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Abstract. The concepts of coherence and confirmation are closely intertwined: accord-

ing to a prominent proposal coherence is nothing but mutual confirmation. Accordingly,

it should come as no surprise that both are confronted with similar problems. As re-

gards Bayesian confirmation measures these are illustrated by the problem of tacking by

conjunction. On the other hand, Bayesian coherence measures face the problem of belief

individuation. In this paper we want to outline the benefit of an approach to coherence and

confirmation based on content elements. It will be shown that the resulting concepts, called

genuine coherence and genuine confirmation, can be used in order to solve the two men-

tioned problems. In a final section we present some results on degrees of genuine coherence

and genuine confirmation.
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1. Introduction

The concepts of coherence and confirmation are closely intertwined: accord-
ing to a well-known proposal coherence is nothing but mutual confirma-
tion (cf. [10,15,38]). Accordingly, it should come as no surprise that both
Bayesian models of these concepts are confronted with similar problems.
As regards Bayesian confirmation measures, these can be illustrated by
the problem of tacking by conjunction: if h ∧ h′ is a conjunctive hypoth-
esis such that h deductively entails a piece of evidence e, then e can be
shown to not only confirm h but also the conjunction h ∧ h′. This, so it
is argued, is counter-intuitive because h′ might not be related to e in any
way (cf. [20]). On the other hand, Bayesian coherence measures face the
problem of belief individuation according to which there are logically equiv-
alent belief sets that are assigned different degrees of coherence by each
extant coherence measure. To illustrate: for all existing measures it can
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be shown that there are propositions a, b and c such that the triple con-
taining a, b and c is assigned a different degree of coherence than the pair
containing the conjunction a ∧ b and c. This, so it is argued, is counter-
intuitive given that the information contained in both situations is identical
(cf. [31,51]).

In this paper we consider Bayesian models of coherence and confirmation
that provide a solution for both these problems. We illustrate this solution
for three languages: the language of truthfunctional propositional logic L0,
the language of truthfunctional logic together with an intensional condi-
tional operator L→ and the language of 1st order logic L1. In what follows
languages are identified with the sets of their well-formed formulas.

The basic idea underlying these proposals is that both measures of co-
herence and confirmation should be applied to some well-specified set of
content elements of the propositions whose coherence or confirmation is as-
sessed. The resulting concepts will be called genuine coherence and genuine
confirmation. In a further step, we scrutinize the relationship between these
qualitative models. We also turn to the question of how to quantify the cor-
responding degrees of genuine coherence and genuine confirmation against
the background of their classical Bayesian counterparts; in the final para-
graphs of the paper we present some results on the relationship between
these quantitative concepts.

Here are some formal preliminaries that will prove useful throughout
the paper: in what follows let L be a finite propositional language, i.e.,
the closure of a finite set of atomic propositions At(L) = {p1, . . . , pn} under
the standard formation rules for truthfunctional connectives {¬, ∨, ∧, ⊃, ≡}.
Arbitrary propositions of L will be denoted by lower case letters a, b, c, . . .
(possibly indexed). By Lc we denote the set of contingent formulae of L, i.e.
a ∈ Lc if and only if a ∈ L and neither |= a nor |= ¬a, where |= stands for
classical logical inference. In particular, e denotes an evidence statement, h
a hypothesis and b a background assumption. By a “belief set” X we mean a
finite set of believed propositions X ⊂ L, together with an implicit epistemic
probability distribution Pr relative to which the coherence of X is assessed.
Finite sets of propositions of L will be denoted by upper case letters from
the end of the alphabet X, . . . (possibly indexed). All of our belief sets (or
sets of propositions) will be finite (thus we write X ⊂ L since our belief
sets are proper subsets of L). We restrict our investigation to finite belief
sets because infinite sets cause various complications (infinite conjunctions,
limit considerations for infinite sums, questions of compactness) that are
postponed to another paper.
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As usual, |X| stands for the cardinality of a set X ⊂ L and 2X for the
power set of X. The deductive closure of X ⊂ L is denoted by Cn(X), i.e.,
Cn(X) = {a ∈ L|X |= a}, and the conjunction of all members of X by

∧
X.

We extend the notion of deductive inference to sets of sentences as follows:
X |= Y if and only if Y ⊆ Cn(X). Accordingly, two sets X and Y are logically
equivalent, in short: L−equivalent, iff X |= Y and Y |= X. Concerning 1st
order languages, individual constants will be denoted by αi for i ∈ N (the
set of natural numbers), individual variables by x, y, z and n-ary (possibly
complex) predicates by upper case letters from the beginning of the alphabet
A(n), . . . , R(n); we often omit reference to the arity. A probability measure Pr
over a language L is a non-negative, real-valued function such that Pr(a) = 1
if a is a tautology, and Pr is finitely additive, i.e., Pr(a ∨ b) = Pr(a) + Pr(b)
if a and b are logically incompatible. For 1st order languages Pr is countably
additive and, hence (assuming L has names for all individuals), satisfies the
principles of continuity for quantifiers: Pr(∀xA(x)) = limn→∞ Pr(A(α1) ∧
. . . ∧ A(αn)) and Pr(∃xA(x)) = limn→∞ Pr(A(α1) ∨ . . . ∨ A(αn)) (cf. [48],
fact 6). The set of all probability measures over L will be denoted by P.
Pr(a|b) =def Pr(a ∧ b)/Pr(b) denotes the conditional probability of a given
b under the condition that Pr(b) > 0. A proposition is called Pr-normal if
0 < Pr(a) < 1.

Given a probability measure Pr over L, a Bayesian confirmation measure
is a function conf : L2 × P → R that assigns to each triple (e, h,Pr) a
real number that is supposed to represent the degree of confirmation that e
provides for h under probability measure Pr in accordance with the following
relevance principle:1

(R) conf(e,h, Pr) > / = / < 0 if and only if Pr(h|e) > / = / < Pr(h).

The measure Pr is assumed to be relativized to a given background knowl-
edge b, i.e., Pr(−) = Pr(−|b) and Pr(b) = 1; we also admit the case that
b is empty (i.e., a tautology). A Bayesian coherence measure, on the other
hand, is a function coh : (2L \ ∅) ×P → R that assigns to each pair (X, Pr)
a real number that is supposed to represent the degree of coherence of the
non-empty set X under probability distribution Pr.2 In what follows we will
often omit reference to the probability distribution (in conf and coh) to
ease readability.

1For a recent survey of Bayesian confirmation theory see [7].
2A survey of the various Bayesian coherence measures that have been discussed in the

recent literature is given by [40].
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2. Confirmation and Tacking by Conjunction

According to the qualitative concept of Bayesian confirmation theory, a piece
of evidence e confirms a hypothesis h if and only if h’s conditional proba-
bility given e exceeds its unconditional probability, i.e. Pr(h|e) > Pr(h).
Equivalently, one could say that h is more probable given e than given
¬e.3 While this is the common ground of the vast majority of Bayesian
approaches to confirmation, there are important issues regarding the com-
parative concept of confirmation (cf. [5,16]) and the adequacy of various
quantitative measures of confirmation that have been proposed over the
years (cf. [3,9,12,13,39,52]). In the present section, however, we will dis-
pense with a discussion of these issues and focus on the qualitative confir-
mation model.4 Now it is a simple theorem of the probability calculus that
logical consequences confirm the hypotheses they are entailed by, i.e., if h
logically entails e and e and h are Pr-normal, then e confirms h. This seems
to accord well with standard scientific practice in which theories are assessed
by scrutinizing their consequences in the light of empirical data. However,
the following consequence destroys this nice picture: since the conjunctive
hypothesis h ∧ e logically entails each of its conjuncts, the conjunct e also
confirms h ∧ e for every arbitrary theory h (cf. [20], p. 67). To see why
this is problematic, let h be the proposition that the doctrine of Jehovah’s
witnesses is true and e the proposition that grass is green, then this latter
proposition confirms the hypothesis that grass is green and that the doctrine
of Jehovah’s witnesses is true. Given that there is no connection between
the contents of h and e this latter confirmation-assessment seems counter-
intuitive. Slightly more general, the tacking by conjunction problem (and
its special case “e confirms e ∧ h”) can be defined as follows:

Definition 2.1. [Tacking by conjunction] (i) If h logically entails e, then e
confirms h ∧ h′ for any h′ provided that e and h ∧ h′ are Pr-normal.
(ii) [Special case h = e] In particular, if e and e ∧ h′ are Pr-normal, then e
confirms e ∧ h′.

