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Abstract. In a forthcoming paper, Walter Carnielli and Abilio Rodrigues propose a

Basic Logic of Evidence (BLE) whose natural deduction rules are thought of as preserving

evidence instead of truth. BLE turns out to be equivalent to Nelson’s paraconsistent logic

N4, resulting from adding strong negation to Intuitionistic logic without Intuitionistic

negation. The Carnielli/Rodrigues understanding of evidence is informal. Here we provide

a formal alternative, using justification logic. First we introduce a modal logic, KX4, in

which �X can be read as asserting there is implicit evidence for X, where we understand

evidence to permit contradictions. We show BLE embeds into KX4 in the same way that

Intuitionistic logic embeds into S4. Then we formulate a new justification logic, JX4, in

which the implicit evidence motivating KX4 is made explicit. KX4 embeds into JX4 via

a realization theorem. Thus BLE has both implicit and explicit possibly contradictory

evidence interpretations in a formal sense.

Keywords: Paraconsistent, Justification, Evidence, Modal, Nelson, Strong negation, Bel-

nap.

1. Introduction

In a forthcoming paper [6], two paraconsistent and paracomplete logics are
considered. The first is called BLE, for Basic Logic of Evidence. The second
extends BLE, and is called LETJ, for Logic of Evidence and Truth. We do
not consider LETJ in this paper and, without giving too much away, BLE
turns out to be equivalent to N4, a well-known logic due to Nelson, though
we will continue to call it BLE in this paper. What is of special interest to us
in [6] is the motivation provided for BLE/N4. The logic is presented through
natural deduction rules, where the underlying idea is that rules should pre-
serve evidence for an assertion, rather than its truth. Further, it is allowed
that evidence can be incomplete or contradictory. Evidence is treated infor-
mally but plausibly in [6]. It is the purpose of the present paper to fill out
the informal ideas motivating BLE with formal evidence based machinery,
making use of well-developed ideas coming from justification logic.

We will first show that BLE embeds into a modal logic KX4, in which
�X can be thought of as asserting that there is evidence for X, where this
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evidence is not necessarily correct, that is, factual. We can understand KX4
as being a logic of implicit uncertain evidence. We then show KX4 embeds
into a justification logic JX4 in which terms represent specific items of un-
certain evidence, and there are operations on these pieces of evidence. We
can think of JX4 as a logic of explicit evidence. Our work parallels that
of Artemov [2–4], providing an arithmetic interpretation of intuitionistic
logic. Intuitionistic propositional logic embeds into S4, a well-known result
of Gödel [9]. Artemov showed that S4 in turn embeds into the first of the jus-
tification logics, LP, and that embeds into arithmetic. The notion of evidence
represented in S4 implicitly and in LP explicitly is the strongest available,
that of proof. Evidence as represented in KX4 and JX4 is, of course, weaker,
but there are some surprising connections here, as we will see.

2. BLE and Evidence Informally

In [6] BLE is motivated by the idea that it is to be “a paraconsistent for-
mal system capable of expressing the idea of contradictions as conflicting
evidence.” Further, “evidence that A is true is understood as reasons for
believing that A is true, while evidence that A is false means reasons for be-
lieving that A is false.” Thus falsity must be supported by positive evidence,
and not simply by lack of evidence for the formula being negated. Writing
¬A for the negation of A, we have the following familiar four-fold division
of Belnap–Dunn. Continuing to quote from [6]:

1. No evidence at all: both A and ¬A do not hold;

2. Only evidence that A is true: A holds and ¬A does not hold;

3. Only evidence that A is false: A does not hold and ¬A holds;

4. Conflicting evidence about A: both A and ¬A hold.

Once formulated, the logic BLE turns out to be equivalent to Nelson’s N4.
As such, much is known about semantics and proof theory [10]. There are
both algebraic and possible world semantics, for instance. But our mission
here is to make formal the use of evidence for this purpose. We begin by
looking at one of the natural deduction rules given for BLE, the rule for
conjunction.

A B

A ∧ B

Don’t think of this as saying that if A and B are true, so is A ∧ B. Instead,
quoting from [6]: “Indeed, if κ and κ′ are evidence, respectively, for A and
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Table 1. BLE axioms

A1 P ⊃ (Q ⊃ P )

A2 (P ⊃ (Q ⊃ R)) ⊃ ((P ⊃ Q) ⊃ (P ⊃ R))

A3 (P ∧ Q) ⊃ P

A4 (P ∧ Q) ⊃ Q

A5 (P ⊃ Q) ⊃ ((P ⊃ R) ⊃ (P ⊃ (Q ∧ R)))

A6 P ⊃ (P ∨ Q)

A7 Q ⊃ (P ∨ Q)

A8 (P ⊃ R) ⊃ ((Q ⊃ R) ⊃ ((P ∨ Q) ⊃ R))

A9 ¬¬P ≡ P

A10 ¬(P ∨ Q) ≡ (¬P ∧ ¬Q)

A11 ¬(P ∧ Q) ≡ (¬P ∨ ¬Q)

A12 ¬(P ⊃ Q) ≡ (P ∧ ¬Q)

B, κ and κ′ together constitute evidence for A∧B.” Similar evidence based
motivations are supplied for other connectives. Ignoring negation for the
moment, the rules thus motivated for ∧, ∨, and ⊃ are those of intuitionistic
logic. The problem we address is the informality of evidence, as used in
[6]. What does evidence “together” mean, in the discussion of conjunction?
Similar issues arise for disjunction and implication too, of course.

