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1. Introduction

Adding propositional connectives to the language of the Lambek calculus is
not new. A sequent calculus for the associative Lambek calculus extended
with conjunction and disjunction was introduced in [9]. In contrast to intu-
itionistic and classical propositional logics, in the above extension, conjunc-
tion and disjunction are not mutually distributive. Namely, only the sequent

(A ∧ C) ∨ (B ∧ C) → (A ∨ B) ∧ C (1)

is derivable in that calculus. To overcome this deficiency, the converse

(A ∨ B) ∧ C → (A ∧ C) ∨ (B ∧ C) (2)

of (1) was added as an additional axiom in [2,3].1

The nonassociative Lambek calculus extended with conjunction, disjunc-
tion, negation, � and ⊥ (both classical and intuitionistic) was studied
in [2,3]. It was shown there that this extension is sound and complete with
respect to distributive lattice-ordered residuated groupoids augmented with
boolean negation. It was also shown there that this algebraic semantics pos-
sesses the strong finite model property (i.e., it also holds for the consequence

1A normalizing natural deduction calculus for the extension of the associative Lambek
calculus with conjunction and disjunction, where these connectives are mutually distribu-
tive, can be found in [22].
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relation). Thus, the extension of the nonassociative Lambek calculus with
intuitionistic propositional logic is strongly decidable (i.e., the consequence
relation is decidable).

In this paper we also study the extension of both nonassociative and
associative Lambek calculi with intuitionistic propositional logic (denoted
NLI and LI, respectively), presented as a Hilbert-style system,2 but from a
different perspective. We show that the combination of the relational seman-
tics (see [4]) and the Kripke semantics (see [12]) is sound and complete for
these extensions and that the latter are conservative extensions of both the
corresponding Lambek calculi and intuitionistic propositional logic, cf. the
semantics in [16,17], where completeness is proved only for the logic without
negation. Then, using filtrations, we obtain the finite model property of the
combined semantics of NLI that yields an alternative proof of its decidabil-
ity. This part of the paper is an “intuitionistic counterpart” of similar results
from [8] for Lambek calculi extended with classical propositional logic.

We also present sequent calculi without additional axioms for both NLI
and LI. These sequent calculi are based on the ideas from [5] and [15] and are
similar to distributive full Lambek calculus (DFL) introduced in [11], but,
in addition to conjunction and disjunction of DFL, contain implication and
negation. Our sequent calculi are extensions of the sequent calculus for the
logic of bunched implications BI [16,17] with the left-sided relevance impli-
cation.3 The sequent calculi combine the substructural nature of the Lambek
calculus [14] and the full structural nature of the Gentzen calculus [6] by
alternating between the rigid structure of antecedents of Lambek sequents
(ranked trees and sequences) and the flexible structure of antecedents of
Gentzen sequents (multisets). Both calculi admit cut elimination.

As a corollary of cut elimination we obtain that both NLI and LI are
decidable. As we have mentioned above, (strong) decidability of NLI is
already known from [2,3]. What is new in our paper is decidability of LI.

This paper is organized as follows. In the next section we introduce the
extension of the nonassociative Lambek calculus with intuitionistic propo-
sitional logic. Then, in Section 3 we define the relational semantics of the
extended nonassociative Lambek calculus and prove the corresponding com-
pleteness theorem. Section 4 contains a sequent calculus for NLI. In Sec-
tion 5 we define the (associative) relational semantics of the extended asso-

2Cf. [2,3], where the extension is presented as a sequent system with additional axioms.
3Also, the ternary semantics of Lambek calculus is a similar extension of semantics of

relevance implication.
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ciative Lambek calculus and prove the corresponding completeness theorem.
Finally, in Section 6 we present a sequent calculus for LI.

2. Nonassociative Lambek Calculus Extended with Intuitionistic
Propositional Logic

The axiomatic extension NLI of the nonassociative Lambek calculus (NL)
with intuitionistic propositional logic (I) is defined as follows. Formulas are
constructed from propositional variables (atomic formulas), denoted by Pi,
i = 1, 2, . . ., by means of the Lambek connectives \, /, ·, and the proposi-
tional connectives ∧, ∨, ⊃, and ¬ (conjunction, disjunction, implication, and
negation, respectively).

Formulas constructed from propositional variables by means of the Lam-
bek connectives only are called formulas of the pure Lambek calculus and
formulas of the form A ⊃ B, where A and B are formulas of the pure Lambek
calculus are called Lambek implications.

The rules of inference and the axioms of NLI are the rules of inference
of the nonassociative Lambek calculus NL4

A · B ⊃ C

A ⊃ C/B
(3)

A ⊃ C/B

A · B ⊃ C
(4)

A · B ⊃ C

B ⊃ A\C
(5)

B ⊃ A\C

A · B ⊃ C
(6)

modus ponens A, A ⊃ B
B

and the axiom schemata of intuitionistic propositional calculus, see, say, [10,
p. 82] for the axioms. Of course, in the above rules and in the axiom schemata
A, B, and C range over all formulas.

Remark 1. Examples 2 and 3 in the sequel show that axioms

A ⊃ A (7)

4We replace the Lambek notation → with ⊃.
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and the rule of inference
A ⊃ B, B ⊃ C

A ⊃ C
(8)

of NL are derivable in NLI, see the definition of derivability below.

A formula A is NLI derivable from a set of formulas (assumptions) Θ,
denoted Θ �NLI A,5 if there exists a sequence of formulas A1, A2, . . . , An =
A, such that for all i = 1, 2, . . . , n one the following conditions holds.

• Ai is an axiom of NLI; or

• Ai ∈ Θ; or

• for some i′ < i, Ai is obtained from Ai′ by one of the rules of infer-
ence (3)–(6); or

• for some i′, i′′ < i, Ai is obtained from Ai′ and Ai′′ by modus ponens.

Let Θ(P1, . . . , Pn) and F (P1, . . . , Pn) be a set of formulas and a formula,
respectively. If

Θ(P1, . . . , Pn) �NLI F (P1, . . . , Pn),

then for all formulas A1, . . . , An,

Θ(A1, . . . , An) �NLI F (A1, . . . , An)6

as well: we just substitute Ai for Pi, i = 1, 2, . . . , n in the derivation of
F (P1, . . . , Pn) from Θ(P1, . . . , Pn).

If Θ(P1, . . . , Pn) and F (P1, . . . , Pn) are a set of formulas and a formula,
respectively, and

Θ(P1, . . . , Pn) �I F (P1, . . . , Pn),

we say that F (A1, . . . , An) is derivable from Θ(A1, . . . , An) by means of I
or just derivable by means of I if Θ(P1, . . . , Pn) is empty.

Example 2. ([8, Example 1]) Axioms (7) of NL are derivable in NLI by
means of I.

Example 3. ([8, Example 2]) The implication A ⊃ C is derivable from
{A ⊃ B,B ⊃ C} by means of I. That is, the transitivity rule (8) of NL is
derivable in NLI.

5In what follows, � subscripted with some logic denotes the derivability relation in that
logic.

6Of course, Θ(A1, . . . , An) = {G(A1, . . . , An) : G(P1, . . . , Pn) ∈ Θ(P1, . . . , Pn)}.
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Similarly, if Θ(P1, . . . , Pn) and F (P1, . . . , Pn) are a set of Lambek impli-
cations and a Lambek implication, respectively, and

Θ(P1, . . . , Pn) �NL F (P1, . . . , Pn),

we say that F (A1, . . . , An) is derivable from Θ(A1, . . . , An) by means of NL,
or just derivable by means of NL if Θ(P1, . . . , Pn) is empty.

Example 4. The implications A ·C ⊃ B ·C and C ·A ⊃ C ·B are derivable
from A ⊃ B by means of NL.

Example 5. ([8, Example 3]) The formulas

A · (B ∧ C) ⊃ A · B (9)

and
(B ∧ C) · A ⊃ B · A (10)

are derivable in NLI.

Example 6. ([8, Example 4]) The formulas

A · (B ∨ C) ⊃ A · B ∨ A · C (11)

and
(B ∨ C) · A ⊃ B · A ∨ C · A. (12)

are derivable in NLI.

Example 7. ([8, Example 6]) If Θ �NLI ¬A, then Θ �NLI ¬(A · B) and
Θ �NLI ¬(B · A).

3. Semantics of NLI

The semantics of NLI we consider here is a combination of the Došen
ternary relational semantics ([4]) and the Kripke semantics ([12]). In this
combination the Došen and Kripke relations are not independent, but are
related as follows.

