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Abstract. The result of an interaction is influenced by its epistemic state, and several

epistemic notions are related to multiagent situations. Strong belief-disagreement on a

certain proposition between agents means that one agent believes the proposition and

the other believes its negation. This paper presents a logical system describing strong

belief-disagreement between agents and demonstrates its soundness and completeness. The

notion of belief-disagreement as well as belief-agreement can facilitate gaining a clearer

understanding of the acts of trade and speech.
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1. Introduction

The result of an interaction is influenced by its epistemic state. Some epis-
temic notions related to multiagent situations(e.g., shared knowledge and
shared belief, implicit or distributed knowledge, and common knowledge
and common belief) have been formally studied [1,2,6], (Fagin et al. 2003).
In this paper, our interest is centered on a “negative” epistemic state among
several agents, or strictly speaking, between agents: belief-disagreement.

In general, epistemic disagreement means that people have different epis-
temic attitudes toward a certain proposition. For example, if one person
believes a proposition p and another person doubts p, then they disagree on
p, regardless of whether they know each other’s attitude on this proposition.
Aumann [1] demonstrated an agreement theorem that indicates that if two
people have the same priors and their posteriors for an event A are common
knowledge, then these posteriors are equal, namely, they cannot disagree
with each other. For Aumann, the posteriors as well as the priors are knowl-
edge and quantitatively expressed in probability. Since knowledge must be
true, such a disagreement that one person knows p and another person knows
its negation cannot be permitted although such a disagreement is permitted
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when one person knows a proposition and another person does not. However,
such a disagreement is permitted that one person believes p and another be-
lieves its negation. In this paper, we concern belief-disagreement between
agents.

Strong belief-disagreement among agents as well as moderate belief-dis-
agreement among agents and weak belief-disagreement among agents was
defined in Pan [10]. We, in this paper, consider two agents only and focus on
strong belief-disagreement between agents. Strong belief-disagreement be-
tween agents, or strong belief-disagreement for short, means that one agent
believes one proposition and the other believes its negation. Strong belief-
disagreement between agents is different from moderate belief-disagreement,
which means that one agent believes one proposition and the other fails to
believe it, and different from weak belief-disagreement, which means that
one agent fails to believe one proposition and the other fails to believe
its negation. Provided that agent’s beliefs are consistent, a strong belief-
disagreement implies a moderate belief-disagreement, and a moderate belief-
disagreement implies a weak belief-disagreement.1 What we concern here is
only the strong belief-disagreement between agents. In the following sec-
tion, we present a logical system describing the strong belief-disagreement
between agents and demonstrate its soundness and completeness by using
possible world semantics.

2. A Logical System for Disagreement Between Agents and its
Soundness and Completeness

We consider two agents involved in an interaction. A strong belief-dis-
agreement on p between them means that one agent believes p and the other
believes not-p. Let � denote a strong belief-disagreement operator, and let
�p denote the existence of a strong belief-disagreement on p between the
agents.

Let P be a countable set of propositional variables. The formal language
L in Backus–Naur Form is defined as follows:

ϕ ::= p|¬ϕ|(ϕ ∧ ϕ)| � ϕ

1 Since “An agent does not believe p” is often understood as “An agent believes not-p”,
we use “An agent fails to believe p” to express “p is not a belief of an agent”. We can see
that the notions of strong belief-disagreement and moderate disagreement are meaningful
and deserve exploring. And the notion of weak belief-disagreement is too weak and trivial
because a weak belief-disagreement on p could not exclude the possibility that both agents
fail to believe p (or not-p) though the weak belief-disagreement works formally.
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where p ∈ P . The other connectives ∨, → and ↔ are defined in the standard
way in terms of ¬ and ∧. We employ � to stand for constant truth, and the
constant falsity ⊥ is defined as ¬�.

The language in L is interpreted using the standard possible world se-
mantics.

Definition 2.1. (Frames, model and satisfaction) A frame is a triple F =
<W,R1, R2> where W is a non-empty set, whose elements we will call pos-
sible worlds, and R1 and R2 are binary relations over W . A model is a pair
M = <F, V >, where F is a frame, and V is a valuation function assigning
a set of worlds V (p) ⊆ W to each p ∈ P . A formula ϕ is true in M at w
(written as M,w |= ϕ), and it is inductively defined as follows:

M,w |= p iff w ∈ V (p);
M,w |= ¬ϕ iff M,w � ϕ;
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ;
M,w |= �ϕ iff either, for all w′ such that R1ww′, M,w′|=ϕ

and for all w′′ such that R2ww′′, M,w′′|=¬ϕ;
or, for all w′ such that R1ww′,M,w′ |= ¬ϕ
and for all w′′ such that R2ww′′, M,w′′ |= ϕ.

