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Abstract. The main goal of this work is to present the proof-theoretical and model-

theoretical approaches to probabilistic logics which allow reasoning about independence

and probabilistic support. We extend the existing formalisms [14] to obtain several vari-

ants of probabilistic logics by adding the operators for independence and confirmation to

the syntax. We axiomatize these logics, provide corresponding semantics, prove that the

axiomatizations are sound and strongly complete, and discuss decidability issues.
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1. Introduction

Independence is one of the main notions in probability theory. Two events,
A and B are said to be independent w.r.t. a probability measure μ, if oc-
currence of one of them does not affect the probability of the other, i.e.
μ(A∩B) = μ(A)μ(B) (or, more intuitively, μ(A|B) = μ(A)). Surprisingly, in
spite of extensive development of various probabilistic logics in past decades,
the notion of independence received little attention from the logical side.

A strongly related notion is Carnap’s notion of confirmation, or proba-
bilistic support. In his book [2], one of the main tasks is “the explication of
certain concepts which are connected with the scientific procedure of con-
firming or disconfirming hypotheses with the help of observations and which
we therefore will briefly call concepts of confirmation” (page 19). He distin-
guished three different semantical concepts of confirmation: the classificatory
concept of confirmation, (“a hypothesis is confirmed by an evidence”), the
comparative concept (“a hypothesis A is confirmed by an evidence B at
least as strongly as C is confirmed by D”) and the quantitative concept
of confirmation. The third concept is formalized by a numerical function c
which maps pairs of sentences to a real number from the unit interval, where
c(A,B) is the degree of confirmation of the hypothesis A on the basis of the
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evidence B. Carnap used the concept of degree of confirmation as the basic
concept of inductive logic. The notion of confirmation has drown particular
attention for the famous discussion on its nature, after Popper and Miller
[16] claimed that probabilistic support is deductive, not inductive (see e.g.
[13,17]).

There are several nonequivalent proposals for the measure of confirmation
c(A,B), all of them agreeing in the qualitative way: c(A,B) > 0 iff the pos-
terior probability of A on the evidence B is greater than the prior probability
of A [9]. That leads to the natural choice for Carnap’s classificatory concept:
B confirms A just in case that μ(A|B) > μ(A) (or μ(A ∩ B) > μ(A)μ(B)).

In this paper, we formalize the classificatory notion of confirmation.
Whilst in concrete situations people use this intuitive notion in a correct way,
in an abstract environment though, they often they misuse it, transferring
the properties of conditionals (eg. transitivity) to properties of confirma-
tion [18]. The notion of independence also caused some reasoning mistakes,
even among the scholars in probability theory. De Morgan [4], who devoted
a significant part of his work to analyzing relationships between logic and
probability, discussed uncertain reasoning with necessary valid inferences
(he called them arguments) and probable premises (testimonies) by analyz-
ing some examples. Hailperin in [8] noticed some systematical failures in the
work of De Morgan and showed that some of his results hold only under the
assumption that the premises are independent. Logical formalization of the
notions of independence and confirmation might be helpful in avoiding the
situations of their incorrect applications.

In this work, we propose several sound, complete and decidable logics for
reasoning about independence and confirmation. We start with probabilistic
logics that extend classical propositional calculus with modal-like unary op-
erators of the form P≥r, where r range over the set of all rational numbers
from the unit interval [14]. The intended meaning of the formula P≥rα is
“the probability of α is at least r”. We extend the language with two binary
operators, ⊥ and ↑. The formula α ⊥ β is read as “α and β are (probabilis-
tically) independent”, while α ↑ β is read as “α confirms β”. In fact, we
find it convenient to introduce the operators of weak confirmation ↗ and
weak disconfirmation ↘ as the primitive operators, and define ⊥ and ↑ as
abbreviations. We introduce four formal systems: the logic LPP ind

2 ,1 with-
out nesting of probabilistic operators, LPP ind

1 where nesting is allowed, and

1Here ind stands for “independence”.
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their restrictions LPP
Fr(n),ind
2 and LPP

Fr(n),ind
1 with a fixed finite range

for probabilistic measures.
There are not many probabilistic logics in which independence and con-

firmation are expressible. Reason for that lies in difficulties in combining
high expressivity of the language and inference mechanisms. In the most
famous paper in the field, Fagin, Halpern and Megiddo [6] axiomatized logic
with linear weight formulas (LWFs), i.e. Boolean combinations of the ex-
pressions of the form r1P (α1)+ · · ·+ rnP (αn) ≥ rn+1, where ri are rational
numbers and αi are propositional formulas. In the language, one can ex-
press the statement “conditional probability of α given β is at least r”,
but not linear combinations of conditional probabilities. However, only sim-
ple completeness (every consistent formula is satisfiable) is proved, so there
are unsatisfiable sets of formulas that are consistent with respect to the
given finitary axiomatization. There are two axiomatized logics which ex-
tend LWFs, that can capture independency. In [11], LWFs are enriched with
an operator that can express independence of sets of propositional letters.
In [5], an axiomatization of the language that contains linear combinations
of conditional probabilities is presented. Consequently, both independence
and support are expressible. The language with polynomial weight formulas
(PWFs), which extends all previously mentioned languages, is also consid-
ered in [6] (see also [7]), but the authors haven’t axiomatized the logic.
Instead, they have axiomatized the reasoning about PWFs within the first
order logic. A complete axiomatization of PWFs is presented in [15].

This work offers the first axiomatization of the logics without arithmetical
operations built into syntax, that can represent independence and confirma-
tion. Those two notions are formalized using binary operators. Also, to the
best of our knowledge, none of the previous attempts deal with the nesting
of those operators. On the other hand, we offer a formalism in which we
can formalize independence and support of both probabilistic and classical
formulas. As we discuss in Section 2.3, the key issue for real-valued prob-
abilistic logics is the non-compactness phenomena. As a consequence, for
any finitary axiomatization there are unsatisfiable sets of formulas that are
consistent w.r.t. the axiomatization [19]. In this paper we present the infini-
tary axiomatizations, as a way to overcome the problem and prove strong
completeness for LPP ind

1 and LPP ind
2 . Here the term infinitary concerns

the meta language only. Object languages are countable and formulas are
finite, while only proofs are allowed to be infinite. On the other hand, for
the restricted logics LPP

Fr(n),ind
1 and LPP

Fr(n),ind
2 we offer finitary axiom-

atizations.



946 D. Doder, Z. Ognjanović

The contents of this paper are as follows. First we introduce LPP ind
2 . In

Section 2 we present the syntax and semantics of LPP ind
2 in detail. Section 3

contains an axiomatization for the logic. Some useful statements are proved
in Section 4. In Section 5 we prove the completeness of our axiomatization. In
Section 6 we prove decidability of LPP ind

2 -formulas. We provide the syntax,
semantics, and a complete axiomatization for the logic LPP ind

1 in Section 7,
but do not go into the details. We also prove that the logic is decidable in
the same section. Finally, in Section 8 we restrict the logics LPP ind

1 and
LPP ind

2 , focusing only on the probabilistic models which have a finite fixed
range {0, 1

n , . . . , n−1
n , 1}. We propose finitary axiomatization for the logics.

We conclude in Section 9.

2. The Logic LPP ind
2 : Syntax and Semantics

In this section we present the syntax and semantics of the propositional
probabilistic logic without nesting of the probability operators. This logic,
that we call LPP ind

2 , contains two types of propositional formulas: one with
probabilities and one without probabilities.

