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Abstract. A structural theorem for Kleene algebras is proved, showing that an element

of a Kleene algebra can be looked upon as an ordered pair of sets, and that negation

with the Kleene property (called the ‘Kleene negation’) is describable by the set-theoretic

complement. The propositional logic LK of Kleene algebras is shown to be sound and

complete with respect to a 3-valued and a rough set semantics. It is also established that

Kleene negation can be considered as a modal operator, due to a perp semantics of LK .

Moreover, another representation of Kleene algebras is obtained in the class of complex

algebras of compatibility frames. One concludes with the observation that LK can be

imparted semantics from different perspectives.
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1. Introduction

Algebraists, since the beginning of work on lattice theory, have been keenly
interested in representing lattice-based algebras as algebras based on set lat-
tices. Some such well-known representations are the Birkhoff representation
for finite lattices, Stone representation for Boolean algebras, or Priestley
representation for distributive lattices. It is also well-known that such rep-
resentation theorems for classes of lattice-based algebras play a key role in
studying set-based semantics of logics ‘corresponding’ to the classes. In this
paper, we pursue this line of investigation, and focus on Kleene algebras
and their representations. We then move to the corresponding propositional
logic, denoted LK , and define a 3-valued, rough set and perp semantics
for it. Through the work here, one is able to establish that LK and the
3-element Kleene algebra 3 (cf. Figure 1, Section 2) play the same funda-
mental role among the Kleene algebras that classical propositional logic and
the 2-element Boolean algebra 2 play among the Boolean algebras.
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Kleene algebras were introduced by Kalman [32] and have been studied
under different names such as normal i-lattices, Kleene lattices and normal
quasi-Boolean algebras, e.g. cf. [12,13]. Let us define these algebras.

Definition 1. An algebra K = (K, ∨,∧,∼, 0, 1) is called a Kleene algebra
if the following hold.

1. K = (K, ∨,∧,∼, 0, 1) is a De Morgan algebra, i.e.,

(i) (K, ∨,∧, 0, 1) is a bounded distributive lattice, and for all a, b ∈ K,
(ii) ∼ (a ∧ b) =∼ a ∨ ∼ b (De Morgan property),
(iii) ∼∼ a = a (involution).

2. a ∧ ∼ a ≤ b ∨ ∼ b, for all a, b ∈ K (Kleene property).

There is a lot of work on the algebraic [1,3,10,12,13,32] and logical [16,
23,28,29] aspects of Kleene algebras. The structures have also been studied
as reducts of algebras such as 3-valued �Lukasiewicz–Moisil (LM) algebras
or MV -algebras, e.g. [1,10]. Our interest lies in obtaining a representation
result for the algebras. For such an investigation, it would be natural to first
turn to the known representation results for De Morgan algebras, as Kleene
algebras are based on them. One finds the following, in terms of sets.

− Rasiowa [40] represented De Morgan algebras as set-based De Morgan
algebras, where De Morgan negation is defined by an involution function.

− In Dunn’s [19,23] representation, each element of a De Morgan algebra
can be identified with an ordered pair of sets, where De Morgan negation
is defined as reversing the order in the pair.

On the other hand, we also find that there are algebras based on Kleene
algebras (as mentioned above) which can be represented by ordered pairs
of sets, and where negations are described by set-theoretic complements.
Consider the set B[2] := {(a, b) : a ≤ b, a, b ∈ B}, for any partially ordered
set (B,≤).

− (Moisil (cf. [14])) For each 3-valued LM algebra A, there exists a Boolean
algebra B such that A can be embedded into B[2].

− (Katriňák [33], cf. [10]) Every regular double Stone algebra can be em-
bedded into B[2] for some Boolean algebra B.

Rough set theory [37,38] also provides a way to represent algebras as pairs
of sets. In rough set terminology (that will be elaborated on in Section 4), we
have the following results for algebraic structures based on Kleene algebras.
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− (Comer [17]) Every regular double Stone algebra is isomorphic to an
algebra of rough sets in a Pawlak approximation space.

− (Järvinen [31]) Every Nelson algebra defined over an algebraic lattice is
isomorphic to an algebra of rough sets in an approximation space based
on a quasi order.

It must be mentioned here that there are similar representation results in
rough set theory for other algebraic structures as well, e.g. for the class
of rough algebras [5], or finite semi-simple Nelson algebras [36]. There also
have been studies related to rough sets on other algebras that have Kleene
algebras as reducts, for instance, NM -algebras [7] and BZNM -algebras [43].

In this article, the following representation results are established for
Kleene algebras.

Theorem 1. (i) Given a Kleene algebra K, there exists a Boolean algebra
BK such that K can be embedded into BK[2].

(ii) Every Kleene algebra is isomorphic to an algebra of rough sets in a
Pawlak approximation space.

The De Morgan negation operator with the Kleene property (cf. Defini-
tion 1), is referred to as the Kleene negation. In literature, one finds various
generalizations of the classical (Boolean) negation, including the De Morgan
and Kleene negations. It is natural to ask the following question: do these
generalized negations arise from (or can be described by) the Boolean nega-
tion? The representation result above (Theorem 1) for Kleene algebras shows
that Kleene algebras always arise from Boolean algebras, thus answering the
above question in the affirmative for the Kleene negation.

Representation of lattice-based algebras as algebras in which objects are
pairs of sets, has proved to be of significance in the study of semantics
for the logic corresponding to the class of algebras. For instance, such a
representation of De Morgan algebras leads to Dunn’s well-known 4-valued
semantics of De Morgan logic. In a similar way, the above representation
results for Kleene algebras help us in the study of semantics for the logic
LK corresponding to the class of Kleene algebras. LK is the De Morgan
consequence system [23] with the negation operator satisfying the Kleene
axiom: α ∧ ∼ α � β ∨ ∼ β. We show that LK is sound and complete with
respect to a 3-valued as well as a rough set semantics, making use of the
representation results.

Furthermore, it is shown that the logic LK can be imparted a perp se-
mantics [25] as well. Perp semantics provides a framework to study various
negations from the points of view of logic as well as algebra. In particular,
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De Morgan logic is sound and complete with respect to a class of perp (com-
patibility) frames, whence the algebraic semantics, 4-valued semantics and
perp semantics for De Morgan logic become equivalent. In this case, LK is
sound and complete with respect to a class of compatibility frames that we
call Kleene frames. Thus we obtain that the algebraic, 3-valued, rough set
and perp semantics for LK are all equivalent. Finally, one obtains another
representation of Kleene algebras, in the class of complex algebras of Kleene
frames.

The paper is organized as follows. In Section 2, we prove (i) of Theorem
1. The logic LK and its 3-valued semantics are introduced in Section 3, and
soundness and completeness results are proved. In Section 4, we establish
a rough set representation of Kleene algebras, that is, (ii) of Theorem 1,
relate rough sets with the 3-valued semantics considered in this work, and
then present completeness of LK with respect to the rough set semantics. In
Section 5, the perp semantics for LK is discussed, and the Kleene property
in compatibility frames is investigated. Section 5 includes the observations
that all the semantics defined for LK are equivalent (Theorem 19), and that
Kleene algebras are also representable in the class of complex algebras of
Kleene frames (Theorem 20). We conclude the article in Section 6.

The lattice theoretic results used in this article are taken from [18]. We
use the convention of representing a set {x, y, z, . . .} by xyz . . ..

2. Boolean Representation of Kleene Algebras

Construction of new types of algebras from a given algebra has been of prime
interest for algebraists, especially in the context of algebraic logic. Some well
known examples of such construction are:

− Nelson algebra from a given Heyting algebra (Vakarelov [45], Fidel [27]).

− Kleene algebras from distributive lattices (Kalman [32]).

− 3-Valued �Lukasiewicz–Moisil (LM) algebra from a given Boolean algebra
(Moisil, cf. [14]).

− Regular double Stone algebra from a Boolean algebra (Katriňák [33], cf.
[10]).