Negation is, so to speak, not treated negatively but positively; “instead
of asking about the conditions of assertibility, we ask about the conditions
of refutability.” An example of a proposed rule is the following.

¬A

¬(A ∧ B)

The motivation supplied is: “If κ is evidence that A is false, κ constitutes
evidence that A∧B is false.” Evidence is understood as something positive.
We see that it is not raining, for instance, this is positive evidence that it
is false that it is raining, and hence we have positive evidence that it is not
both raining and cold. Once again, the use of evidence for motivation is
informal. It does, however, lead to Nelsons N4 conditions for negation.

From here on we do not work with natural deduction rules. N4 has well-
known axiomatizations, and these will do fine for our purposes. We give the
system axiomatically using the schemes in Table 1 for reference purposes.
The only rule of inference is modus ponens.

3. KX4 and Non-factive Evidence

It is well-known that Gödel introduced the modern axiomatization of the
modal logic S4, building on the idea that � has the properties one wants
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Table 2. KX4 axioms

Classical All (or enough) tautologies

K �(X ⊃ Y ) ⊃ (�X ⊃ �Y )

X ��X ⊃ �X

4 �X ⊃ ��X

for provability. He observed that intuitionistic logic embeds into S4, giving
a semi-formal meaning to the idea that intuitionistic truth could be under-
stood by a classical mathematician as a version of provability. Provability
is evidence of the strongest kind. A key axiom of S4 is factivity, �X ⊃ X,
which tells us we are talking about evidence that is certain and never mis-
taken. We want to weaken S4 to a logic of evidence that may be erroneous.
Of course we drop the factivity condition. And in its place we add the axiom
schema ��X ⊃ �X. Informally, this tells us that evidence for the existence
of evidence for X is sufficient for us to assert that we have evidence for X.
It is a plausible condition for evidence, even non-factive evidence, to meet.
This axiom schema has sometimes been called C4 but more recently X has
come into use, and we adopt this name. The logic KX4 is axiomatized using
modus ponens, necessitation, and the schemes shown in Table 2.

In this paper we will think of KX4 as an implicit logic of non-factive
evidence, in the same way that Gödel thought of S4 as a logic of provability.
We use the term implicit for the obvious reason that evidence is not explicitly
shown. The necessity symbol indicates the existence of evidence, but does
not say what it is. An explicit counterpart to KX4 will be introduced later.

This logic KX4 is complete with respect to frames meeting the conditions
of transitivity and denseness. Denseness says that if w1Rw2 then there is
a possible world w3 such that w1Rw3Rw2. Since ��X ⊃ �X is a special
case of �Y ⊃ Y , it follows that every theorem of KX4 is a theorem of
S4, that is, KX4 ⊆ S4. The inclusion is strict, as the following shows. Let
P be a propositional letter. �P ⊃ P is S4 valid. But consider the KX4
model defined as follows. The set of possible worlds is the half-open real
interval, [0, 1). Accessibility is given by the relation <. This frame satisfies
transitivity and denseness. Build a model on it by taking P to be true at
all worlds except 0. Then �P evaluates to true at 0, so at 0 the S4 theorem
�P ⊃ P theorem fails.

There are even simpler models showing that KX4 is not S4. A one-point
model in which P fails at the unique world will do, but the model discussed
above also has the seriality condition, and thus provides us with a stronger
result. We make no further use of possible world semantics in this paper.
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Obviously in KX4 we have ��X ≡ �X. We also have substitutivity of
proved equivalence since KX4 is a normal modal logic. Hence, in any theorem
of KX4 any positive number of consecutive � symbols can be replaced by
one, preserving theoremhood. We now have the following straightforward
but important facts.

Theorem 3.1. The following hold of KX4.

1. KX4 � S4

2. In any theorem of KX4, the result of replacing any positive number of
consecutive � symbols by a single one yields another KX4 theorem.

