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Abstract. The duality between congruence lattices of semilattices, and algebraic subsets

of an algebraic lattice, is extended to include semilattices with operators. For a set G of

operators on a semilattice S, we have Con(S,+, 0, G) ∼=d Sp(L,H), where L is the ideal

lattice of S, and H is a corresponding set of adjoint maps on L. This duality is used to

find some representations of lattices as congruence lattices of semilattices with operators.

It is also shown that these congruence lattices satisfy the Jónsson–Kiefer property.
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An operator on a join semilattice (S, +, 0) is a function f : S → S such
that f(x + y) = f(x) + f(y) and f(0) = 0, i.e., an endomorphism of S. A
semilattice with operators (SLO) is an algebra (S, +, 0, G) where (S, +, 0)
is a join semilattice and G is a set of operators on S. In this paper we
provide a duality for SLOs, and use it to establish representations for certain
(distributive, algebraic) lattices as congruence lattices of SLOs.

Our motivation for this study is the theorem of Adaricheva and Nation [1]
that for any quasivariety K, the lattice of quasi-equational theories QTh(K)
is isomorphic to the congruence lattice of a semilattice with operators. The
semilattice in this case consists of the compact congruences of the free al-
gebra FK(ω), and the operators are derived from the endomorphisms of the
free algebra.

Recall that a subset X contained in a complete lattice L is an algebraic
subset if it contains 1, is closed under arbitrary meets, and is closed under
nonempty directed joins. The lattice of all algebraic subsets of L is denoted
Sp(L).

The lattice of quasi-equational theories is dually isomorphic to the lattice
Lq(K) of subquasivarieties of K. The characterization theorem of Gorbunov
and Tumanov [8] says that Lq(K) is isomorphic to the lattice Sp(L, R) of
all algebraic subsets of an algebraic lattice L that are closed with respect
to a distributive binary relation R. The lattice L in this case is again the
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congruence lattice of FK(ω), and the relation is derived from the isomor-
phism relation, or alternately, the embedding relation. See Section 5.2 of
Gorbunov [7]; also cf. Hoehnke [9]. We improve this type of representation
by replacing R with a set of adjoint operators which, when regarded as
relations, satisfy properties stronger than Gorbunov’s.

The basic result, giving the duality between congruence lattices of semi-
lattices (without operators) and lattices of algebraic sets, is Theorem 1 due
to Fajtlowicz and Schmidt [4], building on [5,12,13].

Theorem 1. For any join semilattice S with 0,

Con(S, +, 0) ∼=d Sp(I(S))

where I(S) denotes the lattice of (nonempty) ideals of S.

The duality for SLOs requires the following definition. An algebraic oper-
ator on a complete lattice L is a function h : L → L such that h(1) = 1 and
h preserves arbitrary meets and directed joins. When H is a set of algebraic
operators on L, we say that a subset X ⊆ L is H-closed if h(x) ∈ X for
all h ∈ H and x ∈ X. Let Sp(L,H) denote the set of all H-closed algebraic
subsets of L.

Our main result, Theorem 14, can be stated thusly.

Theorem 2. The following are equivalent for a lattice K.

1. K ∼= Con(S, +, 0, G) for some semilattice with operators.

2. K ∼=d Sp(L,H) for some algebraic lattice L and set H of algebraic op-
erators on L.

Note that congruence lattices of semilattices are algebraic and meet semi-
distributive (Papert [11]). These properties are of course inherited by con-
gruence lattices of SLOs.

In the latter sections, we use the duality to obtain representations, focus-
ing on distributive lattices K that are isomorphic to Sp(L, H) for some chain
L. Even this situation presents difficulties in the infinite case. Applications
include Theorems 15 and 17, paraphrased below, where O(P ) denotes the
lattice of order ideals of the ordered set P .

• If P is a countable ordered set with the property that ↓ x is finite for
every x ∈ P , then there is a semilattice with operators S such that
O(P ) ∼= Con(S, +, 0, G).