The other connectives are evaluated as expected.

Two notes regarding Definition 2.1 are as follows:
(1) Two accessibility relations R1, R2, which respectively represent dox-

astic accessibility relations of agents 1 and 2, are involved in Definition 2.1.
Because we do not want to make any special assumptions about how either
of our agents’ beliefs are related to the other’s, we do not impose any con-
ditions on how the accessibility relations R1, R2 in these frames are related
to each other.

(2)W in a frame F = <W,R1, R2> is the set of doxastically possible
worlds, and V in M = <F, V > assigns a set of worlds to each propositional
variables, with V (p) to be thought as the set of worlds at which the model
stipulates that p is true. If an agent believes p at a world w, then p is
true at all worlds doxastically accessible (for that agent: i.e., related by
R1 or R2, as appropriate) to w. If two agents have a common doxastically
accessible world, they have no disagreement on any proposition, indicating
that �p must be false, while if they have no such common accessible world,
this leaves open the question of whether they are in disagreement on any
proposition.
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Definition 2.2. A system SD is axiomatized as follows:

Ax.0 All substitution instances of tautologies
Ax.1 �ϕ → �¬ϕ

Ax.2 �ϕ ∧ �ψ → �(ϕ ∧ ψ) ∨ �(ϕ ∧ ¬ψ)
Ax.3 �ϕ ∧ �(ϕ ∧ ψ) ∧ �(ϕ ∧ χ) → �(ϕ ∧ ψ ∧ χ)
Ax.4 ¬��
MP 
SD ϕ, 
SD ϕ → ψ ⇒ 
SD ψ

RS 
SD ϕ → ψ, 
SD ψ → χ ⇒ 
SD �ϕ ∧ �χ → �ψ

In what follows, 
SD ϕ is simply expressed as 
 ϕ.

Definition 2.3. (Serial frame) A frame F = <W,R1, R2 > is serial iff for
any w∈W , there exist w′ and w′′ such that wR1w

′ and wR2w
′′.

In Definition 2.3, w′ and w′′ may be identical. Validity in serial frames is
denoted as |=s ϕ.

Because consistency is a basic requirement for an agent’s beliefs, no agent
can believe constant falsity. Therefore, the logic system SD should be estab-
lished on the basis of arbitrary serial frames. Specifically, Ax.4, ¬��, is
valid on arbitrary serial frames, which is shown in Theorem 2.1. Moreover,
if the frame is not serial, ¬�� is false at a dead end.

Notably, because two accessibility relations are involved in F =< W,
R1, R2 >, the seriality defined in Definition 2.3 is “strong serial”: For any
w∈W , there exist w′ and w′′ as wR1w

′ and wR2w
′′. This seriality is different

from a “weak seriality”: For any w ∈ W , there exists w′ either wR1w
′ or

wR2w
′.

Theorem 2.1. (Soundness) The system SD is sound with respect to the class
of serial frames.

Proof. We need to show that in the class of serial frames, all axioms are
valid and all the transformation rules preserve validity. Ax.0 and MP are
obviously valid. Here, we only prove that Ax.1–4 are valid, and RS preserves
validity in the class of serial frames.

Let M be an arbitrary model based on a serial frame and w be a world
of M .

For Ax.1, suppose that M,w|=�ϕ. According to Definition 2.1, we have
that either ∀w′,w′′∈W ((R1ww′ ⇒ M,w′ |= ϕ) and (R2ww′′⇒M,w′′ |= ¬ϕ)),
or ∀w′,w′′∈W ((R1ww′ ⇒ M,w′ |= ¬ϕ) and (R2ww′′ ⇒ M,w′′ |= ϕ)). Be-
cause |= ϕ ↔ ¬¬ϕ, we have either ∀w′,w′′∈W ((R1ww′ ⇒ M,w′ |= ¬¬ϕ)
and (R2ww′′ ⇒ M,w′′ |= ¬ϕ)), or ∀w′,w′′∈W ((R1ww′ ⇒ M,w′ |= ¬ϕ) and
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(R2ww′′ ⇒ M,w′′ |= ¬¬ϕ)). Hence, according to Definition 2.1, we have
M,w |=�¬ϕ.

