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Abstract. We investigate a SAT-based bounded model checking (BMC) method for

EMTLK (the existential fragment of the metric temporal logic with knowledge) that is

interpreted over timed models generated by timed interpreted systems. In particular, we

translate the existential model checking problem for EMTLK to the existential model

checking problem for a variant of linear temporal logic (called HLTLK), and we provide

a SAT-based BMC technique for HLTLK. We evaluated the performance of our BMC

by means of a variant of a timed generic pipeline paradigm scenario and a timed train

controller system.
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1. Introduction

The formalism of interpreted systems (ISs) [9] was designed to model multi-
agent systems (MASs) [21], and to reason about the agents’ epistemic and
temporal properties. The formalism of timed interpreted systems (TISs)
extends ISs to make possible reasoning about real-time aspects of MASs.
The TIS provides a computationally grounded semantics on which it is pos-
sible to interpret time-bounded temporal modalities as well as traditional
epistemic modalities.

The transition system modelling the behaviour of TISs, which we call the
timed model, comprises two kinds of transitions: action transitions that are
labelled with timeless joint actions and that represent the discrete evolutions
of TIS, and time transitions that are labelled with natural numbers and that
correspond to the passage of time. Due to infinity of time, there are infinitely
many time transitions.

The main idea of SAT-based bounded model checking (BMC) methods
[7,19] consists in translating the existential model checking problem for a
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modal language and for a transition system to the satisfiability problem
of a propositional formula, and taking advantage of the power of modern
SAT-solvers. The usefulness of SAT-based BMC for error tracking and com-
plementarity to the BDD-based model checking have already been proven
in several works, e.g. [6,17].

To describe the requirements of MASs various extensions of standard
temporal logics [8] with epistemic [9], doxastic [13], and deontic (to repre-
sent correct functioning behaviour) [14] modalities have been proposed. In
this paper we consider MTLK which is an epistemic extension of Metric
Temporal Logic (MTL) [10] that cannot be translated into LTL (because
of the considered semantics), and which allows for the representation of
the quantitative temporal evolution of epistemic states of the agents. We
interpret MTLK over discrete timed models generated by TISs.

Furthermore, note that both the MTL with discrete-time semantics and
the S5 logic for knowledge have decidable model checking problems, [1] and
[9], respectively. Since timed interpreted systems can be shown to be as
expressive as the MTL-structure in [1], and the fusion between MTL and
S5 for knowledge is a proper extension of MTL (which we call MTLK), it
follows that problem of model checking for the full fusion is also decidable.
This implies that the model checking of the existential fragment of MTLK
(EMTLK) is also decidable, and thus BMC methods are worth exploring.

The original contributions of the paper are as follows. First of all, we
define timed interpreted systems as a model of MASs where agents have
real-time deadlines to achieve intended goals. We assume the synchronous
semantics of TISs, thus the agents over this semantics perform a joint action
at a given time in a global state. Secondly, we introduce two languages:
MTLK and HLTLK—the hard reset linear time temporal epistemic logic.
Finally, we define and implement a SAT-based BMC technique for TIS and
for EMTLK. This BMC method consists of the following two steps, the
formal description of which is provided in Sects. 3 and 4, respectively:

(a) A translation of the existential model checking problem for EMTLK
and for TISs to the existential model checking problem for HLTLK and
for an augmented timed interpreted system (ATIS). This translation is
necessary because of the EMTLK semantics, which we use. Namely, this
semantics is defined with respect to the Kripke model that has been
defined for components having their clocks. The values of these clocks
have an influence on interpretation of intervals associated to the tem-
poral modalities, contrary to the step semantics, in which the interpre-
tation of intervals takes into account only action steps, and thus the
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existential model checking problem for EMTLK can be translated into
the existential model checking problem for LTLK.

(b) A definition of a SAT-based BMC algorithm for HLTLK and for ATIS.

The proposed SAT-based BMC method for EMTLK and for TISs is based
on the BMC method for MTL and for discrete timed automata (DTA)[23].
The main differences between SAT-based BMC for MTL and for DTA, and
the proposed SAT-based BMC for EMTLK and for TIS are the follow-
ing. Firstly, EMTLK is an epistemic extension of MTL, thus the proposed
method handles a more expressive language that allows to reason about not
only temporal properties of MAS but also about the epistemic properties
of MAS. Next, we assume the synchronous semantics of TISs, contrary to
the asynchronous semantics of DTA (only one local or shared action may
be performed by automata (agents) at a given time in a global state).