2.1. Syntax

Let P be a countable set of propositional letters. The language of LPP ind
2

consists of the elements of P, classical propositional connectives ¬ and ∧, the
binary probability operators ↗ and ↘ and the list of probability operators
of the form P≥r, for every r ∈ Q ∩ [0, 1]. Note that we use negation and
conjunction as a complete list of boolean connectives. We use the usual
abbreviations for the other classical connectives.

By ForC we will denote the set of all propositional formulas over P.
The propositional formulas will be denoted by α, β and γ, possibly with
subscripts.

Definition 2.1. (Probabilistic formula) A basic probabilistic formula is any
formula of the form

• P≥rα where α ∈ ForC , or

• α ↗ β or α ↘ β, where α, β ∈ ForC .

A probabilistic formula is any Boolean combination of basic probabilistic
formulas. We use ForP for the set of all probabilistic formulas and denote
arbitrary probabilistic formulas by φ and ψ (indexed if necessary).
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We use the following abbreviations to introduce other types of probability
operators:

• P<sα is ¬P≥sα, P≤sα is P≥1−s¬α, P>sα¬P≤sα, and P=sα is P≥sα ∧
P≤sα,

• α ⊥ β is α ↗ β ∧ α ↘ β, α ↑ β is ¬(α ↘ β) and α ↓ β is ¬(α ↗ β).

Example 2.2. Let α, β ∈ ForC . Then

(α ⊥ β) → P≥ 1
2
(α ∧ β)

is a probabilistic formula. Its meaning is that if α and β are independent,
then probability of α ∧ β is at least one half. Furthermore, the expression

(P=1α) ↗ β

is not a probabilistic formula of the logic LPP ind
2 , since nested probabilistic

operators are not allowed.

Definition 2.3. (Formula) ForLPP ind
2

= ForC∪ForP . We denote arbitrary
formulas by ρ and σ (possibly with subscripts).

Obviously, mixing of pure propositional formulas and probability formu-
las is not allowed. For example, α ∨ P≥ 1

2
β is not a formula of the logic

LPP ind
2 .

In the rest of the paper, we denote both α ∧ ¬α and φ ∧ ¬φ by ⊥ (and
similarly for �), letting the context determine the meaning.

2.2. Semantics

The semantics for ForLPP ind
2

is based on the possible-world approach.

Definition 2.4. (LPP ind
2 -structure) An LPP ind

2 -structure is a tuple 〈W,H,
μ, v〉, where:

• W is a nonempty set. The elements of W are called worlds.

• H is an algebra of subsets of W , i.e., a set of subsets of W with the
property:

– W ∈ H,
– If A,B ∈ H, then W \ A ∈ H and A ∪ B ∈ H.

The elements of H are called measurable sets.

• μ : H −→ [0, 1] is a finitely additive measure, i.e.,

– μ(W ) = 1,
– If A,B ∈ H and A ∩ B = ∅, then μ(A ∪ B) = μ(A) + μ(B).
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• v : W × P → {true, false} provides for each world w ∈ W a two-valued
evaluation v(w, ·) of the primitive proposition, which is extended to ForC

as usual.

For given α ∈ ForC and LPP ind
2 -structure M , let [α]M = {w ∈ W | v(w,

α) = true}. We will omit the subscript M when it is clear from context.

Definition 2.5. (Measurable structure) The class of measurable structures
of the logic LPP ind

2 , denoted by LPP ind
2,Meas, is the class of all LPP ind

2 -
structures M such that [α]M ∈ H for every α ∈ ForC .

Next we define the satisfiability of a formula in a measurable structure
(|=).

Definition 2.6. (Satisfiability) Let M ∈ LPP ind
2,Meas be a measurable struc-

ture. We define the satisfiability relation |= recursively as follows:

• M |= α iff v(w,α) = true for all w ∈ W .

• M |= α ↗ β if μ([α ∧ β]) ≥ μ([α])μ([β]),

• M |= α ↘ β if μ([α ∧ β]) ≤ μ([α])μ([β]),

• M |= P≥rα if μ([α]) ≥ r,

• M |= ¬φ if M �|= φ,

• M |= φ ∧ ψ if M |= φ and M |= ψ.

Note that, by the first item of the previous definition, the formulas
from ForC do not behave in the usual way: for some α ∈ ForC and
M ∈ LPP ind

2,Meas we might have both M �|= α and M �|= ¬α. This corre-
sponds to the intuition that M |= α means that α is known with certainty
(in M), implying that μ([α]) = μ(W ) = 1. Thus, M �|= α and M �|= ¬α
allows nontrivial probability (�= 0, 1) of [α].

Directly from Definition 2.6 we obtain that satisfiability for the operators
of independence and confirmation correspond to their intuitive meaning:

• M |= α ⊥ β if μ([α ∧ β]) = μ([α])μ([β]),

• M |= α ↑ β if μ([α ∧ β]) > μ([α])μ([β]).

Definition 2.7. (Model) For a measurable structure M and a set of formu-
las T , we call M a model of T and write M |= T iff M |= ρ for every ρ ∈ T .
We also say that T is satisfiable, if there is M such that M |= T .

Definition 2.8. (Entailment) We say that a set of formulas T entails a
formula ρ and write T |= ρ, if all models of T are models of ρ. Moreover, a
formula ρ is valid if ∅ |= ρ.
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Note that, in spite of nonstandard behavior of the classical formulas, the
set of valid formulas from ForC w.r.t. classical propositional satisfiability
relation coincide with the set of all formulas that are valid with respect to
the semantics presented here.

2.3. Noncompactness

Compactness theorem states that for every set of formulas T , T is satisfi-
able if and only if every finite subset of T is satisfiable. It is known that
Compactness theorem does not hold for real-valued probabilistic logics. The
well known example is the following set:

T1 = {P>0α} ∪ {P� 1
n
α | n = 1, 2, 3, . . . }.

The following set of formulas shows that by adding the new operator ↗ we
obtain more examples for noncompactness. Let

T2 = {α ↓ β} ∪ {(P≥rα ∧ P≥sβ) → P≥rs(α ∧ β) | r, s ∈ [0, 1] ∪ Q}.

Let us show that T2 is not satisfiable. Suppose that M is a model of
T2, and let a, b ∈ R be reals such that a = μ([α]) and b = μ([β]). Then
M |= P≥rα for all r ∈ Q ∩ [0, a) and M |= P≥sβ for all s ∈ Q ∩ [0, b). By
assumption, M |= (P≥rα ∧ P≥sβ) → P≥rs(α ∧ β) for all rational numbers r
and s from the unit interval, so M |= P≥rs(α ∧ β) for all r ∈ Q ∩ [0, a) and
s ∈ Q∩[0, b). Since Q is dense in R, we obtain μ([α∧β]) ≥ ab = μ([α])μ([β]).
This contradicts our assumption that M |= α ↓ β, so we conclude that T2 is
unsatisfiable.

On the other hand, it is easy to show that T2 is finitely satisfiable.
Indeed, for each finite subset of the form {α ↓ β, (P≥r1α ∧ P≥s1β) →
P≥r1s1(α ∧ β), . . . , (P≥rn

α ∧ P≥sn
β) → P≥rnsn

(α ∧ β)}, by density of Q

in R we can choose a model such that μ([α ∧ β]) < μ([α])μ([β]) and there
is no k ∈ {1, . . . , n} such that μ([α]) ≥ rk, μ([β]) ≥ sk and μ([α ∧ β]) <
rksk.