Definition 8. (Cf. the bifunctoriality condition [17, p. 7].) Let ≤ and R be
a partial order and a ternary relation, respectively, on a set W . We say that
R is monotone with respect to ≤, if

• R(u, v, w) and u ≤ u′ imply R(u′, v, w);

• R(u, v, w) and v′ ≤ v imply R(u, v′, w); and

• R(u, v, w) and w′ ≤ w imply R(u, v, w′).

The following two trivial examples will be used in the sequel.
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Example 9. Every ternary relation is monotone with respect to equality.

Example 10. The empty ternary relation is monotone with respect to any
partial order.

An NLI-interpretation is a quadruple I = 〈W, ≤, R, V 〉, where W is a
nonempty set of (possible) worlds, ≤ is a partial order on W , R is a ternary
relation on W that is monotone with respect to ≤, and V is a (valuation)
function from W into sets of propositional variables such that u ≤ u′ implies
V (u) ⊆ V (u′).

The satisfiability relation |= between worlds and formulas is defined as
follows. Let u ∈ W .

• If A is a propositional variable, then I, u |= A, if A ∈ V (u);

• I, u |= A · B, if there are v, w ∈ W such that R(u, v, w), I, v |= A and
I, w |= B;

• I, u |= A/B, if for all v, w ∈ W such that R(w, u, v), I, v |= B implies
I, w |= A;

• I, u |= B\A, if for all v, w ∈ W such that R(v, w, u), I, w |= B implies
I, v |= A;

• I, u |= A ∨ B, if I, u |= A or I, u |= B;

• I, u |= A ∧ B, if I, u |= A and I, u |= B; and

• I, u |= A ⊃ B, if for all u′ such that u ≤ u′, I, u′ �|= A or I, u′ |= B.

• I, u |= ¬A, if for all u′ such that u ≤ u′, I, u′ �|= A.

That is, the semantics as defined is a combination of the ternary semantics
for NL and the intuitionistic semantics for I, extending each to formulas of
the other.

Proposition 11. Let I = 〈W, ≤, R, V 〉 be an NLI-interpretation and let
u, u′ ∈ W be such that u ≤ u′. Then, for all formulas F , I, u |= F implies
I, u′ |= F .

Proof. The proof is by induction on the complexity of F . The basis and
the induction step in the case of propositional connectives are treated in a
standard manner and is omitted. The case of Lambek connectives does not
rely on the induction hypothesis and is as follows.

Assume that F is of the form A·B and let v and w be such that R(u, v, w),
I, v |= A, and I, w |= B. Since R is monotone with respect to ≤, we have
R(u′, v, w) and I, u′ |= A · B follows.
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Assume that F is of the form A/B and let v and w be such that I, v |= B
and R(w, u′, v). We have to show that I, w |= A.

Since R is monotone with respect to ≤, we have R(w, u, v) which, together
with I, u |= A/B, by the definition of |=, implies I, w |= A.

The case in which F is of the form A\B is similar to that of A/B.

A formula F is satisfiable if I, u |= F for some interpretation I = 〈W, ≤,
R, V 〉 and some u ∈ W . Also, we say that I satisfies a formula F , denoted
I |= F , if I, u |= F , for all u ∈ W and we say that I satisfies a set of
formulas Θ, denoted I |= Θ, if I |= F , for all F ∈ Θ. Finally, a set of
formulas Θ semantically entails a formula F , denoted Θ |= F , if for each
interpretation I, I |= Θ implies I |= F .

It can be readily verified by induction on the derivation length that the
above semantics is sound for NLI,7 i.e., Θ �NLI F implies Θ |= F . In the
rest of this section we show that this semantics is also (strongly) complete.8

The proof of the completeness theorem, i.e., that Θ |= F implies Θ �NLI

F , is based on the Thomason construction [20], but is more involved because
of the Lambek connectives.

We shall need the following extension of NLI.
Let Θ be a set of formulas. The calculus NLIΘ results from NLI by

augmenting its set of axioms with Θ. Derivability in NLIΘ is denoted �NLIΘ .
Thus, �NLIΘ F if and only if Θ �NLI F .

Remark 12. Obviously, the examples from Section 2 extend to NLIΘ.

In what follows we write �NLIΘ Γ ⊃ F if for some finite subset Ψ of Γ,
�NLIΘ

∧
Ψ ⊃ F .9 For example, Θ �NLI F if and only if �NLIΘ ∅ ⊃ F .

Proposition 13. If �NLIΘ Γ ∪ {A} ⊃ F and �NLIΘ Γ ∪ {B} ⊃ F , then
�NLIΘ Γ ∪ {A ∨ B} ⊃ F .

Proof. Let ΨA and ΨB be finite subsets of Γ such that

�NLIΘ A ∧
∧

ΨA ⊃ F

7Therefore, NLI is consistent.
8Cf. the semantics in [17, Section 4.2], where completeness is proved only for BI

without ⊥. However, the NLI semantics and the proofs in this section modify to the
whole BI in a straightforward manner. Moreover, a similar construction in [8] modifies to
the classical BI.

9As usual,
∧

Ψ is the conjunction of all elements of Ψ. Note that Γ ⊃ F is not a
formula, but

∧
Ψ ⊃ F is.
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and

�NLIΘ B ∧
∧

ΨB ⊃ F.

Then

�NLIΘ (A ∨ B) ∧
∧

(ΨA ∪ ΨB) ⊃ F

and, by definition, �NLIΘ Γ ∪ {A ∨ B} ⊃ F .

Definition 14. A set of formulas Γ is called NLIΘ-consistent, if for no
finite subset Ψ of Γ, �NLIΘ ¬ ∧

Ψ.

Propositions 15 and 16 below follow from Definition 14, by means of I,
in a standard manner and are presented without proofs.

Proposition 15. A set of formulas Γ is NLIΘ-consistent if and only if for
some formula F , ��NLIΘ

Γ ⊃ F .

Proposition 16. If ��NLIΘ
Γ ⊃ ¬F , then Γ ∪ {F} is NLIΘ-consistent.

We shall use the following notation.
For two sets of formulas Γ′ and Γ′′, we denote the set of formulas

{F ′ · F ′′ : F ′ ∈ Γ′ and F ′′ ∈ Γ′′}
by Γ′ · Γ′′ and in what follows we write F · Γ′′ and Γ′ · F for {F} · Γ′′ and
Γ′ · {F}, respectively.

Also for a set of formulas Γ we define the NLIΘ-closure [[Γ]]Θ of Γ by

[[Γ]]Θ = {F : �NLIΘ Γ ⊃ F}
and we say that Γ is NLIΘ-closed, if Γ = [[Γ]]Θ.

Remark 17. It immediately follows from the definitions that �NLIΘ Γ ⊃ F
if and only if �NLIΘ [[Γ]]Θ ⊃ F .

For the proof of the completeness theorem (and Theorem 58 in Section 5)
we shall need the following definitions and auxiliary results.

Definition 18. A set of formulas Φ is called NLIΘ-conjunctive complete if
for each finite subset Ψ of Φ there is a formula F ∈ Φ such that �NLIΘ F ⊃∧

Ψ.

Remark 19. Each NLIΘ-closed set of formulas is NLIΘ-conjunctively
complete, because with each its finite subset of formulas it also contains
its conjunction.

Definition 20. A set of formulas Γ is called Θ-saturated if
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• Γ is NLIΘ-consistent;

• Γ = [[Γ]]Θ;10 and

• A ∨ B ∈ Γ implies A ∈ Γ or B ∈ Γ.

Example 21. It follows from Proposition 13 that maximal (with respect to
inclusion) NLIΘ-consistent sets of formulas are Θ-saturated.

Example 22. (Cf. [8, Example 8].) Let Θ be a set of formulas, I = 〈W, ≤,
R, V 〉 be an NLI-interpretation satisfying Θ, and let u ∈ W . Then the set
of formulas

[[u]]I = {A : I, u |= A} (13)
is Θ-saturated.

Proposition 23. If ��NLIΘ
Φ ⊃ F , then there is a Θ-saturated set of for-

mulas Γ including Φ such that ��NLIΘ
Γ ⊃ F .

Proof. Let Γ be a maximal set of formulas including Φ such that ��NLIΘ
Γ ⊃

F . We contend that Γ is Θ-saturated.
Since ��NLIΘ

Γ ⊃ F , by Proposition 15, Γ is NLIΘ-consistent and, since
Γ is maximal, by Remark 17, it is NLIΘ-closed. To show that A ∨ B ∈ Γ
implies A ∈ Γ or B ∈ Γ, assume to the contrary that �NLIΘ Γ ∪ {A} ⊃ F
and �NLIΘ Γ ∪ {B} ⊃ F . Since A ∨ B ∈ Γ, by Proposition 13, �NLIΘ Γ ⊃ F ,
in contradiction with ��NLIΘ

Γ ⊃ F .

