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Abstract. This paper criticizes non-constructive uses of set theory in formal economics.

The main focus is on results on preference aggregation and Arrow’s theorem for infinite

electorates, but the present analysis would apply as well, e.g., to analogous results in inter-

generational social choice. To separate justified and unjustified uses of infinite populations

in social choice, I suggest a principle which may be called the Hildenbrand criterion and ar-

gue that results based on unrestricted axiom of choice do not meet this criterion. The tech-

nically novel part of this paper is a proposal to use a set-theoretic principle known as the

axiom of determinacy (AD), not as a replacement for Choice, but simply to eliminate appli-

cations of set theory violating the Hildenbrand criterion. A particularly appealing aspect of

AD from the point of view of the research area in question is its game-theoretic character.

Keywords: Axiom of choice, Axiom of determinacy, Multiverse, intergenerational social

choice, Preference aggregation, Arrow’s impossibility theorem, Social welfare analysis.

1. Introduction

Formal economists and social choice researchers do consider infinitely large
populations and, on occasions, even infinite voting electorates. There are
several potential reasons for doing so, some of which are critically discussed
in the present paper. However, such populations raise several philosophi-
cal and methodological concerns. Potential axioms, principles and methods
employed to handle infinite collections, even when they appear to directly
generalize those valid in the finite case, may have little computational con-
tent. What is less known in the social choice community is that axioms
trivially valid in the finite may even directly contradict each other when as-
sumed to hold for arbitrary infinite classes; in fact, we will see a prominent
example of such a phenomenon in this work.

Just like in other areas of mathematics, the axiom of choice (AC) tends
to be, to risk a pun, the axiom of choice for most economists. But it seems
most often inherited by the sheer force of inertia, despite the fact that the
nonconstructive parts of set theory are accepted by mathematicians less
broadly than commonly believed; see Appendix B for a critical overview. In
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fact, criticism of their use has been often also stated (to a varying degree of
explicitness) in the social choice literature [24,29,51] (see Sections 2 and 3).
Already one of the earliest references considering an infinite population of
agents, a 1964 paper by Aumann, mentions that

the measurability assumption . . . is of technical signicance only and
constitutes no real economic restriction. Nonmeasurable sets are ex-
tremely pathological; it is unlikely that they would occur in the context
of an economic model [1, p. 44].

Much more recently, Zame asserted that

the full power of the Axiom of Choice is almost never used in formal
economics or in classical analysis for that matter. What is used is a
much weaker axiom, the Axiom of Dependent Choice [51, p. 195].
Such explicit admissions that unrestricted AC does not appear a suitable

axiom for formal economics or social choice theory did not prevent con-
troversies caused by problematic uses thereof. Zame’s paper itself [51] was
arguing that an intergenerational ethical preference relation, whose existence
relative to ZFC had been previously established by Svensson [50], not only
cannot be shown to exist on the basis of ZF + DC (Zermelo-Fraenkel set
theory with the Axiom of Dependent Choice, a.k.a. Principle of Dependent
Choices), but is nonmeasurable and undefinable even relatively to full ZFC
(more on this in Section 7). An even richer source of examples is provided by
references on supposed infinitary solutions of Arrow’s impossibility in voting
theory. Fishburn’s [10] claim of existence of such solutions (again, relative to
ZFC) provoked several decades of discussions in the literature, presented in
Section 3 of this paper. Kirman and Sonderman [24] used measure-theoretic
arguments and stone-Čech compactifications to argue that social welfare
functions for infinite electorates found by Fishburn are actually “invisible
dictators”. Lauwers and van Liedekerke claimed that aggregation procedures
corresponding to nonprincipal ultrafilters are not appropriate in the context
of social choice and “exhibit an insuperable arbitrariness in construction”
[29, p. 236]. Mihara [33] added that such “non-dictatorial” social welfare
functions are not computable (see, however, Footnote 15).

I want to contribute to this discussion and strengthen the case for cau-
tion with two suggestions, one methodological and one technical. On the
methodological—or perhaps even philosophical—front, I isolate in Section
2 the Hildenbrand criterion from an early paper [19] regarding valid and
fruitful uses of infinite populations in theoretical work. My claim is that
results based on powerful consequences of AC do not meet this criterion.
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On the technical front, I am proposing that the Axiom of Determinacy
(AD, recalled in Section 4) is a good tool to check conformity with the Hilden-
brand criterion. This axiom is perhaps the most spectacular example of an
elegant principle with interesting set-theoretical consequences contradicting
full AC, while being compatible with its more benign corollaries.

Just to avoid a major misunderstanding: building AD-based social choice
theory inconsistent with AC is not what I am proposing here. Such results
on infinite populations could be regarded at most as curious thought exper-
iments.1 The point here is that I see little reason to treat differently social
choice results which require consequences of AC so powerful that they can-
not be squared with alternative yet meaningful principles like Determinacy.
As discussed in Sections 2–3, even the very consideration of infinite pop-
ulations, especially in the context of preference aggregation, requires some
serious analysis, and this is precisely where the Hildenbrand criterion is
intended to be a normative guide. And assuming that these hypothetical in-
finite electorates obey axioms like full AC reminds one of questions medieval
scholastics have often been ridiculed as being supposedly preoccupied with:
“How many nonmeasurable coalitons of voters can dance on the head of a
pin?”

In other words, I claim that principles of set theory safe to use in econom-
ics and social sciences, especially in areas like preference aggregation, should
be consistent with both ZFC and ZF + AD, DC being a perfect example.2

We have already seen that the authors working in the area acknowledge
DC is all one needs in meaningful economical applications. It might be the
case that infinite populations, or even infinite electorates are legitimate ob-
jects of study, but then one should focus on a certain reasonable “common
core” without unduly preferring or discriminating against any of competing
mathematical ontologies.

Perhaps the most interesting feature of AD-based (counter-)arguments is
that the axiom has a clear game-theoretic flavour, which should be of nat-
ural appeal to researchers in the area. Zame [51], Kirman and Sonderman
[24] or Lauwers and van Liedekerke [29] provided eloquent and accurate crit-
icism of applicability of results based on unrestricted AC, but their use of
set-theoretical independence proofs, techniques like forcing and the struc-
ture of ZF- and ZFC-definable sets may feel somewhat too arcane for most

1As discussed in Section B.2, the recently proposed multiverse approach to set-theoretic
foundations [14] would cast an interesting light on such thought experiments.

2Note that I’m saying “consistent with” rather than “derivable from”—otherwise, as
discussed in Section 5, even ACω would be excluded!
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economists. It is just not plausible to expect that experts in, say, preference
aggregation would collectively devote their time to studying non-standard
models of ZF. By contrast, examining the (non-)existence of a winning strat-
egy should feel like a rather natural thing to do. I am illustrating this point
in detail in Section 6 by showing how an AD-based “strategy-stealing” ar-
gument short-circuits the claim that allowing infinite electorates somehow
resolves Arrow’s Impossibility Theorem. As briefly discussed in Section 7,
similar arguments are available regarding, e.g., intergenerational equity.

The paper is equipped with two appendices. Appendix A recalls basic
information about ZFC. Appendix B summarizes traditional and less tradi-
tional lines of attack on AC.3

2. The Hildenbrand Criterion

It is natural to suppose that areas of mathematics relevant to the social
choice theory should be of finitary and effective character: combinatorics,
algorithmics, complexity, finite model theory. First and foremost, human
groups, societies and populations are finite, if arbitrarily large. Equally im-
portantly, the fundamental research interest in this particular area seems to
lie in concrete algorithms to align preferences, maximize welfare, optimize
voting procedures, etc. Results relying on strong consequences of AC like
BPI by their very nature cannot offer any usable algorithms.