In [19], an unpleasant consequence of noncompactness is pointed out:
for any finitary axiomatization there are unsatisfiable sets of formulas that
are consistent w.r.t. the axiomatization. In the following section we present
the axiomatization that includes infinitary rules of inference, as a way to
overcome the problem and obtain the strong completeness. The so called
Archimedean rule is used in [14] to overcome the problem with sets similar
to T1. This rule is also part of our axiomatization. We also introduce two
novel infinitary rules to enforce inconsistency of the sets of formulas which
are similar to T2.
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3. The Axiomatization AxLPP ind
2

In this section we introduce the axiomatizatic system for the logic LPP ind
2 ,

denoted by AxLPP ind
2

.

Axiom Schemes

A1 all instances of propositional theorems for both ForC and ForP

A2 P≥0α

A3 P�rα → P<sα whenever r < s

A4 P<rα → P�rα

A5 (P≥rα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β)) → P≥min{1,r+s}(α ∨ β)

A6 (P�rα ∧ P<sβ) → P<r+s(α ∨ β), whenever r + s � 1

A7 (P≥rα ∧ P≥sβ ∧ α ↗ β) → P≥rs(α ∧ β)

A8 (P≤rα ∧ P≤sβ ∧ α ↘ β) → P≤rs(α ∧ β)

Inference rules

R1 (a) From α and α → β infer β.
(b) From φ and φ → ψ infer ψ.

R2 From α infer P≥1α.

R3 From the set of premises

{φ → P≥r− 1
k
α | k ∈ N, k ≥ 1

r
}

infer φ → P≥rα.

R4 From the set of premises

{φ → ((P≥rα ∧ P≥sβ) → P≥rs(α ∧ β)) | r, s ∈ [0, 1] ∪ Q}
infer φ → (α ↗ β).

R5 From the set of premises

{φ → ((P≤rα ∧ P≤sβ) → P≤rs(α ∧ β)) | r, s ∈ [0, 1] ∪ Q}
infer φ → (α ↘ β).

The axioms A1-A6 and the inference rules R1 (Modus Ponens, applied to
both classical and probabilistic formulas), R2 (probabilistic Necessitation)
and R3 (Archimedean rule) form axiomatic system for the logic LPP2 from
[14].
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The axioms A7 and A8 and the rules R4 and R5 are added to the system.
In combination with other axioms, A7 and R4 characterize the new operator
↗, while A8 and R5 characterize ↘. The rules R3, R4 and R5 are infinitary
rules of inference, and the implicative form of the formulas in the rules
allows proof of Deduction theorem. Now we define some basic notions of
proof theory:

• T �Ax
LP P ind

2
ρ (“ρ is deducible from a set of formulas T”) if there is an

at most countable sequence (called proof) of formulas ρ0, ρ1, . . . , ρ, such
that every ρi is an axiom or a formula from the set T , or it is derived
from the preceding formulas by an inference rule (we write � instead of
�Ax

LP P ind
2

when it is clear from context).

• � ρ (ρ is a theorem) if ∅ � ρ.

• T is inconsistent if there a formula φ ∈ ForP such that T � φ ∧ ¬φ,
otherwise it is consistent.

• T is maximally consistent if it is consistent and every proper superset of
T is inconsistent.

Note that the notion of consistency is defined using probabilistic formulas
only. Nevertheless, if T is consistent, then there is no α such that T � α∧¬α,
because otherwise by Necessitation we have T � P=1α ∧ P=1¬α. Also, note
that maximal consistency of T implies that2

φ ∈ T or ¬φ ∈ T, whenever φ ∈ ForP ,

but there might exist α ∈ ForC such that both α /∈ T and ¬α /∈ T . On the
other hand, T is deductively closed for all formulas, i.e.

T � ρ implies ρ ∈ T, for all ρ ∈ ForLPP ind
2

.

4. Some Theorems of LPP ind
2

In this section we prove several theorems about our system. We will use
some of them later in proving the completeness of the axiomatization. We
start with the soundness theorem.

Theorem 4.1. (Soundness) The axiomatic system AxLPP ind
2

is sound with
respect to the class of measurable structures LPP ind

2,Meas.

2This will follow immediately from Theorem 4.2.2 (in Section 4).
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Proof. We need to show that every instance of an axiom schema holds
in every structure, and that the inference rules preserve the validity. For
example, let us consider the axiom A7. Suppose that M ∈ LPP ind

2,Meas is a
structure such that M |= P≥rα∧P≥sβ ∧α ↗ β. Then μ([α]) ≥ r, μ([β]) ≥ s
and μ([α ∧ β]) ≥ μ([α])μ([β]). This further implies μ([α ∧ β]) ≥ rs, so
M |= P≥rs(α ∧ β).

Let us show that R4 preserves validity. Suppose that M |= {φ → ((P≥rα∧
P≥sβ) → P≥rs(α ∧ β)) | r, s ∈ [0, 1] ∪ Q}. If M �|= φ, then trivially M |=
φ → (α ↗ β). Now assume that M |= φ. Then

M |= (P≥rα ∧ P≥sβ) → P≥rs(α ∧ β)

for all r, s ∈ [0, 1]∪Q. If r and s are rational numbers from the unit interval
such that r � μ([α]) and s � μ([β]), then M |= P≥rα ∧ P≥sβ, so M |=
P≥rs(α∧β), or, equivalently, μ([α∧β]) ≥ rs. By density of rational numbers,
we obtain μ([α ∧ β]) ≥ μ([α])μ([β]), so M |= α ↗ β. Consequently, M |=
φ → (α ↗ β).

Next we prove the deduction theorem. Because of the two types of for-
mulas, there are two versions.

Theorem 4.2. (Deduction theorem) Let T be a set of formulas. Then:

1. T ∪ {α} � β iff T � α → β.

2. T ∪ {φ} � ψ iff T � φ → ψ.

Proof. First statement is the theorem of classical propositional calculus.
Let us prove 2. It is sufficient to prove the direction from left to right,
because the other direction follows immediately from R1. So, suppose that
T ∪ {φ} � ψ. We proceed by the length of the inference.

The cases when � ψ and ψ ∈ T ∪ {φ} are the same as in the classical
propositional calculus, as well as the case when we apply R1(b). The cases
when ψ is obtained from T ∪{φ} by means of the rules R2 or R3 are proved
in [14]. Let us prove the case when ψ is obtained from T ∪ {φ} by means of
the inference rule R4.

Suppose that T ∪ {φ} � ψ and that ψ is the formula φ1 → (α ↗ β),
obtained from the set of premises

{φ1 → ((P≥rα ∧ P≥sβ) → P≥rs(α ∧ β)) | r, s ∈ [0, 1] ∪ Q}
applying R4. Then, by the induction hypothesis, for every r, s ∈ [0, 1] ∪ Q

we have

T � φ → (φ1 → ((P≥rα ∧ P≥sβ) → P≥rs(α ∧ β))).
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By propositional reasoning, we obtain

T � (φ ∧ φ1) → ((P≥rα ∧ P≥sβ) → P≥rs(α ∧ β)),

for every r, s ∈ [0, 1] ∪ Q. Then, using the rule R4 we infer

T � (φ ∧ φ1) → (α ↗ β).

Finally, using propositional reasoning we obtain T � φ → (φ1 → (α ↗ β)),
i.e., T � φ → ψ.