4. A Gödel Embedding into KX4

There are several embeddings of intuitionistic logic into S4. The best-known
and most easily motivated embedding amounts to inserting a necessity sym-
bol before every intuitionistic subformula. Remarkably, this also embeds
intuitionistic logic into KX4, something that must be well-known, though it
was not known to me. This means we can think of intuitionistic logic as be-
ing evidence-based, whether we think of that evidence as factive, or not. We
will not want intuitionistic negation, but rather Nelson’s strong negation
instead. For this section we have neither. We will say a few words about
intuitionistic negation in Section 5, before dropping it altogether. Strong
negation will be introduced in Section 7.

Definition 4.1. (Positive Intuitionistic Logic) Positive intuitionistic logic
is propositional intuitionistic logic without negation. Only ∧, ∨, and ⊃ are
connectives, though we may also allow ≡ as defined in the usual way.

We give a recursive definition of the Gödel embedding in Definition 4.2,
writing Xf for the translation of the intuitionistic formula X. Think of Xf

as evidence for X in an informal sense. We will consider evidence against
later on.

Definition 4.2. (Implicit Evidence For) P is a propositional letter; X and
Y are arbitrary formulas of positive intuitionistic logic.

P f = �P

(X ∧ Y )f = �(Xf ∧ Y f )

(X ∨ Y )f = �(Xf ∨ Y f )

(X ⊃ Y )f = �(Xf ⊃ Y f )
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The following result is provable, standard, and generally stated with in-
tuitionistic negation present.

Theorem 4.3. For a formula X of positive intuitionistic logic, X is an
intuitionistic theorem if and only if Xf is a theorem of S4.

We now show a counterpart to Theorem 4.3. The proof is straightforward,
but a bit tedious and unenlightening. There ought to be a proof that gives
more insight, but this will do for now.

Theorem 4.4. For a formula X of positive intuitionistic logic, X is an
intuitionistic theorem if and only if Xf is a theorem of KX4.

Proof. One direction is simple. Suppose Xf is a theorem of KX4. Using
Theorem 3.1 part 1, Xf is a theorem of S4. Then by Theorem 4.3, X is a
theorem of propositional intuitionistic logic.

For the converse direction, it is enough to show that for each line Z of a
positive intuitionistic axiomatic proof, Zf is provable in KX4. This is true if
Z is an axiom by the following argument. Lemma 4.5 gives provability in K
of formulas corresponding to positive axioms, hence these are also provable
in KX4. Then apply Theorem 3.1 part 2 which allows the collapse of multiple
occurrences of � to a single one. Modus ponens is given by Lemma 4.6.

Lemma 4.5. The following formulas are provable in K. In each case, the
corresponding intuitionistic axiom or rule is shown.

1. ��P ⊃ �(�Q ⊃ �P ), corresponding to P ⊃ (Q ⊃ P ).

2. ��(�P ⊃ �(�Q ⊃ �R)) ⊃ �(�(�P ⊃ ��Q) ⊃ �(�P ⊃ ��R)),
corresponding to (P ⊃ (Q ⊃ R)) ⊃ ((P ⊃ Q) ⊃ (P ⊃ R)).

3. ���P ⊃ �(��Q ⊃ �(�P ∧ �Q)), corresponding to P ⊃ (Q ⊃ (P ∧
Q)).

4. �(�P ∧ �Q) ⊃ ��P and �(�P ∧ �Q) ⊃ ��Q, corresponding to
(P ∧ Q) ⊃ P and (P ∧ Q) ⊃ Q respectively.

5. ��P ⊃ �(�P ∨ �Q) and ��Q ⊃ �(�P ∨ �Q), corresponding to
P ⊃ (P ∨ Q) and Q ⊃ (P ∨ Q) respectively.

6. ���(�P ⊃ �R) ⊃ �(��(�Q ⊃ �R) ⊃ �(�(�P ∨ �Q) ⊃ ��R)),
corresponding to (P ⊃ R) ⊃ ((Q ⊃ R) ⊃ ((P ∨ Q) ⊃ R)).

Proof. Here, as a sample, is an axiomatic proof for 1. The others are more
complicated axiomatically and are left to the reader. Actually, tableaus are
recommended.

�P ⊃ (�Q ⊃ �P ) is a tautology. By necessitation, �(�P ⊃ (�Q ⊃
�P ). Then using the K axiom, ��P ⊃ �(�Q ⊃ �P ).
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Lemma 4.6. If Xf and (X ⊃ Y )f are provable in KX4, so is Y f .

Proof. Every formula W f begins with �, and so is of the form �(W ◦) for
some particular W ◦. Now suppose Xf and (X ⊃ Y )f are provable in KX4.
By the first, �(X◦) is provable, hence so is ��(X◦) by the 4 axiom. By the
second, �(Xf ⊃ Y f ) is provable, that is, �(�(X◦) ⊃ �(Y ◦)) is provable.
Then so is ��(X◦) ⊃ ��(Y ◦) by the K axiom. By modus ponens, ��(Y ◦)
is provable, hence so is �(Y ◦) by the X axiom. But this is Y f .

