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Abstract. In any variety of bounded integral residuated lattice-ordered commutative

monoids (bounded residuated lattices for short) the class of its semisimple members is

closed under isomorphic images, subalgebras and products, but it is not closed under

homomorphic images, and so it is not a variety. In this paper we study varieties of bounded

residuated lattices whose semisimple members form a variety, and we give an equational

presentation for them. We also study locally representable varieties whose semisimple

members form a variety. Finally, we analyze the relationship with the property “to have

radical term”, especially for k-radical varieties, and for the hierarchy of varieties (WLk)k>0

defined in Cignoli and Torrens (Studia Logica 100:1107–1136, 2012 [7]).
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Introduction

The aim of this paper is to present an approach to varieties of bounded
integral residuated lattice-ordered commutative monoids (bounded residu-
ated lattices for short) whose semisimple members form a variety; and their
relationship with the property “to admit radical term”. This property tells
us that there exists a unary term t(x) such that the (maximal) radical of
any member of the variety is the set all elements satisfying the equation
t(x) ≈ �.

Our interest in these varieties arises from the results about varieties of
bounded residuated lattices having boolean retraction term obtained in [7].
In these varieties the class of semisimple members is the class of boolean
algebras, and so a variety. Moreover, the boolean retraction term is also
radical term. Something similar happens to the variety of n-contractive (n-
potent) bounded residuated lattices for any n > 0, because their semisimple
members form a variety and it admits radical term.
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The first goal of our work is to analyze varieties of bounded residuated
lattices whose semisimple members form a variety. This is done in Sect. 3,
in which we give some basic results on the class of semisimple algebras
of a variety of bounded residuated lattices, and we obtain an equational
characterization of these varieties (Theorem 3.4). For this purpose we use
some results of semisimple varieties given by T. Kowalski in [12] (see also [8]).

In Sect. 4, we analyze varieties whose members are isomorphic to a sub-
direct product of local bounded residuated lattices. For each m > 0, we
define m-locally representable varieties and we show that their semisimple
members form a variety (Corollary 4.9).

In Sect. 5, we study varieties admitting radical term. A simple argument
shows that in these varieties the class of semisimple members form a qua-
sivariety. Moreover, if the variety is k-radical, then the converse also holds,
and so the class of semisimple members form a quasivariety if and only if the
variety admits radical term. This result can be improved for subvarieties of
the variety WLk, defined by the equation k.x∨k.¬x ≈ �, k > 0. We prove in
Theorem 5.7 that the subvarieties of WLk whose semisimple members form
a variety are its radical term subvarieties.

We also include two sections containing the main results and properties
of bounded residuated lattices needed throughout the paper.

In Sect. 1, after giving basic definitions, we introduce elementary terms
and recall their arithmetical properties. The proof of these properties can be
found in detail in [8] (see also [7,14]). Moreover, we also introduce two hi-
erarchies of varieties of bounded residuated lattices, namely the well-known
hierarchy of contractive bounded residuated lattices (Em)m>0 and the hi-
erarchy (WLk)k>0 introduced in [7]; both hierarchies are used through the
paper.

In Sect. 2, we recall some notions of the filter theory of bounded residu-
ated lattices. In particular the isomorphism between implicative filters and
congruence relations. We also give the definition and several properties of
maximal implicative filters and the radical. In Lemma 2.8 we show that,
in general, product of radicals is not equal to the radical of the product,
in contrast to [9, Proposition 23]. We also define k-radical variety, and we
show that WLk and Ek are k-radical, for any k > 0.

Finally, at the end of the paper, we present an example of an n-contractive
bounded residuated which is not locally representable. This example also
clarifies the relationship between the considered hierarchies of varieties.

We assume that the reader is familiar with basic notions of residuated
lattices and Universal Algebra. The results needed to understand the paper



Semisimples in Varieties of BRL 851

can be found in [8,14] for residuated lattices, and in [1,4] for Universal
Algebra.

1. Preliminaries

Throughout this paper BRL denotes the class of bounded residuated lattices,
that is, the class of algebras A = 〈A; ·,→,∨,∧,�,⊥〉 of type (2, 2, 2, 2, 0, 0)
such that:

• 〈A; ·,�〉 is a commutative monoid,

• 〈A; ∨,∧,⊥,�〉 is a bounded lattice with smallest element ⊥, and greatest
element �,

• for any a, b, c ∈ A a · b � c if and only if a � b → c, where � is the
partial order given by the lattice structure.

It is well known that bounded residuated lattices admit an equational
presentation, and so BRL is a variety (see for example [7,8,14]), that is,
if H, S and P respectively represent the operators homomorphic images,
isomorphic images of subalgebras and isomorphic images of direct products,
then HSP (BRL) ⊆ BRL.

In the next lemmata we list, for further reference, some well known prop-
erties of bounded residuated lattices.