The latter point is particularly important here. Let us begin, however, by
a short discussion of the former one, i.e., finiteness of human populations.
An early paper by Aumann provided the following argument for considering
uncountably many agents in economical papers, in that particular case when
studying an idealized notion of “perfect competition”:

The essential idea . . . is that the economy under consideration has a
“very large” number of participants, and that the influence of each in-
dividual participant is “negligible” . . . [I]n economics, as in the physical
sciences, the study of the ideal state has proved very fruitful, though
in practice it is, at best, only approximately achieved . . . We submit
that the most natural model for this purpose contains a continuum

3These appendices were initially conceived as a part of the main paper. The criticism
of nonconstructive methods in formal economics I am presenting here should be seen as a
part of a larger mathematical tradition, and I am not sure whether the material contained
therein is sufficiently well-known among economists. However, its sheer size would distract
from the main line of argument.
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of participants, similar to the continuum of points on a line or the
continuum of particles in a fluid. Very succinctly, the reason for this
is that one can integrate over a continuum, and changing the inte-
grand at a single point does not affect the value of the integral, that
is, the actions of a single individual are negligible [1, p. 39, emphasis
mine–T.L.].

Whether or not one agrees with this reasoning (for a more detailed anal-
ysis of continual models of perfect competition cf., e.g., Ostroy and Zame
[40]), classical references deserve credit for such explicit and elaborate ar-
guments for counterintuitive modelling assumptions. In a subsequent work,
Hildenbrand elaborates on usefuleness of infinitely large, even uncountable
sets of agents, but making a very important qualification:

Instead of considering a sequence of economies and looking for an
asymptotic identity one may reason “in the limit,” i.e., one consid-
ers economic systems with more than finitely many participants and
proves that the identity holds in this case. . . . But, as an economist, our
interest in these ideal economies is proportional to how much new in-
formation can be derived for large but finite economies. In other words,
the relevance of the ideal case to the finite case has to be established
[19, p. 162, emphasis mine–T.L.].

The principle that the relevance of the ideal case to the finite case has
to be established deserves the name of the Hildenbrand criterion (although
perhaps the Hildenbrand–Aumann criterion would be more adequate). Let
us develop it in more detail: even if a theoretical economist decides to con-
sider infinite populations of agents as “limit” or “ideal” generalizations of
very large finite ones, the results obtained via such an idealization process
should remain effective. Moving to the limit should mean precisely this and
nothing more: making the rôle of any particular individual, or perhaps even
any particular generation, infinitesimally negligible. It cannot be an excuse
to introduce by a sleight of hand—or, if one prefers, a magical or metaphys-
ical trick—a pseudo-solution, which by nature cannot correspond to any
meaningful algorithm or definable strategy.

The criterion seems even more central when attention is shifted from
modelling economical competition to typical concerns of social choice: pref-
erence aggregation or welfare analysis. Moreover, it appears applicable re-
gardless of whether all the agents are assumed to exist at the same time,
or whether infinity comes from the assumption of an infinite time horizon.
This is what happens in intergenerational (or intertemporal) social choice.
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Studying, for example, infinitely repeating patterns of behaviour in games or
utility streams (cf., e.g., [51]) seems a natural enterprise. Conceptually, the
underlying assumption boils down to the statement: “assume that the game
can be considered as infinite for all practical purposes”, which is certainly in
keeping with the Hildenbrand criterion. On the other hand, considering, e.g.,
nonmeasurable families of subsets of the totality of all generations violates
both the letter and the spirit of this criterion. In other words, the intertem-
poral context once again is calling for effective methods and describable
algorithms to ensure intergenerational equity. This point was made, e.g., by
Zame [51] (see also Lauwers [28,28] and Section 7 below).

Still somewhat different, yet again related motivation for considering in-
finite collections of agents can be provided by investigations of social choice
under uncertainty, with an infinite set of possible “states of the world”,
each with its own (conceptual) inhabitants.4 Such considerations figure less
prominently in the papers discussed here, though an explicit connection
with reasoning under uncertainty has been made, e.g., by Mihara [33]. All
the above arguments regarding the relationship of the infinite to the finite,
effectiveness, computability and constructivity seem to apply here as well.

Altogether, we can summarize with two passages quoted already in Sec-
tion 1: Nonmeasurable sets are extremely pathological; it is unlikely that they
would occur in the context of an economic model [1] and the full power of
AC is almost never used in formal economics or in classical analysis for
that matter. What is used is a much weaker axiom, the Axiom of Dependent
Choice [51]. It does seem there are very good reasons for this state of affairs.

3. Infinite Electorates and the Delusion of Possibility

A particular interest of this work lies with a somewhat problematic group of
papers, where one can easily see why considering an infinity of agents is/was
an interesting mathematical exercise, yet where any assumptions regarding
laws obeyed by such infinite populations seem to require particular care. I
mean the line of work dealing with results such as those discussed in Section
6: dealing with the fate of Arrow’s celebrated Impossibility Theorem in the
infinite [2,7,8,10,16–18,24,29,33–35].

Is there an analogy with the work of Aumann and other authors on
perfect competition? In other words, does one assume an infinity of voters

4A more detailed analysis of possible interpretations of infinite products in the context
of utility functions—intertemporal choice, choice under uncertainty, variable population
social choice and combinations thereof—can be found in a recent paper by Pivato [44].
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in order to make choices of each particular individual entirely negligible in
the sense of, e.g., being removable via integration? The first obvious contrast
is that calculus and integration play a very minor role in this line of work;
in fact, the only notion of calculus that seems to enter the picture is the
very notion of measurability, quite unlike the papers on perfect competition
[1,19,40]. More importantly, already one of the first papers in the area [24]
argued that even from a purely mathematical point of view, such analogies
are spurious, as we will see in detail below. Does the motivation come then
from intertemporal social choice? Or social choice under uncertainty? In
both of these settings, it is hard to see the relevance of any type of a voting
model. It does not make much sense to consider people from the whole
infinite collection of different generations or different possible states of the
world as a single electorate. Even using the word “dictatorship” in such
a context feels somewhat preposterous. Aggregation of utility functions in
such contexts appears to have precious little connection with voting.

As far as I have been able to establish, the story of infinite electorates
in the context of Arrow’s theorem begun with a short paper by Fishburn
[10]. His four-page note claimed to aim simply at a concise proof of Arrow’s
result, with the opening paragraph stating that

my intention here is to concentrate on the mathematical rather than
the interpretive aspects.

This is perfectly understandable. But even from a purely mathematical point
of view, the author’s own description of results contains an important omis-
sion:

The proof in this paper begins with the nondictatorship condition and
shows that this and the other conditions imply that the set of voters
must be infinite. A finite set of voters is essential to Arrow’s theorem.
The final section of the paper demonstrates that if the set of voters is
allowed to be infinite then Arrow’s other conditions are simultaneously
compatible.

The accuracy of the last sentence depends on the assumed meaning of “com-
patibility”. To be sure, the proof of the Possibility Theorem itself later in
the paper does explicitly mention its dependence on Zorn’s Lemma. More
specifically, the proof relies on the fact that ZFC guarantees the existence
of a finitely additive, two-valued probability measure defined on all subsets
of the infinite set of voters such that every singleton is of measure zero;
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that is, a free ultrafilter. But this is not reflected in Fishburn’s introduc-
tory discussion of the results quoted above. Hence, the paper may be read
as implying that the very move to infinite electorates, without as much as
touching upon the motivation for considering such entities, makes Arrow’s
impossibility magically and automatically turn into a possibility.

This was bound to provoke a reaction—and it was provided two years
later by Kirman and Sondermann [24], the paper usually credited as the
main reference connecting ultrafilters with Arrow’s result. Such a claim is
not incorrect, but can be misinterpreted. As stated in the preceding para-
graph, the probability measure used by Fishburn [10] is just another way of
presenting a free ultrafilter.5 The technical pillar of their paper [24] is indeed
a theorem establishing 1-1 correspondence between social welfare functions
satisfying Arrowian axioms and ultrafilters. Kirman and Sondermann, how-
ever, proved this result with a specific, negative purpose: to argue that the
“possibility” offered by the move to infinite electorates is illusory.