• For any ordered set P , there is a semilattice with operators such that
the linear sum O(P ) + 1 ∼= Con(S, +, 0, G).
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On the other hand, while there are plenty of distributive, algebraic lattices
that we cannot yet represent, it still may be that every such lattice is iso-
morphic to the congruence lattice of an SLO.

Another application shows that congruence lattices of SLOs satisfy the
Jónsson-Kiefer property (Theorem 21). This demonstrates that some nondis-
tributive, but meet semidistributive, algebraic lattices cannot be represented
as congruence lattices of SLOs.

It is interesting to note that finite SLOs themselves are dualizable, as
shown in Davey et al. [3].

1. Adjoints: The Finite Case

In this section, we extend the duality

Con(S, +, 0) ∼=d Sub(S,∧, 1)

for finite semilattices to SLOs. For simplicity, let us consider a finite semilat-
tice with one operator: S = 〈S, +, 0, g〉. The extension to semilattices with
a monoid of operators is straightforward.

We begin by recalling the general theory of adjoints on finite semilattices.
A finite join semilattice with 0 is a lattice, with the naturally induced meet
operation. Thus a finite lattice S can be regarded as a semilattice in two
ways, either S = 〈S, +, 0〉 or S = 〈S,∧, 1〉.

For finite semilattices S, T and a (+, 0)-homomorphism g : S → T , define
the adjoint h : T → S by

h(t) =
∑

{s ∈ S : g(s) ≤ t}.

Thus g(s) ≤ t if and only if s ≤ h(t). The forward direction of this is clear.
For the reverse, assume s0 ≤ h(t). Then g(s0) ≤ gh(t) =

∑{g(s) : g(s) ≤
t} ≤ t, as desired.

As immediate consequences we get, for s ∈ S and t ∈ T ,

• gh(t) ≤ t

• hg(s) ≥ s.

We can think of h(t) as the largest element that g maps into the ideal ↓ t,
and in particular it must be the largest element of its ker g-class.

Lemma 3. The adjoint h of an operator satisfies h(1) = 1, and h preserves
meets: h(x ∧ y) = h(x) ∧ h(y).
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Proof. The map h is order-preserving, so h(x ∧ y) ≤ h(x) ∧ h(y). On the
other hand, because g preserves order, g(h(x) ∧ h(y)) ≤ gh(x) ≤ x and
g(h(x) ∧ h(y)) ≤ gh(y) ≤ y, whence g(h(x) ∧ h(y)) ≤ x ∧ y. It follows that
h(x) ∧ h(y) ≤ h(x ∧ y).

Let us denote the adjoint of g by h = ĝ. In this article, when there is only
one operator, we continue to use just g and h.

2. Duality: The Finite Case

Now we recall the duality theorem for congruence lattices of finite semilat-
tices without operators from [5].

Theorem 4. Let S = 〈S, +, 0〉 be a finite join semilattice with 0. Then
Con(S, +, 0) ∼=d Sub(S,∧, 1) via the maps

• σ : Con(S, +, 0) → Sub(S,∧, 1) where σ(θ) is the set of all maximal
elements of θ-classes,

• ρ : Sub(S,∧, 1) → Con(S, +, 0) where

ρ(U) = {(x, y) ∈ S2 : ∀u ∈ U (x ≤ u ⇔ y ≤ u)}.

It is convenient to use the notation “x ≤ y mod θ” to mean x + y θ y.
Note that x θ y if and only if both x ≤ y mod θ and y ≤ x mod θ hold.

Lemma 5. Let 〈θ, U〉 be a pair with θ = ρ(U) and U = σ(θ).

• y ∈ U iff x ≤ y mod θ implies x ≤ y.

• x ≤ y mod θ iff y ≤ u implies x ≤ u for all u ∈ U .

This lemma provides the central part of the proof of Theorem 4.
Now we turn to SLOs. Of course, Con(S, +, 0, g) is a sublattice of

Con(S, +, 0), and Sub(S,∧, 1, h) is a sublattice of Sub(S,∧, 1). We just have
to be sure we get the appropriate sublattices.