Lemma 1.1. Let A be a bounded residuated lattice. Then for any a, b, c ∈ A
it satisfies

(a) a � b if and only if a → b = �,

(b) � → a = a,

(c) (a → b) → ((b → c) → (a → c)) = �,

(d) (a · b) → c = a → (b → c),

(e) (a ∨ b) → c = (a → c) ∧ (b → c),

(f) a → (b ∧ c) = (a → b) ∧ (a → c).

On every bounded residuated lattice A we consider the unary operation:

¬x := x → ⊥, for all x ∈ A.

By taking into account that the {→,⊥,�}-reduct of a bounded residuated
lattice is a bounded BCK-algebra we have ([7,10]):

Lemma 1.2. If A is a bounded residuated lattice, then for any a, b ∈ A the
following properties hold true:
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(a) a � b ⇒ ¬b � ¬a,

(b) a � ¬¬a,

(c) ¬a = ¬¬¬a,

(d) a → ¬b = b → ¬a,

(e) a → ¬b = ¬¬a → ¬b,

(f) ¬¬(a → ¬b) = a → ¬b,

(g) ¬a → (a → b) = �.

If we consider the binary term operation

x + y := ¬(¬x · ¬y),

then for every A ∈ BRL 〈A; +〉 is a commutative semigroup. For any non
negative integer n we define terms xn and n.x recursively:

• x0 = � and xn+1 = x · xn,

• 0.x = ⊥ and (n + 1).x = x + n.x.

We write ¬ xn instead of ¬(xn) = xn → ⊥. Then it is straightforward to
show the properties listed in the next lemma.

Lemma 1.3. ([7, Lemma 1.3]) Let A be a bounded residuated lattice. If a, b ∈
A and n,m are non negative integers, then

(a) a + b = ¬a → ¬¬b,

(b) 1.a = ⊥ + a = ¬¬a,

(c) n.a = ¬(¬a)n,

(d) n.a = ¬¬(n.a) = n.(¬¬a),

(e) (n + m).a = n.a + m.a,

(f) n.(a + b) = n.a + n.b,

(g) (mn).a = m.(n.a),

(h) if n � m, then n.a � m.a and am � an,

(i) ¬(n.a)m = m.(¬a)n,

(j) if a � b, then n.am � n.bm.

Through the paper we consider several hierarchies of varieties of bounded
residuated lattices.

For any integer m > 0, let Em denote the subvariety of BRL determined
by the identity
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(Em) xm ≈ xm+1.

The members of Em are called m-contractive or m-potent bounded residuated
lattices. Moreover, it is easy to check that for any m > 0, Em � Em+1.
Algebras in E1 are also called Heyting algebras.

For each integer k > 0, WLk represents the subvariety of BRL given by
the identity (see [7])

(WLk) k.x ∨ k.¬x ≈ �.

The variety WL2 contains the class MTL of MTL-algebras, bounded residu-
ated lattices representable as subdirect product of totally ordered bounded
residuated lattices. MTL may be defined as the subvariety of BRL given by
the identity (x → y) ∨ (y → x) ≈ �.

From the results given in [7] we deduce:

Lemma 1.4. The following properties hold true:

(a) WL1 is the variety of stonean residuated lattices, i.e., the subvariety of
BRL given by the equation ¬¬x ∨ ¬x ≈ �.

(b) For any k > 0, WLk � WLk+1.

(c) For any k > 0, WLk ∩ PRL = WL1, where PRL denotes the variety of
pseudocomplemented residuated lattices, i.e., the subvariety of BRL given
by the identity x ∧ ¬x ≈ ⊥.

2. Implicative Filters, Congruence Relations and Radical

An implicative filter (i-filter for short) of a bounded residuated lattice A is
a subset F of A satisfying the following conditions:

(F1) � ∈ F .

(F2) For all a, b ∈ A, if b ∈ F and a � b, then b ∈ F .

(F3) If a, b are in F , then a · b ∈ F .

Alternatively, i-filters may be defined as subsets F of A satisfying (F1)
and

(F4) if a, a → b ∈ F , then b ∈ F .

It is easy to prove that for each non empty set B ⊆ A,

〈B〉 = {a ∈ A : xn1
1 · xn2 · · ·xnk

k � a, 1 � k, n1, . . . , nk, x1, . . . , xk ∈ B}
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is the smallest i-filter containing B, and it is equal to the intersection of all
i-filters containing B. For each a ∈ A, we shall write 〈a〉 instead of 〈{a}〉.

The properties listed in the next lemma are easy to prove.