Interestingly enough, their criticism was not aimed at set-theoretic prin-
ciples used in the proof, at least not directly. What they focused on was
to what extent—even assuming ZFC-based metatheory—Fishburn’s results
meets what I called the Hildenbrand criterion in Section 2:

Comparing Fishburn’s result with that of Arrow, it seems that the
existence problem for social welfare functions looks essentially differ-
ent when one essays the step from the finite to the infinite, as has
been successfully done by Aumann [1] and others. Since we have lim-
iting results, which show that Aumann’s theorems for a continuum
of economic agents are also approximately true for finite but large
economies, we might ask the following question: Does Fishburn’s re-
sult allow us to make a similar deduction for large set of individuals?
The answer is no! [24, p. 268–269]

Kirman and Sondermann justify this claim with two mathematical re-
sults. The first of them [24, Theorem 5] provides a connection with the theory
of atomless measure spaces, central to the work of Aumann or Hildenbrand.
It is argued that an appropriate reformulation of dictatorship in such a set-
ting would require it to be exercised not by one individual alone, but rather

5It should be noticed that even Kirman and Sondermann themselves do not claim the
credit for the observation that Fishburn’s finitely additive, two-valued probability measure
is a barely disguised free ultrafilter. Their acknowledgements state this has been suggested
to them in two separate and independent conversations, one of them being with Peter C.
Fishburn himself.
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by an “arbitrarily” small group of agents—arbitrarily small, that is, in the
sense of measure theory. And, surely enough, any solution based on free
(nonprincipal) ultrafilters is dictatorial in this sense. Pushing the argument
still further, they observe that the topological notion of Stone-Čech com-
pactification allows one to turn such infinitesimally small dictatorial groups
arising from a free ultrafilter into an “invisible dictator” in the limit.

Kirman and Sondermann [24] started a long line of research. See Mon-
jardet [35] for an overview of the early literature. In a more recent period,
the interest was renewed by a 1995 paper by Lauwers and Van Liedekerke
[18,29]. Further authors include Chichilnisky and Heal [8], Mihara [33,34],
Brunner and Mihara [7], Herzberg and Eckert [16,17], Bedrosian et al. [2],
and this list is by no means exhaustive. Nevertheless, it can be safely said
that these newer references have not undermined Kirman and Sondermann’s
original conclusions regarding the relationship between results based on un-
restricted AC and the Hildenbrand criterion. In the words of Lauwers and
Van Liedekerke:

Our results on ultrafilters are discouraging. In the context of social
choice, aggregation by means of ultraproducts is not appropriate. Ag-
gregation procedures should filter out properties that hold for “almost
all” individuals. Ultraproducts, however, also let pass properties that
hold for a fraction of the whole set of individuals. Besides that, they
exhibit an insuperable arbitrariness in construction. It follows that ul-
trafilters provide no good intuition to the notion of “almost all” [29,
p. 235–236].

4. Axiom of Determinacy

It is time to present a technique which I believe is helpful in eliminating
applications of set theory not conforming to the Hildenbrand criterion. As
illustrated by the overview in Appendix B, most of the criticism of ZFC pre-
sented in the available literature seems to suggest weakening it: either keep-
ing just a weak form of AC (if not removing it altogether) or even—in the case
of intuitionistic, type-, topos- or category-theoretic approaches—attacking
the propositional base and removing classical tautologies. However, it is also
possible to extend ZF with meaningful principles contradicting AC. This is
precisely the story of the Axiom of Determinacy6 (AD) proposed by Myciel-
ski and Steinhaus in 1962 [38] and studied ever since [20–22,36,37,39].

6Early references used the name Axiom of Determinateness instead.
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Consider any set X and A ⊆ Xω, i.e., any given subset of the space of
infinite sequences of elements of A. Note here that if X is taken to be ω,
Xω can be identified with R via a standard argument. With every such X
and A, we can associate naturally an infinite two-person game GX(A) with
perfect information, where two players ∀ and ∃ take turns to choose elements
of X. The ∃-player, who makes the first move, wins if the sequence created
this way belongs to A; otherwise the game is won by the ∀-player. In other
words, A is what is usually called the payoff for GX(A). If either of the
two players has a winning strategy, GX(A) is determined. AD says simply
that all games of the form Gω(A), i.e., whose payoffs are (identifiable with)
subsets of R, are determined.

The axiom almost immediately kills off almost the whole unsavoury bes-
tiary of pathological sets associated with unrestricted AC. Contrast the result
below with those summarized in Section A:

Theorem 4.1. ([21], Proposition 27.9) Under ZF+AD, every set of reals is
Lebesgue measurable, has the Baire property and the perfect set property.7

The above result readily implies that under ZF + AD, every ultrafilter
over ω is principal, using the proof of Theorem 9.5 (i.e., non-measurability of
nonprincipal ultrafilters over ω conceived as sets of reals). However, there is
a more direct game-theoretic “strategy-stealing” argument presented, e.g.,
by Kanamori [21, Proposition 28.1]. In more detail, one could use such an
ultrafilter to create the payoff of a game where players pick (disjoint) finite
subsets of ω. The assumption that this game is determined would lead to a
contradiction: a winning strategy for the ∀-player could be easily converted
into a winning strategy for the ∃-player and vice versa. Instead of presenting
such an argument here, we postpone it to Section 6, where it is going to be
directly applied in the context of Arrow’s impossibility result.

A striking fact about determinacy is that one can see it as an infinitary
generalization of the De Morgan law for quantifiers, see, e.g., [23, Section
20.D]. To be more specific, consider any A ⊆ Xω. The existence of a winning
strategy for the ∃-player can be reformulated as ∃x0.∀x1.∃x2. . . . (xi)i∈ω ∈ A,
and the existence of a winning strategy for the ∀-player as ∀x0.∃x1.∀x2. . . .
(xi)i∈ω �∈ A. Thus, determinacy of GX(A) can be rewritten as

¬∃x0.∀x1.∃x2. . . . A(x0, x1, x2 . . .) ↔ ∀x0.∃x1.∀x2. . . . ¬A(x0, x1, x2 . . .).

7Kanamori’s monograph [21, p. 379], which is only quoted as a convenient and com-
prehensive source, states that this theorem is a compilation of results by Mycielski and

Świerczkowski [39], Mazur, Banach and Davis.
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It is worth contrasting this with the fact that AC can also be seen as
an infinitary generalization of a finitary law; namely, the law of excluded
middle [9,13] (see Section B.3). It turns out that natural generalizations
of finitary laws can conflict with each other in suitably large infinite do-
mains.

Kanamori [21, Chapter 27] puts determinacy in the context of interac-
tions between foundational studies and game theory going back to Zermelo
and König. Researchers in social choice are likely to be aware of at least some
of the early work in that area, in particular, the seminal work of von Neu-
mann and Morgenstern connecting games and economic behaviour. A more
direct stimulus was provided by renewed interest in infinite games, especially
among Polish researchers, in the 1950’s [21, p. 377]. But a set-theoretic moti-
vation came from the study of regularity properties and results like Theorem
4.1.

5. Consistency Strength: AD, AC, DC and L(R)

Mycielski and Steinhaus themselves [38] were careful to state that they did
not question the validity of AC in the “absolute” universum of sets.8 They
proposed it describes a smaller universum of “determined sets”. Soon after-
wards, Mycielski [36] made this idea more specific suggesting the rôle largely
played by AD since then in most set-theoretic references: as a candidate for a
proposition valid in an inner model containing R. Solovay and Takeuti noted
that the most natural candidate is the smallest such model, i.e., L(R) [21, p.
378]; see Appendix A for this notation. However, this has to be seen in the
light of the fact that (as discussed in Section B.2) contemporary set theory
leaves little ground for believing in the existence of a single distinguished
“absolute” universum of sets V and still less ground for believing that even
if such a universum existed, we would be able to identify it. AD appears to
be delimiting a rather attractive area of the set-theoretic multiverse [14]; see
Section B.2 for more about this notion.

From the point of view of consistency strength, AD is a much more pow-
erful axiom than AC. On the other hand, it is also consistent with weak
versions of AC. Detailed information and more references can be found in
[21, Chapter 6], but here are the basic results:

8Mycielski [36] called the inconsistency of AD with AC a “sad fact”.
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Theorem 5.1.

• AD implies that every countable family of non-empty subsets of R has a
choice function (Mycielski [36]).9

• If the model of ZF based on L(R) is assumed to satisfy AD, then DC
holds therein (Kechris [22]).