Lemma 6. Let 〈θ, U〉 be a pair with θ = ρ(U) and U = σ(θ). Let g be an
operator on 〈S, +, 0〉 and let h = ĝ be its adjoint. Then θ respects g if and
only if U is closed under h.

Proof. Assume that θ is a semilattice congruence that respects g, and
let z ∈ U = σ(θ). To see that h(z) ∈ U , assume s ≤ h(z) mod θ. Then
g(s) ≤ gh(z) ≤ z mod θ. Since z ∈ U , this implies g(s) ≤ z, whence
s ≤ h(z), as desired.
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Conversely, assume that U is h-closed, and let x θ y. Then x ≤ y mod θ,
so that by Lemma 5, we have y ≤ u implies x ≤ u whenever u ∈ U . But
then g(y) ≤ u implies y ≤ h(u) ∈ U , wherefore x ≤ h(u) and g(x) ≤ u.
Thus g(x) ≤ g(y) mod θ. Symmetrically g(y) ≤ g(x) mod θ, and hence g
respects θ.

This allows us to conclude:

Theorem 7. If S is a finite semilattice with an operator g, and h = ĝ, then

Con(S, +, 0, g) ∼=d Sub(S,∧, 1, h).

More generally, if G is a monoid of operators on a semilattice S and H =
Ĝ = {ĝ : g ∈ G}, then

Con(S, +, 0, G) ∼=d Sub(S,∧, 1, H).

3. Application: Representing Finite Distributive Lattices

The duality of Theorem 7 gives us an easy representation of finite distribu-
tive lattices. Theorem 8 can also be derived from a result of Tumanov [14],
when combined with Adaricheva and Nation [1].

Theorem 8. For every finite distributive lattice D, there is a finite semi-
lattice with operators S such that D ∼= Con(S, +, 0, G).

Proof. As usual, we view D as the lattice of order ideals of an ordered
set P . Let � be a linear extension of the order ≤ on P , so that x ≤ y
implies x � y, and form the chain C0 = 〈P,�〉. Add a new top element T
to C0, forming C = C0 ∪ {T}. Since C is a chain, every subset is a meet
subsemilattice, and every order-preserving map is meet-preserving.

Now we add a set of operators H to 〈C,∧, T 〉 so that the sets F ∪ {T},
with F an order filter of P , will be exactly the H-closed subsets of C. For
each pair a < b in P , note that a � b, and define a function hab by

hab(x) =

⎧
⎪⎨

⎪⎩

x if x � a,

b if x = a,

T if x � a.

Let H = {hab : a < b}. It is easy to see that this does the trick! For
Sub(C,∧, T,H) ∼= F(P ), where F(P ) denotes the lattice of order filters of
P , and then dually, Con(C,+, 0, G) ∼= O(P ), as desired.
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4. Adjoints: The General Case

To extend the theory to the general case, where S and T are not-necessarily-
finite (0, +)-semilattices, we use (nonempty) ideals of S and T . Given a
(+, 0)-homomorphism g : S → T , define the adjoint h : I(T ) → I(S) by
h(J) = {s ∈ S : g(s) ∈ J}. It is straightforward to confirm that h(J) is an
ideal of S. Moreover,

g(s) ∈ J iff s ∈ h(J).

As an immediate consequence we get gh(J) ⊆ J for J ∈ I(T ).
Now g(I) for I ∈ I(S) need not be an ideal, but it is a directed set, and

the union of a directed set of ideals is an ideal. Thus the ideal generated by
g(I) is

g(I) = {x ∈ T : x ≤ g(z) for some z ∈ I}.

With this minor adjustment, we have

• gh(J) ≤ J for J ∈ I(T ),

• hg(I) ≥ I for I ∈ I(S).

Using the above observations, we obtain the analogue of Lemma 3.