5. Side Remarks on Intuitionistic Negation

We want strong negation, and not intuitionistic negation. Still, it is worth
taking a passing look at how intuitionistic negation behaves under an em-
bedding into KX4. We consider it briefly in this section, writing ∼ for intu-
itionistic negation and ¬ for the classical version. The symbol ∼ will not be
used outside this section.

Negation in intuitionistic logic can be taken to be primitive, or defined
using ⊥. The connection is ∼X ≡ X ⊃ ⊥. Either can be used when em-
bedding from intuitionistic logic into S4. We can work directly, setting
(∼X)f = �¬Xf or indirectly, setting (X ⊃ ⊥)f = �(Xf ⊃ ⊥f ). There
is a potential problem however. Presumably ⊥ is treated as if it were a
propositional letter, and so ⊥f = �⊥. Then for a propositional letter P ,
(∼P )f = �¬P f = �¬�P = �(�P ⊃ ⊥), but (P ⊃ ⊥)f = �(P f ⊃ ⊥f ) =
�(�P ⊃ �⊥). Fortunately these are equivalent in S4, using the facts that
falsehood implies anything, so ⊥ ⊃ �⊥, and we have factivity, so �⊥ ⊃ ⊥.

In KX4 we do not have factivity and the equivalence between the two
treatments of negation breaks down. I do not know for certain that the
direct approach, using axioms for ∼, does not work, but this seems to be
the case. The indirect version, via ⊥, is quite satisfactory since we have the
following, continuing Theorem 4.5.

Theorem 5.1. The following formulas are provable in K.

1. �⊥ ⊃ �P , corresponding to ⊥ ⊃ P .

2. ��(�P ⊃ ��Q) ⊃ �(�(�P ⊃ �(�Q ⊃ �⊥)) ⊃ �(�P ⊃ ��⊥))
corresponding to (P ⊃ Q) ⊃ ((P ⊃ ¬Q) ⊃ ¬P ), or properly (P ⊃ Q) ⊃
((P ⊃ (Q ⊃ ⊥)) ⊃ (P ⊃ ⊥)).

3. ���P ⊃ �(�(�P ⊃ �⊥) ⊃ ��Q), corresponding to P ⊃ (¬P ⊃ Q),
or properly P ⊃ ((P ⊃ ⊥) ⊃ Q).
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As before, we leave this to the reader. Tableaus are easy for this purpose.
Now Theorem 4.4 extends to include intuitionistic negation.

Theorem 5.2. For a formula X of intuitionistic logic including ⊥, with ∼X
understood as X ⊃ ⊥, X is an intuitionistic theorem if and only if Xf is a
theorem of KX4.

This curious result says that proof, represented implicitly by the modal
operator of S4, can be replaced by a weaker notion of implicit evidence
without factivity, when trying to capture intuitionistic logic.

6. KX4 and Justification Logic

The first justification logic, LP, was introduced by Sergei Artemov, and
corresponds to the modal logic S4. A full discussion is not possible here—[4]
is a good general reference. The basic idea is that the necessitation operator
of S4 is replaced by explicit proof terms (today they are called justification
terms). These terms can be thought of as representatives of explicit reasons,
or proofs. Instead of �X one finds t:X, where t is a justification term. The
formula t:X can be read: X is so for reason t, or t is evidence for X. The logic
LP provides a kind of calculus for these terms. The key items connecting S4
and LP are these.

1. A forgetful functor is introduced, mapping each formula X of LP to a
formula X◦ of S4, by replacing each justification term by �. In effect,
justifications are forgotten but it is remembered that they exist.

2. If X is a theorem of LP then X◦ is a theorem of S4.

3. A normal realization of a modal formula is defined to be the result of
replacing each occurrence of � in the formula by a justification term,
which may be different for each occurrence of �. Negative occurrences of
� are replaced with distinct justification variables, while positive occur-
rences are replaced by justification terms that can be more complicated.
In effect, negative positions serve as input positions for justifications,
positive positions involve justifications that are calculated from these
inputs. Note that if Y is a normal realization of modal formula X, then
Y ◦ = X.

4. Every theorem of S4 has a normal realization that is a theorem of LP.

Items 2 and 4 say that S4 is embeds in LP, meaning that the forgetful functor
maps the set of theorems of LP onto the set of theorems of S4.
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Since the first justification logic, LP, more such logics have been created.
It is now known that the family of modal logics having justification logic
counterparts is infinite. In [7], and more fully in [8], I give semantic condi-
tions that are sufficient for when this happens. What are sometimes called
Geach logics meet these conditions; these are logics axiomatized over K us-
ing axiom schemes of the form ♦k�lX ⊃ �m♦nX. The logic KX4 is such a
logic, and these general results apply. The details are not reproduced here
as they are quite lengthy, but applying them gives us a justification logic we
will call JX4, serving as a justification counterpart of KX4 and connected
with it via a realization theorem, just as LP and S4 are connected. Here is
a formulation. The first four items in the following Definition are from LP;
the fifth is new to JX4.