• In ZFC enriched with axioms ensuring the existence of infinitely many
Woodin cardinals with a measurable cardinal10 above them, L(R) is a
model of ZF + AD (Woodin, see [21, Theorem 32.14]).

• ZF + AD is equiconsistent with ZFC enriched with axioms ensuring the
existence of infinitely many Woodin cardinals. (Woodin, see [21, Theo-
rem 32.16]).

These results should be understood properly. For example, the first two
clauses do not say that AD implies ACω, much less DC (cf. Lemma 9.1).
Kechris [22] describes a construction by Woodin, which assumes that L(R)
taken as a model of ZF satisfies AD and constructs its “generic extension”
where ACω fails. The fact that a sentence φ is assumed to hold in a given
model of ZF does not mean that this model cannot “believe in the existence”
of another model of ZF where ¬φ holds. This is precisely the point of the
notion of “consistency strength”. For the same reason, the last-but-one and
the last clause of Theorem 5.1 are distinct.

At any rate, set-theorists find the idea that AD should hold in L(R) rather
natural. Yes, constructing a model of set theory where all subsets of R are
measurable requires assuming consistency of an inaccessible cardinal [45,47],
and constructing one where AD holds requires further assumptions as in the
last two clauses of Theorem 5.1. One, however, would be hard-pressed to
find a set-theorist today who would reject all large cardinals.

But then, even if for some reason one needs to consider infinite electorates,
or indeed infinite populations of any kind, how is it possible to know whether
the ambient setting is V = L(R), presumably satisfying AD, or rather, say,
Gödel’s constructible universe V = L, where AC holds? It is safe to assume
that DC is available—even under AD, models without dependent choice are
rather deviant. Beyond that, however, why would such an infinite population
obey choice or rather determinacy? Let us see what would happen under the

9Also proved independently by Świerczkowski and by Scott.
10Steel [49] provides perhaps the most accessible and self-contained presentation of

Woodin cardinals and measurable cardinals I was able to find; for lack of space, the reader
is referred there for definitions.
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latter assumption. Even if one is a strong believer in choice, it may be at
least an educating thought experiment.11

6. AD and Infinite Electorates

Our main case study concerns tailoring the game-theoretic argument for the
non-existence of free ultrafilters over ω to Arrow’s result as reconstructed by
Kirman and Sonderman [24] (see also Fishburn [10]). Let Voters, Options be
arbitrary sets and PO(Options) be the set of preference orders on Options,
i.e., those R ⊆ Options × Options satisfying

asymmetry aRb implies not bRa,

negative transitivity for any a, b, c ∈ Options, aRb implies aRc or cRb.

As noted by, e.g., Kirman and Sonderman [24], these conditions imply
transitivity. Furthermore, denote Situations := Voters → PO(Options) and
SWFs := Situations → PO(Options), where arrows denote corresponding
function spaces and “SWF” stands for “Social Welfare Function”. Some
additional conventions for a, b ∈ Options, v ∈ Voters, U ⊆ Voters, f, g ∈
Situations and σ ∈ SWFs:

af [U ]b if for all v ∈ U , af(v)b,
f(v) =a,b g(v) if (af(v)b iff ag(v)b) and (bf(v)a iff bg(v)a),

f =a,b g if for all v ∈ Voters, f(v) =a,b g(v).
There is one rather trivial axiom being imposed on Options:

Options (A1) |Options| ≥ 3.

Furthermore, the following axioms are imposed on SWFs for all a, b ∈
Options, f, g ∈ Situations and σ ∈ SWFs:

Unanimity (A3) af [Voters]b implies aσ(f)b,

Independence (A4) f =a,b g implies σ(f) =a,b σ(g).

11Hamkins [14, Footnote 1] points out that already in the 1960’s, Mostowski claimed
that there are several essentially different notions of set which are equally admissible as
an intuitive basis for set theory with Kalmár adding that I guess that in the future we
shall say as naturally “let us take a set theory,” as we take now a group G or a field F .
More information on historical and contemporary aspects of this discussion can be found
in Appendix B.
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Given any σ ∈ SWFs, define

Uσ := {U ⊆ Voters | ∃a, b ∈ Options

∃f ∈ Situations.af [U ]b& bf [Voters − U ]a& aσ(f)b},

U ′
σ := {U ⊆ Voters | ∃a, b ∈ Options

∀f ∈ Situations.(af [U ]b& bf [Voters − U ]a ⇒ aσ(f)b)},

U ′′
σ := {U ⊆ Voters | ∀a, b ∈ Options

∀f ∈ Situations.(af [U ]b& bf [Voters − U ]a ⇒ aσ(f)b)}.

Lemma 6.1. ([24]) For any σ ∈ SWFs satisfying unanimity (A3) and inde-
pendence (A4) above:

• Uσ = U ′
σ = U ′′

σ ;

• whenever Options satisfies (A1), Uσ (= U ′
σ = U ′′

σ ) is an ultrafilter on
Voters and furthermore:

• Uσ is the unique ultrafilter U with the property

∀U ∈ U , a, b ∈ Options, f ∈ Situations.(af [U ]b ⇒ aσ(f)).

• Uσ is principal iff σ satisfies

Dictatorship (non-A5) there is v0 ∈ Voters such that
for any f ∈ Situations, a, b ∈ Options, af(v0)b implies aσ(f)b.

Proof. See Kirman and Sondermann [24], correspondingly for each item:
Lemma 6.A, Lemma 6.B, Theorem 1(i), Proposition 2.

Theorem 6.2. For any countable set of Voters, any Options satisfying (A1)
and any σ satisfying (A3) and (A4), ZF+AD implies the Dictatorship (non-
A5) condition.

We can redo more or less verbatim the perspicuous game-theoretic proof
of Proposition 28.1 in Kanamori [21]:

Proof. If Voters is finite, Uσ must be a principal ultrafilter over Voters,
which implies the result by Lemma 6.1. For an infinite countable set of
Voters, assume that Dictatorship does not hold. Define a game where the
players pick finite, mutually disjoint subsets of Voters. The ∃-player wins if
the sum E of all Voters chosen by her12 belongs to Uσ, i.e., if it holds that

∀a, b ∈ Options, f ∈ Situations.(af [E]b& bf [Voters − E]a ⇒ aσ(f)b).

12It is conventional to refer to the ∃-player as female and to the ∀-player as male.
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A play of this game is of the form e0, a0, e1, a1 . . . where ei and ai are finite,
mutually disjoints subsets of Voters chosen, respectively, by ∃- and ∀-players.
The sums of these choices will be denoted as E =

⋃

i∈ω

ei and A =
⋃

i∈ω

ai. A

strategy for the ∃-player is thus a function

τ∃ :
⋃

n∈ω

(Pfin(Voters))2n → Pfin(Voters),

and the ∃-player plays according to τ∃ if the play of the game is of the form

τ∃∅, a0, τ∃〈∅, a0〉, a1, τ∃〈τ∃∅, a0, τ∃〈∅, a0〉, a1〉 . . .

Analogously, a strategy for the ∀-player is thus a function

τ∀ :
⋃

n∈ω

(Pfin(Voters))2n+1 → Pfin(Voters),

and the ∀-player plays according to τ∀ if the play of the game is of the form

e0, τ∀〈e0〉, e1, τ∀〈e0, τ∀〈e0〉, e1〉 . . .

We will show that both the assumption of the existence of a winning τ∃ and
the assumption of the existence of a winning τ∀ lead to a contradiction.

Assume first a winning τ∃ exists. Define

τ ′
∀〈s0, s1 . . . , s2n〉 := τ∃〈s1 . . . , s2n〉 − s0.

Let now e0, a0, e1, a1 . . . be a play according to τ ′
∀. By assumption on τ∃,

we have that e0 ∪ A ∈ Uσ. As Uσ is nonprincipal, we have A ∈ Uσ. Thence,
as A ∩ E = ∅, it cannot be the case that E ∈ Uσ and thus τ ′

∀ is a winning
strategy; a contradiction.

Assume now a winning τ∀ exists. Note first that a slightly tweaked version
of it is a winning strategy too:

τ+
∀ 〈s0, s1 . . . , s2n〉 :=

{
τ∀〈s0, s1, . . . , s2n〉 ∪ {n} if n �∈ s0 ∪ s1 . . . ∪ s2n

τ∀〈s0, s1, . . . , s2n〉 otherwise.