3This concept is usually called the incremental concept of confirmation as opposed to
the concept of absolute confirmation according to which a piece of evidence e confirms a
hypothesis h if h’s conditional probability given e exceeds some threshold 0.5 ≤ r < 1 (cf.
[4]). Although the absolute concept of confirmation proved useful when modeling coherence
we will not take it into account in the present paper (cf. [38,40]).

4But we will dwell into some issues pertaining to quantitative confirmation models in
later sections.
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A more general form of the tacking problem that dispenses with the as-
sumption of deductive entailment runs as follows: if e confirms a hypothesis
h, then e also confirms the conjunction h ∧ h′ for any “tacked” irrelevant
conjunct h′, provided only that h ∧ h′ is Pr-normal. According to this ver-
sion, the data that confirm Darwinian evolution theory would also confirm
the conjunction of Darwinian evolution theory and creationism. This seems
highly counter-intuitive, too. Referring to [14], the generalized tacking prob-
lem can be spelled out as follows:

Definition 2.2. [Generalized tacking by conjunction] If e confirms h, and
h′ is probabilistically irrelevant to h, e and h ∧ e, then e confirms h ∧ h′ for
any Pr-normal h ∧ h′.

Existing Bayesian solution proposals for both the deductive and the general-
ized version of the tacking problem try to shift the focus from the qualitative
notion of confirmation to its comparative counterpart. In a nutshell, their
main idea is to swallow the bitter pill of the tacking problems but try to
soften its negative impact by showing that even though the conjunction
h∧h′ is (qualitatively) confirmed by e, it is less confirmed than its ‘relevant’
part h. These proposals are certainly great achievements in Bayesian confir-
mation theory, but in our eyes they nevertheless suffer from two drawbacks:

(1) Of course, philosophical intuitions are never unique, and not all in-
stances of the tacking problem are equally counter-intuitive. For some
instances of the generalized tacking problem, the “diminished confirma-
tion” strategy may seem appropriate. However, in regard to the special
tacking problem (Definition 2.1, (ii)), a broadly held philosophical in-
tuition says that if h is either entirely unrelated to e or is (even worse)
an anti-inductive (Goodman-type) projection of e, then h ∧ e cannot be
said to be confirmed by e at all (although it is confirmed according to
Bayesian measures).

The Bayesian confirmability of Goodman-hypotheses is maybe the deep-
est aspect of the tacking problem that is not resolved by the diminished
confirmation strategy. It can be illustrated as follows: let E,G,B, and
O be the predicates “is an emerald”, “is green”, “is blue” and “has been
observed”, respectively, and let e =def ∀x(Ex ∧ Ox ⊃ Gx) be the evi-
dence proposition that all observed emeralds have been green. Then e
confirms the Goodman-type hypothesis h∗ “All emeralds are grue, i.e.
green if observed and blue if not observed” as well as h “All emeralds
are green”, since both hypotheses can be represented by conjunctions of
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e with a proposition about non-observed emeralds:

h = def ∀x(Ex ⊃ Gx) ≡ e ∧ ∀x(Ex ∧ ¬Ox ⊃ Gx)

h∗ = def ∀x(Ex ⊃ G∗x) ≡ e ∧ ∀x(Ex ∧ ¬Ox ⊃ Bx).

(2) A second drawback of the strategy of diminished confirmation is that
this solution strategy does not work for all but only for certain confir-
mation measures. In general, proponents of the strategy of diminished
confirmation try to establish the following comparative claim

(COMP) If conf(e, h) > 0

and Irr(h′) holds true, then 0 < conf (e, h ∧ h′) < conf (e, h).

where “Irr(h′)” is an antecedent entailing certain conditions concerning
the irrelevance of h′ in regard to e, h and/or h ∧ e. Whereas [14] in-
vokes the antecedent of our definition 2.2, [22] focus on a slightly weaker
condition (the antecedent of Observation 2.1 below) that is sufficient to
establish the same comparative confirmation claim. The common draw-
back of these proposals is that they are measure-sensitive in the follow-
ing sense: there are pairs of measures (conf , conf ′) such that (COMP)
holds for conf but is violated for conf ′. Therefore, in order to defend
the comparative confirmation claim (COMP) as a possible solution of
the tacking problem, one also has to defend a subset of measures as
proper confirmation measures against their inappropriate counterparts
that violate (COMP). However, among those measures that are at odds
with the comparative confirmation claim are highly prominent ones like
the log-ratio measure of confirmation log [Pr(h|e)/Pr(h)] that has many
prominent adherents (cf. Horwich [24], [25,30,43]). Another example is
Mortimer’s [32] confirmation measure Pr(e|h) − Pr(e).

Observation 2.1. If h′ is (probabilistically) irrelevant to e conditional
on h (i.e. Pr(e|h ∧ h′) = Pr(e|h)), then h and h ∧ h′ are confirmed
(or disconfirmed) by e to the same degree according to (i) the log-ratio
measure and (ii) Mortimer’s confirmation measure.5

Proof. For (i) see [22] (revised Theorem 2, p. 510, 512). For (ii) see
[3], obs. 1.

5Note, however, that these are not the only confirmation measures that are at odds with
(COMP); other examples are the measures βr and γr that will be introduced in Section 6
(proof omitted).



Genuine Coherence... 305

In conclusion we think that one should keep apart these two debates, i.e., the
one on the tacking problem and the one on the adequacy of various Bayesian
confirmation measures. Our envisaged solution should therefore be as robust
as possible so that it holds for the vast majority (if not all) of the existing
confirmation measures (see also Section 6).6 However, before we dwell into
the details of our solution, the next section will show that this problem is
intimately connected with a fundamental problem of Bayesian accounts of
coherence.

3. Coherence and the Problem of Belief Individuation

The concept of coherence is notorious for its elusiveness. According to a
prominent paraphrase, “coherence is a matter of how well a body of be-
liefs ‘hangs together’, how well its component beliefs fit together, agree or
dovetail with each other” ([2], p. 93). Recent years have seen the upshot
of a number of formal models that aim for an explication of coherence in
terms of probability theory. There are models that explicate coherence in
terms of the deviation from probabilistic independence [44,50], the relative
set-theoretic overlap [19,29,34] or the degree of mutual confirmation [10,15].
In this paper, we will focus on this latter family of coherence measures for
the following reasons: first, some authors have given conclusive reasons why
the proposed measures based on the idea of relative overlap should not be
considered proper explications of the concept of coherence (cf. [27]). Sec-
ond, as mentioned above, the later sections will be devoted to assessing the
relationship between genuine confirmation and genuine coherence. For this
purpose it is preferable to concentrate on coherence measures that are built
on the idea of mutual confirmation.7

6Crupi and Tentori [8] extend the debate to cases involving a disconfirmed hypothesis
h considering whether irrelevant conjuncts can also be ‘tacked’ in cases of disconfirmation.
However, we will not dwell into this debate in this paper. One of the reasons is that we
think that Crupi and Tentori’s proposal which adding ‘tacked’ hypotheses should result
in a conjunctive hypothesis which is at least as strongly disconfirmed than the original
hypothesis is not uncontroversial. A plausible alternative proposal (discussed in Sect. 5
of [8]) is to stipulate that adding irrelevant conjuncts will usually be accompanied by a
decrease in the absolute value of the degree of disconfirmation, i.e., if conf(e, h) < 0 and
h1, . . . , hn are all irrelevant to h, e, and h∧ e, then conf(e, h) ≤ conf(e, h ∧ h1 ∧ . . . ∧ hn).
We think that a thorough discussion of these conflicting intuitions would deserve a paper
of its own.

7Notice, however, that also the deviation-based measures of coherence and the overlap-
based measures are faced by the problem of belief individuation (cf. [31]).
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The main idea underlying the mutual confirmation approaches to mea-
suring coherence is that a set of propositions or pieces of information is
coherent if each relevant part of the set confirms all other relevant parts of
the set under consideration. Obviously, there is an important void within
this formulation which is to spell out what the ‘relevant parts’ of the given
set are. In this regard, Douven and Meijs [10] discuss a number of possible
proposals of which the most promising is the model of any-any coherence
according to which the relevant parts are all non-empty, non-overlapping
subsets of the given set. Given this basic idea, we can get two notions of
qualitative coherence:

Definition 3.1. [Qualitative full coherence] A set of propositions X ⊂ L is
fully coherent (relative to probability distribution Pr ∈ P) iff |X| > 1 and
for all non-empty, non-overlapping subsets X ′, X ′′ ⊂ X, Pr(

∧
X ′| ∧ X ′′) >

Pr(
∧

X ′).