For Ax.2, suppose that M,w |= �ϕ ∧ �ψ. Without loss of general-
ity, we assume that ∀w′,w′′∈W ((R1ww′ ⇒ M,w′ |= ϕ) and (R2ww′′ ⇒
M,w′′ |= ¬ϕ)). Therefore, either ∀w′,w′′∈W ((R1ww′ ⇒ M,w′ |= ϕ ∧ ψ)
and (R2ww′′ ⇒ M,w′′ |= ¬ϕ ∧ ¬ψ)), or ∀w′,w′′∈W ((R1ww′ ⇒ M,w′ |=
ϕ ∧ ¬ψ) and (R2ww′′ ⇒ M,w′′ |= ¬ϕ ∧ ψ)). Hence, in the former case,
M,w |= �(ϕ∧ψ), and in the latter case, M,w |= �(ϕ∧¬ψ). We thus derive
M,w |= �(ϕ ∧ ψ) ∨ �(ϕ ∧ ¬ψ).

For Ax.3, suppose that M,w |= �ϕ∧�(ϕ∧ψ)∧�(ϕ∧χ). Hence, M,w |=
�ϕ, M,w |= �(ϕ ∧ ψ) and M,w |= �(ϕ ∧ χ). Without loss of generality,
we assume that ∀w′,w′′∈W ((R1ww′ ⇒ M,w′ |= ϕ) and (R2ww′′ ⇒ M,w′′ |=
¬ϕ)). Because M,w |= �(ϕ∧ψ), either ∀w′∈W (R1ww′ ⇒ M,w′ |= ϕ∧ψ) or
∀w′∈W (R2ww′ ⇒ M,w′ |= ϕ ∧ ψ). Nevertheless, because ∀w′∈W (R2ww′ ⇒
M,w′ |= ¬ϕ) and M is a serial frame, ∀w′∈W (R2ww′ ⇒ M,w′ |= ϕ∧ψ) does
not hold. Therefore, ∀w′∈W (R1ww′ ⇒ M,w′ |= ϕ ∧ ψ). Similarly, we derive
that ∀w′∈W (R1ww′ ⇒ M,w′ |= ϕ ∧ χ). Hence, we have ∀w′∈W (R1ww′ ⇒
M,w′ |= ϕ ∧ ψ ∧ χ). However, since ∀w′∈W (R2ww′ ⇒ M,w′ |= ¬ϕ),
∀w′∈W (R2ww′ ⇒ M,w′ |= ¬(ϕ ∧ ψ ∧ χ)). Therefore, as desired, M,w |=
�(ϕ ∧ ψ ∧ χ).

For Ax.4, suppose that M,w |= ��. Hence, either ∀w′∈W (R1ww′ ⇒
M,w′ |= ¬�) or ∀w′∈W (R2ww′ ⇒ M,w |= ¬�). This means that there
would be no w′ with R1ww′ or no w′ with R2ww′, which contradicts the
fact that M is serial.

For RS, suppose |=s ϕ → ψ, |=s ψ → χ and M,w |= �ϕ ∧ �χ. From
M,w |= �ϕ∧�χ, we have M,w |= �ϕ and M,w |= �χ. Without loss of gen-
erality, we assume that ∀w′,w′′∈W ((R1ww′ ⇒ M,w′ |= ϕ) and (R2ww′′ ⇒
M,w′′ |= ¬ϕ)). Since ∀w′∈W (R1ww′ ⇒ M,w′ |= ϕ), |=s ϕ → ψ and
|=s ψ → χ we get ∀w′∈W (R1ww′ ⇒ M,w′ |= ψ) and ∀w′∈W (R1ww′ ⇒
M,w′ |= χ). Hence, since M is based on a serial frame, it is not the case that
∀w′∈W (R1ww′ ⇒ M,w′ |= ¬χ). Then, since M,w |= �χ, ∀w′′∈W (R2ww′′ ⇒
M,w′′ |= ¬χ) must be true. From ∀w′′∈W (R2ww′′ ⇒ M,w′′ |= ¬χ) and
|=s ψ → χ we get ∀w′′∈W (R2ww′′ ⇒ M,w′′ |= ¬ψ). Hence, we have
∀w′∈W (R1ww′ ⇒ M,w′ |= ψ) and ∀w′′∈W (R2ww′′ ⇒ M,w′′ |= ¬ψ). There-
fore, M,w |= �ψ.

Theorem 2.2. In SD we have:

(1) 
 ϕ ↔ ψ ⇒ 
 �ϕ ↔ �ψ

(2) 
 �ϕ ↔ �¬ϕ
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(3) 
 �(ϕ ∧ ψ) ∧ �(ϕ ∨ χ) → �ϕ

(4) 
 �ϕ ∧ �(ϕ ∧ ψ0) ∧ · · · ∧ �(ϕ ∧ ψn) → �(ϕ ∧ ψ0 · · · ∧ ψn)

(5) 
 ϕ ⇒
 ¬ � ϕ

(6) 
 ϕ → ψ ⇒
 �ϕ ↔ �(ϕ ∧ ψ)

We do not provide the poof of Theorem 2.2 in this paper.
Notably, if we drop Ax.4 in SD and add 
 ϕ ⇒
 ¬�ϕ [Theorem 2.2, (5)]

as an inference rule, the resulting system is deductively equivalent to SD.
To demonstrate the completeness of system SD, we use the canonical

model method, which requires us first to define what is meant by a maximally
consistent set of formulae (with respect to this system).