Lemma 2.1. If A is a bounded residuated lattice, then

(a) {�} is the least i-filter, and 〈⊥〉 = A,

(b) for any B ⊆ A and any a ∈ A,

〈B ∪ {a}〉 = {b ∈ A : an → b ∈ 〈B〉 for some n � 0},

(c) for any a ∈ A, 〈a〉 = {b ∈ B : an → b = � for some n � 0}.
Given an i-filter F of a bounded residuated lattice A, the binary relation

θ(F ) := {(x, y) ∈ A × A : x → y ∈ F and y → x ∈ F}
is a congruence on A such that F = �/θ(F ), the equivalence class of �.
Actually, the correspondence F �→ θ(F ) is an order isomorphism from the
set of i-filters of A onto the set of congruences of A, both sets ordered by
inclusion. Its inverse is given by the map θ �→ �/θ. We write A/F instead
of A/θ(F ), and a/F instead of a/θ(F ), the equivalence class of a modulo
θ(F ). Notice that in A, θ{�} is the identity and θ〈⊥〉 = A × A the universal
equivalence relation.

An i-filter F of a non trivial bounded residuated lattice A is proper
provided F �= A, that is ⊥ /∈ A. A maximal i-filter is a proper i-filter M of
A such that for each a ∈ A � M , 〈M ∪ {a}〉 = A.

Remark 2.2. Since in any bounded residuated lattice the set of its i-filters
is closed under upward directed families, by Zorn’s Lemma, an i-filter is
proper if and only if it is contained in a maximal i-filter.

The radical of a bounded residuated lattice A, represented by Rad(A),
is the intersection of its maximal i-filters, that is,

• a ∈ Rad(A) if and only if a ∈ M for each maximal i-filter M of A.

The following two results are well known and they can be found in the
literature. We include simple proofs of them (cf. [11,14]).

Lemma 2.3. Let F be an i-filter of a bounded residuated lattice A. Then F
is maximal if and only if

(Mx) for any a ∈ A, a /∈ F if and only if ∃n > 0 such that ¬ an ∈ F .

Proof. Assume that F is maximal. Then a ∈ A�F if and only if 〈F∪{a}〉 =
A if and only if ⊥ ∈ 〈F ∪ {a}〉 if and only if there exists n > 0 such that
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¬ an = an → ⊥ ∈ F . Conversely, assume that F is a proper i-filter satisfying
a /∈ F if and only if ∃n > 1 such that ¬ an ∈ F . Then for any a /∈ F ,
⊥ ∈ 〈F ∪ {a}〉, and so 〈F ∪ {a}〉 = A. Thus F is maximal.

Lemma 2.4. For every bounded residuated lattice A and for any a ∈ A, the
following are equivalent:

(i) a ∈ Rad(A).

(ii) For all n > 0 〈¬ an〉 = A.

(iii) For any n > 0 there is k > 0 such that k.an = �.

Proof. (i) ⇔ (ii): Assume a ∈ Rad(A). Then for any maximal i-filter M
and for any n > 0, ¬ an /∈ M , and by Remark 2.2, we have that for any n > 0
the i-filter 〈¬ an〉 is not proper. Conversely, if for any n > 0, 〈¬ an〉 = A,
then ¬ an does not belong to any maximal i-filter, hence by Lemma 2.3, a
belongs to every maximal i-filter and so a ∈ Rad(A).
(ii) ⇔ (iii) follows from the fact that for any a ∈ A, and any n > 0,

〈¬ an〉 = A iff ⊥ ∈ 〈¬ an〉 iff ∃k > 0 s.t.� = (¬ an)k → ⊥ = k.an.

Corollary 2.5. For each bounded residuated lattice A we have

Rad(A) = {a ∈ A : ∀n > 0, ∃k > 0 such that k.an = �}.
The following result is a consequence of above

Lemma 2.6. The following properties hold true:

(a) If B is a subalgebra of a bounded residuated lattice A, then Rad(B) ⊆
Rad(A).

(b) If (Ai)i∈I is a family of bounded residuated lattices, then Rad(
∏

i∈I Ai)
⊆ ∏

i∈I Rad(Ai).

(c) If h : A → B is an homomorphism of bounded residuated lattices, then
h[Rad(A)] ⊆ Rad(B).

(d) For any i-filter F of a bounded residuated lattice A, Rad(A)/F ⊆ Rad
(A/F ).

Some authors claim without proof, that in item (b) of above lemma the
reverse inclusion is also satisfied, and in fact one has an equality (see [9,
Proposition 2.3] for example). However this claim is not true, as the next
lemma shows.

Lemma 2.7. There is a family (An)n>1 of bounded residuated lattices such
that

∏
n>1 Rad(An) �⊆ Rad(

∏
n>1 An).
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Proof. For n > 1, we consider the bounded residuated lattice L̂n+1 de-
scribed in [7, Sect. 5.1, p. 1131]. From the results given in [7], one deduces:

• For each n > 1 we can choose an ∈ Rad(L̂n+1) such that n.an �= �.

Then a = (an)n>1 ∈ ∏
n>1 Rad(L̂n+1). Moreover, for any k > 1, k.ak �=

�̂Lk+1 , and so for any k > 0, k·a �= �
∏

n>1
̂Ln+1 . Thus a /∈ Rad(

∏
n>1 L̂n+1).