We also introduce a qualitative notion of partial coherence, in which not
all but only some non-empty, non-overlapping subsets confirm each other.
This notion of qualitative partial coherence should be consistent with the
quantitative notion of coherence as the average of the degrees of confirma-
tion between subsets of the set X (see below) in the sense that a positive
degree of coherence counts as partial qualitative coherence. In this average,
disconfirmation relations can be compensated by confirmation relations be-
tween the other propositions of the set, but this cannot be modeled in a
qualitative way. To illustrate the point, imagine that X ′ = {a, b, c} so that
a confirms b and c to a minute degree, then it might nonetheless be the case
that b∧ c disconfirms a so that the average of all these confirmation degrees
and, thus, the assigned degree of coherence is negative. No qualitative de-
finition of partial coherence which abstracts from degrees of confirmation
can account for this. We therefore prefer to explicate qualitative partial co-
herence by a (strong) sufficient condition which entails a positive degree of
coherence and a (weak) necessary condition, which is entailed by a positive
degree of coherence:

Definition 3.2. [Qualitative partial coherence] A set of propositions X ⊂ L
is partially coherent (relative to probability distribution Pr ∈ P)

[sufficient condition:] if (i) |X| > 1 and for some non-empty, non-
overlapping subsets X ′, X ′′, Pr(

∧
X ′| ∧ X ′′) > Pr(

∧
X ′), and (ii) for

all such subsets Pr(
∧

X ′| ∧X ′′) ≥ Pr(
∧

X ′)

[necessary condition:] only if (i) holds.
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The quantitative notion of coherence along the lines of Douven and Meijs
[10] is defined as the average of mutual confirmation relations between non-
empty, non-overlapping subsets.8 We hereby assume that “conf” is one of
the standard Bayesian confirmation measures that have been proposed in
the literature; some of these measures are mentioned in Section 6.

Definition 3.3. [Quantitative degree of coherence] Let conf be a measure
of confirmation, then the quantitative degree of coherence of a set of propo-
sitions X ⊂ L (relative to probability distribution Pr ∈ P) is defined as
follows:

coh(X)=
∑{conf(∧X ′,

∧
X ′′) : ∅ �=X ′ ⊂ X, ∅ �=X ′′ ⊂ X,X ′ ∩ X ′′ =∅}

|{∅ �=X ′ ⊂ X, ∅ �=X ′′ ⊂ X,X ′ ∩ X ′′ =∅}| ,

provided that |X| > 1; otherwise coh(X) =def 0.

Given that all numbers assigned by confirmation measures are positive in
cases of confirmation and negative in cases of disconfirmation, zero is also
the threshold separating coherence and incoherence. The sufficient qualita-
tive condition for partial coherence guarantees that the average of mutual
confirmation relations between non-empty, non-overlapping subsets will ex-
ceed this threshold; the necessary condition follows from the average being
above this threshold. Thus we obtain:

Observation 3.1. If the sufficient condition of Definition 3.2 holds for a
set of propositions X, then according to Definition 3.3, coh(X) > 0. Vice
versa, if coh(X) > 0, then the necessary condition of Definition 3.2 holds
for X.

We now turn to the problem of belief individuation. To illustrate the prob-
lem, let X be a set containing three propositions a, b and c, then in order
to satisfy Definition 3.1 for full coherence we have to check Pr(a|b) > Pr(a),
Pr(a|c) > Pr(a), Pr(a|b ∧ c) > Pr(a), Pr(a ∧ b|c) > Pr(a ∧ b), etc. Now as-
sume that the set X is neither fully nor partially coherent, because all three
proposition are probabilistically independent from the remainder proposi-
tions (and likewise for their conjunctions). Then it seems reasonable to as-
sume that all sets that are L(ogically)- equivalent to X should likewise
be assessed neither fully nor partially coherent. However, this is not at all
true. For example, the L-equivalent set X ′ containing only the conjunction
a∧b∧c and a is fully coherent: since a∧b∧c logically entails a (and not vice

8An investigation into the various structural properties of these measures is given in
[41,42].
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versa), the conditional probability Pr(a|a ∧ b ∧ c) exceeds Pr(a) and accord-
ingly the conditional probability Pr(a ∧ b ∧ c|a) also exceeds Pr(a ∧ b ∧ c).
Hence, given that the singletons {a∧ b∧ c} and {a} are the only non-empty,
non-overlapping subsets to be considered, X ′ is wrongly assessed as fully co-
herent according to Definition 3.1. Since all mutual confirmation measures
in line with Douven and Meijs’ recipe comply with Definition 3.1 X ′ would
be wrongly assessed as coherent by each of these measures. This is an in-
stance of the problem of belief individuation as highlighted by Moretti and
Akiba [31].

While Moretti and Akiba call this the problem of belief individuation,
other authors spoke of the problem of conjunctive decomposition [17,18,
45]. The problem is so fundamental that it undermines all qualitative and
quantitative coherence measures that are based on mutual confirmation. To
give another example, according to Definition 3.1, the singleton belief set
{p} is neither fully nor partially coherent and its quantitative degree of
coherence is zero. But for every partition (ie., set of mutually disjoint and
jointly exhaustive propositions) q1, . . . qn, it holds that:

Observation 3.2. {p} is logically equivalent to {p ∨ q1, . . . , p ∨ qn}.

However, while {p} is not coherent, the set {p ∨ q1, . . . , p ∨ qn} will be fully
coherent if we only assume that the qi are equi-probable and p-independent
(i.e. Pr(qi) = Pr(qi|p) = 1/n for all i ∈ {1, . . . , n}). Even more, the quanti-
tative degree of coherence of the latter set will typically be high, if n is large
enough, since

Pr(p ∨ qi|p ∨ qj) =
Pr(p)

Pr(p ∧ ¬qi) + Pr(qi)
=

Pr(p)
Pr(p) · (1 − 1

n) + 1
n

,

which is close to 1 if n is large enough; so Pr(p ∨ qi|p ∨ qj) > Pr(p ∨ qi). To
give an example: if no solution to the problem of conjunctive decomposition
can be found, then I can turn my belief “Elvis lives” into a coherent system
of beliefs by rephrasing it as “Elvis lives or ticket 1 wins the lottery, Elvis
lives or ticket 2 wins the lottery, . . ., Elvis wins or ticket 1, 000, 000 wins
the lottery”, conditional on the background knowledge that the lottery has
1, 000, 000 tickets.9 This result is certainly not what we want to have.

9If this background knowledge is not assumed, the two-elements set of beliefs {“Elvis
lives.”, “One of the 1, 000, 000 tickets wins the lottery.”} − which is likewise not coherent
since the two propositions do not probabilistically support each other − can equivalently
be transformed into the mentioned highly coherent set {“Elvis lives or ticket 1 wins the
lottery.”,. . . ,“Elvis lives or ticket 1,000,000 wins the lottery.”}.
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The problem of belief individuation, or conjunctive decomposition, is not
a new problem that does not only arise in the context of coherence measures,
but was discussed, many years before, in endeavors to explicate the notion
of unification. The simple view according to which a set of beliefs is unified if
many of these beliefs (e.g. Tycho Brahe’s astronomical observations) follow
from (or are explained by) a few basic beliefs (Newton’s laws) is undermined
by the so-called conjunction paradox: any set of ( totally unconnected) state-
ments a1, . . . , an has a “trivial unification” by means of their conjunction
a1∧. . .∧an. Obviously this is not meant by unification, since the conjunction
is just another way to assert the original set. The conjunction paradox was
first mentioned by Hempel ([23], p. 273, fn. 6). All accounts of unification
had to offer some solution to the conjunction paradox. Friedman ([17], p.
16f.), for example, proposed to solve the conjunction problem by assuming a
primitive concept of “independent acceptability” (which, however, was un-
satisfying in several technical respects; cf. [26]). Another solution (similar
to that proposed in Section 4 of this paper) was developed by Schurz and
Lambert [47].

At this point a side remark on the relation between coherence and uni-
fication is appropriate. According to [47], unification is “coherence minus
circularity”. For example, in the belief set {p ≡ q, p, q}, p is deductively
supported by the subset {p ≡ q, q} and q by {p ≡ q, p}, and while both
support relations count for coherence, only one counts for unification.