Given a logic system S, a set of formulae Γ is maximally S-consistent
iff Γ is S-consistent, and for any set of formulae Λ, if Γ ⊂ Λ, then Λ is
S-inconsistent.

In the following, we focus on deriving a maximally SD-consistent set of
formulae. Lindenbaum’s lemma holds for SD, and it indicates that every SD-
consistent set can be extended to a maximally SD-consistent set. According
to the properties of maximally consistent sets and Theorem 2.2, we have the
following:

Lemma 2.3. Let Γ be a maximally SD-consistent set. Therefore, for any
formula ϕ, ψ:

(1) �ϕ ∈ Γ iff �¬ϕ ∈ Γ, and

(2) if 
 ϕ ↔ ψ, then �ϕ ∈ Γ iff �ψ ∈ Γ.

Definition 2.4. Let Γ be a maximally SD-consistent set. If there exists
no formula α such that �α ∈ Γ, then we define S(Γ) as the empty set,
otherwise we enumerate the elements of {α| � α ∈ Γ} and define S(Γ) as
{ϕ| � ϕ,�(θ ∧ ϕ) ∈ Γ},where θ is the first element in the enumeration of
{α| � α ∈ Γ}.

Lemma 2.4. Let Γ be a maximal SD-consistent set. Therefore,

(1) S(Γ) is SD-consistent,

(2) ϕ ∈ S(Γ), �(ϕ ∧ ψ) ∈ Γ ⇒ ϕ ∧ ψ ∈ S(Γ),

(3) �ϕ ∈ Γ ⇒ ϕ ∈ S(Γ) or ¬ϕ ∈ S(Γ),

(4) ϕ ∈ S(Γ), 
 ϕ ↔ ψ ⇒ ψ ∈ S(Γ),

(5) ϕ ∈ S(Γ), ψ ∈ S(Γ) ⇒ ϕ ∧ ψ ∈ S(Γ),

(6) ϕ ∈ S(Γ), ψ ∈ S(Γ) ⇒ ϕ ∨ ψ ∈ S(Γ).
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Proof. If {α| � α ∈ Γ} = ∅, then S(Γ) = ∅, and (1)–(6) are trivially true.
Next, we treat the case of {α| � α ∈ Γ} �= ∅.

Let Γ be a maximally SD-consistent set with {α|�α ∈ Γ} �= ∅. According
to Definition 2.4, S(Γ) is {ϕ|�ϕ,�(θ ∧ϕ) ∈ Γ}, where θ is the first element
in the enumeration of {α| � α ∈ Γ}.

For (1), suppose that S(Γ) is SD-inconsistent. Therefore, there exist
ϕ0, . . . , ϕn ∈ S(Γ) such that 
 ¬(ϕ0 ∧ · · · ∧ ϕn). In view of Theorem 2.2 (5)
and the fact that 
 ¬(ϕ0∧· · ·∧ϕn), we conclude that 
 ¬�¬(θ∧ϕ0∧· · ·∧ϕn).
Hence, according to Theorem 2.2 (2), 
 �(θ∧ϕ0∧· · ·∧ϕn) ↔ �¬(θ∧ϕ0∧· · ·∧
ϕn)), we obtain 
 ¬�(θ∧ϕ0∧· · ·∧ϕn). This means that ¬�(θ∧ϕ0∧· · ·∧ϕn)
must be contained in the maximally SD-consistent set Γ. Hence, we have
(a): �(θ ∧ ϕ0 ∧ · · · ∧ ϕn) /∈ Γ. Moreover, since ϕ0, . . . , ϕn ∈ S(Γ), we obtain
�(θ∧ϕ0), . . . ,�(θ∧ϕn) ∈ Γ; therefore, �θ∧�(θ∧ϕ0)∧· · ·∧�(θ∧ϕn) ∈ Γ.
By (4) in Theorem 2.2, 
 �θ∧�(θ∧ϕ0)∧· · ·∧�(θ∧ϕn) → �(θ∧ϕ0∧· · ·∧ϕn)
holds. Because Γ is maximally SD-consistent, �(θ∧ϕ0∧· · ·∧ϕn) ∈ Γ, which
contradicts (a).