In the case when ψ is obtained from T ∪ {φ} by means of the inference
rule R5, we can reason in the similar way as above.

Remark 4.3. In Section 3 we stressed that there exist α ∈ ForC and a
maximal consistent set T such that both α /∈ T and ¬α /∈ T . Note that
it does not contradict Deduction theorem. Namely, from α /∈ T we can
conclude that T ∪ {α} is inconsistent, i.e.,

T ∪ {α} � ⊥, (I)

but we cannot deduce T � ¬α using Theorem 4.2.1. The reason is that ⊥ in
(I) is a probabilistic contradiction, i.e. a formula of the form φ ∧ ¬φ (recall
the definition of inconsistency from Section 3), so Theorem 4.2.1 cannot be
applied.

Note that our axiomatic system does not contain axioms and rules that
reason solely about independence and confirmation. For example, commu-
tativity is an obvious property of independence operator. We believe that it
is important to illustrate the possibility of deriving that type of properties
in our system AxLPP ind

2
.

Proposition 4.4. Let α, β ∈ ForC . Then

• � (α ↗ β) → (β ↗ α)

• � (α ↘ β) → (β ↘ α)

Proof. Let r, s ∈ [0, 1] ∪ Q. Using the axiom A7, propositional reasoning
(A1 and R1) and Deduction theorem, we obtain α ↗ β � (P≥rα ∧P≥sβ) →
P≥rs(α ∧ β). By commutativity of both conjunction of formulas and multi-
plication of rational numbers, we obtain

α ↗ β � (P≥sβ ∧ P≥rα) → P≥sr(β ∧ α)

for all r, s ∈ [0, 1] ∪Q. Using R4 (choosing φ = �), from the set of premises
{(P≥sβ ∧P≥rα) → P≥sr(β ∧α) | r, s ∈ [0, 1]∪Q} we can infer β ↗ α. Thus,
α ↗ β � β ↗ α. Using Theorem 4.2.2 we obtain � (α ↗ β) → (β ↗ α).
The second statement can be proved in the same way, using A8 and R5.
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Note that commutativity of other binary operators (⊥, ↑ and ↓), is a
direct consequence of Proposition 4.4.

We conclude this section with a lemma which we use in the construction
of maximally consistent extensions of consistent set of formulas.

Lemma 4.5. Let T be a consistent set of formulas.

1. If the set of formulas T ∪ {φ → P≥rα} is inconsistent, then there is an
integer k > 0 such that r − 1

k ≥ 0 and T ∪ {φ → P<r− 1
k
α} is consistent.

2. If the set of formulas T ∪ {φ → (α ↗ β)} is inconsistent, then there are
r and s from Q∩ [0, 1] such that T ∪{φ → (P≥rα∧P≥sβ ∧P<rs(α∧β))}
is consistent.

3. If the set of formulas T ∪ {φ → (α ↘ β)} is inconsistent, then there are
r and s from Q∩ [0, 1] such that T ∪{φ → (P≤rα∧P≤sβ ∧P>rs(α∧β))}
is consistent.

Proof. For the proof of the first statement, we refer the reader to [14].
Let us prove the second statement. Suppose that T ∪ {φ → (α ↗ β)}
is inconsistent. Then the set T ∪ {α ↗ β} is inconsistent as well. From
Theorem 4.2.2 we obtain T � α ↓ β.

Now suppose that the set

T ∪ {P≥rα ∧ P≥sβ ∧ P<rs(α ∧ β)}
is inconsistent for all r and s. By Theorem 4.2.2,

T � ¬(P≥rα ∧ P≥sβ ∧ P<rs(α ∧ β))

for all r and s. Since the formula ¬(P≥rα∧P≥sβ∧P<rs(α∧β)) is equivalent
to � → ((P≥rα∧P≥sβ) → P≥rs(α∧β)), from the inference rule R4 we obtain
T � α ↗ β. This contradicts the fact that T ∪{α ↗ β} is inconsistent. This
means that there are r and s such that the set T∪{P≥rα∧P≥sβ∧P<rs(α∧β)}
is consistent. Consequently, the set

T ∪ {φ → (P≥rα ∧ P≥sβ ∧ P<rs(α ∧ β))}
is also consistent.

Finally, note that the third statement can be proved in the same way as
the second statement.

5. Completeness of LPP ind
2

In this section we show that the axiomatization AxLPP ind
2

makes LPP ind
2

complete for the class of structures LPP ind
2,Meas. We prove completeness in
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three steps. First, we extend a consistent set of formulas T to a maximally
consistent set T ∗. Second, we use T ∗ to construct a measurable structure
MT ∗ . Finally, we prove that MT ∗ is a model of T ∗ (and, consequently, of T ).

In the following definition we show how to extend a consistent set T to
a maximal consistent set T ∗. Here we assume that an enumeration of all
formulas is given, say ForLPP ind

2
= {ρi | i = 0, 1, 2, . . .}. We start with the

set T and at each step we consider the next formula in the enumeration.
Note that different enumerations may lead to different extensions.

Definition 5.1. (Extension to a maximally consistent set) Let T be a con-
sistent set of formulas and let {ρi | i = 0, 1, 2, . . .} be an enumeration of all
formulas from ForLPP ind

2
. We construct T ∗ recursively as follows:

1. T0 = T .

2. If the formula ρi is consistent with Ti, then Ti+1 = Ti ∪ {ρi}.

3. If the formula ρi is not consistent with Ti, then there are three cases:

(a) If ρi = φ → P≥rα, then

Ti+1 = Ti ∪ {φ → P<r− 1
k
α},

where k is the smallest positive integer such that r − 1
k ≥ 0 and

Ti+1 is consistent.
(b) If ρi = φ → (α ↗ β), then

Ti+1 = Ti ∪ {φ → (P≥rα ∧ P≥sβ ∧ P<rs(α ∧ β))},

where r and s are two (arbitrarily chosen) rational numbers from
the unit interval such that Ti+1 is consistent.

(c) If ρi = φ → (α ↘ β), then

Ti+1 = Ti ∪ {φ → (P≤rα ∧ P≤sβ ∧ P>rs(α ∧ β))},

where r and s are two (arbitrarily chosen) rational numbers from
the unit interval such that Ti+1 is consistent.

(d) Otherwise, Ti+1 = Ti.

4. T ∗ =
⋃∞

n=0 Tn.

The steps 3(a), 3(b) and 3(c) of the construction are added to make sure
that the infinitary rules R3, R4 and R5 (respectively) cannot be applied to
T ∗ in order to produce inconsistencies. The step 3(a) is correctly defined,
since the existence of such k is provided by Lemma 4.5.1. Similarly, Lemma
4.5.2 provides existence of r and s from the step 3(b), while the existence of
r and s from 3(c) is ensured by Lemma 4.5.3.
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Theorem 5.2. (Lindenbaum’s lemma) Every consistent set of formulas can
be extended to a maximally consistent set.

Proof. Let T be a consistent set and let T ∗ be its extension constructed
in Definition 5.1. We need to show that the set T ∗ is maximally consistent.
Each Ti is consistent by the construction. In order to prove the consistency
of T ∗, we first prove that it is deductively closed. If the formula ρ is an
instance of some axiom, then ρ ∈ T ∗ by construction of T ∗. Next we prove
that T ∗ is closed under inference rules. The only possible problem is with
the infinitary inference rules R3, R4 and R5. We will show that T ∗ is closed
under R4, while the case when we deal with R3 or R5 can be proved in a
similar way. First we need to show maximality of T ∗ for the probabilistic
formulas, i.e.,

φ ∈ T ∗ or ¬φ ∈ T ∗, whenever φ ∈ ForP .