The tacking problems for confirmation measures and the problem of belief
individuation are intimately related. To see this, let e be a piece of evidence
that is probabilistically irrelevant for a hypothesis h; then it follows from the
tacking argument above that although e does not confirm h, it nonetheless
confirms the conjunction h ∧ e (given that both h and e are Pr-normal).
Similarly, probabilistic independence entails that the set {h, e} is assessed
neither coherent nor incoherent by any mutual confirmation measure. On
the other hand, given the symmetry of incremental confirmation, the set
{h ∧ e, e}, although being equivalent to the former set, is assessed coherent.

4. Content Elements

The major conclusion from the last section is that for a reasonable con-
cept of coherence that is robust under mere re-formulations of the belief
set, we need a natural method of conjunctive decomposition, or represen-
tation. Such a method takes a set of believed propositions of any linguistic
format and transforms it into a logically equivalent conjunction of logically
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“smallest” semantically contained elementary proposition. We call these el-
ementary conjuncts content elements. This method will not only help us to
cure the notion of coherence from its defects but also to solve the tacking
by conjunction problem that besets the Bayesian confirmation account. In
this section we motivate and define such a method. Before we start we em-
phasize that our notions of genuine confirmation and genuine coherence do
not depend on the details of the proposed method; they merely depend on
the existence of some natural conjunctive decomposition method. In other
words, our account is open to improvements of our representation method.

Our guiding idea is that a functioning notion of coherence should as-
sign the same (degree of) coherence to all L-equivalent formulations of a
belief set. One sees quickly that some “too modest” notions of conjunc-
tive decomposition would violate this idea. For example, one could propose
to split all conjunctive propositions into their conjuncts before the coher-
ence of a belief set is assessed. According to this proposal, the belief set
{a∧ b, b∧ c, a∧ c} (which has a high “artificial” mutual confirmation among
its subsets) has to be decomposed into the set of conjuncts {a, b, c}. Given
that a, b and c are mutually probabilistically independent, this is exactly the
right result. However, instead of conjunctions “x ∧ y” one may also use the
L-equivalent formulations “¬(¬x∨¬y)” and represent the set L-equivalently
as {¬(¬a∨¬b), ¬(¬b∨¬c), ¬(¬a∨¬c)}. We do not want to say that by this
“move” the original set has now become coherent.

So our method of decomposition into content elements must be logically
deeper in a way that applies to all possible L-equivalent formulations of a
given belief set. If we accept this idea, we have to accept that adding a
logical consequence to a belief set does not change the coherence of this
set. For example, the two sets {p, p ⊃ q} and {p, p ⊃ q, q} have the same
degree of coherence, because they are L-equivalent. Therefore, we have to
acknowledge that the resulting notion of coherence is based on the ideal-
ization of logical omniscience: the coherence of a belief system is assessed
under the assumption that a believer knows all L-consequences of her beliefs.
This idealization is justified insofar as it is the only possibility to obtain a
functioning and yet simple notion of coherence. (Otherwise we would have
to relativize L-equivalence to those inferences that are “mastered” by the
believer, which would cause various complications.)

We first define the representation method for L0, which is the language
of truthfunctional propositional logic. A literal is an atomic sentence or its
negation, abbreviated as ±pi, with “±” for “unnegated” or “negated” (Car-
nap [4], p. 67, called them “basic statements”). The set of literals includes
also the two propositional constants “�” for “Verum”, which represents the
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tautology and “⊥” (=def ¬�) for “Falsum”, which represents the contra-
diction. A clause is a disjunction of literals that are non-repetitive in their
atomic propositions. Literals within a clause are assumed to be uniquely
ordered, so that no two distinct clauses are L-equivalent (it follows that
pi ∨ ¬pi is not a clause; the tautological clause is represented by �). CL(X)
denotes the set of clauses following from a set of propositions X. Uniqueness
of clauses modulo L-equivalence means that

Observation 4.1. ∀c, c′ ∈ CL(X): if |= c ≡ c′, then c = c′.

It is a well known fact that every L0-sentence is L-equivalent with a set
(or nonrepetitive conjunction) of clauses. So it is natural to decompose a
given (set of) statements into a conjunction of clauses.

Not every clause c following from a statement counts as a content element
of it. Here comes the crucial semantic restriction: a content element of x (or
X) is a clause that follows relevantly from x (or X), i.e., that doesn’t contain
irrelevant disjunctive weakenings that can be eliminated or replaced by any
other formula, salva validitate. For example, p ∨ q is a clause that follows
relevantly from p ∨ (q ∧ r), but p ∨ q ∨ s is not, since the underlined formula
part s can be eliminated or replaced by any other formula s′, salva validitate
of the inference, which means that p∨(q∧r) |= p∨q∨s′ is valid for arbitrary
s′. In particular, p ∨ q is not a content element of p.

This semantic constraint of “relevance” is crucial for making the idea
of conjunctive representation by content elements work. Without this con-
straints all kinds of inadequate consequences would be regained. Concerning
coherence, for example, the singleton set {p} could be made coherent by
adding all disjunctive weakenings p ∨ q1, p ∨ q1 ∨ q2, . . . to it. Or, if p and q
are probabilistically independent, the set {p, q} could be made coherent by
adding the irrelevant consequences ¬p∨ q and ¬q ∨ p to it, producing the L-
equivalent set {p, ¬p∨q, q, ¬q∨p}. Gemes [18] and Schurz [45] demonstrated
how irrelevant disjunctive weakenings are a major cause of paradoxes in de-
ontic logic and philosophy of science; Gemes [18] called them “tackings by
disjunction”.

Obviously, clause c′ follows relevantly from a clause c iff no clause c′′

that is L-stronger than c follows from it. Therefore a simple definition of
content elements within the language of propositional logic is possible by
characterizing them as maximally strong entailed clauses.

Definition 4.1. [Content element] c ∈ L0 is a content element of a set of
propositions X ⊂ L iff (i) c ∈ CL(X) and (ii) there exists no c′ ∈ CL(X)
distinct from c such that c′ |= c.
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CE(X) denotes the set of X’s content elements.
A content part of X is a non-empty conjunction of content elements of X.
CP(X) denotes the set of X’s content parts.

Note that we don’t need to require c �|= c′ in condition (ii) since clauses are
unique modulo L-equivalence.

The method of decomposition into clauses, and in particular the decom-
position into strongest clauses, have been proved as highly useful in compu-
tational logics and Artificial Intelligence. Content elements within proposi-
tional logics are also called prime implicates (cf. [1]; the basic idea goes back
to an old paper of Quine [36]). Schurz [45] and Schurz and Weingartner [49]
spoke of relevant (consequence) elements and generalized this notion to 1st
order logic. The notion of a content part has been introduced by Gemes [18],
who defines content parts, however, in a slightly different way than we do.

Three important facts about content elements are:

Observation 4.2 (Facts about content elements).

(a) Content-preservation: For every set of propositions X, CE(X) is L-
equivalent with X; so no information gets lost by the representation
of sets of propositions by content elements. For propositional logic this
is a straightforward consequence of the two facts that for every X, X is
L-equivalent with CL(X) and CE(X) implies CL(X) since every clause
in CL(X) is either identical with or implied by a clause in CE(X).

(b) Invariance under L-equivalence: Following from (a), every two
L-equivalent sets of propositions X and X ′ have the same content el-
ements, i.e. CE(X) = CE(X ′). Therefore, every property of a set of
propositions X explicated in terms of X’s content elements (such as the
properties of genuine confirmation and genuine coherence) is invariant
under L-equivalent transformations of X.

(c) The content elements of a logically consistent set of propositions X are
pairwise logically independent in the sense that for all c, c′ ∈ CE(X),
neither c |= c′ nor c |= ¬c′ can hold. In other words, there are no
entailment relations (i.e., one-premise inferences) between content ele-
ments. There are, however, non-trivial inference relations between the
content elements of a set of propositions having more than one premises.
For example the set {p ∨ q, ¬q ∨ r} non-trivially L-implies the content
elementp ∨ r; thus, CE({p ∨ q, ¬q ∨ r}) = {p ∨ q, ¬q ∨ r, p ∨ r}.