Definition 6.1. (JX4 Justification Terms) The family of justification terms
is built up as follows.

1. There is a set of justification variables, x, y, . . . . Every justification
variable is a justification term.

2. There is a set of justification constants, a, b, . . . . Every justification
constant is a justification term.

3. There are binary operation symbols, + and ·. If u and v are justification
terms, so are (u + v) and (u · v).

4. There is a unary operation symbol, !. If t is a justification term, so is !t.

5. There is a binary function symbol, c. If t and u are justification terms,
so is (t c u).

Definition 6.2. (JX4 Formulas) Justification formulas of JX4 are built
up from propositional letters using propositional connectives ∧, ∨, ¬, ⊃
together with the additional formation rule: if t is a justification term and
X is a justification formula, then t:X is a justification formula.

Informally a justification term represents a reason why something is so;
t:X asserts that t is evidence for X. If justification term t has a complex
structure we may write [t] :X, using square brackets, as a visual aid. No
formal meaning should be associated with this other than the usual behavior
of parentheses.

Justification variables stand for arbitrary justification terms, and can be
substituted for under certain circumstances. Justification constants stand for
reasons that are not further analyzed—typically they are reasons for axioms.
The · operation corresponds to modus ponens. If X ⊃ Y is so for reason s
and X is so for reason t, then Y is so for reason s · t. (Note that reasons
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Table 3. JX4 axioms

Classical All tautologies (or enough of them)

· s:(X ⊃ Y ) ⊃ (t:X ⊃ [s · t]:Y )

+ s:X ⊃ [s+ t]:X and t:X ⊃ [s+ t]:X

! s:X ⊃!s:s:X

c s:t:X ⊃ [s c t]:X

are not unique—Y may be true for other reasons too.) The + operation is
a kind of weakening. If X is so for either reason s or reason t, then s + t
is also a reason for X. The ! operation is a justification checker operation.
If we have t:X then !t verifies this, and we have !t:t:X. Finally, c is a new
operation symbol—it is not part of LP. The idea is that a justification for a
justification for X can be combined into a simple justification for X. Thus
if we have t:u:X then we should also have [t c u]:X.

An axiom system is given in Table 3. As usual, what is given are axiom
schemes. The only rule is modus ponens.

As with all justification logics, JX4 has no necessitation rule. What takes
its place is a constant specification C. This is a set of formulas of the form
c:A where A is an axiom and c is a constant symbol. The idea is, axioms
are simply assumed and not analyzed further, and so we have constants
to justify them. Since classical logic can be axiomatized in many ways, the
classical clause in Table 3 is really somewhat ambiguous. We are really giving
a scheme for axiomatizations of JX4 rather than a specific one, so the use
of constants must be understood as a kind of parameter. All we assume
of a constant specification C here is that each axiom have a constant that
justifies it (axiomatically appropriate) and all instances of the same axiom
scheme have the same constant justification (schematic). We ignore most of
the details in this note.

Let C be a constant specification meeting our conditions. We write 	JX4(C)
X if there is a sequence of formulas of JX4 in which each is either an axiom
of JX4, a member of C, or follows from earlier formulas by modus ponens.

The following provable item is a replacement for the rule of necessitation,
and is standard for justification logics. When needed, we will simply cite
this fact (which has a constructive proof) rather than giving the details of
the justification term involved.

Lemma 6.3. (Internalization) If 	JX4(CS) X then for some justification term
t, 	JX4(CS) t:X. Further, this can be done so that t contains no justification
variables (and no justification function symbols except · and !, though this
is of lesser significance).
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Note: from here on we will suppress mention of constant specifications
and simply say that a formula X is provable in JX4, meaning 	JX4(CS) X
for some constant specification C meeting the axiomatically appropriate and
schematic conditions.

The central item that we draw from [8] is the following.

Theorem 6.4. (Embedding) The forgetful functor embeds JX4 into KX4. In
particular, each theorem of KX4 has a normal realization that is provable in
JX4.

Since positive intuitionistic logic embeds into KX4, and by Theorem 6.4
that embeds into JX4, we can understand positive intuitionistic logic as a
logic of justification, or evidence, which may be non-factual, uncertain, or
contradictory.

We conclude this discussion with a simple example of a normal realization
of a KX4 theorem into JX4. The KX4 formula is not the result of embedding
a theorem of intuitionistic logic into KX4 since these tend to be too com-
plicated to see easily what is going on, but the example does illustrate the
main features of JX4.

Example 6.5. �(�P ⊃ �Q) ⊃ (�P ⊃ �Q) is a theorem of KX4. It is also
a theorem of T, where a proof involves factivity. In KX4 we do not have
factivity and the proof is quite different. We begin with a sketch of this KX4
proof.