For (2), suppose that ϕ ∈ S(Γ) and �(ϕ ∧ ψ) ∈ Γ. Through ϕ ∈ S(Γ)
and the definition of S(Γ), we have �ϕ, �(θ ∧ ϕ) ∈ Γ. Next, according to
(2) in Lemma 2.3, �(ϕ ∧ θ) ∈ Γ. Hence, �ϕ, �(ϕ ∧ θ), �(ϕ ∧ ψ) ∈ Γ and
consequently, (*) �ϕ∧�(ϕ∧ θ)∧�(ϕ∧ψ) ∈ Γ. Through (*) and Ax.3 (i.e.,
�ϕ∧�(ϕ∧θ)∧�(ϕ∧ψ) → �(ϕ∧θ∧ψ))), we have �(ϕ∧θ∧ψ) ∈ Γ. Moreover,
according to (2) in Lemma 2.3, �(θ ∧ϕ∧ψ) ∈ Γ. Because �(ϕ∧ψ) ∈ Γ and
�(θ ∧ ϕ ∧ ψ) ∈ Γ, as desired, ϕ ∧ ψ ∈ S(Γ).

For (3), suppose that �ϕ ∈ Γ. Through �θ ∈ Γ, �ϕ ∈ Γ, and Ax.2 (i.e.,
�θ ∧ �ϕ → �(θ ∧ ϕ) ∨ �(θ ∧ ¬ϕ)), we have �(θ ∧ ϕ) ∨ �(θ ∧ ¬ϕ) ∈ Γ,
implying that either �(θ ∧ ϕ) ∈ Γ or �(θ ∧ ¬ϕ) ∈ Γ. According to �ϕ ∈ Γ
and (1) in Lemma 2.3, �¬ϕ ∈ Γ. Therefore, from �ϕ ∈ Γ and �(θ ∧ϕ) ∈ Γ,
ϕ ∈ S(Γ), and from �¬ϕ ∈ Γ and �(θ ∧ ¬ϕ) ∈ Γ, ¬ϕ ∈ S(Γ). Hence, either
ϕ ∈ S(Γ) or ¬ϕ ∈ S(Γ).

For (4), suppose that ϕ ∈ S(Γ) and 
 ϕ ↔ ψ. Through ϕ ∈ S(Γ), we
have �ϕ ∈ Γ and �(θ ∧ ϕ) ∈ Γ. Therefore, by Theoreme 2.2 (1), �ψ ∈ Γ
and �(θ ∧ ψ) ∈ Γ, indicating that ψ ∈ S(Γ), as desired.

For (5), suppose that ϕ ∈ S(Γ) and ψ ∈ S(Γ). Consequently, through the
definition of S(Γ), we derive �ϕ ∈ Γ and �ψ ∈ Γ; hence, �ϕ ∧ �ψ ∈ Γ.
Further, by Ax.2 (and MP), �(ϕ ∧ ψ) ∨ �(ϕ ∧ ¬ψ) ∈ Γ. Therefore, either
�(ϕ∧ψ) ∈ Γ or �(ϕ∧¬ψ) ∈ Γ. Nevertheless, if �(ϕ∧¬ψ) ∈ Γ, then by (2) in
Lemma 2.4, which we just proved, ϕ∧¬ψ ∈ S(Γ) and this, together with ψ ∈
S(Γ), renders S(Γ) SD-inconsistent, thus contradicting (1) in Lemma 2.4.
Consequently, �(ϕ ∧ ψ) ∈ Γ, which, together with (2) in Lemma 2.4 and
ϕ ∈ S(Γ), implies ϕ ∧ ψ ∈ S(Γ).



42 J. Chen, T. Pan

For (6), suppose that ϕ ∈ S(Γ) and ψ ∈ S(Γ). Consequently, through
the definition of S(Γ), we have �ϕ ∈ Γ and �ψ ∈ Γ, which, according to
(1) in Lemma 2.3, implies that �¬ϕ ∈ Γ and �¬ψ ∈ Γ. Through �¬ϕ ∈ Γ,
�¬ψ ∈ Γ and Ax.2, we obtain �(¬ϕ ∧ ¬ψ) ∨ �(¬ϕ ∧ ¬¬ψ) ∈ Γ, implying
that either �(¬ϕ ∧ ¬ψ) ∈ Γ or �(¬ϕ ∧ ¬¬ψ) ∈ Γ. However, we claim that
�(¬ϕ∧¬¬ψ) /∈ Γ. Otherwise, through Lemma 2.3 (2) (from �(¬ϕ∧¬¬ψ) ∈
Γ), we derive �(ψ ∧ ¬ϕ) ∈ Γ, and this, together with (2) in Lemma 2.4,
results in ψ ∧ ¬ϕ ∈ S(Γ), implying that S(Γ) is SD-inconsistent, which
contradicts the conclusion of (1) in Lemma 2.4. Hence, we derive �(¬ϕ ∧
¬ψ) ∈ Γ. By Lemma 2.4 (3), either ¬ϕ ∧ ¬ψ ∈ S(Γ) or ¬(¬ϕ ∧ ¬ψ) ∈ S(Γ).
However, ¬ϕ ∧ ¬ψ /∈ S(Γ), otherwise S(Γ) is SD-inconsistent; consequently,
¬(¬ϕ ∧ ¬ψ) ∈ S(Γ). By (4) in Lemma 2.4, because ¬(¬ϕ ∧ ¬ψ) ∈ S(Γ) and