Here are some examples of decomposing sets of propositions into their
content elements:
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(i) CE({p ∧ q}) = CE({¬(¬p ∨ ¬q})) = {p, q}
(ii) CE({p ∨ (q ∧ r)}) = {p ∨ q, p ∨ r}
(iii) CE({p ∨ ¬q, p ∨ q}) = CE({p}) = {p}
(iv) CE({p ⊃ q, q ⊃ ¬r}) = {¬p ∨ q, ¬q ∨ ¬r, ¬p ∨ ¬r}
(v) CE({p, q}) = CE({p, p ⊃ q, q}) = CE({p, p ⊃ q, q ⊃ p, q}) = {p, q}
(vi) CE(p ∨ ¬p) = {�}, CE(p ∧ ¬p) = {⊥}

The examples show that the method of decomposition works as intended.
Against result (v) one may object that the belief set {p, p ⊃ q, q ⊃ p, q} is
much more coherent than the belief set {p, q} insofar as the two conditionals
p ⊃ q and q ⊃ p allow one to derive p from q and vice versa. The latter
assertion is right, but the impression that this fact would make the belief
set coherent is illusionary, as soon as one recognizes that “p ⊃ q” is merely
the material implication which says no more than “either not p or q”. If the
set {p, p ⊃ q, q ⊃ p, q} would really count as coherent, it would be a child’s
play to make two independent beliefs p and q coherent, simply by adding to
them the irrelevant disjunctive weakenings p ∨ ¬q and q ∨ ¬p. For example,
I could make the belief set {“Snow is white.”, “Grass is green.”} coherent
by expanding it by the two irrelevant consequences “Snow is white or grass
is not green.” and “Grass is green or snow is not white.” This is obviously
not what we have in mind when calling a belief set coherent.

The impression that the belief set {p, p ⊃ q, q} is coherent arises from the
intuition that “⊃” establishes a kind of connection between p and q. This
means that we have a conditional “→” in mind that is stronger than “⊃”. So
the belief set we have in mind is {p, p → q, q}, where “→” is an intensional
(non-truthfunctional) conditional, for example, that of strict implication or
a relevant implication. For such a conditional the two inferences ¬p |= p → q
(“ex falso quodlibet”) and q |= p → q (“verum ex quodlibet”) are invalid,
whence {p, q}, {p, p → q, q} and {p, p → q, q → p, q} are pairwise logically
non-equivalent.

Another possibility to interpret the conditional p ⊃ q would be to assume
that it is backed up by a certain regularity that can be expressed in first
order logic. In this case, the above belief sets are interpreted, for example, as
{Fα1, Gα1}, {Fα1, ∀x(Fx ⊃ Gx), Gα1} and {Fα1, ∀x(Fx ⊃ Gx), ∀x(Gx ⊃
Fx), Gα1}, respectively. Again these belief sets are pairwise logically non-
equivalent.

What these consideration tells us is that, although our Definition 4.1 of
content elements for the language L0 of truthfunctional propositional logic
is correct, for many interesting applications we need to extend this definition
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to the language L→ of intensional conditional logic and to the language L1 of
first order logic. For this purpose, the general definition of relevant elements
as developed in [45,46] comes at help:

Definition 4.2. [Content element] e is a content element of a set of propo-
sitions X iff

(a) e is an “element”, i.e., it is not L-equivalent with a conjunction of sen-
tences x1 ∧ . . .∧xn (n ≥ 1) each of which is shorter than e. Thereby the
length of a sentence is defined as the number of its primitive symbols
when statements are expressed by means of the following logical bases:
{¬, ∨, ∧} for L0, {¬, ∨, ∧, ∃, ∀} for L1 and {¬, ∨, ∧, →} for L→.

(b) e is a relevant logical consequence of X in the sense that X |= e and
no predicate in e is replaceable on some of its occurrences by any other
predicate (of the same degree) salva validitate of X |= e (where propo-
sitional atoms are regarded as 0-ary predicates).

(c) e is the first statement among all statements L-equivalent with e and
satisfying (a) and (b), according to a given enumeration of all statements
of the underlying language.

Examples: According to clause (a), “p ∧ p” is not an element, but “p” is
one; “p ∨ (q ∧ r)” is not an element, but “p ∨ q” and “p ∨ r” are elements,
“∀x(Fx ∧ Gx)” is not an element, but “∀xFx” and “∀xGx” are elements.

Examples of irrelevant consequences according to clause (b) (underlined
occurrences are salva validitate replaceable) are: p |= p ∨ q; p |= q ⊃ p;
p |= (p ∨ q) ∧ (p ∨ ¬q); ∀x(Fx ⊃ Gx) |= ∀x(Fx ⊃ (Gx ∨ Hx)). Examples
of relevant consequences are: p ∧ q |= p; p ⊃ q, q ⊃ r |= p ⊃ r; ∀x(Fx ⊃
Gx), Fα1 |= Gα1; ∀x(Fx ⊃ Gx), ∀x(Gx ⊃ Hx) |= ∀x(Fx ⊃ Hx).

Schurz and Weingartner ([49], Lemma 5) prove that in propositional logic,
Definition 4.2 of content elements (they call them relevant elements) is equiv-
alent with the definition 4.1 in terms of strongest clauses, assuming literals
occurring in consecutive disjunctions are ordered according to a fixed enu-
meration. This latter condition ensures that in propositional logic content
elements are unique modulo L-equivalence. For intensional or 1st order logic,
this condition is not sufficient. For these languages the uniqueness is explic-
itly required in condition (c).

In intensional propositional logic, Definition 4.2 splits conditional formu-
las with complex antecedents and consequents into conjuncts, depending
on the specific logical rules for the conditional operator. For example, in a
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conditional logic which satisfies the two following rules

disjunction of antecedents |= (a ∨ b) → c ≡ (a → c) ∧ (b → c)

conjunction of consequents |= a → (b ∧ c) ≡ (a → b) ∧ (a → c)

we have

CE({(a ∨ b) → (c ∧ d)}) = {a → c, a → d, b → c, b → d}
A similar decomposition is performed in first order logic:

CE({∀x((Fx ∨ Gx) ⊃ (Hx ∧ Qx))})

= {∀x(Fx ⊃ Hx), ∀x(Fx ⊃ Qx), ∀x(Gx ⊃ Hx), ∀x(Gx ⊃ Qx)}
Recall that in L0 all one-premise inferences (entailments) between clauses
are irrelevant; so content elements are automatically strongest content el-
ements. In first order logic this is not so: certain one-premise inferences
(entailments) are relevant. This is in particular true for universal instanti-
ations, existential generalizations and existential simplifications, which give
us the following decompositions (where I denotes the set of all individual
constants of the language L1):

(i) CE({∀xFx}) = {∀xFx} ∪ {Fαi : αi ∈ I}
(ii) CE({Fα1}) = {Fα1, ∃xFx}
(iii) CE({∃x(Fx ∧ Gx)}) = {∃x(Fx ∧ Gx), ∃xFx,∃xGx}
For applications to truthlikeness, content elements obtained from universal
instantiation or existential generalization or simplification are important
(cf. [45,49]). However, for purposes of coherence these non-maximal content
elements are problematic, insofar as they can produce artificial coherence.
If we would include them into the belief representation, then we would have
to say that the singleton set {∀xFx} has a high degree of coherence (given a
suitably inductive probability measure) because its representation contains
the infinite set of content elements Fα1, Fα2, . . .. Likewise, we do not want
to say that the belief set {Fα1} is coherent because Fα1 entails ∃xFx, or the
belief set {∃x(Fx∧Gx)} is coherent because ∃x(Fx∧Gx) entails ∃xFx and
∃xGx. Thus, for the purpose of obtaining an adequate measure of coherence,
it is reasonable to confine the conjunctive decomposition of a belief set into
its strongest content elements, which we call basic content elements.

Definition 4.3. [Basic content elements] e is a basic content element of a
set of propositions X iff e is a content element of X and there exists no
content element e′ of X that is (properly) L-stronger than e. BCE(X) is the
set of all basic content elements of X.
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A basic content part of X is a non-empty conjunction of basic content
elements of X.

BCP(X) denotes the set of X’s basic content parts.

In the next two sections we apply this method of decomposition to the
notions of genuine coherence and genuine confirmation.

5. Genuine Coherence: Qualitative and Quantitative

Following from the previous sections we base our notion of genuine coher-
ence on the representation of the given belief set X by X’s basic content
elements, BCE(X). Since we assume the idealization of logical omniscience,
BCE(X) may contain some content elements that are not contained in X
but follow from content elements in X. Recall that we assume that the be-
liever knows all consequences of her beliefs; so it is only logical to count the
contribution of all basic content elements of her belief set, fundamental or
derived, to the overall coherence or degree of coherence of her belief set. Our
notion of qualitative full genuine coherence is simply obtained by applying
Definition 3.1 to the set of basic content elements of the belief set:

Definition 5.1. [Qualitative full genuine coherence] A set of propositions
X ⊂ L is fully genuinely coherent (relative to probability distribution Pr ∈
P) iff BCE(X) satisfies Definition 3.1, i.e., iff |BCE(X)| > 1 and for all
non-empty, non-overlapping subsets X ′, X ′′ ⊂ BCE(X), Pr(

∧
X ′| ∧ X ′′) >

Pr(
∧

X ′).