Our work is based on Moisil’s construction of a 3-valued LM algebra (which
is, in particular, a Kleene algebra). Let us present this construction.
Let B := (B,∨,∧,c , 0, 1) be a Boolean algebra. Consider again, the set

B[2] := {(a, b) : a ≤ b, a, b ∈ B}.
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Proposition 1. [10] B[2] := (B[2],∨,∧,∼, (0, 0), (1, 1)) is a Kleene algebra,
where, for (a, b), (c, d) ∈ B[2],

(a, b) ∨ (c, d) := (a ∨ c, b ∨ d),

(a, b) ∧ (c, d) := (a ∧ c, b ∧ d),

∼ (a, b) := (bc, ac).

Proof. Let us only demonstrate the Kleene property for ∼.

(a, b) ∧ ∼ (a, b) = (a, b) ∧ (bc, ac) = (a ∧ bc, b ∧ ac) = (0, b ∧ ac).

(c, d) ∨ ∼ (c, d) = (c, d) ∨ (dc, cc) = (c ∨ dc, d ∨ cc) = (c ∨ dc, 1).

Hence (a, b) ∧ ∼ (a, b) ≤ (c, d) ∨ ∼ (c, d).

It may be noted that for a Boolean algebra B, B[2] is isomorphic to the
Kleene algebra formed by the set B(0) := {(a, b) ∈ B×B : a∧b = 0}. In fact,
B(0) forms a Kleene algebra if B is a distributive lattice with least element
0, and, even more generally, for any element a in a distributive lattice B,
the set B(a) := {(x, y) ∈ B × B : x ∧ y ≤ a ≤ x ∨ y} forms a Kleene algebra
[32]. Pagliani works with similar ordered pairs (X,Y ) of certain sets (i.e.
satisfying X ∩ Y = ∅, and certain other properties) in [35], and also later in
[36] where he obtains a representation of finite semi-simple Nelson algebras
in terms of rough sets.

In this section, we prove the representation result stated in Theorem 1(i).
Using Stone’s representation, each Boolean algebra is embeddable in a power
set algebra, so that B[2], for any Boolean algebra B, is embeddable in the
Kleene algebra formed by P(U)[2] for some set U . Thus, because of Theorem
1(i), one can say that each element of a Kleene algebra can also be looked
upon as a pair of sets.

Now observe that we already have the following well-known represen-
tation theorem, due to the fact that 1, 2 and 3 (Figure 1) are the only
subdirectly irreducible (Kleene) algebras in the variety of Kleene algebras.

Theorem 2. [3] Let K be a Kleene algebra. There exists a (index) set I such
that K can be embedded into 3I .

So, to prove Theorem 1(i), we establish the following.

Theorem 3. For the Kleene algebra 3I correponding to any index set I,
there exists a Boolean algebra B3I such that 3I ∼= (B3I)[2].
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a =∼ a1 := 2 :=

0 = ∼ 1

1 = ∼ 0

3 :=

0 = ∼ 1

a =∼ a

1 = ∼ 0

Figure 1. Subdirectly irreducible Kleene algebras

2.1. Completely Join Irreducible Elements of 3I and (2I)[2]

Identifying join irreducible elements in lattices can be useful. In [29], for
instance, these elements are used to obtain normal forms in the logics cor-
responding to De Morgan, Kleene and Boolean algebras. Completely join
irreducible elements also play a fundamental role in establishing isomor-
phisms between lattice-based algebras, e.g. cf. [31]. We observe the same in
the following.

Let us put the basic definitions and notations in place.

Definition 2. Let L := (L,∨,∧, 0, 1) be a complete lattice.
(i) An element a ∈ L is said to be completely join irreducible, if a =

∨
S

implies that a ∈ S, for every subset S of L.

Notation 1. Let JL denote the set of all completely join irreducible
elements of L, and J(x) := {a ∈ JL : a ≤ x}, for any x ∈ L.

(ii) A set S is said to be join dense in L, provided for every element a ∈ L,
there is a subset S′ of S such that a =

∨
S′.

For a given index set I, let us characterize the sets of completely join
irreducible elements of the Kleene algebras 3I and (2I)[2], and prove their
join density in the respective lattices.
Let i, k ∈ I. Denote by fx

i , x ∈ {a, 1}, the following element in 3I .

fx
i (k) :=

{
x if k = i
0 otherwise

Proposition 2. The set of completely join irreducible elements of 3I is
given by:

J3I = {fa
i , f1

i : i ∈ I}.
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fa
i

f1
i

fa
j

f1
j

fa
k

f1
k

Figure 2. Hasse diagram of J3I

Moreover, J3I is join dense in 3I .

Proof. Let fa
i = ∨k∈Kfk, K ⊆ I. This implies that fa

i (j) = ∨k∈Kfk(j),
for each j ∈ I. If j �= i, by the definition of fa

i , fa
i (j) = 0. So ∨k∈Kfk(j) = 0,

whence fk(j) = 0, for each k ∈ K. If j = i, then fa
i (j) = a, which means

∨k∈Kfk(j) = a. But as a is join irreducible in 3, there exists a k′ ∈ K such
that fk′(j) = a. Hence fa

i = fk′ . A similar argument works for f1
i .

Now let f ∈ 3I . Take K := {j ∈ I : f(j) �= 0}, and for each j ∈ K, define
the element fj of 3I as

fj(k) :=
{

f(j) if k = j
0 otherwise

Clearly, we have f = ∨j∈Kfj , where fj ∈ J3I .

Let us note that for each i, j ∈ I, fa
i ≤ f1

i , and if i �= j, neither fx
i ≤ fy

j nor
fx
j ≤ fy

i holds for x, y ∈ {a, 1}. The order structure of J3I can be visualized
by Figure 2.

Example 1. Let us consider the Kleene algebra 33. The set J33 of completely
join irreducible elements of 33 is then given by

J33 = {fa
1 := (a, 0, 0), f1

1 := (1, 0, 0), fa
2 := (0, a, 0),

f1
2 := (0, 1, 0), fa

3 := (0, 0, a), f1
3 := (0, 0, 1)}.

Let f := (0, a, 1) ∈ 33. Then f = f2 ∨ f3, where f2 = (0, a, 0) and f3 =
(0, 0, 1).

As any complete atomic Boolean algebra is isomorphic to 2I for some index
set I, henceforth, we shall identify any complete atomic Boolean algebra B
with 2I . Now, for any such algebra, B[2] is a Kleene algebra (cf. Proposition
1); in fact, it is a completely distributive Kleene algebra.

Proposition 3. Let B be a complete atomic Boolean algebra. The set of
completely join irreducible elements of B[2] is given by

JB[2] = {(0, a), (a, a) : a ∈ JB}.
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(0, ai)

(ai, ai)

(0, aj)

(aj , aj)

(0, ak)

(ak, ak)

Figure 3. Hasse diagram of JB[2]

Moreover, JB[2] is join dense in B[2].

Proof. Let a ∈ JB and let (a, a) = ∨k∈K(xk, yk), K ⊆ I, where (xk, yk) ∈
B[2] for each k ∈ K. (a, a) = ∨k∈K(xk, yk) implies a = ∨kxk. As a ∈ JB,
a = xk′ for some k′ ∈ K. We already have xk′ ≤ yk′ ≤ a, hence combining
with a = xk′ , we get (a, a) = (xk′ , yk′). With similar arguments one can
show that for each a ∈ JB, (0, a) is completely join irreducible.

Now, let (x, y) ∈ B[2]. Consider the sets J(x), J(y) (cf. Notation 1,
Definition 2). Then (x, y) = ∨a∈J(x)(a, a) ∨ ∨b∈J(y)(0, b). Hence JB[2] is
join dense in B[2].

For a, b ∈ JB, (0, a) ≤ (a, a), and if a �= b, x, y ∈ {a, b} with x �= y,
neither (0, x) ≤ (0, y), (y, y) nor (x, x) ≤ (0, y), (y, y) holds. Then, similar
to the case of 3I , the completely join irreducible elements of B[2] can be
visualized by Figure 3.