The rest of the paper is organised as follows. In Sect. 2 we introduce TIS,
the MTLK logic, and its subset EMTLK. In Sect. 3 we show how to translate
the existential model checking problem for EMTLK to the existential model
checking problem for HLTLK. In Sect. 4 we provide a BMC method for
HLTLK and for ATIS. In Sect. 5 we discuss our experimental results, and
finally in Sect. 6 we conclude the paper.

2. Preliminaries

Let us start by fixing some notation used through the paper. IN is the set of
non-negative integers, IN+ = IN\{0}, and X is a finite set of non-negative
integer variables, called clocks. A clock valuation is a function v : X → IN
that assigns to each clock x ∈ X a non-negative integer value v(x). IN|X| is
the set of all the clock valuations. For X ′ ⊆ X, the valuation v′ = v[X ′ :=
0] is defined as: ∀x ∈ X ′, v′(x) = 0 and ∀x ∈ X \X ′, v′(x) = v(x). For
δ ∈ IN, v + δ denotes the valuation v′ such that ∀x ∈ X, v′(x) = v(x) + δ.

Let x ∈ X, c ∈ IN, and ∼∈ {≤, <,=, >,≥}. The set C(X) of clock con-
straints over X is defined by the following grammar: φ := x ∼ c | φ∧φ. Next,
let v be a clock valuation and φ ∈ C(X). The satisfaction relation v |= φ is
defined inductively with the following rules: v |= x ∼ c iff v(x) ∼ c, v |= φ∧φ′

iff v |= φ and v |= φ′. Finally, let v be a clock valuation. The time successor
of v (written succ(v)) is defined as follows: ∀x ∈ X, v′(x) = v(x) + 1.

2.1. Timed Interpreted Systems

Let A = {1, . . . , n} denote the non-empty and finite set of agents, E be a
special agent that is used to model the environment in which the agents
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operate, and let PV =
⋃

c∈A
PVc ∪ PVE be a set of propositional vari-

ables such that PVc1 ∩ PVc2 = ∅ for all c1, c2 ∈ A ∪ {E}. The set of
agents A constitute a multi-agent system (MAS). In the paper we use the
timed interpreted system to model MAS. In this formalism, each agent c ∈ A

is modelled using a non-empty and finite set Lc of local states, a non-empty
and finite set Actc of possible actions such that the special null action εc
belongs to Actc (it is assumed that actions are ”public”), a non-empty and
finite set Xc of clocks, a protocol function Pc : Lc → 2Actc that defines
rules according to which actions may be performed in each local state, a
(partial) evolution function tc : Lc × LE × C(Xc) × 2Xc × Act → Lc with
Act =

∏
c∈A

Actc × ActE (each element of Act and of C(Xc) is called a joint
action and an enabling condition, respectively) which defines local transi-
tions, a valuation function Vc : Lc → 2PVc which assigns to each local state
a set of propositional variables that are assumed to be true at that state,
and an invariant function Ic : Lc → C(Xc) which specifies the amount of
time agent c may spend in its local states. We assume that if εc ∈ Pc(�c),
then tc(�c, �E , φc, X, (a1, . . . , an, aE)) = �c for ac = εc, any φc ∈ C(Xc), and
any X ∈ 2Xc .

Similarly to the other agents, the environment E is modelled by a non-
empty and finite set LE of local states, a non-empty and finite set ActE of
possible actions, a non-empty and finite set XE of clocks, a protocol function
PE : LE → 2ActE , a (partial) evolution function tE : LE × C(XE) × 2XE ×
Act → LE , a valuation function VE : LE → 2PVE , and an invariant function
IE : LE → C(XE) which specifies the amount of time agent E may spend
in its local states. It is assumed that local states, actions and clocks for E
are “public”.