1. �(�P ⊃ �Q) ⊃ (��P ⊃ ��Q) K axiom
2. �P ⊃ ��P 4 axiom
3. �(�P ⊃ �Q) ⊃ (�P ⊃ ��Q) from 1 and 2
4. ��Q ⊃ �Q X axiom
5. �(�P ⊃ �Q) ⊃ (�P ⊃ �Q) from 3 and 4

Here is a realization in JX4. v1:(v2:P ⊃ v3:Q) ⊃ (v2:P ⊃ [(v1·!v2) c v3]:Q). In
it the vi are justification variables and no constants are used. And here is
a proof of this realization in JX4. It amounts to enhancing each line of the
KX4 proof above. Not every example works in this simple way, however.

1. v1:(v2:P ⊃ v3:Q) ⊃ (!v2:v2:P ⊃ [v1·!v2]:v3:Q) · axiom
2. v2:P ⊃!v2:v2:P ! axiom
3. v1:(v2:P ⊃ v3:Q) ⊃ (v2:P ⊃ [v1·!v2]:v3:Q) from 1 and 2
4. [v1·!v2]:v3:Q ⊃ [(v1·!v2) c v3]:Q c axiom
5. v1:(v2:P ⊃ v3:Q) ⊃ (v2:P ⊃ [(v1·!v2) c v3]:Q) from 3 and 4
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7. Adding Boolean Negation to BLE

We now add Nelson’s strong negation to positive intuitionistic logic to get
BLE, the Basic Logic of Evidence, equivalently N4. An axiomatization is
given in Table 1. We use ¬ for strong negation. Evidence that it is not
raining is, typically, not based on reasoning but on observation. We are
outdoors and we are not wet. ¬X is supposed to represent the existence of
direct evidence that X is not so.

Machinery for handling strong negation is, by now, quite standard, and
was stated at the beginning of Section 2. One engineers a disconnect between
positive and negative evidence—the motivation behind the Belnap/Dunn
logic FOUR. Formally, one can think of FOUR as a four-valued lattice, or
as two separate two-valued lattices put together. All this is, by now, quite
standard, and has already been applied to provide a semantics for strong
negation. We do not break any new ground here.

We still want to use the modal logic KX4 to model implicit evidence.
In Definition 4.2 we gave an embedding mapping a positive formula X to
a modal formula Xf , which we thought of as being in KX4. That is now
supplemented with a dual version. In addition to the mapping from X to
Xf , we now specify a mapping taking X to Xa, which we can think of
as implicitly representing direct evidence against. In order to admit incom-
pleteness or inconsistency of evidence we make use of a standard device.
For each propositional letter P we assume there is a dual letter, written P ,
representing the opposite of P . We assume overlined propositional letters
are not part of the original language, and if P and Q are distinct, so are P
and Q. Here are the negative embedding conditions.

Definition 7.1. (Implicit Evidence Against) P is a propositional letter;
X and Y are arbitrary formulas of positive intuitionistic logic plus strong
negation.

(X ∧ Y )a = �(Xa ∨ Y a)

(X ∨ Y )a = �(Xa ∧ Y a)

(X ⊃ Y )a = �(Xf ∧ Y a)

(¬X)a = Xf

(¬X)f = Xa

P a = �P
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Example 7.2. Mapping a formula involving strong negation into KX4.

(P ⊃ ¬(Q ⊃ ¬(R ⊃ ¬S)))f = �(P f ⊃ (¬(Q ⊃ ¬(R ⊃ ¬S)))f )

= �(�P ⊃ (Q ⊃ ¬(R ⊃ ¬S))a)

= �(�P ⊃ �(Qf ∧ (¬(R ⊃ ¬S))a))

= �(�P ⊃ (�(�Q ∧ (R ⊃ ¬S)f )))

= �(�P ⊃ (�(�Q ∧ �(Rf ⊃ (¬S)f ))))

= �(�P ⊃ (�(�Q ∧ �(�R ⊃ Sa))))

= �(�P ⊃ (�(�Q ∧ �(�R ⊃ �S))))

While it is natural to have both positive and negative evidence embed-
dings, it suggests we may have double the amount of work to do in under-
standing the consequences of our explicit evidence approach. Fortunately,
the negative embedding can be eliminated entirely by first reducing formu-
las to negation normal forms. This, too, is standard material. The following
mapping is defined for formulas allowing strong negation, but not containing
overlined propositional letters.

Definition 7.3. (Negation Normal Form) The negation normal form of X,
denoted XN , is given by the following.

PN = P

(¬P )N = P

(X ∧ Y )N = XN ∧ Y N

(¬(X ∧ Y ))N = (¬X)N ∨ (¬Y )N

(X ∨ Y )N = XN ∨ Y N

(¬(X ∨ Y ))N = (¬X)N ∧ (¬Y )N

(X ⊃ Y )N = XN ⊃ Y N

(¬(X ⊃ Y ))N = XN ∧ (¬Y )N

(¬¬X)N = XN

Example 7.4. Consider the formula from Example 7.2 again.