Example 2. Consider the Boolean algebra 4 of four elements with atoms
a and b. The set of completely join irreducible elements of 4[2] is given by
J4[2] = {(0, a), (a, a), (0, b), (b, b)}.

Let (a, 1) ∈ 4[2]. Then J(a) = {a} and J(1) = {a, b}. Hence (a, 1) =
(a, a) ∨ (0, a) ∨ (0, b).

2.2. Structural Theorem for Kleene Algebras

Let us first present the basic lattice-theoretic definitions and results that
will be required to arrive at the proof of Theorem 3.

Definition 3.

1. (a) A complete lattice of sets is a family F such that
⋃ H and

⋂ H
belong to F for any H ⊆ F .

2. Let L be a complete lattice.
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(a) L is said to be algebraic if any element x ∈ L is the join of a set of
compact elements of L.

(b) L is said to satisfy the Join-Infinite Distributive Law, if for any
subset {yj}j∈J of L and any x ∈ L,

(JID) x ∧
∨

j∈J

yj =
∨

j∈J

x ∧ yj .

Theorem 4. [18] Let L be a lattice. The following are equivalent.

(i) L is complete, satisfies (JID) and the set of completely join irreducible
elements is join dense in L.

(ii) L is completely distributive and algebraic.

It can easily be seen that both the lattices 3I and (2I)[2] are complete and
satisfy (JID). We have already observed from Section 2.1 that the sets of
completely join irreducible elements of 3I and (2I)[2] are join dense in the
respective lattices. So Theorem 4(i) holds for 3I and (2I)[2], and therefore,
3I and (2I)[2] are completely distributive and algebraic lattices.

For the remaining study, let us fix an index set I. Now we can write
J3I = {fa

i , f1
i : i ∈ I} and J(2I)[2] = {(0, g1i ), (g

1
i , g

1
i ) : i ∈ I}, where g1i ’s are

the atoms or completely join irreducible elements of the Boolean algebra 2I ,
defined as f1

i with domain restricted to 2. In other words,

g1i (k) :=
{

1 if k = i
0 otherwise

Theorem 5. The sets of completely join irreducible elements of 3I and
(2I)[2] are order isomorphic.

Proof. We define the map φ : J3I → J(2I)[2] as follows. For i ∈ I,

φ(fa
i ) := (0, g1i ),

φ(f1
i ) := (g1i , g

1
i ).

One can show that φ is an order isomorphism due to the following.

− fx
i ≤ fy

j if and only if i = j and x, y = a or x, y = 1, or x = a, y = 1. In
any case, by definition of φ, φ(fx

i ) ≤ φ(fy
j ).

− Let φ(fx
i ) ≤ φ(fy

j ) and assume φ(fx
i ) = (g1k, g

1
l ) and φ(fy

j ) = (g1m, g1n).
But then again: k = l = m = n or g1k = g1m = 0, l = n or g1k = 0, l =
m = n. Again, following the definition of φ, we have fx

i ≤ fy
j .

− If (0, g1i ) ∈ J(2I)[2] , then φ(fa
i ) = (0, g1i ). Similarly for (g1i , g

1
i ). Hence φ

is onto.
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Lemma 1. [8] Let L and K be two completely distributive lattices. Further,
let JL and JK be join dense in L and K respectively. Let φ : JL → JK be
an order isomorphism. Then the extension map Φ : L → K given by

Φ(x) :=
∨

(φ(J(x))) (where J(x) := {a ∈ JL : a ≤ x}), x ∈ L,

is a lattice isomorphism.

Using Theorem 5 and Lemma 1, we have

Theorem 6. The algebras 3I and (2I)[2] are lattice isomorphic.

In order to obtain Theorem 3, one would like to extend the above lattice
isomorphism to a Kleene isomorphism. We use the technique of Järvinen in
[31]. Let us present the preliminaries.

Let K := (K, ∨,∧,∼, 0, 1) be a completely distributive De Morgan alge-
bra. Define for any j ∈ JK ,

j∗ :=
∧

{x ∈ K : x �∼ j}.

Then j∗ ∈ JK . For complete details on j∗, one may refer to [31]. Further,
it is shown that Lemma 1 can be extended to De Morgan algebras defined
over algebraic lattices.

Theorem 7. Let L := (L,∨,∧,∼, 0, 1) and K := (K, ∨,∧,∼, 0, 1) be two De
Morgan algebras defined on algebraic lattices. If φ : JL → JK is an order
isomorphism such that

φ(j∗) = φ(j)∗,

for all j ∈ JL, then Φ is an isomorphism between the algebras L and K.

Now, let fa
i ∈ J3I . By definition, (fa

i )∗ =
∧{f ∈ 3I : f �∼ (fa

i )}, where
for each i ∈ I,

∼ (fa
i )(k) =

{
a if k = i
1 otherwise

Clearly, we have f1
i �∼ (fa

i ). Now let f �∼ (fa
i ). Then what does f look

like? If k �= i, f(k) ≤∼ (fa
i )(k) = 1. So, for f �∼ (fa

i ), f(i) has to be
1 (otherwise f(i) = 0 or a will lead to f ≤∼ (fa

i )). Hence, f1
i ≤ f and

(fa
i )∗ = f1

i .
Similarly, one can easily show that (f1

i )∗ = fa
i .

On the other hand, let us consider (0, g1i ) ∈ J(2I)[2] . Then, (0, g1i )
∗ =

∧{(g, g′) ∈ (2I)[2] : (g, g′) �∼ (0, g1i )}. By definition of ∼, we have ∼
(0, g1i ) = ((g1i )

c, 0c) = ((g1i )
c, 1). Observe that (g1i , g

1
i ) � ((g1i )

c, 1), as, g1i �
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(g1i )
c is true in a Boolean algebra. Now, let (g, g′) ∈ J(2I)[2] be such that

(g, g′) �∼ (0, g1i ) = ((g1i )
c, 1). But we have g′ ≤ 1, so for (g, g′) �∼ (0, g1i )

to hold, we must have g � (g1i )
c. g1i is an atom of 2I and g � (g1i )

c imply
g1i ≤ g. Hence (g1i , g

1
i ) ≤ (g, g′), and we get (0, g1i )

∗ = (g1i , g
1
i ). Similarly, we

have (g1i , g
1
i )

∗ = (0, g1i ). Let us summarize these observations in the following
lemma.

Lemma 2. The completely distributive De Morgan algebra 3I has the fol-
lowing properties. For each i ∈ I,

1. (fa
i )∗ = f1

i , (0, g1i )
∗ = (g1i , g

1
i ).

2. (f1
i )∗ = fa

i , (g1i , g
1
i )

∗ = (0, g1i ).

We return to Theorem 3.

Proof of Theorem 3. Let the Kleene algebra 3I be given. Consider 2I

as a Boolean subalgebra of 3I . Using the definition of φ (cf. Theorem 5) and
its extension (cf. Lemma 1), and Lemma 2 we have, for each i ∈ I,

φ((fa
i )∗) = φ(f1

i ) = (g1i , g
1
i ) = φ(fa

i )∗,

φ((f1
i )∗) = φ(fa

i ) = (0, g1i ) = φ(f1
i )∗.

By Theorem 6, φ is an order isomorphism between J3I and J(2I)[2] . Hence us-
ing Theorem 7, Φ is an isomorphism between the De Morgan algebras 3I and
(2I)[2]. As both the algebras are Kleene algebras which are also equational
algebras defined over De Morgan algebras, the De Morgan isomorphism Φ
extends to Kleene isomorphism.

Let us illustrate the above theorem through examples.

Example 3. Consider the Kleene algebra 3 := {0, a, 1}. Then J3 = {a, 1}.
For 2 := {0, 1}, 2[2] = {(0, 0), (0, 1), (1, 1)} and J2[2] = {(0, 1), (1, 1)}. Fur-
ther, a∗ = 1, 1∗ = a and (0, 1)∗ = (1, 1) and (1, 1)∗ = (0, 1).
Then φ : J3 → J2[2] is defined as

φ(a) := (0, 1),

φ(1) := (1, 1).