This new strategy satisfies furthermore the condition that in any play
e0, a0, e1, a1 . . . according to it, we have that A ∪ E = Voters. As Uσ is an
ultrafilter, τ∀ is winning and A ∩ E = ∅, we have that A ∈ Uσ. But now one
can turn τ+

∀ into a winning strategy for the ∃-player simply by augmenting
the input with ∅, a contradiction.

As follows from the discussion in Section 5, the above result can be used
even in the setting of ZFC, although this requires rather strong assumptions
about infinite cardinals:
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Corollary 6.3. In ZFC enriched with axioms ensuring the existence of
infinitely many Woodin cardinals with a measurable cardinal above them,
L(R) is a model of ZF + DC such that for any countable set of Voters, any
Options satisfying (A1) and any σ satisfying (A3) and (A4), the Dictatorship
(non-A5) condition holds.

Proof. Follows from Theorems 5.1 and 6.2.

Related results were obtained by Brunner and Mihara [7].
A careful reader may have noticed that the statements of Theorem 6.2 and

Corollary 6.3 are restricted to countable sets of voters. In discussing potential
insights AD may bring to social choice, one should be careful to point out
that AD does not kill all nonprincipal ultrafilters. There are uncountable
sets for which AD allows the existence of free ultrafilters. In this case it
would seem to suggest, e.g., that by introducing suitable uncountably large
collection of voters, we could still avoid, or at least pretend to avoid, Arrow’s
impossibility result. But the discussion presented in this paper hopefully
shows that such claims would require a more detailed justification. AD is a
good tool to verify conformity with the Hildenbrand criterion, but it is not
infallible. Consistency with both ZFC and ZF + AD is a necessary, but not
sufficient condition.

7. AD and Intergenerational Equity

The story of Fishburn’s possibility claim for infinite electorates and its sub-
sequent deconstruction is paralleled by that of Svensson’s [50] possibility
argument in intergenerational equity and its later unpicking, in particular
an exhaustive examination by Zame [51]. Recall that this line of work dealt
with the space of utility streams X = [0, 1]ω. The goal was to find a strict
ordering � on such a space which is an ethical preference relation, that is:

• displays intergenerational equity, i.e., is invariant under finite permuta-
tions of ω,

• respects the weak Pareto ordering, i.e., if xn > yn for all n, then x � y,

• is linear or total, i.e., makes any two elements comparable; the authors
in this line of work often choose to use the word complete instead.

Here is a recap of Svensson’s argument provided by Zame:

define an incomplete preference relation � on X in the following way:
y � x exactly when there is a finite permutation y∗ of y (that is a
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reordering of finitely many of the terms of y) such that y∗ > x (i.e.,
y∗ ≥ x and y∗ �= x). The relation � is irreflexive, transitive, dis-
plays intergenerational equity and respects the Pareto ordering, but it
is incomplete: some—indeed, many—pairs of utility streams are not
comparable. However we can use Szpilrajn’s (1930) extension lemma
to find an extension � of � to a complete transitive preference rela-
tion on X. This extension � automatically displays intergenerational
equity and respects the Pareto ordering; i.e., it is an ethical preference
relation [51, p. 188–189].

The problem is that Szpilrajn’s Extension Lemma essentially relies on AC.
Zame [51] shows that the existence of such an ethical preference relation is
independent from ZF + DC and that no such relation can be shown to be
definable in ZFC. Analysis of Zame’s argument shows that AD can also be
used to dispel the illusion of intergenerational equity:

Theorem 7.1. The existence of an ethical preference relation on the space
of utility streams X = [0, 1]ω is incompatible with ZF + AD.

Proof. Zame [51, Theorem 2] shows that a graph of an ethical preference
relation would be a nonmeasurable subset of X and as noted in the same
reference [51, p. 196, proof of Theorem 3] one can use such a subset to con-
struct a nonmeasurable subset of R. As stated in Theorem 4.1, the existence
of nonmeasurable sets of reals is excluded by AD.

An interesting exercise for the reader is to provide a more direct, game-
theoretic proof in the spirit of Section 6. Let us add that issues of efficiency
and constructibility seems to attract attention in contemporary research on
intergenerational equity: apart from the work of Zame and papers quoted
therein, see also, e.g., Lauwers [27,28]. It is worth mentioning that both
Zame [51] and Lauwers [27] explicitly refer to Solovay’s [47] early construc-
tion of a model of ZF where every subset of R is Lebesgue measurable.

8. Conclusions

As has been stated above, the goal is not to present AD as some kind of
philosopher’s stone or as an ultimate solution to problems of infinity in
social choice. The Hildenbrand criterion is independent of the actual or po-
tential rôle AD may play here. The existence of a powerful set-theoretic
principle which—despite being inconsistent with AC—stems from a natural
game-theoretic motivation, generalizes an obvious finitary law and does not
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seem to lead to any paradoxical constructions13 should be simply taken as
yet another piece of evidence for the Hildenbrand criterion.14 It would be
disputable from a philosophical point of view, if rather interesting mathe-
matically, to build formal economics using consequences of ZF + AD incon-
sistent with AC. But it seems even more problematic to rely on theorems of
ZFC which are neither consistent with AD nor acceptable from the point of
view of other lines of criticism sketched in Appendix B. Regardless of reasons
for considering infinite populations of agents, a decision whether such pop-
ulations are governed by choice or by determinacy seems entirely arbitrary.
Such assumptions are of a metaphysical rather than scientific character.
Only mild forms of AC like DC (and hence ACω) seem safe.

The advantage of AD from our point of view is simply that it offers
economists a convenient, though not infallible tool of verifying whether a
proposed result conforms to the Hildenbrand criterion. I hope that this paper
illustrates that AD is easier to use for this purpose than relying on model-
theoretic techniques like forcing, though resorting to the latter may still be
necessary in corner cases.

BPI and unrestricted ZFC have some interesting applications in econom-
ics through nonstandard analysis (cf., e.g., [51, Footnote 1]). It would be
interesting to study how these applications relate to our criterion. There
is, however, very little effort towards seriously motivating or consciously
defending the use of AC to guarantee possibility results on preference ag-
gregation or intergenerational equity.15 Quite to the contrary: we have seen
above that skepticism in this respect has been, in fact, repeatedly expressed

13Of course, the claim of the absence of paradoxical constructions under AD cannot be
accepted if one grew so accustomed to AC that the absence of certain Hamel bases, of some
free ultrafilters or of linear ordering on cardinal numbers begins to appear paradoxical in its
own right. But I can think at the moment of only one consequence of living in an universe
where all subsets of R are Lebesgue measurable which may seem quite controversial to a
mathematician who is not already entirely sold on AC. Namely, in such an universe R/Q
may have more elements than R itself; the former set cannot be even linearly ordered [46].

14As pointed out by one of referees, it should be stressed that AD itself is no more
constructive than AC. If AD offered any way to construct a winning strategy or even to
decide which player has a winning strategy, we should probably take it as an axiom of set
theory no less fundamental than those of ZF, or ensure that other axioms entail it. This
is not what I am suggesting here.

15To a certain extent, one can probably include here, e.g., Mihara [34], which argues
that “invisible dictators” can be seen as computable (on measurable sets!) in a broader
sense, namely that of computability with an oracle. Such an oracle is able to “decide”
an undecidable problem. The paper does not address the Hildenbrand criterion or the
objections raised in the first paragraph of Section 3 above.
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in references since the 1960s till the present day. Yet somehow nonprincipal
ultrafilters and nonmeasurable coalitions of agents continue to appear in the
more technical literature without much justification. This is a state of af-
fairs I find hard to understand. It does seem that a systematic discussion of
foundational issues in formal economics, especially in social choice, is much
overdue. My broader hope is that the present paper helps to build up the
critical mass necessary to trigger such a discussion.
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cus Pivato for an invitation to write this article. I would also like to acknowl-
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A. ZF and AC

Zermelo-Fraenkel set theory ZF is formulated in the first-order language LZF

with one binary primitive ∈. I will use numerous standard abbreviations like
x = {y, z}, ∅, x ∩ y = ∅, ∃x ∈ y.φ(x), ∃!x ∈ y.φ(x), x ⊆ y, etc.