For the qualitative notion of partial genuine coherence we do not give a
both sufficient and necessary condition, for the same reasons as for the cor-
responding notion of ordinary coherence (recall Definition 3.2). Instead, we
only give a sufficient and a necessary condition, in order to make this notion
consistent with the quantitative notion of genuine coherence (similarly as
we did this for ordinary coherence in Definition 3.2). Thus we define:

Definition 5.2. [Qualitative partial genuine coherence] A set of proposi-
tions X ⊂ L is partially genuinely coherent (relative to probability distrib-
ution Pr ∈ P)

[sufficient condition:] if (i) |BCE(X)| > 1 and for some non-empty,
non-overlapping subsets X ′, X ′′ ⊂ BCE(X) it holds Pr(

∧
X ′| ∧ X ′′) >

Pr(
∧

X ′), and (ii) for all such subsets Pr(
∧

X ′| ∧ X ′′) ≥ Pr(
∧

X ′).

[necessary condition:] only if (i) holds.
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Note that Definition 5.1 can be rephrased more elegantly by saying that for
all pairs c, c′ of non-overlapping basic content parts of X, Pr(c|c′) > Pr(c).
Similarly we can express Definition 5.2 more elegantly in terms of content
parts.

The quantitative measure of genuine coherence is based on the average
degree of confirmation between conjunctions of basic content elements (i.e.
basic content parts). Thus, this measure is defined as follows:

Definition 5.3. (Quantitative degree of genuine coherence) The degree of
genuine coherence of belief set X ⊂ L (relative to probability distribution
Pr ∈ P), cohg(X), equals coh(BCE(X)), where coh(Y ) is defined as in
Definition 3.3.

Based on the discussion in the last section it is obvious that this notion of
genuine coherence solves all the mentioned problems that result from the
dependence of simple Bayesian coherence on different formulations of the
belief set. In particular, since two L-equivalent belief sets have the same set
of basic content elements, their genuine coherence is exactly the same. In
other words:

Observation 5.1. Genuine coherence of a belief set is invariant w.r.t. L-
equivalence.

6. Genuine Confirmation

We now turn to the notion of Bayesian confirmation and the tacking by
conjunction problem. Recall the most extreme case of the tacking problem
(Definition 2.1 (ii)): it amounts to the fact that each piece of evidence e
confirms the conjunctive hypothesis e ∧ h′ for any arbitrary h′. Given that
there may not be any confirmatory relationship between e on the one hand
and h′ on the other, this seems counter-intuitive.

Clearly the probability increase Pr(h′ ∧ e|e) > Pr(h′ ∧ e) is not a case of
genuine confirmation, since e is probabilistically irrelevant to that content-
part of h′ ∧ e that goes beyond e, namely h′ (i.e., Pr(h′|e) = Pr(h′)). e
increases h′ ∧ e’s probability only because e is a content part of h′ ∧ e and
increases its own probability to 1 (Pr(e|e) = 1). Gemes and Earman (who
quotes Gemes; cf. [18], p. 98, and 242, fn. 5) have called this type of non-
genuine confirmation mere content-cutting.

In order to avoid the problem of “confirmation by mere content-cutting”
one ought to require that the confirmation takes place in some ‘part’ of the
hypothesis h that is not already contained in the evidence. Accordingly, in
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order for e to ‘really’ confirm the conjunctive hypothesis e ∧ h′, e has to
confirm h′. This is the idea of genuine confirmation (cf. Schurz [46]). This
idea implies that an evidence e that raises h’s probability can only count as
a genuine confirmation of h if h’s content transcends e in the sense that h
is not entailed by e.

It follows that the logical entailment of a Pr-normal hypothesis h by e,
though being a special case of ordinary confirmation, is not a special case
of genuine confirmation, because in our understanding genuine confirmation
requires a probability increase of e-transcending content elements of h. In
other words, what we call “genuine confirmation” can more explicitly be
called “genuine inductive confirmation”. However, we do not want to take
a definite stance in regard to the question whether an appropriate notion
of “genuine confirmation” should be restricted to genuine inductive confir-
mation or should include deductive entailment as a special case. The latter
notion, call it “genuine inductive-or-deductive confirmation” can easily be
defined as follows: e genuinely confirms h in the inductive-or-deductive sense
if either e genuinely confirms h (in the inductive sense) or e entails h. In
what follows we mean by “genuine confirmation” always “genuine confir-
mation in the inductive sense”, because it is this notion that we intend to
explicate in this section.

For the notion of full (qualitative) genuine confirmation, we require that
not only some, but all e-transcending basic content elements of the hypoth-
esis h have to be confirmed by the evidence e (in the ordinary Bayesian
sense). As a further complication, it is important to require this not only for
the (basic) content elements, but also for their conjunctions, i.e., the (basic)
content parts, because following from the non-monotonicity of conditional
probabilities it may well be that Pr(h|e) > Pr(h), Pr(h′|e) > Pr(h′), but
Pr(h ∧ h′|e) < Pr(h ∧ h′) holds.

However, we restrict the demand of genuine confirmation to those e-
transcending parts of h that do not themselves entail e, for the reason that
we don’t want to introduce effects of “tacking by conjunction” (e confirms
e ∧ h) into our notion of genuine confirmation. This restriction is not really
necessary for full genuine confirmation − here the inclusion of these “e-
tacked” content parts would not harm − but it will become important for
the corresponding notions of qualitative partial genuine confirmation and
the quantitative measure of genuine confirmation. So we define:

Definition 6.1 (Qualitative full genuine confirmation). e fully genuinely
confirms h (given probability distribution Pr) iff (i) there exists some
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e-transcending x ∈ BCP(h) that does not entail e such that Pr(x|e) > Pr(x)
holds and (ii) this holds for all such x ∈ BCP(h).

Thus, e genuinely confirms the conjunctive hypothesis h∧e only if Pr(h|e)
> Pr(h) because h is also a basic content part of h ∧ e. Moreover, e fully
genuinely confirms a conjunction h ∧ h′ only iff e fully genuinely confirms
both h and h′ (and their conjunction). Thus, not only the special but also
the generalized tacking problem are avoided by the notion of full genuine
confirmation.

Full genuine confirmation is a rather strong notion. For certain purposes
we want to say that, if e genuinely confirms h but is irrelevant to h′, then e
confirms the conjunction h ∧ h′ at least partially. Thus we need a notion of
partial genuine confirmation. As for the case of partial genuine coherence,
we give only a sufficient and a necessary, but not a sufficient and necessary
condition for partial genuine confirmation, in order to make this notion
consistent with the quantitative notion of genuine confirmation, in the sense
that e partially genuinely confirms h iff e quantitatively genuinely confirms
h to a positive degree. We define:

Definition 6.2. [Partial genuine confirmation] e partially genuinely con-
firms h (given probability distribution Pr ∈ P)

[sufficient condition:] if (i) there exists some e-transcending x ∈ BCP(h)
that does not entail e such that Pr(x|e) > Pr(x) holds and (ii) Pr(x|e) ≥
Pr(x) holds for all such x ∈ BCP(h).

[necessary condition:] only if (i) holds.

It is important that we confine Definition 6.2 to basic content parts that
(are e-transcending and) do not entail e. This prevents that tacking by
conjunction counts as a case of partial genuine confirmation. Note that e∧h′

is a basic content part of itself, and Pr(e∧h′|e) > Pr(e∧h′) holds; however,
the hypothesis e∧h′ has no confirmed basic content part that does not entail
e. Therefore “e ∧ h′” is not even partially genuinely confirmed by e, since
the necessary condition of Definition 6.2 is violated.

In this context it is important to note that our concept of genuine con-
firmation does not fall prey to the well-known Popper-Miller objection to
inductive confirmation, which runs as follows: every hypothesis h is logically
equivalent to the conjunction of h ∨ e and h ∨ ¬e. Now the conjunct h ∨ e
is already entailed by the evidence e and the remaining conjunct h ∨ ¬e is
provably disconfirmed by e, i.e. Pr(h ∨ ¬e|e) < Pr(h ∨ ¬e) for any Pr ∈ P.
From this observation Popper and Miller [35] conclude that non-deductive
confirmation is impossible. However, obviously neither h ∨ e nor h ∨ ¬e
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are content elements of the belief set {h}. So what Popper and Miller have
shown is only that for each hypothesis h that is inductively confirmed by the
evidence e there is a logical consequence, to wit h ∨ ¬e, that is inductively
disconfirmed.