 ¬(¬ϕ ∧ ¬ψ) ↔ (ϕ ∨ ψ), we obtain ϕ ∨ ψ ∈ S(Γ), as desired.

Note that (5) and (6) in Lemma 2.4 mean that S(Γ) is closed under
conjunction and disjunction.

Definition 2.5. Let Γ be a maximally SD-consistent set. S(Γ)− is defined
as {ϕ|¬ϕ ∈ S(Γ)}.

Lemma 2.5. Let Γ be a maximally SD-consistent set. Therefore,

(1) for all ϕ, ϕ ∈ S(Γ) ⇔ ¬ϕ ∈ S(Γ)−, and ¬ϕ ∈ S(Γ) ⇔ ϕ ∈ S(Γ)−, and

(2) S(Γ)− is SD-consistent.

Proof. Lemma 2.5 (1) obviously holds.
For (2), suppose that S(Γ)− is not SD-consistent. Hence, there exist

ϕ0, . . . , ϕn ∈ S(Γ)− such that 
 ¬ϕ0 ∨ · · · ∨ ¬ϕn. Through (5) in Theo-
rem 2.2 and 
 ¬ϕ0 ∨ · · · ∨ ¬ϕn, we derive 
 ¬ � (¬ϕ0 ∨ · · · ∨ ¬ϕn). Be-
cause Γ is maximally SD-consistent, ¬ � (¬ϕ0 ∨ · · · ∨ ¬ϕn) ∈ Γ. Therefore,
�(¬ϕ0 ∨· · ·∨¬ϕn) /∈ Γ, implying that (*) ¬ϕ0 ∨· · ·∨¬ϕn /∈ S(Γ). However,
according to ϕ0, . . . , ϕn ∈ S(Γ)− and Lemma 2.5 (1), ¬ϕ0, . . . ,¬ϕn ∈ S(Γ).
Consequently, since S(Γ) is closed under disjunction, ¬ϕ0∨· · ·∨¬ϕn ∈ S(Γ),
which contradicts (*).

Definition 2.6. (Canonical model) The canonical model MC for SD is a
4-tuple < WC , RC

1 , RC
2 , V C >, where:

WC={w|w is a maximally SD-consistent set of formulae},
RC

1 ww′ iff S(w) ⊆ w′,
RC

2 ww′ iff S(w)− ⊆ w′, and
V C(p) = {w ∈ WC |p ∈ w}.

Theorem 2.6. MC is based on a serial frame.
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Proof. According to (1) in Lemma 2.4 and (2) in Lemma 2.5, for any
w ∈ WC , both S(w) and S(w)− are SD-consistent. Hence, there exist w′,
w′′ ∈ WC such that S(w) ⊆ w′ and S(w)− ⊆ w′′. Therefore, according
to Definition 2.6, for any w ∈ WC there exist w′, w′′ ∈ WC such that
RC

1 ww′ and RC
2 ww′′, thus demonstrating that MC is actually based on a

serial frame.

Lemma 2.7. (Truth lemma) Let MC =< WC , RC
1 , RC

2 , V C > be the canon-
ical model for system SD. For any formula α and any w ∈ WC , MC , w |= α
iff α ∈ w.

Proof. We prove the lemma through induction on the structure of α. Here,
we prove only the case of �ϕ .

From right to left: Assume that �ϕ ∈ w. According to (3) in Lemma 2.4,
two possible cases exist: ϕ ∈ S(w) or ¬ϕ ∈ S(w). We demonstrate that
MC , w |= �ϕ in the two possibilities.