The axioms are as follows:

Axiom of Extensionality ∀xy.(∀z.z ∈ x ↔ z ∈ y) → x = y.

Axiom of Regularity ∀x.x �= ∅ → ∃y ∈ x.x ∩ y = ∅.

Axiom of Union ∀x∃y∀z.z ∈ y ↔ ∃v ∈ x.z ∈ v.

Axiom of Powerset ∀x∃y∀z.z ∈ y ↔ ∀v ∈ z.v ∈ x.

Axiom of Infinity ∃x.∅ ∈ x ∧ ∀y.y ∈ x → y ∪ {y} ∈ x.

Axiom scheme of Restricted Comprehension (also known as Specifica-
tion or Separation) For any LZF formula φ(x, z) with no occurrences of
y, the following is an axiom:

∀x∃y∀z.z ∈ y ↔ (z ∈ x ∧ φ(x, z)).
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Axiom scheme of Replacement (also known as Collection) For any LZF

formula φ(x, y, z, w) with no occurrences of v, the following is an axiom:

∀wz.(∀x ∈ w∃!y.φ(x, y, z, w)) → ∃v∀x ∈ w∃y ∈ v.φ(x, y, z, w).

The Zermelo–Fraenkel set theory with Choice (ZFC) extends the above
set of axioms with

Axiom of Choice (AC)

∀w.(∀x ∈ w.x �= ∅ ∧ ∀y ∈ w.x �= y → x ∩ y = ∅) →
∃c∀x ∈ w.∃!y ∈ x.y ∈ c).

There are several postulates often added as axioms which are nevertheless
derivable from the system above, in particular the Axiom of Pairing or the
Axiom of Empty Set. A rich ontology can be developed on the basis of
this seemingly spartan system—natural numbers, real numbers, functions,
relations, ordinals, cardinals, cartesian products, power sets, etc.

Details can be found in numerous references, e.g., [12,20,21,25].
ZF and its extensions are grounded in the iterative conception of set

[6,11,41]. But this conception and its underlying stage theory [6] do not
provide equal support to every axiom.

Consider, for example, the quantified variable z in the statement of the
Axiom of Powerset. What is it ranging over? That is, what subsets of a
given set are supposed to exist apart from those guaranteed by the Axiom
of Restricted Comprehension, i.e., determined by a formula of LZF? Cantor,
the founding father of set theory, famously defined a set as “a totality of
definite elements that can be combined into a whole by a law” (cf. [6, p.
215]). It would seem that such a law should be expressible by finitary means.

The strength and the controversial character of AC stems from the fact
that it provides an abundant supply of sets not determined by any kind of
formula, property or algorithm. Let us restate its contents in plain words:

For any family w of non-empty, pairwise disjoint sets, there exists a
“choice set” c such that for any set x ∈ w, |x ∩ c| = 1.

Obviously, such a choice set can be replaced by the corresponding choice
function, which sends each x ∈ w to an element of x ∩ c; we could denote
this element as c(x). This is in fact the form in which AC is often stated: as
ensuring the existence of a choice function for an arbitrary family of non-
empty sets (not necessarily pairwise disjoint). Using other axioms of ZF,
such a formulation can be easily proved equivalent to the one given above.
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Note that if we have defined a well-ordering ≺ on
⋃

w, there is no need to
resort to AC to ensure the existence of a choice function. We could explicitly
define it by taking for each x its ≺-smallest element as c(x). This is why
AC is implied by the Well-Ordering Principle. And, as discovered already by
Zermelo in the earliest work using AC, the converse is true as well.

The problem is that in many cases, no such well-ordering (or such a
choice function) can be constructed or defined, even in a very liberal sense
of “defining” or “constructing”. And accepting as an axiom the existence
of such objects is an article of faith with far-reaching and not necessarily
positive consequences.

Before we discuss further objections to AC in Appendix B, let us recall
that not all of its applications require all of its strength. To begin with, if w
is a finite family of non-empty (possibly infinite) sets, then the existence of
a choice function is provable in plain ZF. So the weakest form of AC of any
interest is

Axiom of Countable Choice (ACω) Every countable family of non-empty
sets has a choice function.

A somewhat stronger principle was proposed by Bernays in 1942 [5].

Axiom of Dependent Choice (DC) For any X �= ∅ and any R ⊆ X × X
such that ∀x∃y.xRy, there exists f : ω → X s.t. ∀n ∈ ω.f(xn)Rf(xn+1).

Lemma 9.1. ZF + DC � ACω.

Proof. Let W := {Wn}n∈ω be a family of non-empty sets. Consider X :=
{(w1, . . . wn) | n ∈ ω, ∀i ≤ n, wi ∈ Wi}. Given any w = (w1, . . . wm), v =
(v1, . . . vn) ∈ X, define wRv if n = m + 1 and for any i ≤ n, wi = vi. We
obtain a choice function for W by a direct application of DC.

Lemma 9.2. The following facts are provable in ZF + ACω:

• Every infinite set has a countable subset.

• The union of countably many countable sets is countable.

• Cauchy-style (ε − δ) and Heine-style (limits of sequences) definitions of
continuity, closedness and compactness are equivalent.

• Every subspace of a separable metric space is separable.

• Lebesgue measure and meager sets have the property of countable addi-
tivity.

Proof. See Jech [20, Chapter 2] for details and references.
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Lemma 9.3. The following facts are provable in ZF + DC:

• A linearly ordered set is well-founded iff it contains no infinite descend-
ing sequence.

• Urysohn’s Lemma: if X, Y are disjoint closed sets in a T4-space S, then
there is a continuous function from S to [0, 1] which takes the value 1
everywhere in X and 0 everywhere in Y .

Proof. The first item is a direct application of DC. For the second, see
Problem 2.26 in Jech’s book [20].

There are many consequences of AC which, while not as strong as the ax-
iom itself, already go far beyond what can be proved from benign principles
like DC. For an important axiom of this kind, we need to recall the notion
of an ultrafilter. For any boolean algebra A := (A, ∧, ¬, �), a subset F ⊆ A
is a filter if for any a, b ∈ A, a, b ∈ F iff a ∧ b ∈ F , and a filter F is an
ultrafilter if moreover for any a ∈ A, |F ∩ {a,¬a}| = 1. In the special case
when the algebra A is of the form 2S for some S, one speaks of ultrafilters
over S. Ultrafilters over S always exist: for any s ∈ S, its principal ultrafilter
{X ⊆ S | s ∈ X} is an example. Ultrafilters which are not of this form are
called free or nonprincipal. One can immediately show that nonprincipal
ultrafilters cannot exist over finite sets. For an infinite S, a necessary and
sufficient condition for an ultrafilter to be free is to contain the Fréchet filter,
i.e., the collection of cofinite subsets of S. As it turns out, however, ZF—even
extended with ACω or, still further, with DC—has nothing to say about the
existence of free ultrafilters over infinite sets. We need to go closer towards
full AC to prove this. Here are corresponding set-theoretic principles.16

Strong BPI Every proper filter in a boolean algebra can be extended to
an ultrafilter.

Weak BPI Every boolean algebra contains an ultrafilter.

Theorem 9.4. • Over ZF, the weak and the strong variant of BPI are
equivalent.

• ZFC � BPI.

• ZF + DC � BPI.

• ZF + BPI � AC.

16The traditionally used abbreviation BPI comes from Boolean Prime Ideal, as the
principle was often formulated in terms of ideals rather than using the dual notion of
filter.
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Proof. All of these results are well-known in set theory. See, for example,
Jech [20] for more information and references.

Finally, let us consider perhaps the most famous of controversial conse-
quences of AC. We do not need the full strength of AC for this. In fact, free
ultrafilters do the job.

Theorem 9.5. ZF+BPI implies the existence of a non-Lebesgue measurable
set.

Proof. As noted, e.g., in Kanamori [21, p. 384], this already follows from
a 1938 result by Sierpiński that a free ultrafilter over ω understood as a set
of reals is not Lebesgue measurable.