Proposition 24. If ��NLIΘ
Φ ⊃ ¬F , then there is a Θ-saturated set of

formulas Γ including Φ ∪ {F}.
Proof. The proof if similar to that of Proposition 23. By Proposition 16,
Φ ∪ {F} is NLIΘ-consistent. Let Γ be a maximal NLIΘ-consistent set of
formulas including Φ ∪ {F}. We contend that Γ is Θ-saturated.

By definition, Γ is NLIΘ-consistent and, since Γ is maximal, by
Remark 17, it is NLIΘ-closed. To show that A ∨ B ∈ Γ implies A ∈ Γ
or B ∈ Γ, assume to the contrary that both Γ ∪ {A} and Γ ∪ {B} are
NLIΘ-inconsistent. Then, by the contraposition of the “only if” direction
of Proposition 15, �NLIΘ Γ ∪ {A} ⊃ ¬A and �NLIΘ Γ ∪ {B} ⊃ ¬B, imply-
ing �NLIΘ Γ ⊃ ¬A and �NLIΘ Γ ⊃ ¬B. Thus, �NLIΘ Γ ⊃ ¬(A ∨ B) in
contradiction with NLIΘ-consistency of Γ and A ∨ B ∈ Γ.

Proposition 25. (Cf. [8, Proposition 10].) Let Γ be a Θ-saturated set of
formulas, Φ′ be a NLIΘ-conjunctively complete set of formulas, and let Φ′′

be a set of formulas such that for all finite subsets Ψ of Φ′′, Φ′ · ∧
Ψ ⊆ Γ.

10That is, Γ is NLIΘ-closed.
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Then, there exists a Θ-saturated set of formulas Γ′′ including Φ′′ such that
Φ′ · Γ′′ ⊆ Γ.

The proof of Proposition 25 is based on the following two lemmas.

Lemma 26. (Cf. [8, Lemma 11]) Let Γ be a Θ-saturated set of formulas, Φ′

be a NLIΘ-conjunctively complete set of formulas, and let Φ′′ be a set of
formulas such that for all finite subsets Ψ of Φ′′, Φ′ · ∧

Ψ ⊆ Γ. Then, for
each formula in Φ′′ of the form A ∨ B one of the following holds.
• For all finite subsets Ψ of Φ′′, Φ′ · (A ∧ ∧

Ψ) ⊆ Γ
or
• for all finite subsets Ψ of Φ′′, Φ′ · (B ∧ ∧

Ψ) ⊆ Γ.

Proof. Assume to the contrary that there are finite subsets Ψ1 and Ψ2 of
Φ such that

Φ′ · (A ∧
∧

Ψ1) �⊆ Γ

and

Φ′ · (B ∧
∧

Ψ2) �⊆ Γ,

implying, by (9), that

Φ′ · (A ∧
∧

Ψ1 ∧
∧

Ψ2) �⊆ Γ

and

Φ′ · (B ∧
∧

Ψ1 ∧
∧

Ψ2) �⊆ Γ,

because Γ is saturated (and, therefore, is NLIΘ-closed).
Therefore, there are formulas F1, F2 ∈ Φ′ such that

F1 · (A ∧
∧

Ψ1 ∧
∧

Ψ2) �∈ Γ

and

F2 · (B ∧
∧

Ψ1 ∧
∧

Ψ2) �∈ Γ.

Then, by (10),

(F1 ∧ F2) · (A ∧
∧

Ψ1 ∧
∧

Ψ2) �∈ Γ

and

(F1 ∧ F2) · (B ∧
∧

Ψ1 ∧
∧

Ψ2) �∈ Γ,

because Γ is saturated (and, therefore, is NLIΘ-closed).
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Since Φ′ is NLIΘ-conjunctively complete, for some formula F ∈ Φ′,
�NLIΘ F ⊃ F1 ∧ F2, implying, by Example 4,

F · (A ∧
∧

Ψ1 ∧
∧

Ψ2) �∈ Γ (14)

and
F · (B ∧

∧
Ψ1 ∧

∧
Ψ2) �∈ Γ. (15)

On the other hand,

F · ((A ∨ B) ∧
∧

Ψ1 ∧
∧

Ψ2) ∈ Γ,

because A∨B ∈ Ψ′′ and for all finite subsets Ψ of Φ′′, F ·∧ Ψ ⊆ Γ. Therefore,
by (11) (and modus ponens, of course),

F · (A ∧
∧

Ψ1 ∧
∧

Ψ2) ∨ F · (B ∧
∧

Ψ1 ∧
∧

Ψ2) ∈ Γ.

Since Γ is saturated,

F · (A ∧
∧

Ψ1 ∧
∧

Ψ2) ∈ Γ

or

F · (B ∧
∧

Ψ1 ∧
∧

Ψ2) ∈ Γ.

However, the former containment contradicts (14) and the latter one con-
tradicts (15).

Lemma 27. Let Γ be a Θ-saturated set of formulas and let Φ′ and Φ′′ be
sets of formulas such that for all finite subsets Ψ of Φ′′, Φ′ · ∧ Ψ ⊆ Γ. Then
Φ′ · [[Φ′′]]Θ ⊆ Γ.

Proof. Let F ∈ [[Φ′′]]Θ and let Ψ be a finite subset of Φ′′ such that �NLIΘ∧
Ψ ⊃ F . By Example 4, for all formulas F ′ ∈ Φ′,

�NLIΘ

(
F ′ ·

∧
Ψ

)
⊃ F ′ · F,

which, together with F ′ ·∧ Ψ ∈ Γ and the Θ-saturation of Γ, implies F ′ ·F ∈
Γ.

Proof of Proposition 25. Let Γ′′ be a maximal NLIΘ-closed set of
formulas including Φ′′ such that Φ′ ·Γ′′ ⊆ Γ. Such a set exists, by Lemma 27
(and Zorn’s lemma). We contend that Γ′′ is Θ-saturated.

Since Γ is NLIΘ-consistent, by Example 7, Γ′′ is NLIΘ-consistent as
well and, by definition, it is also NLIΘ-closed. Thus, it suffices to show that
for each formula of the form A ∨ B in Γ′′, A ∈ Γ′′ or B ∈ Γ′′. Since, by
Remark 19, Γ′′ is NLIΘ-conjunctively complete, one of the containments
follows from Lemma 26 and maximality of Γ′′.
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Corollary 28. (Cf. [8, Corollary 12].) Let Γ be a Θ-saturated set of for-
mulas and let A and B be formulas such that A · B ∈ Γ. Then, there exist
Θ-saturated sets of formulas Γ′ containing A and Γ′′ containing B such that
Γ′ · Γ′′ ⊆ Γ.

Proof. Since the set of formulas consisting of B only is NLIΘ-conjunctively
complete, similarly to the proof of Proposition 25, one can show that there
exists a Θ-saturated set of formulas Γ′ containing A such that Γ′ · B ⊆ Γ.
Then, since, by Remark 19, Θ-saturated sets of formulas are NLIΘ-
conjunctively complete, by Proposition 25, there exists a Θ-saturated set
of formulas Γ′′ containing B such that Γ′ · Γ′′ ⊆ Γ.

Definition 29. Let Θ be a set of NLI formulas. The Θ-canonical NLI-
interpretation IΘ = 〈WΘ, ≤Θ, RΘ, VΘ〉 is defined as follows.

• WΘ consists of all Θ-saturated sets of formulas,

• ≤Θ is ⊆,11

• RΘ = {(Γ, Γ′, Γ′′) ∈ W 3
Θ : Γ′ · Γ′′ ⊆ Γ},12 and

• VΘ(Γ) = Γ ∩ P, where P is the set of all propositional variables (atomic
formulas).

Theorem 30. Let Γ ∈ WΘ. Then, for each formula F , IΘ, Γ |= F if and
only if F ∈ Γ.

In fact, there is a stronger correspondence that also implies the finite
model property and, consequently, implies strong decidability of NLI. For
this stronger correspondence we need the following notation.

For a nonempty subformula closed set of formulas Φ13 including Θ, we
define the restriction

IΘ|Φ = 〈WΘ|Φ, ≤Θ |Φ, RΘ|Φ, VΘ|Φ〉
of IΘ to Φ by

• WΘ|Φ = {Γ ∩ Φ : Γ ∈ WΘ},

• ≤Θ |Φ is ⊆,

• RΘ|Φ = {(Γ, Γ′, Γ′′) ∈ (WΘ|Φ)3 : [[ (Γ′ · Γ′′) ]]Θ ∩ Φ ⊆ Γ},14 and

11That is, Γ ≤Θ Γ′, if Γ ⊆ Γ′.
12It immediately follows from the definition of RΘ that it is ⊆-monotone.
13That is, if A ∈ Φ and B is a subformula of A, then also B ∈ Φ.
14Like in the case of IΘ, it immediately follows from the definition of RΘ|Φ that it is

⊆-monotone.
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• VΘ|Φ(Γ) = VΘ(Γ) ∩ Φ.15

Theorem 31. Let Γ ∈ WΘ|Φ. Then, for each formula F ∈ Φ, IΘ|Φ, Γ |= F
if and only if F ∈ Γ.