This closes the proof.

Given an integer k > 0, we say that a bounded residuated lattice A is
k-radical provided that

Rad(A) = {a ∈ A : ∀n > 0, k.an = �}. (2.1)

A variety V is called k-radical whenever all its members are k-radical.
For any m > 0, Em is m-radical because for A ∈ Em, Rad(A) = {a ∈ A :

m.am = �}; moreover, it is shown in [7, Lemma 1.8] that for each k > 0,
WLk is a k-radical variety. In particular since MTL ⊆ WL2, then MTL is a
2-radical variety.

For k-radical varieties we can improve item (b) of Lemma 2.6.

Lemma 2.8. Let k be a positive integer. If (Ai)i∈I is a family of k-radical
bounded residuated lattices, then Rad(

∏
i∈I Ai) =

∏
i∈I Rad(Ai).

Proof. Let a = (ai)i∈I ∈ ∏
i∈I Ai, then since the operations in

∏
i∈I Ai are

defined componentwise, we have that for any n > 0, k.an = � if and only if
for all i ∈ I k.an

i = �i, hence a ∈ Rad(
∏

i∈I Ai) if and only if ai ∈ Rad(Ai)
for all i ∈ I. Thus

∏
i∈I Rad(Ai) = Rad(

∏
i∈I Ai).

3. Simple and Semisimple Bounded Residuated Lattices

Given a class K of algebras we represent by KFSI the class of its finitely
subdirectly irreducible members, and we represent by KSI the class of its
subdirectly irreducible members. Clearly KSI ⊆ KFSI. Every variety is gener-
ated by its (finitely) subdirectly irreducible members. After [14, Proposition
1.4], we know that BRLFSI is the class of bounded residuated lattices with �
join irreducible.

A special case of subdirectly irreducible algebras are simple algebras. An
algebra is called simple provided that it only has trivial congruence relations,
namely the identity and the universal. Hence a bounded residuated lattice
is simple if and only if {�} is its unique proper i-filter, or equivalently, {�}
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is maximal i-filter. Therefore a proper i-filter F of a bounded residuated
lattice A is maximal if and only if the quotient algebra A/F is simple.

Algebras representable as subdirect product of simple algebras are called
semisimples. Then an algebra is semisimple if and only if the intersection of
its proper maximal congruences is the identity. Therefore a bounded resid-
uated lattice A is semisimple if and only if Rad(A) = {�}. Notice that for
any bounded residuated lattice A, the quotient algebra A/Rad(A) is always
semisimple.

From now on V represents a variety of bounded residuated lattices, VS

represents the class of its simple members, and VSS represents the class of its
semisimple members. It follows from Lemma 2.6 that bounded residuated
lattices are hereditarily semisimple, then VSS is closed under isomorphic
images, subalgebras and products. Moreover, since VSS ⊆ SP (VS) and VS ⊆
VSS, we have that VS and VSS generate the same variety HSP (VS). Notice
that HSP (VS)S = VS, and HSP (VS)SS = VSS.

It is shown in [13] that BRL, as a variety, is generated by its finite simple
members (see also [8]), but BRLSS �= BRL. On the other hand, for any
m > 0 it is straightforward to see that EmSS is the variety EMm of bounded
residuated lattices given by the equation:

(MEm) x ∨ ¬xm ≈ �.

Notice that EM1 is the variety of Boolean algebras.
We say that a variety V is semisimple provided that all its members are

semisimple, that is, V = VSS. The next result follows from those given in
[8,12] (cf. [16]).

Theorem 3.1. Each variety of bounded residuated lattices V satisfies:

(a) if V is semisimple, then V ⊆ Em for some m > 0, and

(b) V is semisimple if and only V ⊆ EMm, for some m > 0.

As a consequence of the above theorem, we obtain the following corollary

Corollary 3.2. For every variety V of bounded residuated lattices, the
following are equivalent:

(i) VSS is a variety.

(ii) VS ⊆ Em, for some m > 0.

(iii) VSS ⊆ Em, for some m > 0.

(iv) VSS ⊆ EMm, for some m > 0.

(v) VSS = HSP (VS).
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Proof. (i) ⇒ (ii), (iii) ⇒ (iv) follow from Theorem 3.1, (ii) ⇒ (iii) is
true because VSS ⊆ SP (VS), and (v) ⇒ (i) is trivial.
(iv) ⇒ (v): Assume that there is m > 0 such that VSS ⊆ EMm. Then
HSP (VS) = HSP (VSS) ⊆ EMm. Hence every algebra in HSP (VS) is semi-
simple, and so HSP (VS) ⊆ VSS. The other inclusion always holds.