Of course, the very first proof of ZFC implying the existence of a non-
measurable set was provided by Vitali almost immediately after Zermelo’s
famous well-ordering paper.

AC is not derivable from the axioms of ZF (see Section B.2). But Gödel
showed how to construct a model of ZFC assuming only the axioms of ZF,
thus settling the issue of consistency. Given any set A, define the collection
L(A) of all sets constructible from A by transfinite recursion of the operation
of forming sets definable in LZF, starting from the transitive closure of {A}
under ∈, which we can denote as cl∈(A). If L(A) contains a well-ordering of
cl∈(A), it can be well-ordered and thus we obtain a model satisfying ZFC.
In particular, Gödel’s constructible universe is defined as L(∅) and denoted
simply as L.

B. Traditional and Constructive Criticism of AC

Graduate-level courses and most popular expositions of set theory these
days tend to present full AC as something barely questionable, to the point
of being nearly self-evident. Nothing can be further from the truth. Histor-
ically, AC attracted very strong opposition from many leading mathemati-
cians and these objections had much more substance than it is presently
admitted. Furthermore, claims about the present total acceptance of AC are
also overstated. In most areas close to actual foundations of mathematics—
category theory, type theory, proof theory, theoretical computer science—AC
certainly does not get a free pass. Let us briefly overview some of this oppo-
sition, including both well-known and less commonly mentioned arguments.
They are ordered, roughly, in historical order, from the past to the present
times.
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B.1. Historical Opposition

It is often forgotten that the Axiom of Choice was regarded as problematic
for many decades after its introduction:17

at the moment (1904) when the axiom, explicitly formulated, was
used by Zermelo to prove and confirm one of the earliest assertions
of Cantor, viz. the well-ordering theorem, mathematical journals were
flooded with critical notes rejecting the proof [emphasis mine–T.L.],
mostly arguing that our axiom was either illegitimate or meaningless
[12, p. 82].

That is, even if contemporary introductions tend to present AC as an obvious
invention, the initial reaction of the mathematical community was the exact
opposite.18 Furthermore, Fraenkel et al. admit that

[i]t may surprise scholars working in the field of abstract or applied
set theory that even after more than half a century of utilizing the
axiom of choice and the well-ordering theorem, a number of first-rate
mathematicians (especially French) have not essentially changed their
distrustful attitude; not even such as have been working most success-
fully in the domain of point sets and of real functions [12, p. 83].

Borel is an example of such a first-rate French mathematician distrustful
towards full-blown AC (despite, let us add, being willing to admit its count-
able version ACω). Other famous mathematicians critical from the very be-
ginning of careless usages of AC included, e.g., Baire, Lebesgue, Pasch and

17 For a long time, these controversies were reflected even in standard monographs,
including Fraenkel et al. monumental 1973 work [12] quoted in this section. For another
convincing example, the reader can consult Kuratowski and Mostowski [25]. Even though
it was written at a time when the community had grown accustomed to AC, the results
depending on it were still clearly distinguished typographically (to be precise, marked with
the ◦ sign), a custom they claim to be introduced and consistently observed by Sierpiński
[25, p. 54]. According to Kuratowski and Mostowski, early controversies surrounding AC
have shown that there is no single “intuitive” notion of a set, a point interestingly con-
vergent with much more recent views of Hamkins [14] discussed in Section B.2 below. See
also Footnote 11.

18It is instructive to compare such presentations of ZFC with, say, those of relativity
theory or quantum mechanics. In these cases, nobody is trying to gloss over the initial
apprehension and skepticism of the community, or pretend such a reaction is unnatural,
also for a contemporary student of mathematical physics. Niels Bohr famously claimed
that [a]nyone who is not shocked by quantum theory has not understood it. Classroom
introductions to foundations of mathematics and the question of constructive means of
proof should aim to elicit a similar reaction.
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Lusin [12, p. 216]; in hindsight, one can also add the name of Peano [12,
p. 57]. Brouwer made a more radical attempt to break with set-theoretical
foundations (cf., e.g., [12, Chapter IV]). While his original philosophical po-
sitions are of mostly historical importance, the intuitionistic logic he inspired
remains relevant in the present context, as we will see in Section B.3.

B.2. Independence of AC

Regardless of the attempts at building foundations alternative to first-order
set theories like those discussed in Section B.3, two fundamental revelations
shook the confidence of the mathematical community in the 1960’s. On the
one hand, AC turned out to be independent from the remaining axioms of ZF:
there are models where the ZF axioms hold, yet AC does not. On the other
hand, even full ZFC does not settle the central question which motivated
Cantor: the cardinality of R. In other words, the Continuum Hypothesis is
independent from ZFC, just like AC is independent from ZF.

Furthermore, if one is willing to replace pure ZF with ZFA, i.e., set the-
ory allowing atoms or urelements—whose presence seems natural in most
applications—the apparatus developed by Cohen and subsequent authors
becomes redundant. The independence of AC from ZFA can be shown using
much earlier permutation models: see, e.g., [20, Chapter 4] for an overview.19

If one thinks of set theory as describing some intended model in which
to develop the entirety of mathematics, such independence results seem to
pose a peculiar philosophical problem.

Gödel’s platonic ideal would require investigating candidates for further
axioms about the one-and-only “universe of sets”, hoping that our intu-
itions, increasingly refined by an ever-growing body of results, will somehow
eventually distinguish genuine axioms from spurious candidates. And per-
haps even some researchers working presently on large cardinals and related
subjects could agree with such a rough description of their long-term goals.

However, there is also growing awareness that this perspective is unten-
able and divorced from the actual state of affairs in set theory. It is not
exactly a brand new revelation (cf. Footnotes 11 and 17), but is proba-
bly most vocally and consistently expressed by Hamkins in his recent work
proposing an alternative, multiverse (as opposed to universe) point of view

19Such models are presently enjoying renewed attention as nominal sets in the context
of reasoning about syntax with binding. See [42,43] for an up-to-date overview. Permu-
tation models and nominal sets seem to be relevant in the context of discussion of the
Pareto-compatible permutations and anonimity conditions of Lauwers [28].
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which holds that there are diverse distinct concepts of set, each instan-
tiated in a corresponding set-theoretic universe, which exhibit diverse
set-theoretic truths. Each such universe exists independently in the
same Platonic sense that proponents of the universe view regard their
universe to exist. Many of these universes have been already named
and intensely studied in set theory [14, p. 416–417].

As explicitly admitted by Hamkins, on this view in particular

[t]here seems to be no reason to restrict inclusion only to ZFC models,
as we can include models of weaker theories ZF, ZF−, KP and so on,
perhaps even down to second order number theory, as this is set-
theoretic in a sense [14, p. 436].

A further question can be raised regarding the status of AC in relation
to the conceptual foundation of ZF and its extensions: the iterative concep-
tion of set [6,11,41]. In the first reference systematically reconstructing this
conception via its underlying stage theory, Boolos admitted that

it seems that, unfortunately, the iterative conception is neutral with
respect to AC [emphasis mine—T.L.] . . . no additional axiom, which
would decide choice, can be inferred from the rough description with-
out the assumption of the axiom of choice itself, or some equally un-
certain principle, in the inference [6, p. 230].

B.3. Topos-theoretic and Modern Type-theoretic Perspectives

Since the 1950’s, the category-theoretic approach to foundations of mathe-
matics has dramatically grown in importance. And the researchers working
in this area tend to be rather skeptical and often even hostile with respect
to ZFC. On the one hand, the ontology of ZFC is simply not rich enough for
a smooth development of category theory. On the other hand, careless usage
of choice raises opposition among category theorists, for both aesthetic and
foundational reasons.20

20For a discussion of constructivist and intuitionistic aspects of category theory, the
reader can consult, e.g., McLarty [32] or Bell [4]. Lambek and Scott [26] not only present
the interpretation of intuitionistic logic in terms of the internal language of toposes as
discussed here, but show another categorical interpretation of Heyting’s formalism in terms
of cartesian closed categories. This is of less relevance for us here, but it is worth noting
that whenever one chooses to interpret logical connectives in a suitably general categorical
setting, one obtains intuitionistic rather than classical logic.
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In category-theoretic terms, a good candidate for a mathematical universe
is provided by the notion of a topos. As pointed out by Hellman [15], one
of the most systematic and philosophically conscious attempts to provide
a topos-based alternative to set-theoretic foundations can be found in the
work of Bell on local set theories [4]. It is worth noting here that both Bell’s
many topoi view based on local set theories and the modal structuralism
advocated by Hellman seem to share many common features with Hamkin’s
multiverse perspective mentioned in Section B.2 above.