Hence the extension map Φ : 3 → 2[2] is given as

Φ(a) := (0, 1),

Φ(1) := (1, 1),

Φ(0) := (0, 0).

The diagrammatic illustration of this example is given in Figure 4.
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0 = ∼ 1

a =∼ a

1 = ∼ 0

3 := 2 :=

0 = ∼ 1

1 = ∼ 0

2[2] :=

(0,0) = ∼ (1,1)

(0,1) = ∼ (0,1)

(1,1) = ∼ (0,0)

Figure 4. 3 ∼= 2[2]

Example 4. Let us consider the Kleene algebra 3 × 3.

3 × 3 := {(0, 0), (0, a), (0, 1), (a, 1), (1, 1), (a, 0), (1, 0), (1, a), (a, a)}.

J3×3 = {(0, a), (0, 1), (a, 0), (1, 0)} and

(0, a)∗ = (0, 1), (0, 1)∗ = (0, a), (a, 0)∗ = (1, 0), (1, 0)∗ = (a, 0).

Take the Boolean subalgebra 2×2 := {(0, 0), (0, 1), (1, 0), (1, 1)} of 3×3. For
convenience, let us change the notations. We represent the set 2× 2 and its
elements as 22 = {0, x, y, 1}, where (0, 0) is replaced by 0, (0, 1) is replaced
by x, (1, 0) is replaced by y, and (1, 1) is replaced by 1. Then

(22)[2] = {(0, 0), (0, x), (0, 1), (0, y), (x, x), (x, 1), (y, 1), (y, y), (1, 1)}, and

J(22)[2] = {(0, x), (0, y), (x, x), (y, y)}.

Further, (0, x)∗ = (x, x), (x, x)∗ = (0, x) and (0, y)∗ = (y, y), (y, y)∗ = (0, y).
The diagrammatic illustration of the isomorphism between 3× 3 and (22)[2]

is given in Figure 5.

3. The Logic LK for Kleene Algebras and a 3-Valued Semantics

As mentioned earlier, Moisil in 1941 (cf. [14]) proved that B[2] forms a
3-valued LM algebra. So, while discussing the logic corresponding to the
structures B[2], one is naturally led to 3-valued �Lukasiewicz logic. Varlet
(cf. [10]) noted the equivalence between regular double Stone algebras and
3-valued LM algebras, whence B[2] can be given the structure of a regular
double Stone algebra as well. Here, due to Proposition 1 and Theorem 1(i),
we focus on B[2] as a Kleene algebra, and study the (propositional) logic
corresponding to the class of Kleene algebras and the structures B[2]. We
denote this system as LK , and present it in this section.
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3 × 3 :=

(0, 1)

(1, 1)

(0, a)

(0, 0)

(a, 0)

(1, 0)

(a, a)

(a, 1) (1, a)

(22)[2] :=

(x, x)

(1, 1)

(0, x)

(0, 0)

(0, y)

(y, y)

(0, 1)

(x, 1) (y, 1)

Figure 5. 3 × 3 ∼= (22)[2]

Our approach to the study is motivated by Dunn’s 4-valued semantics of
the De Morgan consequence system [23]. The 4-valued semantics arises from
the fact that each element of a De Morgan algebra can be looked upon as a
pair of sets. In our case, we have observed in Section 2 as a consequence of
Theorem 1(i), that each element of a Kleene algebra can also be looked upon
as a pair of sets. As demonstrated in Example 3 above, the Kleene algebra
3 ∼= 2[2]. We exploit the fact that 3, in particular, can be represented as a
Kleene algebra of pairs of sets, to get completeness of the logic LK with
respect to a 3-valued semantics.

The Kleene axiom α ∧ ∼ α � β ∨ ∼ β, given by Kalman [32], was studied
by Dunn in the context of providing a 3-valued semantics for a fragment of
relevance logic [23,24]. He showed that the De Morgan consequence system
coupled with the Kleene axiom (the resulting consequence relation being
denoted as �Kalman), is sound and complete with respect to a semantic
consequence relation (denoted |=3R

0,1) defined on 3R, the right hand chain of
the De Morgan lattice 4 given in Figure 6. 3R is the side of 4 in which the
elements are interpreted as t(rue), f(alse) and b(oth), and |=3R

0,1 essentially
incorporates truth and falsity preservation by valuations in its definition. He
called this consequence system, the Kalman consequence system.

The completeness result for the Kalman consequence system is obtained
considering all 4-valued valuations restricted to 3R: the proof makes explicit
reference to valuations on 4.
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n =∼ n b =∼ b

f =∼ t

t =∼ f

Figure 6. De Morgan lattice 4

The logic LK (K for Kalman and Kleene) that we are considering in our
work, is the Kalman consequence system with slight modifications. LK is
shown to be sound and complete with respect to a 3-valued semantics that is
based on the same idea underlying the consequence relation |=3R

0,1, viz. that
of truth as well as falsity preservation. However, the definitions and proofs
in this case, do not refer to 4.

Let us present LK . The language consists of

− Propositional variables: p, q, r, . . ..

− Propositional constants: ,⊥.

− Logical connectives: ∨,∧,∼.

The well-formed formulae of the logic are defined through the scheme:

 | ⊥ | p | α ∨ β | α ∧ β | ∼ α.

Notation 2. Denote the set of propositional variables by P, and that of
well-formed formulae by F .

The consequence relation �LK
is now given through the following pos-

tulates and rules, taken from [23] and [25]. These define reflexivity and
transitivity of �, introduction, elimination principles and the distributive
law for the connectives ∧ and ∨, contraposition and double negation laws
for the negation operator ∼, the Kleene property for ∼, and some basic
requirements from the propositional constants ,⊥. Let α, β, γ ∈ F .

Definition 4. (LK- postulates)

1. α � α

2. α � β, β � γ / α � γ.
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3. α ∧ β � α, α ∧ β � β.

4. α � β, α � γ / α � β ∧ γ.

5. α � γ, β � γ / α ∨ β � γ.

6. α � α ∨ β, β � α ∨ β.

7. α ∧ (β ∨ γ) � (α ∨ β) ∧ (α ∨ γ) (Distributivity).

8. α � β / ∼ β �∼ α (Contraposition).

9. ∼ α∧ ∼ β �∼ (α ∨ β) (∨-linearity).

10. α �  (Top).

11. ⊥ � α (Bottom).

12.  �∼ ⊥ (Nor).

13. α �∼∼ α.

14. ∼∼ α � α.

15. α ∧ ∼ α � β ∨ ∼ β (Kalman/Kleene).

Let us now consider any Kleene algebra (K, ∨,∧,∼, 0, 1). We first define
valuations on K.

Definition 5. A map v : F → K is called a valuation on K, if it satisfies
the following properties for any α, β ∈ F .

1. v(α ∨ β) = v(α) ∨ v(β).

2. v(α ∧ β) = v(α) ∧ v(β).

3. v(∼ α) =∼ v(α).

4. v(⊥) = 0.

5. v() = 1.

A consequent α � β is valid in K under the valuation v, if v(α) ≤ v(β).
If the consequent is valid under all valuations on K, then it is valid in K.
Let A be a class of Kleene algebras. If the consequent α � β is valid in each
algebra of A, then we say α � β is valid in A, and denote it as α �A β.

Let AK denote the class of all Kleene algebras. We have, in the classical
manner,

Theorem 8. α �LK
β if and only if α �AK

β, for any α, β ∈ F .

Proof systems for Belnap’s 4-valued logic have also been presented in
[28,39]. Some abstract algebraic features of the logic obtained by adding
the Kalman/Kleene postulate and the corresponding class of algebras are
discussed in [28].
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We now focus on valuations on the Kleene algebra B[2]. For α ∈ F ,
v(α) is a pair of the form (a, b), a, b ∈ B. Suppose for β ∈ F , v(β) :=
(c, d), c, d ∈ B. By definition, the consequent α � β is valid in B[2] under v,
when v(α) ≤ v(β), i.e., (a, b) ≤ (c, d), or a ≤ c and b ≤ d.

Let AKB[2] denote the class of Kleene algebras formed by the sets B[2],
for all Boolean algebras B.