(P ⊃ ¬(Q ⊃ ¬(R ⊃ ¬S)))N = PN ⊃ (¬(Q ⊃ ¬(R ⊃ ¬S)))N

= P ⊃ (QN ∧ (¬¬(R ⊃ ¬S))N )

= P ⊃ (Q ∧ (R ⊃ ¬S)N )
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= P ⊃ (Q ∧ (RN ⊃ (¬S)N ))

= P ⊃ (Q ∧ (R ⊃ S))

Having computed negation normal form, we now apply the evidence-for
mapping, understanding overlined propositional letters simply as a peculiar
kind of propositional letter. It is easy to check that (P ⊃ (Q∧ (R ⊃ S)))f =
�(�P ⊃ �(�Q ∧ �(�R ⊃ �S))), which was the outcome of Example 7.2.

This Example generalizes to the following, which has an easy proof by
induction on degree. We omit the proof.

Theorem 7.5. For every formula X of positive intuitionistic logic plus
strong negation, but not allowing overlined propositional letters, XN con-
tains no strong negation occurrences, and Xf = (XN )f .

Now we immediately have notions of implicit, and of explicit evidence
available to us for BLE, as follows. Suppose X is a formula of BLE, built
up using ∧, ∨, ⊃ and ¬. That is, we have Nelson’s strong negation but
not intuitionistic negation. Also assume X does not contain any overlined
propositional letters. It is a standard result that X is a theorem of BLE (or
N4) iff XN is a theorem of intuitionistic logic. By our earlier results, XN is
an intuitionistic theorem iff (XN )f is a theorem of KX4. But Xf = (XN )f .
We can think of the modal operator of KX4 as asserting the existence of
implicit evidence for a proposition so, summarizing, we have the following.

Theorem 7.6. (Implicit Evidence) Let X be a formula constructed using ∧,
∨, ⊃ and ¬ (strong negation) but no overlined propositional letters. X is a
theorem of BLE iff Xf is a theorem of KX4.

This can be carried further. Since Xf does not contain negation our ear-
lier work applies, Theorem 6.4, and we have our version of explicit evidence
for BLE.

Theorem 7.7. (Explicit Evidence) Let X be as in Theorem 7.6. Xf is a
theorem of KX4 iff some normal realization of Xf is a theorem of JX4.

8. Illustrative Examples

We look at two theorems of BLE, providing implicit (in KX4) and explicit
(in JX4) evidence analysis for both. It will be seen that an explicit analysis
provides significantly more information than the implicit version.
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Example 8.1. ¬(P ⊃ Q) ⊃ (Q ⊃ P ) is provable in BLE. It embeds into
KX4 as follows.

[¬(P ⊃ Q) ⊃ (Q ⊃ P )]f = �[(¬(P ⊃ Q))f ⊃ (Q ⊃ P )f ]

= �[(P ⊃ Q)a ⊃ (Q ⊃ P )f ]

= �[�(P f ∧ Qa) ⊃ �(Qf ⊃ P f )]

= �[�(�P ∧ �Q) ⊃ �(�Q ⊃ �P )]

Then our implicit evidence analysis of the BLE theorem ¬(P ⊃ Q) ⊃ (Q ⊃
P ) is the KX4 theorem �[�(�P ∧�Q) ⊃ �(�Q ⊃ �P )], where � represents
evidence that has not been made explicit. A formula like this is best read,
not from left to right, but in a build-up fashion.

�P ∧ �Q �Q ⊃ �P
there is evidence for P evidence for Q entails
and evidence against Q there is evidence for P

�(�P ∧ �Q) �(�Q ⊃ �P )
there is evidence for the there is evidence for the
situation described above situation described above

�[�(�P ∧ �Q) ⊃ �(�Q ⊃ �P )]
there is evidence that the

left item above entails the right item

Of course none of this tells us anything about what kind of evidence we may
have. We next turn implicit evidence into explicit evidence by realization.
A normal realization is the following, which is provable in JX4.

t2:[v4:(v1:P ∧ v2:Q) ⊃ (t1 · v4):(v3:Q ⊃ v1:P )]

Each vi is a justification variable. Justification terms t1 and t2 are accounted
for as follows. The formula (v1 :P ∧ v2 :Q) ⊃ (v3 :Q ⊃ v1 :P ) is provable in
JX4. The Internalization Lemma 6.3 guarantees the existence of a term t1
such that t1:[(v1:P ∧ v2:Q) ⊃ (v3:Q ⊃ v1:P )] is provable in JX4. Likewise the
formula v4:(v1:P ∧ v2:Q) ⊃ (t1 · v4):(v3:Q ⊃ v1:P ) is provable in JX4, and t2
internalizes a proof of it.