Note that Theorem 30 follows from Theorem 31 with Φ being the set of
all formulas.

Proof of Theorem 31. The proof is by a standard induction on the com-
plexity of F . In particular, the cases of the Lambek connectives are treated
like in [4] (see also [8, Proof of Theorem 14]) and the cases of a propositional
variable or an intuitionistic propositional connectives are treated like in [20,
Proof of Theorem 2]. The basis, i.e., the case of a propositional variable,
immediately follows from the definition of |=, and for the induction step we
consider the case of the principal connective of F .

• Let F be of the form A · B and let IΘ|Φ, Γ |= A · B. That is, there are
Γ′, Γ′′ ∈ WΘ|Φ such that IΘ|Φ, Γ′ |= A, IΘ|Φ, Γ′′ |= B, and

[[Γ′ · Γ′′]]Θ ∩ Φ ⊆ Γ. (16)

By the induction hypothesis, A ∈ Γ′ and B ∈ Γ′′, which, together
with (16) and A · B ∈ Φ implies A · B ∈ Γ.

Conversely, let A · B ∈ Γ and let Γ̃ ∈ WΘ be such that Γ = Γ̃ ∩ Φ.
By Corollary 28, there are Γ̃′, Γ̃′′ ∈ WΘ such that A ∈ Γ̃′, B ∈ Γ̃′′, and
Γ̃′ ·Γ̃′′ ⊆ Γ̃. Let Γ′ and Γ′′ be Γ̃′∩Φ and Γ̃′′∩Φ, respectively. As A,B ∈ Φ,
by the induction hypothesis, IΘ|Φ, Γ′ |= A and IΘ|Φ, Γ′′ |= B. Since

[[Γ′ · Γ′′]]Θ ∩ Φ ⊆ Γ̃ ∩ Φ = Γ

and A · B ∈ Φ, by the definition of |=, we have IΘ|Φ, Γ |= A · B.

• Let F be of the form A/B and let IΘ|Φ, Γ |= A/B. We contend that
�NLIΘ Γ·B ⊃ A. To prove this, assume to the contrary that ��NLIΘ

Γ·B ⊃
A. Then, by Proposition 23, there exists a Θ-saturated set of formulas
Γ̃′′ including Γ ·B such that ��NLIΘ

Γ̃′′ ⊃ A and, by Proposition 25, there
exists a Θ-saturated set of formulas Γ̃′ containing B such that Γ·Γ̃′ ⊆ Γ̃′′.

Let Γ′ = Γ̃′ ∩ Φ and let Γ′′ = Γ̃′′ ∩ Φ. Then [[Γ · Γ′]]Θ ∩ Φ ⊆ Γ′′. Also,
by the induction hypothesis, IΘ|Φ, Γ′ |= B and IΘ|Φ, Γ′′ �|= A. All this,
however, contradicts IΘ|Φ, Γ |= A/B, which proves our contention.

15This construction resembles filtration through Φ, see [19, Chapter I, Section 7].
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Since �NLIΘ Γ ·B ⊃ A, by (5), we have �NLIΘ Γ ⊃ A/B. Let Γ̃ ∈ WΘ be
such that Γ = Γ̃ ∩ Φ. Then A/B ∈ Γ̃, because Γ̃ is NLIΘ-closed. This,
together with A/B ∈ Φ, implies A/B ∈ Γ.

Conversely, let A/B ∈ Γ and let Γ′, Γ′′ ∈ WΘ|Φ be such that [[Γ · Γ′]]Θ ∩
Φ ⊆ Γ′′ and IΘ|Φ, Γ′ |= B. We have to show that IΘ|Φ, Γ′′ |= A.

By the induction hypothesis, B ∈ Γ′ which, together with A/B ∈ Γ,
implies (A/B) · B ∈ Γ · Γ′. Since (A/B) · B ⊃ A is derivable by means
of NL and A ∈ Φ, A ∈ [[Γ · Γ′]]Θ ∩ Φ, implying A ∈ Γ′′. Thus, by the
induction hypothesis, IΘ|Φ, Γ′′ |= A.

• The case of \ is symmetric to that of / and is omitted.

• Let F be of the form A ∨ B and let IΘ|Φ, Γ |= A ∨ B. By the definition
of |=, IΘ|Φ, Γ |= A or IΘ|Φ, Γ |= B. Thus, by the induction hypothesis,
A ∈ Γ or B ∈ Γ. Let Γ̃ ∈ WΘ be such that Γ = Γ̃ ∩ Φ. Then, in both
cases, A ∨ B ∈ Γ̃, because Γ̃ is NLIΘ-closed. Since A ∨ B is also in Φ,
A ∨ B ∈ Γ follows.

Conversely, assume A ∨ B ∈ Γ. Let Γ̃ ∈ WΘ be such that Γ = Γ̃ ∩ Φ.
Then A ∈ Γ̃ or B ∈ Γ̃, because Γ̃ is Θ-saturated. Since both A and B are
in Φ, A ∈ Γ or B ∈ Γ. Thus, by the induction hypothesis, IΘ|Φ, Γ |= A
or IΘ|Φ, Γ |= B. In both cases, by the definition of |=, IΘ|Φ, Γ |= A ∨ B.

• Let F be of the form A ∧ B and let IΘ|Φ, Γ |= A ∧ B. By the definition
of |=, IΘ|Φ, Γ |= A and IΘ|Φ, Γ |= B. Thus, by the induction hypothesis,
A,B ∈ Γ. Let Γ̃ ∈ WΘ be such that Γ = Γ̃∩Φ. Then A∧B ∈ Γ̃, because
Γ̃ is NLIΘ-closed. Since A ∧ B is also in Φ, A ∧ B ∈ Γ follows.

Conversely, assume A ∧ B ∈ Γ. Let Γ̃ ∈ WΘ be such that Γ = Γ̃ ∩ Φ.
Then A,B ∈ Γ̃, because Γ̃ is NLIΘ-closed. Since A and B are also in Φ,
they are in Γ as well. Thus, by the induction hypothesis, IΘ|Φ, Γ |= A
and IΘ|Φ, Γ |= B, and, by the definition of |=, IΘ|Φ, Γ |= A ∧ B.

• Let F be of the form A ⊃ B and let IΘ|Φ, Γ |= A ⊃ B. Assume to the
contrary that A ⊃ B �∈ Γ. Let Γ̃ ∈ WΘ be such that Γ = Γ̃ ∩ Φ. Since
A ⊃ B ∈ Φ, A ⊃ B �∈ Γ̃, implying ��NLIΘ

Γ̃ ∪ {A} ⊃ B, because Γ̃ is
NLIΘ-closed. By Proposition 23, there is a Θ-saturated set of formulas
Γ̃′ including Γ̃ ∪ {A} such that ��NLIΘ

Γ̃′ ⊃ B. Therefore, B �∈ Γ̃′ and,
by the induction hypothesis, IΘ|Φ, Γ̃′ ∩ Φ |= A, but IΘ|Φ, Γ̃′ ∩ Φ �|= B.
Since

Γ ⊆
(
Γ̃ ∪ {A}

)
∩ Φ ⊆ Γ̃′ ∩ Φ,
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IΘ|Φ, Γ �|= A ⊃ B, in contradiction with our assumption.

Conversely, assume A ⊃ B ∈ Γ and let Γ′ ∈ WΘ|Φ include Γ. We have
to show that IΘ|Φ, Γ′ |= A implies IΘ|Φ, Γ′ |= B. So, let IΘ|Φ, Γ′ |= A

and let Γ̃′ ∈ WΘ be such that Γ′ = Γ̃′ ∩ Φ. By the induction hypothesis,
A ∈ Γ′, which, together with

A ⊃ B ∈ Γ ⊆ Γ′ ⊆ Γ̃′

and NLIΘ-closure of Γ̃′, implies B ∈ Γ̃′. Since B ∈ Φ,

B ∈ Γ′ = Γ̃′ ∩ Φ,

and, by the induction hypothesis, IΘ|Φ, Γ′ |= B.