Theorem 9. α �AK
β if and only if α �A

KB[2] β, for any α, β ∈ F .

Proof. Let α �A
KB[2] β. Consider any Kleene algebra (K, ∨,∧,∼, 0, 1), and

let v be a valuation on K. By Theorem 1(i), there exists a Boolean algebra
B such that K is embedded in B[2]. Let φ denote the embedding. It is a
routine verification that φ ◦ v is a valuation on B[2]. The other direction is
trivial, as AKB[2] is a subclass of AK .

On the other hand, as observed earlier, the structure B[2] is embeddable
in the Kleene algebra formed by P(U)[2] for some set U , utilizing Stone’s
representation. Hence if v is a valuation on B[2], it can be be extended to a
valuation on P(U)[2]. Let AKP(U)[2] denote the class of Kleene algebras of
the form P(U)[2], for all sets U . So, we get from Theorem 9 the following.

Corollary 1. α �AK
β if and only if α �A

KP(U)[2]
β, for any α, β ∈ F .

Following [23], we now consider semantic consequence relations defined
by valuations v : F → 3 on the Kleene algebra 3. Let us re-label the elements
of 3 as f, u, t, having the standard truth value connotations.

Definition 6. Let α, β ∈ F .
α �t β if and only if, if v(α) = t then v(β) = t (Truth preservation).
α �f β if and only if, if v(β) = f then v(α) = f (Falsity preservation).
α �t,f β if and only if, α �t β and α �f β.

We adopt �t,f as the semantic consequence relation for the logic LK . Note
that the consequence relation �t is the consequence relation used in [44] to
interpret the strong Kleene logic. In case of Dunn’s 4-valued semantics, the
consequence relations �t, �f and �t,f are defined using valuations on 4. As
shown in [23], all the three turn out to be equivalent. In order to capture the
first-degree entailment fragment of relevance logic, Dunn subsequently uses
the semantic consequence relation |=3R

0,1, defined by valuations restricted to
3R, the right hand chain of 4. Observe that for valuations on 3 that are being
considered here, the consequence relations �t, �f and �t,f are not equivalent:
α ∧ ∼ α �t β, but α ∧ ∼ α �f β; β �f α ∨ ∼ α, but β �t α ∨ ∼ α.

Theorem 10. α �A
KP(U)[2]

β if and only if α �t,f β, for any α, β ∈ F .
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Proof. Let α �A
KP(U)[2]

β, and v : F → 3 be a valuation. By Example 3
and comments above, 3 is embeddable in (in fact, isomorphic to) the Kleene
algebra of P(U)[2] for some set U . If the embedding is denoted by φ, φ ◦ v
is a valuation on P(U)[2]. Then (φ ◦ v)(α) ≤ (φ ◦ v)(β) implies v(α) ≤ v(β).
Thus if v(α) = t, we have v(β) = t, and if v(β) = f , then also v(α) = f .
Now, let α �t,f β. Let U be a set, and P(U)[2] be the corresponding Kleene
algebra. Let v be a valuation on P(U)[2] – we need to show v(α) ≤ v(β).
For any γ ∈ F with v(γ) := (A,B), A,B ⊆ U, and for each x ∈ U , define a
map vx : F → 3 as

vx(γ) :=

⎧
⎨

⎩

t if x ∈ A
u if x ∈ B \ A
f if x /∈ B.

We show that vx is a valuation.
Consider any γ, δ ∈ F , with v(γ) := (A,B) and v(δ) := (C,D), A, B,C,
D ⊆ U .

1. vx(γ ∧ δ) = vx(γ) ∧ vx(δ).

Note that v(γ ∧ δ) = (A ∩ C,B ∩ D).

Case 1 vx(γ) = t and vx(δ) = t: Then x ∈ A∩C, and we have vx(γ∧δ) =
t = vx(γ) ∧ vx(δ).

Case 2 vx(γ) = t and vx(δ) = u: x ∈ A, x ∈ D and x /∈ C, which imply
x /∈ A ∩ C but x ∈ B ∩ D. Hence vx(γ ∧ δ) = u = vx(γ) ∧ vx(δ).

Case 3 vx(γ) = t and vx(δ) = f : x ∈ A, x /∈ D, which imply x /∈ B ∩ D.
Hence vx(γ ∧ δ) = f = vx(γ) ∧ vx(δ).

Case 4 vx(γ) = u and vx(δ) = f : x /∈ A but x ∈ B and x /∈ D, which
imply x /∈ B ∩ D. Hence vx(γ ∧ δ) = f = vx(γ) ∧ vx(δ).

Case 5 vx(γ) = u, vx(δ) = u: x ∈ B but x /∈ A and x ∈ D but x /∈ C.
So, x ∈ B ∩ D and x /∈ A ∩ C. Hence vx(γ ∧ δ) = u = vx(γ) ∧ vx(δ).

Case 6 vx(γ) = f , vx(δ) = f : x /∈ B and x /∈ D. So, x /∈ B ∩ D. Hence
vx(γ ∧ δ) = f = vx(γ) ∧ vx(δ).

2. vx(γ ∨ δ) = vx(γ) ∨ vx(δ).

Observe that v(γ ∨ δ) = (A ∪ C,B ∪ D).

Case 1 vx(γ) = t and vx(δ) = t: Then x ∈ A, x ∈ C, which imply
x ∈ A ∪ C. Hence vx(γ ∨ δ) = t = vx(γ) ∨ vx(δ).

Case 2 vx(γ) = t and vx(δ) = u: x ∈ A, x ∈ D and x /∈ C, in any way
x ∈ A ∪ C . Hence vx(γ ∨ δ) = t = vx(γ) ∨ vx(δ).
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Case 3 vx(γ) = t and vx(δ) = f : x ∈ A, x /∈ D, which imply x ∈ A ∪ C.
Hence vx(γ ∨ δ) = t = vx(γ) ∨ vx(δ).

Case 4 vx(γ) = u and vx(δ) = f : x /∈ A but x ∈ B and x /∈ D, which
imply x /∈ A ∪ C but x ∈ B ∪ D. Hence vx(γ ∨ δ) = u = vx(γ) ∨ vx(δ).

Case 5 vx(γ) = u, vx(δ) = u: x ∈ B but x /∈ A and x ∈ D but x /∈ C.
So, x ∈ B ∪ D and x /∈ A ∪ C. Hence vx(γ ∨ δ) = u = vx(γ) ∨ vx(δ).

Case 6 vx(γ) = f , vx(δ) = f : x /∈ B and x /∈ D. So, x /∈ B ∪ D. Hence
vx(γ ∧ δ) = f = vx(γ) ∧ vx(δ).

3. vx(∼ γ) =∼ vx(γ).

Note that v(∼ γ) = (Bc, Ac).

Case 1 vx(γ) = t: Then x ∈ A, i.e. x /∈ Ac. Hence vx(∼ γ) = f =∼ vx(γ).

Case 2 vx(γ) = u: x /∈ A but x ∈ B. So x ∈ Ac and x /∈ Bc. Hence
vx(∼ γ) = u =∼ vx(γ).

Case 3 vx(γ) = f : x /∈ B, i.e. x ∈ Bc. So vx(∼ γ) = t =∼ vx(γ).

Hence vx is a valuation in 3. Now let us show that v(α) ≤ v(β). Let v(α) :=
(A′, B′), v(β) := (C ′, D′), and x ∈ A′. Then vx(α) = t, and as α �t,f β, by
definition, vx(β) = t. This implies x ∈ C ′, whence A′ ⊆ C ′.

On the other hand, if x /∈ D′, vx(β) = f . Hence vx(α) = f , so that
x /∈ B′, giving B′ ⊆ D′.

Note that the above proof cannot be applied on the Kleene algebra B[2]

instead of P(U)[2], as we have used set representations explicitly.
An immediate consequence of Theorem 8, Corollary 1 and Theorem 10

is

Theorem 11. α �LK
β if and only if α �t,f β, for any α, β ∈ F .