So far our discussion of the concept of confirmation focused exclusively
on the qualitative side. Now we want to turn to the definition of a mea-
sure of genuine confirmation. Since it is based on some average of classical
(Bayesian) confirmation degrees, we will first introduce a couple of confir-
mation measures. The common core of all these measures is the relevance-
principle as introduced in Section 1, which is a bridge principle linking the
qualitative and the quantitative concept of confirmation. According to this
principle, the degree of confirmation that conf assigns to a pair (e, h) of
a piece of evidence and a hypothesis is positive iff h’s posterior probability
given e exceeds its prior probability. Accordingly, conf(e, h) > 0 if and only
if Pr(h|e) > Pr(h), i.e., iff e qualitatively confirms h (relative to probability
distribution Pr).

Now a straightforward idea for how to calculate the degree of confirmation
that e provides for h is simply either to take the difference or the (logarithm
of the) ratio between Pr(h|e) on the one hand and Pr(h) on the other.
Other prominent confirmation measures are based on the observation that
for Pr-normal h and e, the condition (i) Pr(h|e) > Pr(h) is equivalent to
each of the following ones: (ii) Pr(h|e) > Pr(h|¬e), (iii) Pr(e|h) > Pr(e)
and (iv) Pr(e|h) > Pr(e|¬h) (which does not mean that the corresponding
quantitative measures are ordinally equivalent). The following list contains
many prominent measures.10 They come in two versions: the left-hand side
presents the difference-based version of the measure, and the right-hand side
the log-ratio-based version.

(α) αd(e, h) = Pr(h|e) − Pr(h) αr(e, h) = log [Pr(h|e)/Pr(h)]
(β) βd(e, h) = Pr(h|e) − Pr(h|¬e) βr(e, h) = log [Pr(h|e)/Pr(h|¬e)]

(γ) γd(e, h) = Pr(e|h) − Pr(e) γr(e, h) = log [Pr(e|h)/Pr(e)]
(δ) δd(e, h) = Pr(e|h) − Pr(e|¬h) δr(e, h) = log [Pr(e|h)/Pr(e|¬h)]

10Measure αd has been supported (among others) by Earman [11]; a prominent defender
of measure αr is Milne [30]. βd is the measure proposed by Christensen [6], its ratio-based
counterpart βr is (to the best of our knowledge) so far undefended. γd is Mortimer’s
[32] measure, whereas γr is the measure defended by Kuipers [28]. Measure δd is most
prominently discussed by Nozick [33] while δr is the well-known log-likelihood measure
endorsed, among others, by Good [21].
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Further prominent measures are the following:11

(ε) ε(e, h) = Pr(h ∧ e) − Pr(h) · Pr(e)

(ζ) ζ(e, h) =

{
αd(e, h)/Pr(¬h), if Pr(h|e) > Pr(h)

αd(e, h)/Pr(h), if Pr(h|e) ≤ Pr(h)

(η) η(e, h) = 1 − [Pr(¬e|h)/Pr(¬e)]

We finally define our quantitative notion of genuine confirmation by aver-
aging the degrees of confirmation by e for all those basic content parts x of
h that transcend e but do not entail e:

Definition 6.3. (Quantitative degree of genuine confirmation) The degree
of genuine confirmation that e provides for h (given probability distribution
Pr ∈ P), confg(e, h), is defined as follows:

confg(e, h) =
∑{conf(e, x) : x ∈ BCP(h) and e �|= x and x �|= e}

|{x ∈ BCP(h) : e �|= x and x �|= e}| ,

provided that {x ∈ BCP(h) : e �|= x and x �|= e} �= ∅; otherwise confg(e, h)
=def 0.

Is is easy to see that:

Observation 6.1. If the sufficient condition of Definition 6.2 is satisfied
than confg(e, h) > 0. If confg(e, h) > 0, then the necessary condition of
Definition 6.2 is satisfied.

For the special tacking problem Observation 6.1 implies that the degree of
genuine confirmation that e conveys to e ∧ h′ (for Pr-normal e and e ∧ h′) is
zero, since e ∧ h′’s only basic content part that is logically independent of e
is h′.

Now let us return to the generalized tacking problem. At the end of Sec-
tion 2 we saw that classical Bayesian solution proposals tried to solve the
problem by arguing as follows: although the conjunctive hypothesis h ∧ h′

is confirmed by e if h is, even if h′ is irrelevant to h, e and h ∧ e, it is so
only to a lower degree, i.e. conf(e, h ∧ h′) < conf(e, h). Our main concern
with these solution proposals was that they are measure-sensitive in the
sense that the inequality only holds for a subset of (prominent) confirma-
tion measures. Accordingly, we would like to have a robust analysis of the
tacking problem that holds for the vast majority (if not all) of the existing

11ε is the (mutual) relevance measure that is due to Carnap [4], ζ is known as the
‘relative distance measure of confirmation’ and has been introduced by Crupi et al. [9]
while η has been defended by Rips [37].
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confirmation measures. That this is the case for genuine confirmation is the
content of the following observation:

Observation 6.2. If e confirms h and h′ is probabilistically irrelevant to
h, e and h ∧ e, then confg(e, h ∧ h′) < confg(e, h) for each of the above
measures αd−δd, αr−δr, ε, ζ and η provided that h and h′ are basic content
elements of h ∧ h′ and e, h, h′ and h ∧ h′ are Pr-normal.

Proof. In what follows, where “x(−)” denotes one of the Bayesian confir-
mation measures , “xg(−)” denotes its genuine counterpart (obtained from
“x(−)” by replaing in Definition 6.3 “conf(e, h)” by this measure).

If h′ is probabilistically irrelevant to h, e and h ∧ e, then Pr(e|h ∧ h′) =
Pr(e|h). Now let us first see what the degree of (partial) genuine confir-
mation that e provides for the conjunctive hypothesis h ∧ h′ amounts to.
Given our assumption that h and h′ are basic content elements of h∧h′, we
get:

confg(e, h ∧ h′) =
conf(e, h) + conf(e, h′) + conf(e, h ∧ h′)

3
Now given the assumption that h′ is irrelevant to e, we conclude that
conf(e, h′) = 0. Hence, confg(e, h∧h′) = 1/3·[conf(e, h) + conf(e, h ∧ h′)].
This holds true for all considered confirmation measures. For measures
αd, βd, δd, δr, ε and ζ, [3] has shown that conf(e, h ∧ h′) < conf(e, h).
Hence, for all these measures we get: confg(e, h ∧ h′) < conf(e, h), and
since conf(e, h) = confg(e, h) because h is a basic content element of itself,
we obtain the result confg(e, h ∧ h′) < confg(e, h).

For αr and the equivalent γr it is straightforward to show that αr(e, h ∧
h′) = αr(e, h); nonetheless, we still obtain αrg(e, h ∧ h′) = 2/3 · αr(e, h) <
αr(e, h) = αrg(e, h) for these two measures. The same holds for γd, for
which the above equality Pr(e|h ∧ h′) = Pr(e|h) can be utilized. To see that
also βr(e, h ∧ h′) = βr(e, h) one only needs to observe that Pr(h ∧ h′|e) =
Pr(h|e) · Pr(h′) and Pr(h ∧ h′|¬e) = Pr(h|¬e) · Pr(h′), since h′ is irrelevant
to h ∧ e. Hence, βrg(e, h ∧ h′) < βrg(e, h).

Finally, we have to prove that Observation 6.2 holds also for η. This proof
is straightforward given the observation that Pr(¬e|h ∧ h′) = Pr(¬e|h).

Thus, our solution to the generalized tacking problem is twofold: we argued
that in order for e to fully genuinely confirm the conjunctive hypothesis h∧h′,
e has to confirm both h and h′ (and their conjunction). Accordingly, if h′ is
an irrelevant conjunct, h ∧ h′ is not fully genuinely confirmed; it is merely
partially genuinely confirmed. Moreover, we were able to show that given
the assumptions in Definition 2.2, the degree of partial genuine confirmation
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that e provides for h exceeds the degree of partial genuine confirmation that
e provides for h ∧ h′ for all considered measures. Thus adding irrelevant
conjuncts to confirmed hypotheses produces a similar diminishing effect for
the degree of partial genuine confirmation as for certain measures of ordinary
Bayesian confirmation; however, this diminishing effect is far more robust
in regard to the choice of particular measures than it is in former Bayesian
solution proposals.