Our next task is to analyze varieties of bounded residuated lattices whose
semisimple algebras form a variety. For this purpose we need some results
about free algebras. For every set of variables X, F V(X) denotes the |X|-free
algebra in V with set of free generators X = {x : x ∈ X}. The next lemma
follows from Lemma 4.1 and Theorem 4.3 of [5]. We include a direct proof
of item (b) obtained from the one given for Theorem 4.3 in [5], by taking
A ∈ VSS in place of S ∈ VS.

Lemma 3.3. For each non-empty set of variables X, the following properties
hold true:

(a) θ(Rad(F V(X))) is a fully invariant congruence on F V(X), and
F V(X)/Rad(F V(X)) ∈ VSS;

(b) F V(X)/Rad(F V(X)) is the |X|-free algebra in VSS, with
X/Rad(F V(X)) = {x/Rad(F V(X)) : x ∈ X} as set of free generators;

(c) F V(X)/Rad(F V(X)) is the |X|-free algebra in HSP (VS), with
X/Rad(A) as set of free generators.

Proof. (b): Let X be a set of variables. Then F V(X)/Rad(F V(X)) is
semisimple and it belongs to VSS. Let A ∈ VSS. Given a mapping h :
X/Rad(F V(X)) → A, we consider h0 : X → A defined by h0(x) :=
h

(
x/Rad(F V(X))

)
. Let H0 : F V(X) → A be the homomorphism extend-

ing h0. Since Rad(A) = {�}, by item (c) of Lemma 2.6, Rad(F V(X)) ⊆
�/(kerH0). Hence there is a homomorphism H from F V(X)/Rad(F V(X))
into A such that for any t ∈ F V(X), H(t/Rad(F V(X)) = H0(t) and clearly
this homomorphism extends h. Thus F V(X)/Rad(F V(X)) is, up isomor-
phism, the |X|-free algebra in VSS.

Now we can give the main result of this section.

Theorem 3.4. Let V be a variety of bounded residuated lattices. Then VSS

is a variety if and only if there exists m > 0 such that

(SS) for each n > 0, there is kn > 0 such that V |= kn.(x ∨ ¬xm)n ≈ �.

Proof. Assume that VSS is a variety. Then there exists m > 0 such that
VSS |= x ∨ ¬xm ≈ �. Let F be a free algebra in V with at least one free
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generator x. Since F /Rad(F ) ∈ VSS, then F /Rad(F ) |= x ∨ ¬xm ≈ �.
Hence (x∨ ¬xm)/Rad(F ) = �/Rad(F ), and so x∨ ¬xm ∈ Rad(F ), hence:

• for any n > 0 there is kn > 0 such that kn.(x ∨ ¬xm)n = �.

Since x is a free generator we have that (SS) holds.
Conversely, assume that (SS) holds. Let F be a free algebra in V, with
set of free generators X �= ∅. Then, by Lemma 3.3, F /Rad(F ) is a free
algebra of the variety generated by VSS, and if x ∈ X. Then x/Rad(F )
is a free generator of F /Rad(F ). By (SS), x ∨ ¬xm ∈ Rad(F ), and so
x/Rad(F ) ∨ ¬ (x/Rad(F ))m = �/Rad(F ). Hence VSS |= x ∨ ¬xm ≈ � and
then VSS ⊆ EMm. Thus, by Corollary 3.2, VSS is a variety.

Observe that, by (h) and (j) of Lemma 1.3, in (SS) the sequence k =
(kn)n>0 can be taken increasing.

Theorem 3.4 shows how we can give an equational presentation of va-
rieties of bounded residuated lattices whose semisimple members form a
variety. However, these presentations depend of infinitely many parameters.
For any m > 0 and any increasing sequence of positive integers k = (kn)n>0

we consider the variety

Vm,k = {A ∈ BRL : ∀n > 0,A |= kn.(x ∨ ¬xm)n ≈ �}.

Then Theorem 3.4 can be reformulated as follows

Corollary 3.5. Let V be a variety of bounded residuated lattices. Then
VSS is a variety if and only if there are m > 0 and a increasing sequence of
positive integers k such that V ⊆ Vm,k. In this case VSS ⊆ EMm.

In particular for k-radical varieties we have:

Corollary 3.6. Let V be a k-radical variety of bounded residuated lattices,
then VSS is a variety if and only if there is m > 0 such that for any n > 0

V |= k.(x ∨ ¬xm)n ≈ �.

4. Local and Locally Representable Bounded Residuated Lattices

A bounded residuated lattice A is called local provided that it has only one
maximal i-filter, that is Rad(A) is (the unique) maximal i-filter. Observe this
is equivalent to A/Rad(A) being simple. Then we have (cf. [9, Proposition
2.4.]):

Theorem 4.1. A bounded residuated lattice A is local if and only if
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(♠) for any a ∈ A, a /∈ Rad(A) if and only if there is n > 0 such that
an = ⊥.