4. Rough Set Semantics for LK

Rough set theory, introduced by Pawlak [37] in 1982, deals with a domain
U that is the set of objects, and an equivalence (indiscernibility) relation
R on U . The pair (U,R) is called an (Pawlak) approximation space. For
any A ⊆ U , one defines the lower and upper approximations of A in the
approximation space (U,R), denoted LA and UA respectively, as follows.

LA :=
⋃

{[x] : [x] ⊆ X},

UA :=
⋃

{[x] : [x] ∩ X �= ∅}. (∗)
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As the information about the objects of the domain is available modulo
the equivalence classes in U , the description of any concept, represented ex-
tensionally as the subset A of U , is inexact. One then ‘approximates’ the
description from within and outside, through the lower and upper approx-
imations respectively. Unions of equivalence classes are termed as definable
sets, signifying exactly describable concepts in the context of the given in-
formation. In particular, sets of the form LA, UA are definable sets.

Definition 7. Let (U,R) be an approximation space. For each A ⊆ U , the
ordered pair (LA,UA) is called a rough set in (U, R).

Notation 3. RS := {(LA,UA) : A ⊆ U}.
The ordered pair (D1, D2), where D1 ⊆ D2 and D1, D2 are definable sets,

is called a generalized rough set in (U,R).

Notation 4. D denotes the collection of definable sets and R that of the
generalized rough sets in (U,R).

In the following, we proceed to establish part (ii) of Theorem 1 (cf. Section
1). In Section 4.2, we formalize the connection of rough sets with the 3-valued
semantics being considered in this work. We end the section with a rough
set semantics for LK (cf. Theorem 16), obtained as a consequence of the
representation results of Section 4.1 below.

4.1. Rough Set Representation of Kleene Algebras

Algebraically, the collection D of definable sets forms a complete atomic
Boolean algebra in which atoms are the equivalence classes. The collection
RS forms a distributive lattice – in fact, it forms a Kleene algebra. On
the other hand, observe that R is the set D[2] and hence forms a Kleene
algebra (cf. Proposition 1) as well. R has earlier been studied, for instance,
by Banerjee and Chakraborty in [5], and shown to form topological quasi-
Boolean, pre-rough and rough algebras. Note that, for an approximation
space (U,R), sets R and RS may not be the same. So, it is natural to ask
how R and RS differ as algebraic structures. The following result mentioned
in [5] gives a connection between the two. The proof is not given in [5]; we
sketch it here, as it is used in the sequel.

Theorem 12. For any approximation space (U, R), there exists an approx-
imation space (U ′, R′) such that R corresponding to (U, R) is order isomor-
phic to R′ corresponding to (U ′, R′). Further, R′ = RS ′, the latter denoting
the collection of rough sets in the approximation space (U ′, R′) .
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Proof. Let (U,R) be the given approximation space. Consider the set A :=
{a ∈ U : |R(a)| = 1}, where R(a) denotes the equivalence class of a in U . So
A is the collection of all elements which are R-related only to themselves.
Now, let us consider a set A′ which consists of ‘dummy’ elements from
outside U , indexed by the set A, i.e. A′ := {a′ : a ∈ A} such that A′ ∩U = ∅.
Let U ′ = U ∪ A′. Define an equivalence relation R′ on U ′ as follows.

If a ∈ U then R′(a) := R(a) ∪ {x′ ∈ A′ : x ∈ R(a) ∩ A}.

If a′ ∈ A′ then R′(a′) := R(a) (= {a, a′}).

Note that the number of equivalence classes in both the approximation
spaces is the same. Define the map φ : R → R′ as φ(D1, D2) := (D′

1, D
′
2),

where D′
1 := D1 ∪ {x′ ∈ A′ : x ∈ D1 ∩ A} and D′

2 := D2 ∪ {x′ ∈ A′ : x ∈
D2 ∩ A}. Then φ is an order isomorphism.

Since R and RS for any approximation space (U, R) form Kleene alge-
bras, Theorem 12 can easily be extended to Kleene algebras as follows.

Theorem 13. Let (U,R) be an approximation space. There exists an ap-
proximation space (U ′, R′) such that R corresponding to (U, R) is Kleene
isomorphic to RS ′ (= R′) corresponding to (U ′, R′).

Proof. Consider (U ′, R′) and φ as in Theorem 12. φ is a lattice isomor-
phism, as the restriction of φ to the completely join irreducible elements
of the lattices D[2] and D′[2] is an order isomorphism (using Proposition 3
and Lemma 1). Let us now show that φ(∼ (D1, D2)) =∼ (φ(D1, D2)). To
avoid confusion, we follow these notations: for X ⊆ U we use Xc1 for the
complement in U and Xc2 for the complement in U ′.
Now, φ(∼ (D1, D2)) = φ(Dc1

2 , Dc1
1 ) = ((Dc1

2 )′, (Dc1
1 )′). By definition of φ,

we have:

(Dc1
2 )′ = Dc1

2 ∪ {x′ ∈ A′ : x ∈ Dc1
2 ∩ A}.

(Dc1
1 )′ = Dc1

1 ∪ {x′ ∈ A′ : x ∈ Dc1
1 ∩ A}.

Claim. (Dc1
2 )′ = (D′

2)
c2 , and (Dc1

1 )′ = (D′
1)

c2 .

Proof of Claim:. Let us first prove that (Dc1
2 )′ = (D′

2)
c2 . Note that

(Dc1
2 )′ = Dc1

2 ∪ {x′ ∈ A′ : x ∈ Dc1
2 ∩ A}, and (D′

2)
c2 = (D2 ∪ {x′ : x ∈

D2 ∩ A})c2 = (D2)c2 ∩ ({x′ ∈ A′ : x ∈ D2 ∩ A})c2 .
Let X := {x′ ∈ A′ : x ∈ Dc1

2 ∩ A} and Y := {x′ ∈ A′ : x ∈ D2 ∩ A}.
Consider a ∈ (Dc1

2 )′ = Dc1
2 ∪ X.

Case 1 a ∈ Dc1
2 :

As D2 ⊆ U , Dc1
2 ⊆ Dc2

2 . Hence a ∈ Dc2
2 . As Dc1

2 ⊆ U , a /∈ A′, whence
a ∈ Y c2 .
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So a ∈ (D′
2)

c2 .
Case 2 a ∈ X:
a = x′, where x ∈ Dc1

2 ∩ A. As, x′ ∈ R′(x) and Dc2
2 is the union of

equivalence classes, in particular it contains R′(x). So a = x′ ∈ Dc2
2 .

x ∈ Dc1
2 implies x /∈ D2. Hence a = x′ ∈ Y c2 . So a ∈ (D′

2)
c2 .

Conversely, let a ∈ (D′
2)

c2 = (D2)c2 ∩ Y c2 .
Case 1 a ∈ U :
a ∈ Dc2

2 implies that a ∈ Dc1
2 . Hence a ∈ (Dc1

2 )′.
Case 2 a ∈ A′:
a ∈ Y c2 implies a ∈ {x′ ∈ A′ : x ∈ Dc1

2 ∩ A}. Hence a ∈ (Dc1
2 )′.

Similar arguments as above show that (Dc1
1 )′ = (D′

1)
c2 .

Proof of Theorem 13. φ(∼ (D1, D2)) = φ(Dc1
2 , Dc1

1 ) = ((Dc1
2 )′, (Dc1

1 )′) =
((D′

2)
c2 , (D′

1)
c2) =∼ φ(D1, D2).

Hence φ is a Kleene isomorphism.

It is now not hard to see the correspondence between a complete atomic
Boolean algebra and rough sets in an approximation space.

Theorem 14. Let B be a complete atomic Boolean algebra.

(i) There exists an approximation space (U, R) such that

(a) B ∼= D.
(b) B[2] is Kleene isomorphic to R.

(ii) There exists an approximation space (U ′, R′) such that B[2] is Kleene
isomorphic to RS ′.

Proof. Let U denote the collection of all atoms of B, and R the identity
relation on U . (U,R) is the required approximation space.