7. The Relation Between Genuine Confirmation and Genuine
Coherence

In the final part of this paper we will dwell into the relationship between
(qualitative) genuine coherence and (qualitative) genuine confirmation. One
might be tempted to think that like ordinary coherence of a belief set X is
mutual ordinary confirmation between non-overlapping subsets of X, gen-
uine coherence is mutual genuine confirmation between non-overlapping sub-
sets of X. This turns out to be false since the notion of genuine coherence
is based on mutual confirmation between non-overlapping subsets not of X
itself but of the result of the decomposition of X into basic content elements.

Consider the following example: let X = {p ∧ q, r}, then X is genuinely
coherent if the set {p, q, r} is coherent. Accordingly, among others it has to
be the case that Pr(p|q) > Pr(p), Pr(r|q) > Pr(r), Pr(p ∧ q|r) > Pr(p ∧ q),
etc. In particular, it has also to be the case that Pr(p|q ∧ r) > Pr(p). On the
other hand, for X to satisfy mutual genuine confirmation it has only to be the
case that Pr(p|r) > Pr(p), Pr(q|r) > Pr(q), and that Pr(p∧ q|r) > Pr(p∧ q).
Thus, the requirement that p’s probability is also raised by the conjunction
of q and r is not contained in an account of mutual genuine confirmation
(and so are others).

In conclusion, genuine coherence is not identical with mutual genuine
confirmation. We rather have the following facts:

Observation 7.1. Let X ⊂ L be a set of propositions, h, e be a hypothesis
and the corresponding evidence,

(i) Full genuine coherence of X = existence of at least two non-overlapping
basic content parts and mutual confirmation between all basic content
parts of X

(ii) Full genuine confirmation of h by e = existence of at least one e-
transcending basic content part of h and confirmation of all of h’s e-
transcending content parts by e.
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In both cases the genuine notion has been reduced to the ordinary notion
of confirmation applied to conjunctions of content elements, i.e., content
parts. Nevertheless we can also establish a direct relation between genuine
coherence and genuine confirmation, as follows. Let us define the comple-
ment x∗ of a (basic) content part x =def

∧
Y of some belief set X (for

Y ⊂ BCE(X)) as the conjunction of all content elements of X that are not
conjuncts of x, i.e., x∗ =

∧
(BCE(X) \ Y ). Then we get:

Observation 7.2. (i) Full genuine coherence of X is equivalent with (ii) X
having at least two non-overlapping content parts and full genuine confir-
mation of every basic content part of X by its complement.

Proof. (i) ⇒ (ii): By (i) X has at least two non-overlapping content parts.
Now assume x is a content part of X. Let x∗ be its X-complement. We must
show that x is fully genuinely confirmed by x∗, which means that there exists
an x∗-transcending subconjunction of x and every such subconjunction of x
is confirmed by x∗. By (i) this is the case.

(ii)⇒ (i): Assume x and y are two non-overlapping content parts of X,
i.e., conjunctions of content elements whose conjuncts are non-overlapping.
We must show that y confirms x. By (ii) y fully genuinely confirms y∗, the
X-complement of y, which means that y confirms every subconjunction of
y∗. But x is a subconjunction of y∗, so x is confirmed by y.

A similar connection exists between partial genuine coherence and con-
firmation. In this case we state only a necessary condition:

Observation 7.3. A necessary condition for partial genuine coherence of
X is |BCE(X)| ≥ 2 and partial genuine confirmation of at least some basic
content part of X by its complement.

Finally we turn to the relation between measures of genuine coherence
and genuine confirmation. Also in this case the connection is not straightfor-
ward. The degree of genuine coherence is not identical to the simple average
of the degrees of mutual genuine confirmation of every content part by its
complement, because the notion of genuine confirmation of x by y is itself
an average of the degrees of confirmation of x’s content parts by y. If we
form an average over these averages, then the confirmation of a content
part that has only one or a few content subparts would achieve a higher
weight in the total average than the confirmation of a content part that
has many content subparts. To illustrate, let X = BCE(X) = {x, y, z}, then
cohg(X) is the average of 12 degrees of confirmation (conf(x, y), conf(x, z),
conf(y, z), conf(x, y ∧ z), conf(y, x ∧ z), conf(z, y ∧ x), and the confir-
mation degrees for the inverted pairs). All these confirmation degrees are
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assigned an equal weight in the measure of genuine coherence. On the other
hand, there are six basic content parts of X with a non-empty complement
(x, y, z, x∧y, y∧z, x∧z). The degree of genuine confirmation of each of these
content parts, say c, by its complement, c∗, is the average of the degrees of
confirmation of all content subparts of c by c∗. While confg(y∧z, x) is identi-
cal with conf(y∧z, x) (because x is a basic content element), confg(y, z∧x)
is an average of conf(y, x), conf(y, z) and conf(y, z ∧ x), since z ∧ x has
the three content parts x, y and x ∧ z. Accordingly, if we would calculate
the notion of genuine coherence by the averages of the degrees of genuine
confirmation, the degree of confirmation conf(y ∧ z, x) would count three
times as much as the degrees of confirmation conf(y, x), conf(y, z) and
conf(y, z ∧ x). We summarize this in the following observation:

Observation 7.4. The degree of genuine coherence is not identical to the
average degree of genuine mutual support between content parts and their
complements.

Positively, this consideration implies that we can correct this deviation by
introducing suitable weights. More precisely, the degree of genuine coherence
of a set of propositions X is a weighted average of the degrees of genuine con-
firmation of the basic content parts x of X by their complements, weighted
by the number of content subparts of x. We state this as the final result of
this paper. For a set of propositions X, BCP∗(X) = BCP(X)\{∧

BCE(X)}
is the set of those basic content parts of X that have non-empty comple-
ments.

Observation 7.5. For a set of propositions X ⊂ L with |BCP(X)| > 1:

cohg(X) =
∑{confg(x∗, x) · |BCP(x)| : x ∈ BCP∗(X)}

∑{|BCP(x)| : x ∈ BCP∗(X)}
Proof. In the definition of the term “confg(x∗, x)”, the sum of all conf
(x∗, y) over all content parts y of x is divided by |BCP(x)|. So by multiplying
with |BCP(x)|, the resulting expression confg(x∗, x) · |BCP(x)| equals the
sum of conf(x∗, y) for all content parts y of x. By summing up the terms
“confg(x∗, x) · |BCP (x)|” for all content parts x of BCP∗(X), we obtain
the sum of all terms conf(y, x) for all ordered pairs of non-overlapping basic
content parts of X. This sum is identical with the numerator of the definition
of genuine coherence. Moreover, the sum of the cardinalities |BCP(x)| over
all X in BCP∗(X) is identical with the number of ordered pairs of non-
overlapping content parts of X, which is the denumerator of cohg(X). This
proves our claim.
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8. Conclusion

We have shown that by means of conjunctive decompositions of (sets of)
beliefs into content elements it is possible to explicate the concepts of co-
herence and confirmation in probabilistic terms in a way that avoids two
well-known problems: the problem of belief individuation and the tacking
problem. We demonstrated this approach for three languages, viz. the lan-
guage of truthfunctional propositional logic L0 , the language of truthfunc-
tional logic together with an intensional conditional operator L→ and the
language of 1st order logic L1. The resulting concepts of genuine coher-
ence and genuine confirmation have been investigated both on a qualitative
and a quantitative level. In a further step, we payed closer attention to
the relationship between these two concepts. We showed that the direct
relationship between the ordinary Bayesian models of the concepts of co-
herence and confirmation does not transfer to their genuine counterparts,
i.e., genuine coherence is not identical with genuine mutual support. How-
ever, Section 6 contains some results that show that there is nonetheless
a close relationship between these refined concepts. Similarly, although the
ordinary degree of Bayesian coherence is identical with the average degree
of Bayesian mutual support, their quantitative genuine counterparts are not
related that directly. Nevertheless, we were able to show that by adapt-
ing weights it is possible to regain this close link also in a quantitative
perspective.

Last but not least we would like to note that although we think that our
solution to the problem of belief individuation and the tacking problem is
formally sound and intuitively appealing, our employed notions of genuine
coherence and genuine confirmation are open to improvements as regards the
details of the representation method. We leave the in-depth investigation of
the pros and cons of our account and the assessment of its consequences
with respect to other problems confronting Bayesian confirmation theory
for another paper.
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