Proof. Assume that A is local. Since Rad(A) is the unique maximal i-filter
of A, then for any a ∈ A: a /∈ Rad(A) iff 〈a〉 = A iff ⊥ ∈ 〈a〉 iff there is
n > 0 such that an = ⊥.
Conversely, assume A satisfies (♠). Then for any a ∈ A, if a /∈ Rad(A),
then ⊥ ∈ 〈Rad(A) ∪ {a}〉. Thus Rad(A) is maximal i-filter.

As immediate consequences we have:

Corollary 4.2. Let F be a proper i-filter of a bounded residuated lattice
A. Then A/F is local if and only if F is contained in only one maximal
i-filter.

Corollary 4.3. Every homomorphic image of a local bounded residuated
lattice is also local.

We say that an algebra A in BRL is locally representable provided that
A is isomorphic to a subdirect product of local algebras. Then, a variety is
called locally representable if all its members are locally representable. From
subdirect product representation in varieties we deduce:

Lemma 4.4. A variety V of bounded residuated lattices is locally repre-
sentable if and only if any algebra in VSI is a local algebra.

For k-radical varieties we have:

Theorem 4.5. Let A ∈ BRLFSI be k-radical. Then A is local if and only if

(♣) for any a ∈ A there is na > 0 such that k.a ∨ ¬ana = �.

Proof. Assume that A is local. If a ∈ A is such that k.a �= �, then
a /∈ Rad(A), and there is na such that ana = ⊥, so ¬ana = �. Hence for
any a ∈ A there is na such that k.a ∨ ¬ana = �, and (♣) holds.
Conversely, assume (♣). If a /∈ Rad(A), then there is m > 0 such that
k.am �= �, hence since � is join irreducible, by (♣) there is n = nam > 0
such that ¬amn = ¬(am)n = �, and so amn = ⊥, hence, by Theorem 4.1,
A is local.

It is well known that the variety MTL is locally representable, because
any totally ordered bounded residuated lattice is local. Moreover, we have:

Lemma 4.6. If k > 0, then:

(a) any A ∈ WLk FSI is local,
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(b) any algebra in WLk is locally representable.

Proof. (a): By item (i) in Lemma 1.3, (WLk) can be rewritten as k.x ∨
¬xk ≈ �, and so any member of WLk FSI satisfies (♣). Then by Theorem 4.5
A is local.

(b) follows from Lemma 4.4, because WLk SI ⊆ WLk FSI.

We recall that a proper i-filter P of a bounded residuated lattice A is
called prime provided that for any a, b ∈ P , a ∨ b ∈ P implies a ∈ P or
b ∈ P . It is well known that a proper i-filter F of A is prime if and only if
A/F is a non trivial finitely subdirectly irreducible.

Corollary 4.7. Each prime i-filter of a member of WLk is contained in
only one maximal i-filter.

Given an integer m > 0, we say that a local bounded residuated lattice
A is m-local, provided that A/Rad(A) ∈ EMm, i.e., A/Rad(A) ∈ EMmS.

Theorem 4.8. A bounded residuated lattice A is m-local if and only if:

(m♠) for any a ∈ A, a /∈ Rad(A) iff ¬am ∈ Rad(A).

Proof. If A is m-local, then A/Rad(A) ∈ EMmS. Thus

a /∈ Rad(A) iff a/Rad(A) �= �/Rad(A)

iff ¬ (a/Rad(A))m = �/Rad(A)

iff ¬ am/Rad(A) = �/Rad(A)

iff ¬ am ∈ Rad(A).

Conversely, (m♠) implies that Rad(A) is maximal i-filter, at the same time,
that A/Rad(A) satisfies x ∨ ¬xm ≈ �.

Given a positive integer m > 0, we say that a bounded residuated lattice
A is m-locally representable provided that A is isomorphic to a subdirect
product of m-local algebras. Then, a variety is called m-locally representable
if all its members are m-locally representable.

Corollary 4.9. If V is an m-locally representable variety of bounded resid-
uated lattices, then VSS ⊆ EMm.

Moreover, from subdirect product representation, we have:

Lemma 4.10. A variety V of bounded residuated lattices has all its members
m-locally representable if and only if any algebra in VSI is m-local.
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Notice that for any m > 0, there are algebras in Em which are not locally
representable, while EmSS is the variety EMm. See the example given at the
end of the Sect. 5. We also note that for the variety of Heyting algebras E1,
E1SS is the variety EM1 of boolean algebras.

5. Radical Terms

In what follows, we shall consider unary {·,→,∧,∨,⊥,�}-terms, which we
call simply unary terms. Given a unary term t we write t(x) to indicate that
the variable which appears in t is x. If A is a bounded residuated lattice,
then for any a ∈ A, tA(a) represents the interpretation of t on A given by
the assignment x �→ a.