Thus we get Theorem 1(ii):
Given a Kleene algebra K, there exists an approximation space (U, R) such
that K can be embedded into RS. In other words, every Kleene algebra is
isomorphic to an algebra of rough sets in a Pawlak approximation space.

4.2. Rough Sets and the Kleene Algebra 3

The definitions (*) of lower and upper approximations of a set A in an
approximation space (U,R) immediately yield the following interpretations.

1. x certainly belongs to A, if x ∈ LA, i.e. all objects which are indiscernible
to x are in A.

2. x certainly does not belong to A, if x /∈ UA, i.e. all objects which are
indiscernible to x are not in A.
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f =∼ t

u =∼ u

t =∼ f

3 := ∼= RS:=

(∅, ∅) = (L∅,U∅)
=∼ (LU,UU)

(∅, U) = (Lx,Ux)
=∼ (Lx,Ux)

(U,U) = (LU,UU) =∼ (L∅,U∅)

Figure 7. 3 ∼= RS

3. Belongingness of x to A is not certain, but possible, if x ∈ UA but x /∈ LA.
In rough set terminology, this is the case when x is in the boundary of
A: some objects indiscernible to x are in A, while some others, also
indiscernible to x, are in Ac.

These interpretations have led to much work in the study of connections
between 3-valued algebras or logics and rough sets, see for instance [2,4,
15,26,30,36]. In particular, in [2], Avron and Konikowska have obtained a
non-deterministic logical matrix and studied the 3-valued logic generated
by this matrix. A simple predicate language is used, with no quantifiers or
connectives, to express membership in rough sets. Connections, in special
cases, with 3-valued Kleene, �Lukasiewicz and two paraconsistent logics are
established. In another direction, from an algebraic motivation, Banerjee and
Chakraborty in [4,5] obtained the propositional system of pre-rough logic for
the class of pre-rough algebras. It was subsequently proved by Banerjee in [4]
that 3-valued �Lukasiewicz logic and pre-rough logic are equivalent, thereby
imparting a rough set semantics to the former.

Let us spell out the natural connections of the Kleene algebra 3 with
rough sets. Observe that 3, being isomorphic to 2[2] (as noted earlier), can
also be viewed as a collection of rough sets in an approximation space, due
to Theorem 14(ii).

Proposition 4. There exists an approximation space (U, R) such that 3 ∼=
RS.
Proof. Let U := {x, y} and consider the equivalence relation R := U × U
on U . The correspondence is depicted in Figure 7.

Note that we also have (∅, U) = (Ly,Uy) =∼ (Ly,Uy).
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On the other hand, interpretations 1-3 above give rise to a correspondence
with the set 3 := {f, u, t}, that assigns to every x ∈ U and rough set
(LA,UA) in (U,R), the value t when x ∈ LA, u when x ∈ UA \ LA, and f
in case x /∈ UA. As one can see, this is akin to the valuation defined in the
proof of Theorem 10. In fact, using results of the previous sections, we can
formally link the 3-valued semantics being considered here, and rough sets.

Let AKRS denote the class containing the collections RS of rough sets
over all possible approximation spaces (U,R).

Theorem 15. For any α, β ∈ F ,

(i) α �AK
β if and only if α �AKRS β,

(ii) α �AKRS β if and only if α �t,f β.

In the process, we have thus obtained a rough set semantics for LK .

Theorem 16. For any α, β ∈ F , α �LK
β if and only if α �AKRS β.

5. Perp Semantics for the Logic LK

Dunn’s framework of perp semantics for negations is of logical, philosophical
as well as algebraic importance. On the one hand, it provides relational
semantics for various logics with negations (cf. e.g., [23,25]), interpreting the
negations as ‘impossibility’ or ‘unnecessity’ operators. On the other hand,
one can give representations of various algebras as set algebras [20]. In this
section, we characterize the Kleene consequent α ∧ ∼ α � β ∨ ∼ β in
Dunn’s framework of negations. Further, one obtains a representation of
Kleene algebras through duality.
First, we briefly present the basics of perp semantics. For details, one may
refer to [20,23–25].

Definition 8. A compatibility frame is a triple (W,C,≤) with the following
properties.

1. (W, ≤) is a partially ordered set.

2. C is a binary relation on W such that for x, y, x′, y′ ∈ W,
if x′ ≤ x, y′ ≤ y and xCy then x′Cy′.

C is called a compatibility relation on W .
A perp frame is a tuple (W, ⊥,≤), where ⊥, the perp relation on W , is the
complement of the compatibility relation C.
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As in [25], we do not distinguish between compatibility and perp frames,
and present the results in the section in terms of the compatibility relation.

Recall the syntax of the logic LK as defined in Section 3.

Definition 9. A relation � between points of W and propositional variables
in P is called an evaluation, if it satisfies the hereditary condition:

− If x � p and x ≤ y then y � p, for any x, y ∈ W .

Recursively, an evaluation � can be extended to F as follows. Let x ∈ W .

1. x � α ∧ β if and only if x � α and x � β.

2. x � α ∨ β if and only if x � α or x � β.

3. x � .

4. x � ⊥.

5. x �∼ α if and only if for all y ∈ W, xCy implies that y � α.

Then one can easily show that � satisfies the hereditary condition for all
formulae in F . Thus, for each formula α in F , an evaluation � gives a subset
of W that is upward closed in the partially ordered set (W, ≤). (X ⊆ W is
upward closed or a cone, if x ∈ X and x ≤ y, y ∈ W, imply y ∈ X.)

For the compatibility frame F := (W,C,≤), the pair (F,�) for an eval-
uation � is called a model. The notion of validity is introduced next in the
following (usual) manner.

− A consequent α � β is valid in a model (F,�), denoted as α �(F,�) β, if
and only if, if x � α then x � β, for each x ∈ W .

− α � β is valid in the compatibility frame F, denoted as α �F β, if and
only if α �(F,�) β for every model (F,�).

− Let F denote a class of compatibility frames. α � β is valid in F, denoted
as α �F β, if and only if α �F β for every frame F belonging to F.

Following [25], let Ki denote the logic whose postulates are 1 to 12 of
the logic LK (cf. Definition 4). In [25] it has been proved that Ki is the
minimal logic which is sound and complete with respect to the class of all
compatibility frames. Frame completeness results for various normal logics
with negation have been proved using the canonical frames for the logics.
Let us give the definitions for the canonical frame [21,25].

Definition 10. A set P of sentences is a prime theory if
(i) α � β holds and α ∈ P imply β ∈ P ,

(ii) α, β ∈ P imply α ∧ β ∈ P ,
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(iii)  ∈ P and ⊥ /∈ P ,

(iv) α ∨ β ∈ P implies α ∈ P or β ∈ P .

Let Wc be the collection of all prime theories of LK . The canonical rela-
tion Cc on Wc is defined as: PCcQ if and only if, for all sentences α, ∼ α ∈ P
implies α /∈ Q. The tuple (Wc, Cc,⊆) is the canonical frame for LK .

Note that LK contains Ki along with the postulates (13) α �∼∼ α, (14)
∼∼ α � α and (15) α ∧ ∼ α � β ∨ ∼ β of Definition 4. The consequents
α �∼∼ α and ∼∼ α � α have been characterized by Dunn (e.g. cf. [25]) and
Restall [41] respectively as follows.

Theorem 17. 1. α �∼∼ α is valid precisely in the class of all compatibility
frames satisfying the following frame condition:

∀x∀y(xCy → yCx).

2. ∼∼ α � α is valid precisely in the class of all compatibility frames
satisfying the frame condition:

∀x∃y(xCy ∧ ∀z(yCz → z ≤ x)).

3. The canonical frame for LK satisfies both the above frame conditions.

It remains for us to characterize the Kleene consequent α ∧ ∼ α � β ∨ ∼
β with an appropriate frame condition, and prove that the canonical frame
for LK satisfies the condition.

Theorem 18. α ∧ ∼ α � β ∨ ∼ β is valid in a compatibility frame, if and
only if the compatibility relation satisfies the following first order property:

∀x(xCx ∨ ∀y(xCy → y ≤ x)). (∗)

The canonical frame for LK satisfies (∗).

