4.1. We define f∗(A) = p(e∗(A)) and f∗(A) =
p(e∗(A)) and show that 1.–5. follow from the properties of upper and lower
elicitations. For A ∈ F we write A∗, A∗ instead of e∗(A), e∗(A)
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1. From the requirement that e∗, e∗ preserve the qualitative ordering.

2. From the preservation of the top and the bottom. For 3. and 4. assume
A ∨ B,A ∧ B are defined and A ∧ B = 0F . Then:

3. The lower elicitation e∗ preserves meets, so (A ∧ B)∗ = A∗ ∧ B∗ = 0G .
Since A∗, B∗ are disjoint and p is a probability, p(A∗ ∨ B∗) = p(A∗) +
p(B∗). Also, p(A ∨ B)∗ ≥ p(A∗ ∨ B∗), since (A ∨ B)∗ ≥G A∗ ∨ B∗,
as otherwise A∗ ∨ B∗ would be a better approximation of A ∨ B than
(A∨B)∗. Putting these together f∗(A∨B) = p((A∨B)∗) ≥ p(A∗∨B∗) =
p(A∗) + p(B∗) = f∗(A) + f∗(B). Hence f∗ is superadditive.

4. Since e∗ preserves joins f∗(A ∨B) = p((A ∨B)∗) = p(A∗ ∨B∗). By the
probability calculus p(A∗ ∨ B∗) = p(A∗) + p(B∗) − p(A∗ ∧ B∗), as well
as p(A∗ ∧ B∗) ≥ 0. So we can deduce that f∗(A ∨ B) = p(A∗ ∨ B∗) ≤
p(A∗) + p(B∗) = f∗(A) + f∗(B). Thus f∗ is subadditive.

5. As e∗, e∗ are regular, f∗(A) = p(e∗(A)) = p((e∗(Ac))c) = 1−p(e∗(Ac)) =
1 − f∗(Ac).

6. By Defintion 9, e∗ preserves meets and e∗ preserves joins, and are more-
over both monotonic with respect to �F . e(A) = e∗(A) = e∗(A) is
clearly an elicitation function in the sense of Definition 8. Hence by
Theorem 3.1 there exists a partial probability function satisfying condi-
tions 1–5.

If the elicitation functions are regular, f∗ and f∗ are fully analogous to the
partial probability function of Section 3, as they are partial inner and outer
measures (as made clear by 5.). If, however, the elicitation functions are not
regular, then we obtain a generalization of inner and outer measures, since
while 5. no longer holds f∗ and f∗ still have the sub- and superadditivity
characteristic of lower and upper measures (e.g., 3. and 4. still hold). At the
other extreme, 6. shows that we can see precise elicitation as a special case
of approximate elicitation (again, we only deal with the finite case).

Example 4. We can now give probabilities. In the fine-grained experiment
the subject gives the probabilities p(A) = 7

12 , p(B) = 5
12 , p(A ∨ B) = 7

12 ,
p(A∧B) = 5

12 . In the coarse-grained experiment the subject gives the inner
and outer probabilities p∗(A) = 3

6 = 1
2 , p∗(A) = 4

6 = 2
3 , p∗(B) = 2

6 = 1
3 ,

p∗(B) = 3
6 = 1

2 . Also, p∗(A ∨ B) = 4
6 = 2

3 and p∗(A ∧ B) = 2
6 = 1

3 .

We should stress that we are not providing imprecise probabilities—
that is, families of probabilities. This would impose significant requirements
on the representational structure that are not in the spirit of this section.
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Instead, we have used upper- and lower-probabilities to provide a character-
ization of faulty elicitation, although, of course, our framework can be used
to explicate imprecise probabilities as well.

5. Conclusion

One issue we have not discussed is the relation of our approach to stan-
dard approaches employing gambling devices. We note that our approach
can be used to explicate depragmatized arguments of the kind in Chris-
tensen [2].8 Elicitation imposes harmony between the subject’s judgements
and expressions of uncertainty, with no need for penalties. Instead, a clash
between those judgements and expressions is a logico-epistemic flaw: inco-
herent orderings cannot be matched with a reference experiment. Pragmatic
considerations could be added, of course by, for example, attaching penalties
to the reference experiment. Or, elicitation could take the form of some dis-
tance function, yielding a version of a non-pragmatic argument of the kind
in Joyce [10].

Considering explicitly the relation between judgement and expression
opens up many other possibilities, such as subjects with non-Boolean judge-
ments of uncertainty, subjects with multiple judgements of uncertainty, and
perhaps, by considering families of different elicitations, subjects who are
ambivalent, or who are not being completely truthful. The generality of
our account makes clear the specificity of arguments for probability. Proba-
bilistic reference experiments yield probabilities; non-probabilistic reference
experiments will yield non-probabilistic calculi. In the case of subjects with
a representational structure suitable for fuzzy logics (e.g. an MV algebra),
who express themselves via a fuzzy reference experiment (as in Marra [13])
we obtain constraints on uncertainty in the form of a many-valued logic.
Or, there could be subjects with mixed internal representational structures,
as well as subjects with mixed reference experiments. For example, a sub-
ject’s representations could form a fuzzy logical structure while the reference
experiment remains Boolean (allowing Mundici [14] results to be applied).

Thus, the justification for probabilities then turns into the justification
for a particular kind of reference experiment. This points to further research.
We have so far stayed with a very standard model: that of a subject in a
laboratory providing responses to an experiment. An ecological approach

8As well as with Gillies [8], who envisages a willing subject engaging a psychologist to
determine her probabilities.
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removing the subject from the laboratory would provide a much more gen-
eral (and realistic) model. Exploring these possibilities can lead to much
future research.
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