Let t(x) be a unary term. We say that a variety V of bounded residuated
lattices has t(x) as a radical term, or that t(x) is a radical term for V,
whenever any A ∈ V satisfies:

Rad(A) = {a ∈ A : tA(a) = �}. (5.1)

Notice that for any m > 0 m.xm is a radical term for Em, besides EmSS =
EMm. We also know that any subvariety of BRL having t(x) as a boolean
retraction term has t(x) as a radical term. In particular, for any k > 0 the
variety Vk given by the equation k.xk∨k.(¬xk) ≈ � has k.xk as radical term,
see Theorem 5.1 of [7] for details. Actually, the variety Vk is the greatest
subvariety of WLk admitting a boolean retraction term ([7, Theorem 5.7]).
Moreover, if the variety V has boolean retraction term, then VSS is the variety
of boolean algebras EM1. In these cases the class of semisimple algebras is
a variety.

In general, if t(x) is a radical term for V, then VSS is the subquasivariety
of V given by the quasiidentity

t(x) ≈ � ⇒ x ≈ �. (5.2)

In similar way to Lemma 2.8 we can prove the following

Lemma 5.1. (cf. [7, Lemma 3.7]) If (Ai)i∈I is a family of bounded residuated
lattices having t(x) as radical term, then Rad(

∏
i∈I Ai) =

∏
i∈I Rad(Ai).

Our next task in to analyze k-radical varieties admitting radical term.
Given a class of algebras K, let |=K denote the equational consequence

relation relative to K, or determined by K, (see [3, Chapter 2] and [8, Page
54]). It is well known that if K is a quasivariety, then |=K is finitary (compact)
in the sense of [3, Chapter 2], that is, for any set of equations Σ ∪ {ϕ ≈ ψ}
in the algebraic language of K, one has
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• Σ |=K ψ ≈ ϕ if and only if there is a finite subset {ψi ≈ ϕi : 0 < i � m}
of Σ such that {ψi ≈ ϕi : 0 < i � m} |=K ψ ≈ ϕ.

Recall that for every class K, {ψi ≈ ϕi : 0 < i � m} |=K ψ ≈ ϕ is equivalent
to K |= (ψ1 ≈ ϕ1 & . . .& ψm ≈ ϕm) ⇒ ψ ≈ ϕ.

Theorem 5.2. For every variety V of k-radical bounded residuated lattices,
the following are equivalent:

(i) VSS is a quasivariety.

(ii) There is r > 0 such that VSS |= k.xr ≈ � ⇒ x ≈ �.

(iii) There is r > 0 such that for all A ∈ V, Rad(A) = {a ∈ A : k.ar = �}.
(iv) There is r > 0 such that VSS = {A ∈ V : A |= k.xr ≈ � ⇒ x ≈ �}.

Proof. (i) ⇒ (ii): Assume that VSS is a quasivariety. From the definition
of k-radical variety it follows that

{k.xn ≈ � : n ∈ ω} |=VSS
x ≈ �,

then since VSS is a quasivariety, the operator |=VSS
is finitary, and so there

are integers 0 < m, and 0 � n1 < · · · < nm, such that

{k.xn1 ≈ �, . . . , k.xnm ≈ �} |=VSS
x ≈ �.

For any A ∈ VSS and any a ∈ A k.anm � · · · � k.an1 , hence if r = nm, we
have

{k.xr ≈ �} |=VSS
x ≈ �,

and so VSS |= k.xr ≈ � ⇒ x ≈ �.
(ii) ⇒ (iii): For any A ∈ V, Rad(A) ⊆ {a ∈ A : k.ar = �} always holds.
To see the reverse inclusion, we consider a ∈ A such that k.ar = �. Then
k.(a/Rad(A))r = �/Rad(A) and since A/Rad(A) ∈ VSS, by (ii), we have
a/Rad(A) = �/Rad(A). Hence a ∈ Rad(A).
(iii) ⇒ (iv): Assume that there exists r > 0 such that (iii) holds. Then (iv)
follows from the fact that A ∈ VSS if and only if A ∈ V and Rad(A) = {a ∈
A : k.ar = �} = {�}. Indeed, A ∈ VSS if and only if A ∈ V and for any
a ∈ A, k.ar = � implies a = �. This proves (iv).
(iv) ⇒ (i) is trivial.

Remark 5.3. Observe that if the variety V satisfies (ii) of the above theo-
rem, then for any l,m > 0,

VSS |= k.xr ≈ � ⇒ l.xm ≈ �.
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Moreover, for any s � r, since V |= k.xs → k.xr ≈ �, we have

VSS |= k.xs ≈ � ⇒ x ≈ �,

hence if r � k we can take r = k, and we can assume that r � k, because if
k.xr is radical term for V, then for any s � r, k.xs is also radical term.

Corollary 5.4. Let V be a k-radical variety of bounded residuated lattices.
Then V has a radical term if and only if VSS is a quasivariety. In this case
the radical term is given by k.xr, for some r � k.