Proof. Consider any compatibility frame (W,C,≤), let (∗) hold, and let
x ∈ W .
Suppose xCx, then x � α ∧ ∼ α, and trivially, if x � α ∧ ∼ α then
x � β ∨ ∼ β.
Now suppose ∀y(xCy → y ≤ x) is true.

Let x � β and xCz. Then z ≤ x, whence z � β. So, by definition x �∼ β.
Hence x � β ∨ ∼ β. Hence in any case if x � α ∧ ∼ α then x � β ∨ ∼ β.
Let (∗) not hold. This implies that there exists x in W such that not(xCx)
and there exists y in W such that xCy and y � x. Take such a pair x, y
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from W . Let us define, for any z, w ∈ W ,

z � p if and only if x ≤ z and not(xCz),

w � q if and only if y ≤ w.

We show that � is an evaluation (cf. Definition 9). Let z � p and z ≤ z′.
Then x ≤ z′. If xCz′, then by the frame condition on C we have

x ≤ x, z ≤ z′xCz′ imply xCz,

which is a contradiction to the fact that z � p.
Furthermore, x � p, as x ≤ x and not(xCx). We also have x �∼ p: if xCw

for any w ∈ W then by definition, w � p. Hence, x �∼ p and so x � p ∧ ∼ p.
On the other hand, x � q as y � x. By the assumption, xCy and y � q,

hence x �∼ q. So, we have x � p ∧ ∼ p but x � q ∨ ∼ q.
Canonicity :
Let not(PCcP ). Then, by definition of Cc, there exists an α ∈ F such that
α, ∼ α ∈ P . But this implies that α ∧ ∼ α ∈ P . Hence for all β ∈ F ,
β ∨ ∼ β ∈ P . So, for all β, either β ∈ P or ∼ β ∈ P .

Now let PCcQ and β ∈ Q. Then ∼ β /∈ P . But as from above, not(PCcP ),
we have β ∈ P . So, Q ⊆ P .

Definition 11. A compatibility frame (W,C,≤) is called a Kleene frame if
it satisfies the following frame conditions.

1. ∀x∀y(xCy → yCx).

2. ∀x∃y(xCy ∧ ∀z(yCz → z ≤ x)).

3. ∀x(xCx ∨ ∀y(xCy → y ≤ x)).

Denote by FK , the class of all Kleene frames.

We have then arrived at

Theorem 19. The following are all equivalent, for any α, β ∈ F .

(a) α �LK
β.

(b) α �AK
β.

(c) α �AKRS β.

(d) α �t,f β.

(e) α �FK
β.
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5.1. Kleene Frames and Complex Algebras

As in the case of Kripke semantics for modal logics, in perp semantics,
propositions are interpreted as subsets (that are upward closed) in compat-
ibility frames. Moreover, negations are interpreted using the compatibility
relations of the frames. So, negations can be thought of as modal opera-
tors. In expected lines therefore, similar to Jónsson-Tarski duality of modal
logic, one can establish duality results here, between classes of compatibility
frames and classes of various distributive lattices with negation [20,22,25].

Let (W,C,≤) be a compatibility frame, and let K be the collection of all
upward closed subsets of W . Then (K, ∪,∩, ∅, W ) is a bounded distributive
lattice. A unary operator ∼ is defined on K using the compatibility relation
C as follows. For any A ∈ K,

∼ A := {x ∈ W : for all y in W, xCy implies y /∈ A}.

The algebra (K, ∪,∩,∼, ∅,W ) is called the complex algebra of the compati-
bility frame (W,C,≤).

Now, let (K, ∨,∧,∼, 0, 1) be a Kleene algebra. Let us consider the set UK

of all prime filters of K. Define a binary relation CK on UK as follows. For
P,Q ∈ UK ,

PCKQ if and only if for all a ∈ K, if ∼ a ∈ P then a /∈ Q.

The structure (UK , CK ,⊆) is called the canonical frame for K.
Like the correspondence results presented above, one can easily establish

correspondence results between classes of compatibility frames and classes
of complex algebras. For the class of Kleene frames, we obtain the following,
by mimicking the proofs of Theorems 17 and 18.

Proposition 5. 1. Let (W,C,≤) be a compatibility frame. Its complex al-
gebra is a Kleene algebra if and only if (W,C,≤) is a Kleene frame.

2. Let K be a Kleene algebra. Then its canonical frame is a Kleene frame.

Using Proposition 5 and employing standard techniques analogous to
those in the proofs of Jónsson-Tarski duality results [9], one can prove the
following. An embedding between frames is a map that is order and relation
preserving in both directions.

Theorem 20. 1. Let K be a Kleene algebra. There exists a Kleene frame
(W,C,≤) such that K can be embedded into the complex algebra of
(W,C,≤).

2. Let (W,C,≤) be a Kleene frame. Then there exists a Kleene algebra K
such that (W,C,≤) can be embedded into the canonical frame of K.
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Theorem 20, in fact, provides a direct proof of the equivalence of (b) and (e)
of Theorem 19.

Theorems 1(i) and 20 are both representation theorems for Kleene alge-
bras. Theorem 1(i) leads us to conclude that the Kleene negation is described
by the set-theoretic complement. On the other hand, Theorem 20 tells us
that it is described by a compatibility relation.

6. Conclusions

In case of Boolean algebras and classical propositional logic, or De Morgan
algebras and De Morgan logic, the algebraic semantics and the 2 or 4-valued
semantics (respectively) are equivalent – due to representation theorems for
the two classes of algebras. Here, analogously, we have the result for the class
of Kleene algebras, that the algebraic semantics and a 3-valued semantics
(given by �t,f ) of the logic LK of Kleene algebras are equivalent. This is
due to the representation theorem (Theorem 1(i)): any Kleene algebra is
embeddable into B[2], for some Boolean algebra B.

Furthermore, the 3-valued semantics of LK translates into a rough set
semantics for the logic (Theorem 16), because we obtain a representation of
Kleene algebras in the class of rough set algebras (Theorem 1(ii)). This part
of the work thus adds to the study of connections between 3-valued logics
or algebras and rough sets.

LK is also shown to be sound and complete with respect to a perp se-
mantics (Theorem 19), and one finds yet another representation of Kleene
algebras: any Kleene algebra is embeddable into the complex algebra of a
Kleene compatibility frame (Theorem 20). The logic of Kleene algebras can
thus be imparted equivalent semantics from different perspectives.

The work presents a hitherto unexplored relationship between rough sets
and perp semantics. Theorems 20 and 1(ii) together tell us that the collection
of rough sets over any approximation space induces a Kleene compatibility
frame, and vice versa: any Kleene compatibility frame induces a Kleene
algebra of rough sets over some approximation space. These facts encourage
us to investigate the relationship between the two frameworks further. There
are different ways in which negations may be defined on rough sets over
an approximation space. A study of these negations from the angle of perp
semantics has been done in [34]. It may now be worth identifying meaningful
compatibility relations on approximation spaces. One can then make a study
of negations that may be defined on rough sets using the compatibility
relations, and look for relationships if any, with the existing negations.
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Extensions of Kleene algebras with modal operators have been studied
in literature. One such extension leads to a 3-valued �Lukasiewicz algebra
[10] or, equivalently, to a pre-rough algebra. Another has been discussed
in [11]. Recently, several modal extensions of De Morgan algebras that are
weaker than pre-rough algebras but stronger than topological quasi-Boolean
algebras [5], have been studied in [42]. It would be interesting to investigate
the import of adding the Kleene property to the De Morgan base of these
algebras, both from logical and algebraic perspectives.

Study in yet another direction may be worthwhile. In [16], translations
of various 3-valued logics into the fragment MEL [6] of the modal logic KD
have been obtained. A natural question stemming from there could be about
the result of replacing LK in our work, with other 3-valued logics. On the
algebraic side, one may shift focus to some replacements of Kleene algebras
– in particular by algebraic structures relevant to rough sets, such as Post
algebras of order three or chain based lattices [36].
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