For an arbitrary φ ∈ ForP , let i and j be the nonnegative integers such that
ρi = φ and ρj = ¬φ. By Theorem 4.2.2, either φ or ¬φ is consistent with
Tmax{i,j}. But then either φ ∈ Ti+1 or ¬φ ∈ Tj+1.

Now we turn to R4. Assume that

φ → ((P≥rα ∧ P≥sβ) → P≥rs(α ∧ β)) ∈ T ∗

for all r, s ∈ [0, 1] ∪ Q. We need to show that φ → (α ↗ β) ∈ T ∗. So
suppose that φ → (α ↗ β) �∈ T ∗. By maximality of T ∗, ¬(φ → (α ↗
β)) ∈ T ∗. Consequently, φ ∈ T ∗. Then there is i such that φ ∈ Ti. Let j
be a nonnegative integer such that ρj = φ → (α ↗ β). By step 3(b) of the
construction, there are r′, s′ ∈ [0, 1] ∪ Q such that

φ → (P≥r′α ∧ P≥s′β ∧ P<r′s′(α ∧ β)) ∈ Tj+1.

Let k be the nonnegative integer such that ρk = φ → ((P≥r′α ∧ P≥s′β) →
P≥r′s′(α ∧ β)). Then

Tmax{i,k+1} � (P≥r′α ∧ P≥s′β) → P≥r′s′(α ∧ β).

On the other hand, we have

Tmax{i,j+1} � P≥r′α ∧ P≥s′β ∧ P<r′s′(α ∧ β).

Consequently, Tmax{i,j+1,k+1} � ⊥, a contradiction. Thus, T ∗ is deductively
closed.

Finally, T ∗ is consistent. Otherwise there is φ ∈ ForP such that T ∗ �
φ ∧ ¬φ. Then there is i such that φ ∧ ¬φ ∈ Ti, a contradiction.

Next we use T ∗ to define a measurable structure.
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Definition 5.3. Let T ∗ be a maximally consistent set of formulas. We define
a tuple MT ∗ = 〈W,H, μ, v〉 as follows:

• W = {w | w is a classical propositional interpretation that satisfies the
set T ∗ ∩ ForC}

• H = {[α] | α ∈ ForC}, where [α] = {w ∈ W | w |=prop α} (here |=prop

denotes the satisfiability relation of propositional logic),

• μ : H → [0, 1] such that μ([α]) = sup{r ∈ [0, 1] ∪ Q | P≥rα ∈ T ∗},

• for every world w and every propositional letter p ∈ P, v(w, p) = true
iff w |=prop p.

The following result says that the tuple defined in Definition 5.3 is a
measurable structure.

Lemma 5.4. For each maximally consistent set of formulas T ∗, MT ∗ ∈
LPP ind

2,Meas.

Proof. The proof that H is an algebra is straightforward. The proof that
μ is a finitely additive probability measure is identical to the one presented
in [14]. Finally, M∗ is measurable by definition.

Next we state an important relationship between the constructed struc-
ture M∗ and the operators ↗ and ↘.

Lemma 5.5. Let T ∗ be a maximally consistent set of formulas and let MT ∗

be the corresponding measurable structure. Then

1. α ↗ β ∈ T ∗ iff μ([α ∧ β]) ≥ μ([α])μ([β]),

2. α ↘ β ∈ T ∗ iff μ([α ∧ β]) ≤ μ([α])μ([β]).

Proof. We will only prove the first statement, since the second statement
can be proved in a similar way. Suppose that α ↗ β ∈ T ∗. Let {rn | n ∈ N}
and {sn | n ∈ N} be two increasing sequences of numbers (rn < rn+1

and sn < sn+1 for each n ∈ N) from [0, 1] ∪ Q, such that limn→∞ rn =
μ([α]) and limn→∞ sn = μ([β]). Let n be any number from N. Then T ∗ �
P≥rn

α ∧ P≥sn
β. Using the assumption α ↗ β ∈ T ∗, the axiom A7 and

propositional reasoning (A1 and R1(b)) we obtain T ∗ � P≥rnsn
(α ∧ β).

Finally, by Definition 5.3 we have

μ([α ∧ β]) ≥ lim
n→∞ rnsn = μ([α])μ([β]).

Now assume that μ([α ∧ β]) ≥ μ([α])μ([β]). We will show that

T ∗ � (P≥rα ∧ P≥sβ) → P≥rs(α ∧ β) for all r, s ∈ [0, 1] ∪ Q. (II)
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If r > μ([α]) or s > μ([β]), then T ∗ �� P≥rα ∧ P≥sβ. By maximality of T ∗,
T ∗ � ¬(P≥rα∧P≥sβ), and consequently T ∗ � (P≥rα∧P≥sβ) → P≥rs(α∧β).
If r � μ([α]) and s � μ([β]), then rs � μ([α ∧ β]) by the assumption, so
T ∗ � P≥rs(α ∧ β) by Definition 5.3. Thus we proved (II) and we can apply
R4 to obtain T ∗ � α ↗ β. Now the result follows from the fact that T ∗ is
deductively closed.

Now we prove the main result of this section.

Theorem 5.6. (Strong completeness theorem) A set of formulas T is con-
sistent if and only if there is an M ∈ LPP ind

2,Meas such that M |= T .

Proof. By Theorem 5.2, there is a maximally consistent superset T ∗ of T .
Let MT ∗ be the corresponding measurable structure from Definition 5.3. It
is sufficient to show that ρ ∈ T ∗ if and only if MT ∗ |= ρ, for every formula
ρ ∈ ForLPP ind

2
. If ρ is a propositional formula α, suppose that α ∈ T ∗. Then

w |=prop α for every w ∈ W . By Definition 5.3, v(w, α) = true for every w ∈
W , so MT∗ |= α. On the other hand, if α /∈ T ∗, then T ∗ ∪{¬α} is consistent
by Theorem 4.2.1. By Completeness theorem for propositional logic, there
is w such that w |=prop T ∗ ∪ {¬α}. Obviously w ∈ W and v(w, α) = false,
so MT∗ �|= α. If ρ is a probabilistic formula φ, we use induction on the
complexity of the formulas. The cases when φ is a conjunction or a negation
are straightforward. If φ is α ↗ β or α ↘ β, the statement follows from
Lemma 5.5. The case when φ = P≥rα is proved in [14].

Finally, we point out that from the Theorems 4.1 and 5.6 we obtain the
usual formulation of completeness: T � ρ iff T |= ρ.

6. Decidability of LPP ind
2

It is known that the problem of satisfiability of classical propositional for-
mulas is decidable and that the problem is NP-complete. Now we turn to
probabilistic formulas. We will prove that the satisfiability of the probabilis-
tic formulas is decidable in PSPACE. The proof we give is essentially that
of Fagin, Halpern and Megiddo [6] for the decidability of PWFs: we first re-
duce the problem to a problem of satisfiability of an existential sentence of
real closed fields, and then we apply Canny’s decision procedure [1]. In fact,
our complexity result can also be obtained by the result from [6], since it is
possible to rewrite any formula of LPP ind

2 as a PWF. To make this paper
self-contained, we give the proof of the decidability result for LPP ind

2 , since
we extend the idea (of translating the problem to a system of inequalities) in
the proof of decidability of satisfiability problem for LPP ind

1 in Section 7.2.
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Theorem 6.1. The satisfiability of probabilistic formulas is decidable in
PSPACE.