Lemma 9. The adjoint h : I(T ) → I(S) satisfies h(T ) = S, and h preserves
both arbitrary intersections and nonempty directed unions.

5. Duality: The General Case

Now we review the general version of the duality theorem for congruence
lattices of semilattices without operators [4]. Recall that if θ is a congruence
on S, then an ideal J of S is θ-closed if x θ y and y ∈ J implies x ∈ J .

Theorem 10. Let S = 〈S, +, 0〉 be a join semilattice with 0. Then the lattice
Con(S, +, 0) is dually isomorphic to Sp(I(S)) via the maps

• σ : Con(S, +, 0) → Sp(I(S)) such that σ(θ) is the set of all θ-closed
ideals of S,

• ρ : Sp(I(S)) → Con(S, +, 0) where

ρ(U) = {(x, y) ∈ S2 : ∀J ∈ U (x ∈ J ⇔ y ∈ J)}.

Part of the proof of this theorem, which is used below, is the following
analogue of Lemma 5.
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Lemma 11. Let 〈θ, U〉 be a pair with θ = ρ(U) and U = σ(θ).

• J ∈ U if and only if x θ y and y ∈ J implies x ∈ J .

• x ≤ y mod θ if and only if y ∈ K and K ∈ U implies x ∈ K for all
K ∈ U .

Now we turn to semilattices with operators. Con(S, +, 0, g) is a sublat-
tice of Con(S, +, 0), and the h-closed algebraic subsets Sp(I(S), h) form a
sublattice of Sp(I(S)). We want to be sure we get the appropriate sublat-
tices. The statement of Lemma 12 is the same as that of Lemma 6, but the
interpretation and proof are for the more general situation.

Lemma 12. Let 〈θ, U〉 be a pair with θ = ρ(U) and U = σ(θ). Let g be an
operator on 〈S, +, 0〉 and let h = ĝ be its adjoint. Then θ respects g if and
only if U is closed under h.

Proof. Assume that θ is a semilattice congruence that respects g, and
let J ∈ U = σ(θ). To see that h(J) ∈ U , assume x θ y and y ∈ h(J). Then
g(x) θ g(y) and g(y) ∈ gh(J). Since gh(J) ⊆ J , we have g(y) ∈ J . By Lemma
11, g(x) θ g(y) implies g(x) ∈ J , whence x ∈ h(J), as desired.

Conversely, assume that U is h-closed, and let x θ y. Then x ≤ y mod θ,
so that by Lemma 11, y ∈ J implies x ∈ J whenever J ∈ U . Thus if g(y) ∈ J
with J ∈ U , then y ∈ h(J), and by assumption h(J) ∈ U . Therefore x ∈ h(J)
and g(x) ∈ J . We have shown that g(x) ≤ g(y) mod θ. Symmetrically
g(y) ≤ g(x) mod θ, so that g(x) θ g(y), and hence g respects θ.

Consequently:

Theorem 13. If S is a semilattice with an operator g, and h = ĝ is its
adjoint, then

Con(S, +, 0, g) ∼=d Sp(I(S), h).

More generally, if G is a monoid of operators on S and H = Ĝ, then

Con(S, +, 0, G) ∼=d Sp(I(S), H).

The ideals of a semilattice 〈S, +, 0〉 form an algebraic lattice I(S). More-
over, the compact elements of any algebraic lattice L form a join semilattice
with 0 such that L ∼= I(S). Restating the previous theorem in these terms
yields the first part of our main result.

Theorem 14. If S is a semilattice with a monoid G of operators, then there
is an algebraic lattice L with a monoid H of algebraic operators such that

(†) Con(S, +, 0, G) ∼=d Sp(L, H).
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Conversely, if L is an algebraic lattice and H is a monoid of algebraic oper-
ators on L, then there is a monoid G of endomorphisms on the semilattice
S of compact elements of L such that H = Ĝ, whence (†) again holds.