• Let F be of the form ¬A and let IΘ|Φ, Γ |= ¬A. Assume to the contrary
that ¬A �∈ Γ. Let Γ̃ ∈ WΘ be such that Γ = Γ̃∩Φ. Since ¬A ∈ Φ, ¬A �∈ Γ̃,
implying ��NLIΘ

Γ̃ ⊃ ¬A, because Γ̃ is NLIΘ-closed. By Proposition 24,
there is a Θ-saturated set of formulas Γ̃′ including Γ̃∪{A}. Since A ∈ Φ,
A ∈ Γ̃′∩Φ, and, by the induction hypothesis, IΘ|Φ, Γ̃′∩Φ |= A. However,
the latter, together with

Γ ⊆
(
Γ̃ ∪ {A}

)
∩ Φ ⊆ Γ̃′ ∩ Φ,

contradicts IΘ|Φ, Γ |= ¬A.

Conversely, assume ¬A ∈ Γ and let Γ′ ∈ WΘ|Φ include Γ. We have to
show that IΘ|Φ, Γ′ �|= A. Assume to the contrary that IΘ|Φ, Γ′ |= A.
Then, by the induction hypothesis, A ∈ Γ′, which, together with

¬A ∈ Γ ⊆ Γ′

contradicts consistency of Γ′.

Theorem 32. (Completeness) If Θ |= F , then Θ � F .

Proof. Assume to the contrary that Θ �� F . That is, � �NLIΘ ∅ ⊃ F . By
Proposition 23, there is a Θ-saturated set of formulas Γ such that � �NLIΘ Γ ⊃
F . Then, F �∈ Γ, because Γ is NLIΘ-closed.

Let Φ be the subformula closure of Θ ∪ {F}.16 Then, F �∈ Γ ∩ Φ.
By Theorem 31, IΘ|Φ, Γ ∩ Φ �|= F , in contradiction with this theorem
prerequisite.

It was shown in [2,3] that NLI is strongly decidable. The proof in these
papers is based on the finite model property of the algebraic semantics.

16That is, Φ is the minimal (with respect to inclusion) subformula closed set of formulas
including Θ ∪ {F}.
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Below we present an alternative proof of decidability of NLI that follows
from the finite model property of the relational semantic.

Corollary 33. Let Θ be a finite set of formulas. If Θ ��NLIF , then there is
a finite interpretation satisfying Θ, but not satisfying F .

Proof. Let Φ be the subformula closure of Θ∪{F}. The interpretation IΘ|Φ
satisfies Θ, but does not satisfy F . This interpretation is finite, because Θ
(and consequently, Φ) is finite.

Corollary 34. NLI is strongly decidable.

Another immediate corollary of the completeness theorem is that the
intuitionistic and the Lambek calculi are orthogonal, i.e., NLI is a conser-
vative extension of both NL and I.

Corollary 35. (Cf. [8, Corollary 16].) NLI is a conservative extension
of NL.17

Proof. Assume to the contrary that NLI is not a conservative extension
of NL and let Θ and F be a finite set of Lambek implications and a Lambek
implication, respectively, such that Θ �NLI F , but Θ ��NL F . By the “Θ-
extension” of the completeness theorem in [4] (see also, e.g., [13]), there is
an NL interpretation I = 〈W,R, V 〉 such that I |= Θ, but I �|= F . Then
the NLI-interpretation INLI = 〈W, =, R, V 〉 (see Example 9) also satisfies
Θ, but does not satisfy F . This, however, contradicts the soundness of the
relational semantics with respect to NLI.

Corollary 36. (Cf. [8, Corollary 17].) NLI is a conservative extension
of I.18

Proof. Assume to the contrary that NLI is not a conservative extension of
I and let Θ and F be a finite set of propositional formulas and a propositional
formula, respectively, such that Θ �NLI F , but Θ ��I F . By the completeness
theorem for I, there is a Kripke interpretation I = 〈W, ≤, V 〉 such that
I |= Θ, but I �|= F . Then the NLI-interpretation I = 〈W, ≤, ∅, V 〉 (see
Example 10) satisfies Θ, but does not satisfy F . This, however, contradicts
the soundness of the relational semantics with respect to NLI.

We conclude this section with the canonical mapping of NLI-interpretat-
ions satisfying a set of formulas Θ into IΘ.

17Note that he language of NL does not contain propositional connectives.
18Note that he language of I does not contain Lambek connectives.
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Definition 37. Let Θ be a set of formulas and let I = 〈W, ≤, R, V 〉 be an
NLI-interpretation satisfying Θ. The canonical mapping ιI : W → WΘ is
defined by ιI(u) = [[u]]I.19,20

Corollary 38. (Cf. [8, Corollary 19].) Let Θ be a set of formulas and let
I = 〈W, ≤, R, V 〉 be an interpretation satisfying Θ.

(i) If u, v ∈ W are such that u ≤ v, then ιI(u) ⊆ ιI(v).

(ii) If u, v, w ∈ W are such that R(u, v, w), then ιI(v) · ιI(w) ⊆ ιI(u).

(iii) For all formulas F and all u ∈ W, I, u |= F if and only if
IΘ, ιI(u) |= F .

Proof. For the proof of clause (i) of the corollary, let u ≤ v and let
I, u |= F . Then, by Proposition 11, I, v |= F and the result follows from the
definition of ιI.

For the proof of clause (ii), let R(u, v, w) and let A ∈ [[v]]I and B ∈ [[w]]I.
We have to show that A · B ∈ [[u]]I. By the definition of [[ ]]I, I, v |= A and
I, w |= B, which, together with R(u, v, w), implies I, u |= A · B. Thus, by
the definition of ιI, we have the desired containment A · B ∈ [[u]]I.

The proof of clause (iii) is equally easy. By Theorem 30, IΘ, ιI(u) |= F
if and only if F ∈ ιI(u), and, by the definition of ιI, F ∈ ιI(u) if and only
if I, u |= F .

4. A Sequent Calculus for NLI

The sequent calculus SNLI employs as sequent antecedents alternatingly-
nested structures, called bunches of formulas, or just bunches, which are
defined as follows, cf. [16–18].

Definition 39.

• Finite (possibly empty) multisets of formulas are bunches, and

• non-empty finite multisets consisting of formulas and ordered pairs of
bunches are bunches.

In this paper by an “ordered pair” we always mean an ordered pair of
bunches. Also we use the following notation.

• Elements of a bunch are separated by semicolons and the components
of an ordered pair are separated by a comma.

19See (13) for the definition of [[u]]I.
20Since I |= Θ, ιI is well-defined.
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• Bunches are denoted by Γ, possibly indexed or primed and for bunches
Γ′ and Γ′′, (Γ′, Γ′′) denotes the ordered pair of Γ′ and Γ′′.

• Formulas and ordered pairs are denoted by γ, possibly indexed or
primed, and we write Γ′; Γ′′ and Γ; γ for the multiset unions Γ′ ∪ Γ′′

and Γ ∪ {γ}, respectively.

• Sometimes we write γ for the one element multiset {γ}. It will be always
clear from the context when γ denotes a formula/ordered pair or a one-
element bunch.

• We also write (γ′, γ′′), (Γ, γ), and (γ,Γ) for ({γ′}, {γ′′}), (Γ, {γ}), and
({γ}, Γ), respectively. Note that none of (γ′, γ′′), (Γ, γ), and (γ,Γ) is a
bunch.

• By Γ[Γ′] we denote a bunch Γ with a designated bunch Γ′ occurring
in Γ, and, in this context, we denote by Γ[Γ′′] the replacement of that
particular occurrence of Γ′ in Γ with Γ′′.

• By Γ[γ′] we denote a bunch Γ with a designated formula/ordered pair
γ′ occurring in a bunch occurring in Γ, and, in this context, we denote
by Γ[γ′′] the replacement of that particular occurrence of γ′ in Γ with
γ′′. That is, if Γ[γ′] is of the form Γ[Γ′; γ′], where γ′ occurs in the bunch
Γ′; γ′, then Γ[γ′′] is of the form Γ[Γ′; γ′′].

Similarly, we denote by Γ[Γ′′] the replacement of that particular occur-
rence of γ′ in Γ with all elements of Γ′′. That is, if Γ[γ′] is of the form
Γ[Γ′; γ′], where γ′ occurs in the bunch Γ′; γ′, then Γ[Γ′′] is of the form
Γ[Γ′; Γ′′].

• By γ[Γ′] we denote an ordered pair γ with a designated bunch Γ′ occur-
ring in γ, and, in this context, we denote by γ[Γ′′] the replacement of
that particular occurrence of Γ′ in γ with Γ′′.

• Finally, by γ[γ′] we denote an ordered pair γ with a designated for-
mula/ordered pair γ′ occurring in a bunch occurring in γ, and, in this
context, we denote by γ[γ′′] the replacement of that particular occur-
rence of γ′ in γ with γ′′.

Similarly, we denote by γ[Γ′′] the replacement of that particular occur-
rence of γ′ in Γ with all elements of Γ′′.21

Sequents are expressions of the form Γ → Δ, where Γ is a bunch and Δ
either is a formula singleton or is empty and in what follows we just write
F for the singleton {F}.