Proof. For a formula φ ∈ ForP , by Basic(φ) we denote the set of all basic
probabilistic formulas which are subformulas of φ. We will assume that the
formula φ ∈ ForP is in the complete disjunctive normal form (CDNF),. i.e.,

φ =
m∨

i=1

φi,

where every φi is a conjunction of the formulas from Basic(φ) or their
negations, using all elements of Basic(φ) (i.e. the number of conjuncts of
each φi is |Basic(φ)|). Since φ is satisfiable iff at least one φi is satisfiable,
we can focus on satisfiability of the formulas of the form

|Basic(φ)|∧

k=1

ψk, (III)

where ψk ∈ {P≥rα, α ↗ β, α ↘ β, P<rα, α ↓ β, α ↑ β, | α, β ∈ ForC}. For
the given formula (III), we denote the set {ψk | k = 1, . . . , |Basic(φ)|} by
F .

We also use CDNF for the classical propositional formulas. Thus, if
p1, . . . , pn are all of the propositional letters appearing in (III), let γ1, . . . , γ2n

be all of the formulas of the form

±p1 ∧ · · · ∧ ±pn,

where +p = p and −p = ¬p. Clearly, γi’s are pairwise disjoint and form a
partition of �. Furthermore, for each α appearing in (III) there is a unique
set of indices Iα ⊆ {1, . . . , 2n} such that α ↔ ∨

i∈Iα
γi is a tautology. We

denote by Γα the corresponding set {γi | i ∈ Iα}.
If ψk is a formula from (III) of the form P≥rα, using finite additivity we

obtain that M = 〈W,H, μ, v〉 satisfies ψk iff
∑

γ∈Γα

μ([γ]) ≥ r. (IV)

Similarly, if ψk is of the form α ↗ β, we have the condition

∑

γα∧β∈Γα∧β

μ ([γα∧β]) ≥
⎛

⎝
∑

γα∈Γα

μ([γα])

⎞

⎠

⎛

⎝
∑

γβ∈Γβ

μ([γβ])

⎞

⎠ . (V)

The conditions for satisfiability of the formulas ψk of the form α ↘ β, P<rα,
α ↓ β and α ↑ β can be written in a similar way.
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For each i ∈ {1, . . . , 2n} we denote by xi the value of the formula γi in
a potential model M = 〈W,H, μ, v〉 of the formula (III), i.e., xi = μ([γi]).
Then the formula is satisfiable iff the following sentence of the language of
real closed fields is satisfiable:

∃x1 . . . ∃x2n

(
2n
∧

k=1

(xk ≥ 0)

∧
2n
∑

k=1

xk = 1

∧ ∧

P≥rα∈F

(
∑

γi∈Γα

xi ≥ r

)

∧ ∧

α↗β∈F

∑

γi∈Γα∧β

xi ≥
(

∑

γi∈Γα

xi

) (
∑

γi∈Γβ

xi

)

∧ ∧

α↘β∈F

∑

γi∈Γα∧β

xi ≤
(

∑

γi∈Γα

xi

) (
∑

γi∈Γβ

xi

)

∧ ∧

P<rα∈F

(
∑

γi∈Γα

xi < r

)

∧ ∧

α↓β∈F

∑

γi∈Γα∧β

xi <

(
∑

γi∈Γα

xi

) (
∑

γi∈Γβ

xi

)

∧ ∧

α↑β∈F

∑

γi∈Γα∧β

xi >

(
∑

γi∈Γα

xi

) (
∑

γi∈Γβ

xi

))

.

The sentence represents a nonlinear system of inequalities. The first line
represents non-negativity of probability measures. The second line represents
the condition μ(W ) = μ([�]) = 1. The third and the fourth line represent
the conditions (IV) and (V), respectively, while the last four lines represent
the similar conditions for the other basic formulas from F .

Since the theory of real closed fields is decidable, our logic is decidable as
well. Moreover, note that the above sentence is an existential sentence. Thus,
we can use Canny’s decision procedure from [1]. Since the procedure decides
satisfiability of the formula in PSPACE, we conclude that satisfiability of
probabilistic formulas is in PSPACE as well.
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7. The Logic LPP ind
1

In this section we present the logic LPP ind
1 which extends LPP ind

2 in the
way that nesting of the probabilistic operators is allowed. The set ForLPP ind

1

of formulas is the smallest set such that:

• P ⊂ ForLPP ind
1

,

• if {α, β} ⊆ ForLPP ind
1

and r ∈ [0, 1] ∩ Q, then {P≥rα, α ↗ β, α ↘
β, α ∧ β,¬α} ⊆ ForLPP ind

1
.

We can also see LPP ind
1 as an extension of the logic LPP2 from [14], ob-

tained by adding the operators ↗ and ↘. Now we can mix probabilistic and
classical propositional knowledge in a single formula, so we don’t introduce
two different notations – we denote all the formulas from ForLPP ind

1
by α,

β, . . .

Example 7.1. If α, β ∈ ForLPP ind
1

, then

(α ⊥ β) ↑ (α ∨ β)

is also a formula from ForLPP ind
1

. Its meaning is that the independence of
α and β confirms their disjunction α ∨ β. If p ∈ P, the formula

p → P≥1p

also belongs to ForLPP ind
1

, but not to ForLPP ind
2

, since it mixes nonproba-
bilistic and probabilistic knowledge.

The semantics for the logic ForLPP ind
1

is defined in a modal way, and now
each world is equipped with a probability space. More formally, a structure
is any tuple M = 〈W,Prob, v〉 where W is a nonempty set of worlds, v
assigns to every w ∈ W a two-valued evaluation of propositional letters,
while Prob(w) = 〈W (w), H(w), μ(w)〉 is a triple where:

• W (w) is a non empty subset of W ,

• H(w) is an algebra of subsets of W (w) and

• μ(w) : H(w) → [0, 1] is a finitely additive probability measure.

The definition of |= is also modified, since now it depends on worlds of a
model.

• M,w |= P≥rα if μ(w)({u ∈ W (w) | M,u |= α}) ≥ r,

• M,w |= α ↗ β if μ(w)({u ∈ W (w) | M,u |= α ∧ β}) ≥
μ(w)({u ∈ W (w) | M,u |= α})μ(w)({u ∈ W (w) | M,u |= β}),
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• M,w |= α ↘ β if μ(w)({u ∈ W (w) | M,u |= α ∧ β}) ≤
μ(w)({u ∈ W (w) | M,u |= α})μ(w)({u ∈ W (w) | M,u |= β}).

Satisfiability of conjunctions and negations is defined as usual.
We denote the set {u ∈ W (w) | M,u |= α} by [α]M,w (we omit M

from M,w |= α and [α]M,w if it is clear from the context). Like in the logic
ForLPP ind

2
, we consider measurable models only. We say that α is satisfiable,

if there is M = 〈W,Prob, v〉 and w ∈ W such that M,w |= α.

7.1. Completeness of LPP ind
1

The axiomatic system for the logic LPP ind
2 is also sound and strongly com-

plete for the logic LPP ind
1 . Thus, AxLPP ind

1
= AxLPP ind

2
. Of course, A1

and R1 now don’t have two variants. A proof is still a countable sequence
of formulas. The only difference is that Necessitation is now restricted to
theorems only. Thus, the set of theorems is the set of all formulas deducible
from the empty set, while we derive from T using all elements of T , all
theorems and we apply the rules R1, R3, R4 and R5. The restricted use of
Necessitation allows easy proof of Deduction theorem.