Proof. If V has a radical term, then VSS is a quasivariety by (5.1), and by
Theorem 5.2, VSS is a quasivariety if and only if there exists r > 0 such that
k.xr is a radical term for V.

The above results can be reformulated as follows:

Corollary 5.5. For any k > 0, and any variety V of bounded residuated
lattices, the following are equivalent:

(i) There is r � k such that k.xr is a radical term for V.

(ii) V is k-radical and VSS is a quasivariety.

Lemma 5.6. Let V be a k-radical variety of bounded residuated lattices. If
VSS ⊆ EMm then k.xm is a radical term for V.

Proof. Consider A ∈ V, and a ∈ A. We show that a ∈ Rad(A) if and only
if k.am = �.

• If a ∈ Rad(A), then k.am = �, because V is k-radical.

• If k.am = �, then (¬ am)k → ⊥ = �, and hence 〈¬ am〉 = A. Thus
¬an /∈ M for any maximal i-filter M as it is proper. By taking into
account that A/M |= x ∨ ¬xm ≈ �, we have a ∈ M . Therefore a ∈
Rad(A).

For subvarieties of WLk we can improve Theorem 5.2.

Theorem 5.7. Assume that V is a subvariety of WLk, k > 0, then the
following conditions are equivalent:

(i) V admits radical term.

(ii) VSS is a variety.

Proof. It is enough to see that (i) implies (ii). Assume that k.xr is a
radical term for V. By Corollaries 3.2, 4.9 and Lemma 4.10, to show that
VSS is a variety it suffices to prove that any algebra in VSI is kr-local. If
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A ∈ VSI and a /∈ Rad(A), then k.ar �= � and since � is join irreducible in
A, ¬(ark) = k.¬ar = � ∈ Rad(A), by Theorem 4.8, A is kr-local.

Remark 5.8. It follows from the above theorem that if a variety V ⊆ WLk
has k.xr as radical term, then VSS ⊆ EMkr. However, it may happen that
VSS ⊆ EMm for some m < kr.

Corollary 5.9. Let V be a subvariety of WLk, then V has a radical term
if and only if VSS is a variety. In this case the term is given by k.xr, for
some r � k.

There are well known subvarieties of WL2 whose semisimple members do
not form a variety. The variety of BL-algebras is the subvariety BL of MTL
given by the equation x · (x → y) ≈ y · (y → x), and the variety MV of MV-
algebras is the subvariety of BL given by the equation ¬¬x ≈ x. It is well
known (see [6]) that for any A ∈ BL, A/Rad(A) ∈ MV, hence BLSS = MVSS,
however MVSS � HSP (MVSS) = MV. This means that neither BLSS or MVSS

is a variety. Hence by Theorem 5.7, both BL and MV are subvarieties of WL2
that do not admit radical term.

An Example1

For n > 1, let An = {r ∈ ω : 1 � r � n}∪{⊥,�, α, β}. Consider the algebra
An = 〈An; ·,→,∨,∧,⊥,�〉2 of type (2, 2, 2, 2, 0, 0) such that 〈An; ∨,∧,⊥,�〉
is the bounded lattice given by the diagram depicted in Figure 1.
Moreover, · is defined by the following prescription (cf. table in Figure 1):

• for any x, y ∈ An, x · y = y · x, x · � = x, and x · ⊥ = ⊥.

• for any 1 � r, s � n, r · s = min{r + s, n},

• for any 1 � r � n and x ∈ {α, β}, r.x = x = x · x,

• α · β = ⊥.

1This example has been obtained with the help of Prover9-Mace4 available in [15].
2In fact, this algebra is the ordinal sum of the four element boolean algebra and the

n + 1-element MV-chain, see [2].
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Figure 1. The lattice reduct of An, and table of its monoid operation

It is easy to prove that · distributes ∨, and then · admits residual which we
represent by →. One can check that → is given by the following table

→ ⊥ � 1 2 3 · · · n α β

⊥ � � � � � · · · � � �
� ⊥ � 1 2 3 · · · n α β
1 ⊥ � � 1 2 · · · n − 1 α β
2 ⊥ � � 2 3 · · · n − 2 α β

· · · · · · · · ·
n ⊥ � � � � · · · � α β
α β � � � � · · · � � β
β α � � � � · · · � α �

Notice that A1 is a Heyting algebra. It follows from the definition that for
any n > 0, An ∈ En. Moreover:

• if k > 0, then αk = α > ⊥. Therefore An /∈ EMm for each m > 0,

• for any a ∈ An, an = an+1, however 1n−1 = n − 1 > 1n = n. Thus
An ∈ En � En−1,

• for any k > 0, k.α = α and k.¬α = k.β = β, and so k.α ∨ k.(¬α) = n �=
�. Hence An /∈ ⋃

k>0WLk.

• An is subdirectly irreducible, but it is not local, because Rad(A) is not
maximal, and En is not locally representable.
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