21Cf. the notion of “S-Formel” in [6, § 2.4].
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The axioms of SNLI are sequents of the form P → P , where P is an
atomic formula, and the rules of inference (i.e., the introduction rules of a
formula into the antecedent and the succeedent of a sequent) are as follows.

(/ →)
Γ[B] → Δ Γ′ → A

Γ[(B/A,Γ′)] → Δ
(→ /)

(Γ, A) → B
Γ → B/A

(\ →)
Γ[B] → Δ Γ′ → A

Γ[(Γ′, A\B)] → Δ
(→ \)

(A,Γ) → B
Γ → A\B

(· →)
Γ[(A,B)] → Δ
Γ[A · B] → Δ

(→ ·) Γ → A Γ′ → B
(Γ,Γ′) → A · B

(∧ →)
Γ[A] → Δ

Γ[A ∧ B] → Δ
Γ[B] → Δ

Γ[A ∧ B] → Δ
(→ ∧) Γ → A Γ → B

Γ → A ∧ B

(∨ →)
Γ[A] → Δ Γ[B] → Δ

Γ[A ∨ B] → Δ
(→ ∨) Γ → A

Γ → A ∨ B
Γ → B

Γ → A ∨ B

(⊃→)
Γ[Γ′;B] → Δ Γ′ → A

Γ[Γ′;A ⊃ B] → Δ
(→⊃)

Γ;A → B
Γ → A ⊃ B

(¬ →) Γ → A
Γ; ¬A → (→ ¬)

Γ;A →
Γ → ¬A

There are also six structural rules of inference in SNLI:

contraction
Γ[Γ′; γ; γ] → Δ
Γ[Γ′; γ] → Δ

(bunch thinning →) Γ[Γ′] → Δ
Γ[Γ′; γ] → Δ (→ bunch thinning) Γ →

Γ → F

left pair
thinning

Γ →
(Γ′, Γ) →

right pair
thinning

Γ →
(Γ, Γ′) →

and

cut
Γ[A] → Δ Γ′ → A

Γ[Γ′] → Δ

Remark 40. There is a natural correspondence between bunches occur-
ring in the antecedent of the conclusion and bunches occurring in the
antecedent(s) of the premise(s) of a rule of inference. For example, for the
rule (/ →), the bunch containing (B/A,Γ′) corresponds to the bunch con-
taining B, the bunches in Γ′ correspond to themselves in the antecedent Γ′ of
the premise Γ′ → A, and the bunches in Γ[(B/A,Γ′)], excluding the bunch
containing (B/A,Γ′), correspond to themselves in the antecedent Γ[B] of
the other premise.
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The correspondence in the other rules is similar and is omitted.22

Remark 41. A straightforward induction on the formula complexity shows
that for all formulas F , �SNLI F → F .

Definition 42. With a bunch Γ and an ordered pair γ we associate the
formulas Γ and γ which are defined by the following recursion.

• {F1; F2; . . . ; Fn} is
n∧

i=1

Fi
23;

• (Γ′, Γ′′) is Γ′ · Γ′′; and

• {γ1; γ2; . . . ; γn} is
n∧

i=1

γi.

The translation of a sequent Γ → F is the formula Γ ⊃ F and the
translation of a sequent Γ → is the formula ¬Γ.

Theorem 43. If a sequent Γ → F (respectively, Γ →) is derivable in SNLI,
then its translation Γ ⊃ F (respectively, ¬Γ) is derivable in NLI.

For the proof of Theorem 43 we need the following property of formulas
associated with bunches.

Lemma 44. Let Γ[Γ′] and Γ[Γ′′] be bunches such that �NLI Γ′ ⊃ Γ′′. Then
�NLI Γ[Γ′] ⊃ Γ[Γ′′].

Proof. The proof is by induction on the complexity of Γ[−], where −
is a special atom that occurs in Γ only once and indicates the place for
substitution.24 The basis is immediate, because in this case, Γ[Γ′] and Γ[Γ′′]
are Γ′ and Γ′′, respectively.

The induction step for the case in which Γ[−] is of the form {γ1[−];
γ2; . . . ; γn} follows from the induction hypothesis �NLI γ1[Γ′] ⊃ γ1[Γ′′] by
means of I.

The induction step for the case in which Γ[−] is of the form (Γ1[−], Γ2) or
of the form (Γ1, Γ2[−]) follows from the induction hypothesis �NLI Γi[Γ′] ⊃
Γi[Γ′′], i = 1, 2, by means of NL.

22Actually, here we use a recursive definition of correspondence based on the definition
of bunches. It is quite obvious and is left to the reader.

23As usual, the empty conjunction is a fixed provable formula.
24In order to avoid the notational cluttering involved in a precise definition of positions

(in a bunch), we use Γ[−] as a way to designate such a position, and Γ[Γ′] as a way to fill
the designated position by Γ′.
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Proof of Theorem 43. The proof is by induction on the length of the
derivation of the sequent. The case of an axiom is immediate, and for the
induction step, consider the last step in the derivation of Γ → Δ, where
Δ is {F} or is empty. The cases of introduction of a connective into the
succeedent are trivial, the cases of a structural rule immediately follow from
Lemma 44 and Example 7, and the cases of introduction of a formula into
the antecedent are similar to each other. We treat only the case of the rule
(⊃→) with Δ being {F} and leave the other rules to the reader.

Assume that the last step in the derivation is

Γ[Γ′; B] → F Γ′ → A

Γ[Γ′; A ⊃ B] → F
(⊃→).25

By the induction hypothesis, �NLI Γ[Γ′; B] ⊃ F and �NLI Γ′ ⊃ A. There-
fore, it suffices to show

Γ[Γ′; B] ⊃ F ; Γ′ ⊃ A �NLI Γ[Γ′; A ⊃ B] ⊃ F. (17)

The proof of (17) is by induction on the complexity of Γ[−]. For the basis,
Γ[Γ′; B] is Γ′; B, and, by means of I, we obtain

(Γ′ ∧ B) ⊃ F ; Γ′ ⊃ A �NLI (Γ′ ∧ (A ⊃ B)) ⊃ F.

For the induction step, Γ[−] is in one of the following forms.

1. {γ1[−]; γ2; . . . ; γn}, m ≥ 1;

2. (Γ1, Γ2[−]); or

3. (Γ1[−], Γ2).

In case 1,

1.

(

γ1[Γ′; B] ∧
n∧

i=2

γi

)

⊃ F assumption

2. Γ′ ⊃ A assumption

3. γ1[Γ′; B] ⊃
(

n∧

i=2

γi ⊃ F

)

follows from 1 by means of I

4. γ1[Γ′; A ⊃ B] ⊃
(

n∧

i=2

γi ⊃ F

)

follows from 3 and 2 by the

induction hypothesis

5.

(

γ1[Γ′; A ⊃ B] ∧
n∧

i=2

γi

)

⊃ F follows from 4 by means of I

6. Γ[Γ′; A ⊃ B] ⊃ F is 5 by Definition 42

25That is, the sequent under consideration is Γ[Γ′; A ⊃ B] → F .
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In case 2,

1. Γ1 · Γ2[Γ′; B] ⊃ F assumption
2. Γ′ ⊃ A assumption
3. Γ2[Γ′; B] ⊃ Γ1\F follows from 1 by (5)
4. Γ2[Γ′; A ⊃ B] ⊃ Γ1\F follows from 3 and 2 by the induction hypothesis
5. Γ1 · Γ2[Γ′; A ⊃ B] ⊃ F follows from 4 by (6)
6. Γ[Γ′; A ⊃ B] ⊃ F is 5 by Definition 42

Case 3 is similar to case 2 and is omitted.

Next we pass to the converse of Theorem 43.

Theorem 45. If �NLI F , then �SNLI→ F .26

The proof of Theorem 45 is based on Proposition 46 below (that is also
of interest in its own right).

Proposition 46. (Inversion lemma, cf. [21, Proposition 3.5.4, p. 79] and [14,
Section 8].) We have

(i) If �SNLI Γ[A · B] → Δ, then �SNLI Γ[(A,B)] → Δ.

(ii) If �SNLI Γ → B/A, then �SNLI (Γ, A) → B.

(iii) If �SNLI Γ → A\B, then �SNLI (A, Γ) → B.

(iv) If �SNLI Γ → A ⊃ B, then �SNLI Γ; A → B.

Proof. The proofs of all items are rather standard and we prove item (ii)
only.27 Assume �SNLI Γ → B/A. Then

...
Γ → B/A A → A

(Γ, A) → (B/A) · A
(/ →)

A → A B → B

(B/A, A) → B

(B/A) · A → B

(\ →)
(· →)

(Γ, A) → B
cut.