The proof of completeness theorem is almost identical to the proof for the
logic LPP ind

2 . The only difference is when we use a maximally consistent
set T ∗ to construct MT ∗ . Instead, we define a model M∗ = 〈W,Prob, v〉
where W is the set of all maximally consistent formulas of ForLPP ind

1
,

v(w, p) = true iff p ∈ w, while Prob(w) = 〈W (w), H(w), μ(w)〉 is defined in
the following way:

• W (w) = W ,

• H(w) = {{u ∈ W | α ∈ u} | α ∈ ForLPP ind
1

},

• μ(w)({u ∈ W | α ∈ u}) = sup{r ∈ [0, 1] ∪ Q | P≥rα ∈ w}.

The proof that α ∈ w iff w |= α is the same as before. Then, if T is a
consistent set and if w is a maximally consistent superset of T , we obtain
M,w |= T .

7.2. Decidability of LPP ind
1

In the proof of decidability of satisfiability problem for LPP ind
1 , we use the

method of filtration [10]. We show that if α is satisfiable in M = 〈W,Prob, v〉,
then there is a model M∗ of α, with at most 2|Subf(α)| worlds, where Subf(α)
denote the set of all subformulas of α. By ≈ we denote the equivalence
relation over W 2, such that w ≈ u iff for every β ∈ Subf(α), w |= β iff
u |= β. Then cardinality of the quotient set W/≈ is at most 2|Subf(α)|. From
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every class Ci we choose an element and denote it wi. We define the structure
M∗ = 〈W ∗, P rob∗, v∗〉, where

• W ∗ = {wi | Ci ∈ W/≈},

• Prob∗ is defined by:

– W ∗(wi) = {wj ∈ W ∗ : (∃u ∈ Cwj
)u ∈ W (wi)}

– H∗(wi) is the powerset of W ∗(wi),
– μ∗(wi) is a probability measure s.t. μ∗(wi)({wj}) = μ(wi)(Cwj

),

• v∗(wi, p) = v(wi, p).

Obviously, μ∗(wi) is well defined, and for any D ∈ H∗(wi)

μ∗(wi)(D) =
∑

wj∈D

μ∗(wi)({wj}).

Note that for each w′ ∈ Cw, M,w |= β iff M,w′ |= β. Now we show
that for any β ∈ Subf(α) and w ∈ W ∗, M,w |= β iff M∗, w |= β. We
prove the statement using induction on the number n, the sum of numbers
of appearances of ↗ and ↘ in β, and for each n we use induction on the
complexity of the formulas. The proof is straightforward and we only prove
the case when β = α1 ↗ β1:

M,w |= β

iff μ(w)([α1 ∧ β1]M,w) ≥ μ(w)([α1]M,w)μ(w)[β1]M,w)

iff
∑

Cu:M,u|=α1∧β1
μ(wi)(Cu) ≥

(
∑

Cu:M,u|=α1
μ(wi)(Cu))(

∑
Cu:M,u|=β1

μ(wi)(Cu))

iff
∑

Cu:M∗,u|=α1∧β1
μ∗(wi)({u)} ≥

(
∑

Cu:M∗,u|=α1
μ∗(wi)({u)}))(

∑
Cu:M∗,u|=β1

μ∗(wi)({u)}))

iff μ∗(w)([α1 ∧ β1]M∗,w) ≥ μ∗(w)([α1]M∗,w)μ∗(w)[β1]M∗,w)

iff M∗, w |= β.

Thus we proved that for checking satisfiability of a formula it is enough
to check structures with at most 2|Subf(α)| worlds. Note that it does not
necessarily imply decidability of the satisfiability problem because there are
infinitely many possibilities for probability values.

We proceed by considering filtrated structures defined above and modi-
fying the method from Section 6. Instead of standard DNF, we transform
the formula α to disjunction of the formulas of the form
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|Subf(α)|∧

k=1

βk, (VI)

where each βk belongs to Subf(α)∪{¬β | β ∈ Subf(α)}, and each subformula
of α appears exactly once (negated or not). Obviously the conjunction of
any two different formulas of the form (VI) is a contradiction, while the
disjunction of all such formulas is a tautology. This enables us to translate
the problem to a system of inequalities. In each world w of each filtrated
model M exactly one formula of the form (VI) holds. We can denote such
formula by αw. For each possible cardinality 	 of W (i.e. 	 � 2|Subf(α)|), we
consider the 	 formulas of the form (VI) (here denoted by αw). Note that
those formulas are not necessarily different, but at least one of them must
contain α. Now we examine whether there is a structure M with 	 worlds
such that for some world w from the model w |= α. For every formula αwi

,
i < 	, we consider a system of linear equalities and inequalities (similarly as
in Section 6) of the form (here we denote by ξ(αw) the set of all conjuncts
βk from αw =

∧|Subf(α)|
k=1 βk):

μ(wi)({wj}) ≥ 0 , for every world wj
∑�

j=1 μ(wi)({wj}) = 1
∑

wj :β∈ξ(αwj
) μ(wi)({wj}) ≥ r , for every P≥rβ ∈ ξ(αwj

)

sumwj :β∧γ∈ξ(αwj
)μ(wi)({wj}) ≥ (

∑
wj :β∈ξ(αwj

) μ(wi)({wj}))

(
∑

wj :γ∈ξ(αwj
) μ(wi)({wj})), for every β ↗ γ ∈ ξ(αwj

)
∑

wj :β∧γ∈ξ(αwj
) μ(wi)({wj}) ≤ (

∑
wj :β∈ξ(αwj

) μ(wi)({wj}))

(
∑

wj :γ∈ξ(αwj
) μ(wi)({wj})), for every β ↘ γ ∈ ξ(αwj

)
∑

wj :β∈ξ(αwj
) μ(wi)({wj}) < r , for every ¬P≥rβ ∈ ξ(αwj

)
∑

wj :β∧γ∈ξ(αwj
) μ(wi)({wj}) < (

∑
wj :β∈ξ(αwj

) μ(wi)({wj}))

(
∑

wj :γ∈ξ(αwj
) μ(wi)({wj})), for every ¬β ↗ γ ∈ ξ(αwj

)
∑

wj :β∧γ∈ξ(αwj
) μ(wi)({wj}) > (

∑
wj :β∈ξ(αwj

) μ(wi)({wj}))

(
∑

wj :γ∈ξ(αwj
) μ(wi)({wj})), for every ¬β ↘ γ ∈ ξ(αwj

)

The big system collect the systems for each wi. We can translate the
system to the sentence of RCF, so satisfiabilty of the system is decidable.
If for fixed 	 and αw (i.e. the fixed formula of the form (VI)) the system
is satisfiable, in each of 	 worlds we can define a probability space, and in
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at least one world the formula α holds, so α is satisfiable. Since we have
finitely many possibilities for the choice of 	, and for each 	 finitely many
possibilities for the choice of 	 formulas αw, the logic LPP ind

1 is decid-
able.

8. The Logics LPP
Fr(n),ind
2 and LPP

Fr(n),ind
1

The logics LPP
Fr(n)
2 and LPP

Fr(n)
1 , introduced in [14], are similar to LPP2

and LPP1 (respectively), but with probability functions restricted to have
the range Range(n) = {0, 1/n, . . . , (n − 1)/n, 1}. So there are really denu-
merably many different logics of both types, one for each n. It is shown in
[14] that the infinitary rule R3 can be replaced by the axiom

A9
∧n−1

k=0 P> k
n
α → P≥ k+1

n
α.