Any topos-based approach to foundations is by nature more general than
any approach taking ZF as a starting point, not to mention ZFC. The very
first difference is that the internal logic of the topos is intuitionistic, as
opposed to the classical logic underlying ZF. And AC is, from this point of
view, even more restrictive: a famous result of Diaconescu [9] shows that
AC can only hold in those toposes whose internal logic is classical. Needless
to say, the converse implication does not hold: there are boolean toposes
where AC is not valid. From a topos-theoretic perspective one can see AC as
a strong generalization of the law of excluded middle.

Furthermore, toposes themselves can be seen as a special case of (models
of) higher-order intuitionistic type theories.21 The type-theoretic approach is
motivated not only by purely mathematical or philosophical considerations,
but also by computational aspects, rooted in the Curry-Howard correspon-
dence [31,48]. Type theories provide conceptual and technical foundations
of state-of-the-art proof assistants, in particular Coq, Agda or Lean.

Topos-related type theories are distinguished by their extensionality and
impredicativity. Perhaps the most famous proposal for a constructive type
theory which is, in contrast, both intensional and predicative comes from
Martin-Löf [31]. The same author offered a penetrating critique of AC, distin-
guishing its intensional and extensional version [30]. This reference clarifies
the apparent contrast between the firm opposition of early constructivists
like Baire, Borel, Lebesgue and Brouwer himself and the seeming accep-
tance of some form of AC by later authors like Bishop (not to mention a
similar principle in Martin-Löf’s earlier writings). The intensional form of
AC is acceptable constructively via the Brouwer-Heyting-Kolmogorov in-
terpretation. But this form is a rather trivial statement when interpreted

21“Topoi, generally, can be realized, up to a precisely specified notion of categorical
equivalence, as models of higher-order type theories based on intuitionistic logic. Indeed,
one specifies a class of type-theoretic languages and theories (Bell’s local set theories) and
shows that any topos has such a theory associated with it which in turns determines that
topos up to categorical equivalence” [15].
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in set-theoretic terms; the interesting and problematic form is the exten-
sional one. Needless to say, the extensional formulation is needed for the
non-constructive set-theoretic results we have been concerned with in this
paper. It is also the one which can be seen as a strong form of excluded
middle, even beyond the topos-theoretic context (see, e.g., [3,9,13,30] for
more information).

In conclusion, it is worth recalling the point made in Section 4: just as
(the disputable extensional form of) AC is a strong generalization of the
law of excluded middle, AD is a strong generalization of the De Morgan
law for quantifiers. Apparently, generalizations of finitary laws can conflict
with each other in suitably large domains—and our intuitions and inherited
mathematical prejudices are far from being reliable criteria of their validity.

References

[1] Aumann, R. J., Markets with a continuum of traders, Econometrica 32(1–2):39–50,

1964.

[2] Bedrosian, G., A. Palmigiano, and Z. Zhao, Generalized ultraproduct and

Kirman-Sondermann correspondence for vote abstention, in Proceedings of LORI

2015, 2015, pp. 27–39.

[3] Bell, J. L., The axiom of choice, in E. N. Zalta, (ed.), The Stanford Encyclopedia of

Philosophy, summer 2015 edn., http://plato.stanford.edu/archives/sum2015/entries/

axiom-choice/ 2015.

[4] Bell, J. L., Toposes and Local Set Theories: an Introduction, vol. 14 in Logic Guides,

Oxford University Press, 1988.

[5] Bernays, P., A system of Axiomatic Set Theory: Part III. Infinity and enumerability.

Analysis, The Journal of Symbolic Logic 7(2):65–89, 1942.

[6] Boolos, G., The iterative conception of set, The Journal of Philosophy 68(8):215–

231, 1971.

[7] Brunner, N., and H. R. Mihara, Arrow’s theorem, Weglorz’ models and the Axiom

of Choice, Mathematical Logic Quarterly 46(3):335–359, 2000.

[8] Chichilnisky, G., and G. Heal, Social choice with infinite populations: construction

of a rule and impossibility results, Social Choice and Welfare 14(2):303–318, 1997.

[9] Diaconescu, R., Axiom of choice and complementation, Proc. Amer. Math. Soc.

51(1):176–178, 1975.

[10] Fishburn, P. C., Arrow’s impossibility theorem: concise proof and infinite voters,

Journal of Economic Theory 2(1):103–106, 1970.

[11] Forster, T., The iterative conception of set, The Review of Symbolic Logic 1:97–110,

2008.

[12] Fraenkel, A. A., Y. Bar-Hillel, and A. Levy, Foundations of Set Theory. Second

Revised Edition, vol. 67 of Studies in Logic and the Foundations of Mathematics,

Elsevier, 1973.

[13] Goodman, N., and J. Myhill, Choice implies excluded middle, Mathematical Logic

Quarterly 24(25–30):461–461, 1978.

http://plato.stanford.edu/archives/sum2015/entries/axiom-choice/
http://plato.stanford.edu/archives/sum2015/entries/axiom-choice/


Infinite Populations, Choice and Determinacy 997

[14] Hamkins, J. D., The set-theoretic multiverse, Review of Symbolic Logic 5:416–449,

2012.

[15] Hellman, G., Does category theory provide a framework for mathematical struc-

turalism?, Philosophia Mathematica 11(2):129–157, 2003.

[16] Herzberg, F., and D. Eckert, Impossibility results for infinite-electorate abstract

aggregation rules, Journal of Philosophical Logic 41(1):273–286, 2011.

[17] Herzberg, F., and D. Eckert, The model-theoretic approach to aggregation: Im-

possibility results for finite and infinite electorates, Mathematical Social Sciences,

Computational foundations of social choice 64(1):41–47, 2012.

[18] Herzberg, F., L. Lauwers, L. van Liedekerke, and E. S. Fianu, Addendum to

L. Lauwers and L. Van Liedekerke Ultraproducts and aggregation [J. Math. Econ. 24

(3) (1995)], Journal of Mathematical Economics 46(2):277–278, 2010.

[19] Hildenbrand, W., On economies with many agents, Journal of Economic Theory

2(2):161–188, 1970.

[20] Jech, T. J., The Axiom of Choice, vol. 75 of Studies in Logic and the Foundations of

Mathematics, Elsevier, 1973.

[21] Kanamori, A., The Higher Infinite: Large Cardinals in Set Theory from Their Be-

ginnings, Springer Monographs in Mathematics, Springer Berlin Heidelberg, 2008.

[22] Kechris, A. S., The axiom of determinancy implies dependent choices in L(R), The

Journal of Symbolic Logic 49(1):161–173, 1984.

[23] Kechris, A. S., Classical Descriptive Set Theory, Graduate Texts in Mathematics,

Springer New York, 1985.

[24] Kirman, A. P., and D. Sondermann, Arrow’s theorem, many agents, and invisible

dictators, Journal of Economic Theory 5(2):267–277, 1972.

[25] Kuratowski, K., and A. Mostowski, Set Theory, vol. 53 of Studies in Logic and

the Foundations of Mathematics, Elsevier, 1968.

[26] Lambek, J., and P. J. Scott, Introduction to Higher Order Categorical Logic, no. 7

in Cambridge studies in advanced mathematics, Cambridge University Press, 1986.

[27] Lauwers, L., Ordering infinite utility streams comes at the cost of a non-Ramsey

set, Journal of Mathematical Economics 46(1):32–37, 2010.

[28] Lauwers, L., Intergenerational equity, efficiency, and constructibility, Economic

Theory 49(2):227–242, 2012.

[29] Lauwers, L., and L. Van Liedekerke, Ultraproducts and aggregation, Journal of

Mathematical Economics 24(3):217–237, 1995.
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