Proof of Theorem 45. The proof is by induction on the derivation length
of F . The cases of axioms and a derivation step by modus ponens are treated
exactly like in the case of sequent calculus for I,28 and for the cases of the
Lambek rules of inference (5)–(6) we proceed as follows.

26Of course, Theorem 45 is not exactly the converse of Theorem 43, because it does
not mention Γ. There is no Γ in NLI, as it is a Hilbert type calculus.

27The proof below was suggested by the referee, instead of the authors’ inductive one.
28Here we need Remark 41.
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Assume that the last derivation step is by (5):

A · B ⊃ C

B ⊃ A\C
.29

Then
1. → A · B ⊃ C induction hypothesis
2. A · B → C follows from 1 by Proposition 46(iv)
3. (A,B) → C follows from 2 by Proposition 46(i)
4. B → A\C follows from 3 by (→ /)
5. → B ⊃ A\C follows from 4 by (→⊃)
Assume that the last derivation step is by (6):

B ⊃ A\C

A · B ⊃ C
.30

Then
1. → B ⊃ A\C induction hypothesis
2. B → A\C follows from 1 by Proposition 46(iv)
3. (A,B) → C follows from 2 by Proposition 46(iii)
4. A · B → C follows from 3 by (· →)
5. → A · B ⊃ C follows from 4 by (→⊃)
The case of the rules (3) and (4) are similar and are omitted.

Theorem 47. (Cf. [17, Theorem 6.2].) If a sequent is derivable in SNLI,
then it is derivable without applications of the cut rule.

For the proof of Theorem 47 we need the following extension of thinnings.

Lemma 48. If �SNLI Γ′ →, then for all Γ[−], �SNLI Γ[Γ′] →.

Proof. The proof is by induction on the complexity of Γ[−] and is similar
to that of Lemma 44. The basis is immediate, because in this case, Γ[Γ′]
is Γ′.

For the induction step for the case in which Γ[−] is of the form {γ1[−];
γ2; . . . ; γn}, by the induction hypothesis, �SNLI γ1[Γ′] → and then

γ1[Γ′] →
γ1[Γ′]; γ2; . . . ; γn → n − 1 (bunch thinning →)s.

For the induction step for the case in which Γ[−] is of the form (Γ1[−], Γ2),
by the induction hypothesis, �SNLI Γ1[Γ′] → and then

Γ1[Γ′] →
(Γ1[Γ′], Γ2) →

right pair
thinning .

29That is, F is B ⊃ A\C.
30That is, F is A · B ⊃ C.
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The case in which Γ[−] is of the form (Γ1, Γ2[−]) is similar.

Proof of Theorem 47. The proof is a straightforward combination of
proofs in [14, Section 9] and [21, Section 4.1]. Namely, by the outer induction
on the number of structural rules in the derivation,31 the middle induction
on the derivation length, and the inner induction on the complexity of the
cut formula, we eliminate the first cut in the derivation. We start with the
outer induction (structural rules), skip the middle induction (which is a
standard switching of the order of rules of inference), and, for the inner
induction, we consider only the cases of the principal connectives \ and ⊃,
and leave the rest to the reader.

In the case of contraction, we replace the derivation

Γ[Γ′; γ[A]; γ[A]] → Δ
Γ[Γ′; γ[A]] → Δ contraction Γ′′ → A

Γ[Γ′; γ[Γ′′]] → Δ
cut

with
Γ[Γ′; γ[A]; γ[A]] → Δ Γ′′ → A

Γ[Γ′; γ[Γ′′]; γ[A]] → Δ
cut Γ′′ → A

Γ[Γ′; γ[Γ′′]; γ[Γ′′]] → Δ
Γ[Γ′; γ[Γ′′]] → Δ

contraction
cut.

In the case of (bunch thinning →), we replace the derivation

Γ[Γ′] → Δ
Γ[Γ′; γ[A]] → Δ (bunch thinning →) Γ′′ → A

Γ[Γ′; γ[Γ′′]] → Δ
cut

with
Γ[Γ′] → Δ

Γ[Γ′; γ[Γ′′]] → Δ
(bunch thinning →).

In the case of (→ bunch thinning), we replace the derivation

Γ[A] → Δ
Γ′ →

Γ′ → A
(→ bunch thinning)

Γ[Γ′] → Δ
cut

with

31Actually, the case of thinnings does not rely on the induction hypothesis.
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Γ′ →
Γ[Γ′] →

Γ[Γ′] → Δ

Lemma 48
(→ bunch thinning) ,

if Δ �= ∅, and with

Γ′ →
Γ[Γ′] → Lemma 48,

otherwise.
In the case of left pair thinning, we replace the derivation

Γ →
(Γ′[A], Γ) →

left pair
thinning Γ′′ → A

(Γ′[Γ′′], Γ) → cut

with

Γ →
(Γ′[Γ′′], Γ) →

left pair
thinning .

Naturally, the case of right pair thinning, is similar.
In the case of \, we replace the derivation

Γ[B] → Δ Γ′ → A

Γ[(Γ′, A\B)] → Δ
(/ →)

(A, Γ′′) → B

Γ′′ → A\B
(→ /)

Γ[(Γ′, Γ′′)] → Δ
cut

with

Γ[B] → Δ
(A, Γ′′) → B Γ′ → A

(Γ′, Γ′′) → B
cut

Γ[(Γ′, Γ′′)] → Δ
cut.

In the case of ⊃, we replace the derivation

Γ[Γ′; B] → Δ Γ′ → A

Γ[Γ′; A ⊃ B] → Δ
(⊃→)

Γ′′; A → B

Γ′′ → A ⊃ B
(→⊃)

Γ[Γ′; Γ′′] → Δ
cut

with

Γ[Γ′; B] → Δ
Γ′′; A → B Γ′ → A

Γ′; Γ′′ → B
cut

Γ[Γ′; Γ′; Γ′′] → Δ
Γ[Γ′; Γ′′] → Δ contractions

cut.
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Next, we list some immediate corollaries of Theorem 47.

Corollary 49. SNLI possesses the subformula property.

To state Corollary 50 below we need the following notation.
For a set of connectives c (both Lambek and propositional), we denote

the restriction of SNLI to c by SNLIc.

Corollary 50. (Cf. Corollaries 35 and 36.) For any set of connectives c,
SNLI is a conservative extension of SNLIc.32

We conclude this section with the most important consequence of Theo-
rem 47.

Proposition 51. (Cf. Corollary 34.) For a formula F it is decidable whether
�NLI F .

The proof of Proposition 51 is similar to that in [7, § 1]. First we estimate
the depth of bunches which appear in cut-free SNLI-derivations. For this
we need the following definition and notation.

Definition 52. (Cf. Definition 39.) The depth of a bunch Γ, denoted d(Γ)
is defined by the following recursion.

• If Γ is a finite multiset of formulas, then d(Γ) = 0, and

• if

Γ = {F1; F2; . . . , Fm; (Γ′
1, Γ

′′
1); (Γ′

2, Γ
′′
2); . . . ; (Γ′

n, Γ′′
n)},

m = 0, 1, . . . and n = 1, 2, . . ., then

d(Γ) = max{d(Γ′
1), d(Γ′′

1), d(Γ′
2), d(Γ′′

2), . . . , d(Γ′
n), d(Γ′′

n)} + 1.33

We also denote the number of Lambek connectives occurring in a formula
F by #NL(F ).

Lemma 53. Let Γ be a bunch that occurs in a cut-free derivation of a sequent
→ F . Then d(Γ) ≤ #NL(F ).

Proof. The depth of a bunch can be decreased only by the rules (· →),
(→ /), or (→ \), each introducing the corresponding Lambek connective.
Since the derivation is cut-free, all this connectives must occur in F .

32In particular, it follows that NLI is a conservative extension of both I and NL.
33In other words, d(Γ) is the maximal number of nested parentheses appearing in Γ.
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Definition 54. A bunch Γ is reduced if it is not of the form Γ[Γ′; γ; γ;
γ; γ]. 34

A sequent Γ → Δ is reduced, if Γ is reduced.
A reduced sequent S is a reduction of a sequent S′ if S can be derived

from S′ by contractions and bunch thinnings, only.
Finally, a derivation of a sequent is reduced if all sequents in it are reduced.

Remark 55. It follows from the definition that, for any two reductions of the
same sequent, one can be derived from the other by a reduced derivation
consisting of a sequence of contractions followed by a sequence of bunch
thinnings.

For the proof of Proposition 51, we show first that each reduction
of a derivable sequent can be derived by a cut-free reduced derivation
(Lemma 56) and then, using Lemma 53, we establish an upper bound on
the length of such a derivation in terms of the derived sequent.