The axiomatic system is finitary and the proofs are defined as finite se-
quences of formulas. The following theorem of the axiomatization

�
n∨

k=0

P= k
n
α

is used in the proof of the completeness theorem. Since the finitary system
is strongly complete, the logic is compact.

In the same way, we can restrict both of our logics, LPP ind
2 and LPP ind

1 ,
to obtain the logics LPP

Fr(n),ind
2 and LPP

Fr(n),ind
1 whose probability mea-

sures have the ranges Range(n). Obviously, those logics are extensions of
LPP

Fr(n)
2 and LPP

Fr(n)
1 .

Now we show that there are finitary axiomatizations for those logics. As
in the case of the logics without ↗ and ↘, we replace R3 with A9. Now we
turn to R4 and R5. Note that from the finite set

T = {(P> k
n
α ∧ P> �

n
β) → P≥ k�

n2
(α ∧ β) | k, 	 = 0, . . . , n}

we can infer all the elements of the set

{(P≥rα ∧ P≥sβ) → P≥rs(α ∧ β) | r, s ∈ [0, 1] ∪ Q}.

Indeed, let r, s ∈ (0, 1]∪Q (the case when rs = 0 is trivial). If k and 	 are such
that r ∈ ( k

n , k+1
n ] ∩ Q, and s ∈ ( �

n , �+1
n ] ∩ Q, using contraposition of A4 we

obtain {P≥rα∧P≥sβ} � P> k
n
α∧P> �

n
β. From A9 we infer {P≥rα∧P≥sβ} �

P≥ k+1
n

α ∧ P≥ �+1
n

β. Then

T ∪ {P≥rα ∧ P≥sβ} � P≥ (k+1)(�+1)
n2

(α ∧ β).
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Using A4 we obtain T ∪{P≥rα∧P≥sβ} � P≥rs(α∧β). Now the claim follows
from Deduction theorem.

Thus, for each α and β we can replace the infinite set of premises from
R4 with the finite set T .3

So we remove R4 from the axiomatization and introduce the new axiom

A10 (
∧n

k,�=0(P≥ k
n
α ∧ P≥ �

n
β) → P≥ k�

n2
(α ∧ β)) → α ↗ β.

Similarly, we can prove that we can replace R5 with the axiom

A11 (
∧n

k,�=0(P≤ k
n
α ∧ P≤ �

n
β) → P≤ k�

n2
(α ∧ β)) → α ↘ β.

Thus, our logics have finitary axiomatizations.
Moreover, in the similar way as above, we can prove that from the finite

set

{(P≥ k
n
α ∧ P≥ �

n
β ∧ α ↗ β) → P≥ k�

n2
(α ∧ β) | k, 	 = 0, . . . , n}

we can infer every instance of A7. Since the formula (P≥ k
n
α ∧ P≥ �

n
β ∧

α ↗ β) → P≥ k�
n2

(α ∧ β) is equivalent to α ↗ β → ((P≥ k
n
α ∧ P≥ �

n
β) →

P≥ k�
n2

(α ∧ β)), we can restrict A7 to

A7’ α ↗ β → ∧n
k,�=0((P≥ k

n
α ∧ P≥ �

n
β) → P≥ k�

n2
(α ∧ β)).

Obviously, we can also restrict A8 to

A8’ α ↘ β → ∧n
k,�=0((P≤ k

n
α ∧ P≤ �

n
β) → P≤ k�

n2
(α ∧ β)).

Finally, note that A7’ and A9 together say that the operator ↗ is defin-
able in the logics LPP

Fr(n)
2 and LPP

Fr(n)
1 (i.e., α ↗ β can be introduced as

an abbreviation for the formula
∧n

k,�=0((P≥ k
n
α ∧ P≥ �

n
β) → P≥ k�

n2
(α ∧ β))),

while ↘ is definable by A8’ and A9. Thus, for each n, the logic LPP
Fr(n),ind
2

is a conservative extension of the logic LPP
Fr(n)
2 , and LPP

Fr(n),ind
1 is a

conservative extension of LPP
Fr(n)
1 .

3Actually, the premises in R4 have implicative form (φ →). Since the form is only
introduced for the proof of Deduction theorem and is not essential for characterizing ↗,
we proved a restricted version here. Nevertheless, the proof for the original version is
practically the same, since we can use Deduction theorem to move φ on the left hand side
of �.
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9. Conclusion

In this paper we present several probabilistic logics in which we can express
the notions of independence and confirmation. Our starting point for this
work was prior research on axiomatization of propositional logics with unary
probabilistic operators [14]. We extend the language of the logics from [14],
we show decidability of the obtained logics, and we present axiomatizations
which are sound and strongly complete with respect to corresponding se-
mantics. Since the logics use the same language, we give the presentation in
complete detail for the version LPP ind

2 only and then explain briefly how
the others differ from it. Since LPP ind

2 does’t allow nesting of probability
operators, we extend it to LPP ind

1 , where nesting is allowed. A disadvantage
of both of these logics is noncompactness, and we have to use infinitary rules
for complete axiomatizations. However, we achieve compactness using only
a finite set of probability values for logics LPP

Fr(n),ind
1 and LPP

Fr(n),ind
2 ,

which is still enough for many practical applications. We also show that these
two logics are conservative extensions of the logics LPP

Fr(n)
1 and LPP

Fr(n)
2 .

In the paper, we don’t explicitly deal with the notion of mutually in-
dependent events. A finite set S is said to be mutually independent iff for
every S′ ⊆ S, μ(

∧
A∈S′) =

∏
A∈S′ μ(A). We point out that the notion is also

expressible in our logics. For any set of formulas F ′ with n elements, the
corresponding formula is

∧

k≤n,αi∈F ′,αi �=αj

α1 ⊥ (α2 ∧ · · · ∧ αk).

This fact follows directly from the satisfiability relation.
Note that although the formulation μ(A|B) = μ(A) is more intuitive for

understanding independence, the formulation μ(A∩B) = μ(A)μ(B) is more
preferred, as the first expression is not defined when μ(B) = 0. Our operator
⊥ captures the later definition. (Note that in the case of confirmation both
definitions are equivalent, since μ(A ∩ B) > μ(A)μ(B) implies μ(B) > 0, so
μ(A|B) > μ(A) can be used as well. Consequently, our operator ↑ captures
both definitions.) Nevertheless, if we would take conditional probabilities as
primitive [3], possibly allowing conditions whose probability value is 0, then
the former definition cannot be captured in our logics. For that purpose
it might be of interest to extend our formalism considering logics that al-
low conditional probabilities as primitive operators, which can be an avenue
for further research on this topic. The logic LFOCP with formulas of the
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form CP≥r(α, β) and CP≤r(α, β), with the intended meaning “the condi-
tional probability of α given β is at least R” and “at most r”, respectively,
is considered in [12]. In the future work, we will try to extend LFOCP
with the operators of conditional independence and conditional confirma-
tion, modifying the ideas from this paper. If we denote by (α ↗ β)|γ the
formula which expresses that α weakly conditionally confirms β, given γ,
then (α ↗ β)|γ would hold in a model with the measure μ on possible
worlds, iff μ([α ∧ β]|[γ]) ≥ μ([α]|[γ])μ([β]|[γ]).
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