Proof. It remains to prove the second part. Assume we are given an al-
gebraic lattice L and a map h : L → L that preserves arbitrary meets and
nonempty directed joins. Letting S denote the semilattice of compact el-
ements of L, we want to define a (+, 0)-preserving map g : S → S. Let
g : S → L be given by g(s) =

∧{j ∈ L : s ≤ h(j)}, so that

g(s) ≤ j if and only if s ≤ h(j).

Again note s ≤ hg(s). We claim that if s ∈ S, then g(s) ∈ S, i.e., g(s) is
compact.

Suppose g(s) ≤ ∨
A for some A ⊆ L. Then

s ≤ hg(s) ≤ h
(∨

A
)

= h

⎛

⎝
∨

finite F⊆A

∨
F

⎞

⎠ =
∨

finite F⊆A

h
(∨

F
)

since the joins of finite subsets form a directed set. Because s is compact,
s ≤ h(

∨
F0) for some finite F0 ⊆ A. This implies g(s) ≤ ∨

F0, as desired.
Now the dual of Lemma 3 shows that h preserves 0 and joins. By con-

struction, g and h are adjoint maps.

6. Application: More Distributive Representations

As an application, we can slightly extend Theorem 8.

Theorem 15. Let P be a countable ordered set with the property that the
ideal ↓ x is finite for every x ∈ P , and let D be the lattice of order ideals
O(P ). Then there is a semilattice with operators S such that D ∼= Con
(S, +, 0, G).

The proof uses an elementary lemma.

Lemma 16. An ordered set P has a linear extension to ω if and only if P
is countable and has the property that ↓x is finite for every x ∈ P .

Proof of Theorem 15. Let P be an ordered set such that ↓ x is finite
for every x ∈ P . Without loss of generality, P is infinite. Then the order
on P has a linear extension � so that C0 = 〈P,�〉 is isomorphic to ω. Add
a new top element T to C0, forming C ∼= ω + 1. Note that every subset of
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C containing T is algebraic, and every order-preserving map on C is meet-
preserving. Thus we can complete the representation by adding operators
exactly as in the finite case, Theorem 8.

When we relax the finiteness condition, an extended argument gives a
representation of the linear sum O(P ) + 1.

Theorem 17. For any ordered set P , there is a semilattice with operators
such that O(P ) + 1 ∼= Con(S, +, 0, G).

Proof. We prove dually that 1 + F(P ) is isomorphic to Sp(C,H) for an
algebraic chain C with algebraic operators.

Without loss of generality, P is infinite. Let α be the initial ordinal of
cardinality |P |. Let L be the set of limit ordinals in α, including 0 as a
limit ordinal, and let N = P \ L be the set of non-limit ordinals. Add a
new top element T to α, forming an algebraic chain C isomorphic to the
ordinal α + 1. Meets are trivial in α + 1, since every nonempty set has a
least element, whereas the join of a set is either 0, or its largest element, or
some limit ordinal in L, or T .

The intention is to add operations, so that the H-closed algebraic subsets
of C are {T} and sets {T} ∪ L ∪ U that are in one-to-one correspondence
with the order filters of P . There will be two types of algebraic operations,
one for limit ordinals and one for non-limit ordinals.

For every pair of limit ordinals i, j ∈ L let �ij be defined by

�ij(x) =

{
j if x ≤ i,

T if x > i.

In particular, �ij(i) = j. Note that these operations preserve arbitrary meets
and joins in C. If we let H0 = {�ij : i, j ∈ L}, then the algebraic subsets
Sp(C,H0) are {T} and all sets of the form {T} ∪ L ∪ S with S an arbitrary
subset of N .

For any pair of non-limit ordinals i, j ∈ N let

hij(x) =

⎧
⎪⎨

⎪⎩

0 if x < i,

j if x = i,

T if x > i.

In particular, hij(i) = j, and again, in this case because i is a non-limit
ordinal, the operations preserve arbitrary meets and joins in C.