(1) ϕ ∈ S(w). According to (1) in Lemma 2.5, ¬ϕ ∈ S(w)−. There-
fore, ∀w′,w′′∈WC ((S(w) ⊆ w′ ⇒ ϕ ∈ w′) and (S(w)− ⊆ w′′ ⇒ ¬ϕ ∈ w′′)),
and consequently, ∀w′,w′′∈WC ((RC

1 ww′ ⇒ ϕ ∈ w′) and (RC
2 ww′′ ⇒ ¬ϕ ∈

w′′)). Through the induction hypothesis, we determine that ∀w′,w′′∈WC

((RC
1 ww′ ⇒ MC , w′ |= ϕ) and (RC

2 ww′′ ⇒ MC , w′′ |= ¬ϕ)), implying
that MC , w |= �ϕ, as desired.

(2) ¬ϕ ∈ S(w). Similar to (1), we determine that ∀w′,w′′∈WC ((RC
1 ww′ ⇒

MC , w′ |= ¬ϕ) and (RC
2 ww′′ ⇒ MC , w′′ |= ϕ)), also implying that MC , w |=

�ϕ.
From left to right: Assume that MC , w |= �ϕ. According to Defini-

tion 2.1, two possible cases also exist.
(1) ∀w′,w′′∈WC ((RC

1 ww′ ⇒ MC |= ϕ) and (RC
2 ww′′ ⇒ MC , w′′ |= ¬ϕ)).

Therefore, ∀w′,w′′∈WC ((S(w) ⊆ w′ ⇒ MC , w′ |= ϕ) and (S(w)− ⊆ w′′ ⇒
MC , w′′ |= ¬ϕ)). Through induction hypothesis, we derive ∀w′∈WC (S(w) ⊆
w′ ⇒ ϕ ∈ w′) and ∀w′∈WC (S(w)− ⊆ w′ ⇒ ¬ϕ ∈ w′). Hence, there is no
such a w that is a maximally SD-consistent set of formulae and contains
S(w) ∪ {¬ϕ} or S(w)− ∪ {ϕ}. According to Lindenbaum’s lemma, both
S(w)∪{¬ϕ} and S(w)− ∪{ϕ} are SD-inconsistent. Because S(w)∪{¬ϕ} is
SD-inconsistent, there exist ψ0, . . . , ψn ∈ S(w) such that 
 ψ0 ∧ · · · ψn → ϕ.
According to (6) in Theorem 2.2, 
 �(ψ0 ∧ · · ·ψn) → �(ψ0 ∧ · · ·ψn ∧ ϕ).
Moreover, through ψ0, . . . , ψn ∈ S(w), we derive ψ0 ∧ · · · ∧ ψn ∈ S(w),
implying that �(ψ0 ∧ · · ·ψn) ∈ w. Therefore, �(ψ0 ∧ · · ·ψn ∧ ϕ) ∈ w. Ac-
cording to (2) in Lemma 2.3, �(ϕ ∧ ψ0 ∧ · · ·ψn) ∈ w. In addition, because
S(w)− ∪ {ϕ} is SD-inconsistent, there exist χ0, . . . , χm ∈ S(w)− such that

 χ0 ∧ · · · ∧ χm → ¬ϕ. Through (6) in Theorem 2.2, we determine that
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 �(χ0 ∧ · · · ∧ χm) → �(χ0 ∧ · · · ∧ χm ∧ ¬ϕ). According to Lemma 2.5
(1) and χ0, . . . , χm ∈ S(w)−, we obtain ¬χ0, . . . ,¬χm ∈ S(w), implying
¬χ0 ∨ · · · ∨ ¬χm ∈ S(w); hence, �(¬χ0 ∨ · · · ∨ ¬χm) ∈ w. On the basis of
�(¬χ0 ∨ · · · ∨ ¬χm) ∈ w, we can easily conclude that �(χ0 ∧ · · · ∧ χm) ∈ w,
which, together with 
 �(χ0 ∧ · · · ∧ χm) → �(χ0 ∧ · · · ∧ χm ∧ ¬ϕ), implies
that �(χ0 ∧ · · · ∧χm ∧¬ϕ) ∈ w. Consequently, �¬(χ0 ∧ · · · ∧χm ∧¬ϕ) ∈ w,
which, in addition to 
 ¬(χ0 ∧ · · · ∧ χm ∧ ¬ϕ) ↔ (ϕ ∨ ¬χ0 ∨ · · · ∨ ¬χm) and
(2) in Lemma 2.3, implies that �(ϕ ∨ ¬χ0 ∨ · · · ∨ ¬χm) ∈ w. According to
�(ϕ ∧ ψ0 ∧ · · ·ψn) ∈ w, �(ϕ ∨ ¬χ0 ∨ · · · ∨ ¬χm) ∈ w and Theorem 2.2 (3)
(i.e., 
 �(ϕ ∧ ψ0 ∧ · · ·ψn) ∧ �(ϕ ∨ ¬χ0 ∨ · · · ∨ ¬χm) → �ϕ), it immediately
follows that �ϕ ∈ w, as desired.