Lemma 56. If a sequent is derivable in SNLI, then all its reductions are
derivable by a cut-free reduced derivation.

Proof. By Theorem 47, we may assume that the sequent derivation is cut-
free. Then we proceed by induction on the derivation length of the sequent.
In the basis case, the sequent is an axiom and therefore, is already reduced.

For the induction step, consider the last step in the derivation

{Si}i∈I

S
,

where I = {1} or I = {1, 2}
We “contract” the conclusion and the premises of this step as follows.
Let for a multiset X and x ∈ X, #x(X) denote the number of occurrences

of x in X. Then, for each bunch Γ occurring in the antecedent of S and each
γ ∈ Γ, if #γ(Γ) > 2, we delete #γ(Γ) − 2 copies of γ from Γ and from
the corresponding bunches occurring in the antecedents of the premises (see
Remark 40).35

Let S′ and S′
i, i ∈ I, be the sequents obtained after the above trans-

formation of the antecedents of S and Si, respectively. By definition, S′ is
reduced and {S′

i}i∈I

S′ . (18)

34That is, Γ is reduced if no formula or ordered pair appears (as an element) in Γ or
in a component of an ordered pair occurring in Γ more than three times.

35The deletion process naturally starts with bunches of maximum depth and goes top-
down to multisets of formulas.
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Since the corresponding bunches in a rule of inference differ from each
other by at most one formula/ordered pair, the sequents S′

i, i ∈ I, are also
reduced. By the induction hypothesis, there are reduced derivations of S′

i,
i ∈ I, which, in combination with (18), result in a reduced derivation of S′.
Now, the proof follows from Remark 55.

Now we are ready for the proof of Proposition 51.

Proof of Proposition 51. By Theorems 43 and 45, �NLI F if and only
if �SNLI→ F , and derivability of the sequent → F in SNLI can be decided
as follows.

The sequent → F is reduced. Thus, if it is derivable, then, by Lemma 56,
it is derivable by a cut-free reduced derivation. By Lemma 53, the depth
of bunches occurring in a cut-free derivation of F does not exceed #NL(F )
and, by Corollary 49, all formulas occurring in these bunches are subformulas
of F .

Let SF be the set of all sequents whose antecedent is a reduced bunch
of depth not exceeding #NL(F ) such that all formulas occurring in it are
subformulas of F and whose succeedent is a subformula of F . Since, obvi-
ously, SF is finite and constructible, derivability of → F can be decided by
checking all derivations of length not exceeding the number of elements of
SF and consisting of elements of SF only.

5. Associative Lambek Calculus Extended with Intuitionistic
Propositional Logic

Associative Lambek calculus L and its extension with intuitionistic propo-
sitional logic LI result in adding to NL and NLI, respectively, the axioms

(A · B) · C ⊃ A · (B · C) (19)

and
A · (B · C) ⊃ (A · B) · C. (20)

It was shown in [4] that the associative ternary semantics is sound
and complete for L. In this section we present the associative NLI-
interpretations which are sound and complete for LI.

Definition 57. A ternary relation R on a set W is associative, if for all
u, v, w, x ∈ W the following holds.

• There exists y such that R(y, v, w) and R(u, y, x) if and only if there
exists z such that R(z, w, x) and R(u, v, z).
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An NLI-interpretation I = 〈W, ≤, R, V 〉 is associative, if R is associative.

By [4, Proposition 2], the axioms (19) and (20) are satisfied by associative
interpretations. Thus, the latter is sound for LI.

The notion of Θ-canonical interpretation IΘ (Definition 29) extends to LI
in a natural manner.36 Thus, for the proof of completeness of the associative
relational semantics with respect to LI, it suffices to show that the canonical
LI interpretation IΘ is associative.

Theorem 58. The interpretation IΘ is associative.

The proof of Theorem 58 is exactly as that of [8, Theorem 23] and is
omitted.

Now, exactly like in the proof of Corollaries 35 and 36, it can be shown
that LI is a conservative extension of L and I, respectively.

It is known from [1] that, in contrast with NL, the general problem of
derivability from a set of assumptions in L is undecidable. Therefore, the
same problem for LI is undecidable either.37

However, the problem of derivability of a formula in L is decidable,
because there is a sequent calculus for L that admits cut elimination, see [14],
and in the next section we prove that derivability in LI is decidable as well.

6. A Sequent Calculus for LI

The sequent calculus SLI for LI is obtained from SNLI by adding two
structural rules which correspond to axioms (19) and (20), respectively,
cf. [18, Section 7.1]:

restructuring(19)

Γ[(Γ1, (Γ2, Γ3))] → Δ
Γ[((Γ1, Γ2), Γ3)] → Δ

and

restructuring(20)

Γ[((Γ1, Γ2), Γ3)] → Δ
Γ[(Γ1, (Γ2, Γ3))] → Δ

.

The proofs of the statements below are similar to the proofs of their
nonassociative counterparts and, therefore, are omitted.

Theorem 59. (Cf. Theorem 43.) If a sequent is derivable in SLI, then its
translation is derivable in LI.

36Alternatively, we may assume that Θ includes both (19) and (20).
37In particular, filtration does not preserve associativity.
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Theorem 60. (Cf. Theorem 45.) If �LI F , then �SLI→ F .

Theorem 61. (Cf. Theorem 47.) If a sequent is derivable in SLI, then it
is derivable without applications of the cut rule.

Proof. The proof follows that of Theorem 47. The only addition is the
case of restructuring in which we only consider one of the three possible
cases for the cut formula A in restructuring(19). In that case, we replace the
derivation

Γ[(Γ1, (Γ2, A))] → Δ
Γ[((Γ1, Γ2), A)] → Δ restructuring(19) Γ3 → A

Γ[((Γ1, Γ2), Γ3)] → Δ
cut

with
Γ[(Γ1, (Γ2, A))] → Δ Γ3 → A

Γ[(Γ1, (Γ2, Γ3)] → Δ
Γ[((Γ1, Γ2), Γ3)] → Δ

cut

restructuring(19)

.

Corollary 62. (Cf. Corollary 49.) LI possesses the subformula property.

Corollary 63. (Cf. Corollary 50.) For any set of connectives c, LI is a
conservative extension of LIc.38

Finally, we answer the question of decidability of LI left open in [2,3].

Proposition 64. (Cf. Proposition 51.) For a formula F it is decidable
whether �LI F .
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calculus, in C. Ebert, G. Jäger, and J. Michaelis (eds.), The Mathematics of Language,

10th and 11th Biennial Conference, MOL 10 and MOL 11, vol. 6149 of Lecture Notes

in Computer Science, Springer, Heidelberg, 2009, pp. 210–222.

[14] Lambek, J., The mathematics of sentence structure, American Mathematical Monthly

65:154–170, 1958. (Also in W. Buszkowski, W. Marciszewski, and J. van Benthem

(eds.) Categorial Grammars, John Benjamins, Amsterdam, 1988.)

[15] Mints, G. E., Cut-elimination theorem in relevant logics, Journal of Soviet Mathe-

matics 6:422–428, 1976.

[16] O’Hearn, P. W., and D. J. Pym, The logic of bunched implications, Bulletin of

Symbolic Logic 5:215–244, 1999.

[17] Pym, D. J., The Semantics and Proof Theory of the Logic of Bunched Implications,

vol. 26 of Applied Logic Series, Springer, Heidelberg, 2002.

[18] Restall, G., On Logics Without Contraction, PhD Thesis, The University of Queens-

land, 1994.

[19] Segerberg, K., An Essay in Classical Modal Logic, Uppsala: Filosofiska Studier 13,

1971.

[20] Thomason, R. H., On the strong semantical completeness of the intuitionistic pred-

icate calculus, Logic Journal of the IGPL 15:271–286, 2007.

[21] Troelstra, A. S., and H. Schwichtenberg, Basic Proof Theory, Cambridge Uni-

versity Press, Cambridge, 2000.



1082 M. Kaminski, N. Francez

[22] Zimmermann, E., Full Lambek calculus in natural deduction, Mathematical Logic

Quarterly 56:85–88, 2010.

M. Kaminski, N. Francez
Department of Computer Science
Technion – Israel Institute of Technology
Haifa 32000, Israel
kaminski@cs.technion.ac.il

N. Francez
francez@cs.technion.ac.il


	The Lambek Calculus Extended with Intuitionistic Propositional Logic
	Abstract
	1. Introduction
	2. Nonassociative Lambek Calculus Extended with Intuitionistic Propositional Logic
	3. Semantics of NLI
	4. A Sequent Calculus for NLI
	5. Associative Lambek Calculus Extended with Intuitionistic Propositional Logic
	6. A Sequent Calculus for LI
	Acknowledgements
	References