In the justification formula, as is required of a normal realization, justifi-
cation variables appear in negative positions. We have put these occurrences
in boldface to make it easy to see which they are.

t2:[v4:(v1:P ∧ v2:Q) ⊃ (t1 · v4):(v3:Q ⊃ v1:P )]

Note that v2 and v3 have only these single negative occurrences. After their
introduction, they are never used again, unlike v1 which occurs elsewhere,
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and v4 which occurs as part of t1 ·v4. The variables v2 and v3 are introduced,
but never used. Their values, reasons for Q and for Q, don’t matter. Clearly
explicit evidence can give us information that is hidden when implicit evi-
dence is used.

Example 8.2. ¬(P ∧¬P ) ⊃ ((¬P ⊃ P ) ⊃ P ) is provable in BLE. It embeds
into KX4 as the following provable formula.

�{�(�P ∨ �P ) ⊃ �(�(�P ⊃ �P ) ⊃ �P )}
A realization of this, provable in JX4, is the following.

t4:{v5:(v2:P ∨ v1:P ) ⊃ [t3 · v5]:(v4:(v2:P ⊃ v3:P ) ⊃
[((t2·!v2 · v4) c v3) + (t1·!v1 · v4) c v1)]:P )}

Here the Internalization Lemma provides us with the following.

t1 justifying v1:P ⊃ ((v2:P ⊃ v3:P ) ⊃ v1:P )
t2 justifying v2:P ⊃ ((v2:P ⊃ v3:P ) ⊃ v3:P )
t3 justifying (v2:P ∨ v1:P ) ⊃ (v4:(v2:P ⊃ v3:P ) ⊃

[((t2·!v2 · v4) c v3) + (t1·!v1 · v4) c v1)]:P )
t4 justifying v5:(v2:P ∨ v1:P ) ⊃

[t3 · v5]:(v4:(v2:P ⊃ v3:P ) ⊃
[((t2·!v2 · v4) c v3) + (t1·!v1 · v4) c v1)]:P )

As in the previous example, we display the justification formula with
variables in negative positions in bold face.

t4:{v5:(v2:P ∨ v1:P ) ⊃
[t3 · v5]:(v4:(v2:P ⊃ v3:P ) ⊃

[((t2·!v2 · v4) c v3) + (t1·!v1 · v4) c v1)]:P )}
Quite unlike the previous example, now all these variables have additional
occurrences elsewhere. They are all ‘used.’ There is no superfluous evidence
involved.

9. Conclusion

As promised, we have given a concrete meaning to the motivating idea be-
hind BLE, making evidence usage explicit. There is, however, work that
remains to be done. We briefly list three main items, and encourage others
to think about them.



Paraconsistent Logic, Evidence, and Justification 1165

1. Carnielli and Rodrigues build a second logic on top of BLE, which they
call LETJ. In it there is an operator that, roughly speaking, identifies a
formula as having classical behavior. For example, ¬(P ∧¬P ) ⊃ ((¬P ⊃
P ) ⊃ P ) is a theorem of BLE, so if we could express that P behaved
classically, presumably that expression would imply ((¬P ⊃ P ) ⊃ P ).
An evidence based investigation of LETJ is still missing. One suspects
that there is a natural way of doing this, but it is an open problem.

2. There is a Realization Theorem connecting KX4 and JX4, but, it has a
non-constructive proof [8]. For some of the Geach logics there is a con-
structive proof of Realization available. The first example, connecting S4
and LP, was constructive, for example. Constructive Realization proofs
have, so far, made use of cut free proof systems. This has worked for cut
free sequent calculi, tableaus, hypersequent calculi, nested sequents, and
prefixed tableaus. It is not known yet whether cut free proof systems for
KX4 (there are some) will work for this.

3. First-Degree Entailment (FDE) [1], is a logic of fundamental importance,
and is the subject of the special issue in which the present paper ap-
pears. Quoting from [11], “It is known that Belnap and Dunn’s four-
valued logic and the {∧, ∨, ¬}-fragment of N4 are the same logic”. Then
the work in the present paper provides us with an explicit evidence un-
derstanding of FDE. But there is also a very natural semantics for FDE
[5], in which truth and falsity (each understood essentially classically)
are decoupled, and a formula can have one of four truth values: only
true, only false, both true and false, and neither true nor false. It is
plausible that a special version of justification could be introduced, con-
sisting of a pair of justifications in the usual sense. One member of the
pair would provide evidence for a proposition and the other, evidence
against. The justifications making up the pair would, most likely, be
taken from a justification logic counterpart of S5, which corresponds to
classical logic under Gödel’s mapping in the same way that S4 corre-
sponds to intuitionistic logic. If this can be done, the result may provide
some interesting insights into FDE.
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