(2) ∀w′,w′′∈WC ((RC
1 ww′ ⇒ MC |= ¬ϕ) and (RC

2 ww′′ ⇒ MC , w′′ |=
ϕ)). Hence, similar to (1), we obtain �¬ϕ ∈ w. Therefore, through (1)
in Lemma 2.3, we also obtain �ϕ ∈ w.

Theorem 2.8. (Completeness) SD is complete with respect to the class of
serial frames.

Proof. We demonstrate that every SD-consistent set is satisfiable in the
class of serial frames. Let Γ be a SD-consistent set. Therefore, through Lin-
denbaum’s lemma, we can extend Γ to a maximally SD-consistent set (e.g.,
s). According to Lemma 2.7, for any formula ϕ, MC , s |= ϕ iff ϕ ∈ s. There-
fore, Γ is satisfied in MC , which, according to Lemma 2.6, is based on a
serial frame.

3. Remarks

We presented a logical system for strong belief-disagreement between agents
which describes rational relations on strong belief-disagreement, and demon-
strated its soundness and completeness. We didn’t explore how a strong
belief-disagreement is eliminated or maintained by agents. We have five ad-
ditional remarks on our work.

First, strong belief-disagreement as well as moderate belief-disagreement
and weak belief-disagreement is an epistemic notion describing an epistemic
state between agents. When belief-disagreement as an epistemic state occurs
between agents, it is a nonphysical but objective state, which can be known
by the agents involved and by other agents. And we didn’t presuppose that
each of the agents involved must know the belief-disagreement. An agent
can reflect and know his or her own beliefs; however, if he or she wants
to know another agent’s beliefs, he or she must engage in observation or
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communication. An agent knows a belief-disagreement between him or her
and another agent only if he or she knows the other agent’s beliefs. Therefore,
a belief-disagreement can exist either implicitly or explicitly, and if it exists
explicitly, it can exist in the form of shared knowledge or belief, or common
knowledge or belief.

Second, although strong belief-disagreement can be expressed by intro-
ducing the definition �p =def (B1p∧B2¬p)∨(B1¬p∧B2p) to doxastic logics
of two agents, the system SD focuses on those valid formulas of strong belief-
disagreement, and ‘ignores’ those doxastic formulas which is not related to
strong belief-disagreement. The method we followed to show SD’s soundness
and completeness is provided by logicians who dealt with such nonstandard
modal notions as noncontingency and accident [3–5,7–9,11–13].

Third, the system SD is different from logics of noncontingency not be-
cause noncontingency is a metaphysical notion while belief-disagreement
is an epistemic one. Rather,the system SD is semantically different from
logics of noncontingecy. Two accessibility relations are involved in the se-
mantic definition of belief-disagreement while only one accessibility relation
is involved in the definition of noncontingency. This means that we cannot
establish the logic(s) of belief-disagreement by translating logics of noncon-
tingency.

Forth, the notion of belief-disagreement is helpful in understanding the
act of speech and trade. People typically aspire to persuade others, and
belief-disagreements can be dissolved sometimes, though not always, through
communication. It is natural to assume that each party to a trade believes
that he or she will benefit by it. Hence, every trade is always accompa-
nied by belief-agreement or belief-disagreement between agents. A win-win
trade originates from belief-agreement between agents, whereas a zero-sum
trade originates from belief-disagreement between agents. Each trader in a
win-win trade believes that both benefit from the win-win trade, while in
a zero-sum trade, no matter whether the trade would be completed, each
trader believes that he or she would benefit from the trade and the other’s
interests would be impaired in the trade.

Fifth, the SD logical system is applied for only two agents. This pa-
per mentions but does not explain the general definitions of strong belief-
disagreement for instances involving more than two agents (i.e., a group).
Strong belief-disagreement associated with a group is direct in that one agent
believes p and another believes not-p. Indirectly strong belief-disagreement
is that in which a certain proposition p and its negation are not the be-
liefs of two agents in a group; however, if we collect the beliefs of each
agent in a group, we can logically infer a contradiction from the collection.
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Consider, for example, A believes p, B believes that p implies q, and C
believes not-q. Although there is no directly strong belief-disagreement on
p, q, or other complex propositions among A, B, and C, we can, according
to the beliefs of any two agents, infer a contradiction with the belief of the
third agent. Therefore, indirectly belief-disagreement exists among A, B,
and C.
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