It remains only to choose an appropriate subset H1 of these operations. To
do this, set up a bijection f : N → P , and let H1 = {hij : f(i) ≤ f(j) in P}.
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Then form H = H0 ∪ H1. By construction, the H-closed subsets of C are
{T} and {T} ∪ L ∪ U with f−1(U) an order filter in P .

Recall that for any ordinal β, O(β) ∼= β + 1 and O(βd) ∼= 1 + βd. In
particular, β or βd could be used as the ordered set P .

Corollary 18. For any ordinal β, the lattices β + 2 and 1 + βd can be
represented as congruence lattices of semilattices with operators.

7. The Jónsson–Kiefer Property

The duality of Theorem 14 allows us to prove another property of congruence
lattices of SLOs, the dual Jónsson-Kiefer property. A complete lattice L has
the Jónsson-Kiefer property (JKP) if every element a ∈ L is the join of
elements that are (finitely) join prime in the ideal ↓a. (These elements need
not be join prime in the whole lattice.) The JKP property, inspired by [10],
was shown by Gorbunov to hold in lattices of quasivarieties [6], and further
investigated in Adaricheva et al. [2]. We show that the dual JKP holds
for congruence lattices of SLOs by proving that the JKP holds for lattices
Sp(L,H) when L is algebraic.

For an element m in an algebraic lattice L, let 〈m〉 denote the smallest
H-closed algebraic set in Sp(L,H) containing m.

The proof of Lemma 20 uses a lemma adapted from Gorbunov [7].

Lemma 19. For X, Y ∈ Sp(L,H), with L algebraic and H a monoid of
algebraic operators,

X ∨ Y = {x ∧ y : x ∈ X, y ∈ Y }.

Lemma 20. If m is meet irreducible in L, then 〈m〉 is join prime in Sp(L, H).

Proof. Let m be meet irreducible in L, and X, Y ∈ Sp(L). If 〈m〉 ≤ X ∨Y ,
then m ∈ X ∨ Y . By Gorbunov’s lemma, m = x ∧ y for some x ∈ X, y ∈ Y .
As m is meet irreducible, either m = x, whence m ∈ X and 〈m〉 ≤ X, or
m = y, whence 〈m〉 ≤ Y .

Theorem 21. For any semilattice with operators, Con(S, +, 0, G) satisfies
the dual Jónsson–Kiefer property.

Proof. It suffices to prove that the least congruence of (S, +, 0, G) is a
meet of meet prime congruences, or equivalently, that the largest element of
Sp(L,H), which is L itself, is a join of join prime elements. For a nonzero
congruence ϕ, we just apply the statement to the factor algebra S/ϕ.
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Since L is algebraic, every element x of L is a meet of completely meet
irreducible elements, say x =

∧
i∈I mi. This implies x ∈ ∨

i∈I〈mi〉 with each
〈mi〉 join prime, as desired.

This theorem can also be derived from Theorem 14 and Gorbunov’s result
that Sp(L,R) has the JKP when L is algebraic and R is a distributive
relation on L [6].

8. Concluding Remarks

Not every algebraic, meet semidistributive lattice can be represented as the
congruence lattice of an SLO. At least two other restrictions are known to
apply. One is the dual Jónsson–Kiefer property discussed in the last section.
An algebraic, meet semidistributive lattice failing the dual JKP must have
uncountably many compact elements and |L| ≥ 2ℵ0 ; see [2]. In that same
paper, R. McKenzie constructed such a lattice with no meet prime element,
which of course fails the dual JKP.

The second restriction is that every congruence lattice of an SLO supports
an equa-interior operator, as described in Adaricheva and Nation [1]. Such
operators originally arose in the theory of quasivariety lattices; see Gorbunov
[7]. This is a strong requirement, in that many finite, meet semidistributive
lattices fail to admit an equa-interior operator.

However, it is easy to see that every distributive, algebraic lattice satis-
fies the dual JKP. Likewise, the identity function serves as an equa-interior
operator on these lattices. This raises a natural question.

Problem 22. Is every distributive, algebraic lattice isomorphic to the con-
gruence lattice of a semilattice with operators?
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