For convenience, the symbol S =
∏

c∈A∪E Lc × IN|Xc| denotes the
non-empty set of all global states. Next, given a global state s =
((�1, v1), . . . , (�n, vn), (�E , vE)) ∈ S, the symbols lc(s) = �c and vc(s) = vc
denote, respectively, the local component and the clock valuation of agent
c ∈ A ∪ {E} in the global state s. Finally, given a set of initial global states
ι ⊆ S such that for all c ∈ A ∪ {E} and for all x ∈ Xc it holds vc(x) = 0, a
set of agents A and an environment E , a timed interpreted system (TIS) as
a tuple I = ({Lc, Actc, Xc, Pc, tc,Vc, Ic}c∈A∪{E}, ι).

For a given time interpreted system I we define a timed model as a tuple
M = (Σ, ι, S, T,V), where Σ = Act ∪ IN is the set of labels (i.e., joint
actions and natural numbers), S is the set of all possible global states as
defined above, V : S → 2PV is the valuation function defined as V(s) =⋃

c∈A
Vc(lc(s)), and T ⊆ S ×Σ×S is a transition relation defined by action

and time transitions:
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1. Action transition: for any a ∈ Act, (s, a, s′) ∈ T iff for all c ∈ A,
there exists a local transition tc(lc(s), lE(s), φc, X

′, a) = lc(s′) such that
vc(s) |= φc ∧I(lc(s)) and v′

c(s
′) = vc(s)[X ′ := 0] and v′

c(s
′) |= I(lc(s′)),

and there exists a local transition tE(lE(s), φE , X ′, a) = lE(s′) such that
vE(s) |= φE∧I(lE(s)) and v′

E(s′) = vE(s)[X ′ := 0] and v′
E(s′) |= I(lE(s′)).

2. Time transition: let δ ∈ IN, (s, δ, s′) ∈ T iff for all c ∈ A ∪ {E}, lc(s) =
lc(s′) and vc(s) |= I(lc(s)) and v′

c(s
′) = vc(s) + δ and v′

c(s
′) |= I(lc(s)).

We assume that the relation T is total, i.e. for any s ∈ S there exists s′ ∈ S
and there exist either a non-empty joint action a ∈ Act or natural number
δ ∈ IN such that it holds T (s, a, s′) or T (s, δ, s′).

Given a timed interpreted system and an agent c ∈ A, the indistinguisha-
bility relation ∼c⊆ S × S is defined as follows: s ∼c s′ iff lc(s′) = lc(s) and
vc(s′) = vc(s). Moreover, hereafter we assume the following definitions of

epistemic relations: ∼E
Γ

def
=

⋃
c∈Γ ∼c,∼C

Γ

def
= (∼E

Γ )+ (the transitive closure of

∼E
Γ ), ∼D

Γ

def
=

⋂
c∈Γ ∼c, where Γ ⊆ A.

2.2. Runs and Discrete Paths

Let M be a timed model generated by TIS. An infinite sequence ρ = s0
δ0,a0→

s1
δ1,a1→ s2

δ2,a2→ . . . of global states is called a run originating at s0 if there
is a sequence of transitions from s0 onwards such that for every i ∈ IN, si ∈
S, ai ∈ Act, δi ∈ IN+, and there exists s′

i ∈ S such that (si, δ, s
′
i) ∈ T and

(s′
i, a, si+1) ∈ T . Notice that the definition of the run does not permit two

consecutive joint actions to be performed one after the other, i.e., between
each two joint actions some time must pass; such a run is called strongly
monotonic.

Let Ω0 = [b0, b1), Ω1 = [b1, b2), . . . be the sequence of pairwise disjoint
intervals, where: b0 = 0 and bi = bi−1 + δi−1 if i > 0. For each t ∈ IN,
let idxρ(t) denote the unique index i such that t ∈ Ωi. A discrete path (or
path) λρ corresponding to ρ is a mapping λρ : IN → S such that λρ(t) =
((�i

1, v
i
1 + t − bi), . . . , (�i

n, vi
n + t − bi), (�i

E , vi
E + t − bi)) = si + t − bi, where

i = idxρ(t). Given t ∈ IN, the suffix λt
ρ of a path λρ at time t is a path

defined as: ∀i ∈ IN, λt
ρ(i) = λρ(t + i).

Observe that because of the assumption that the runs are strongly
monotonic, the definition of the discrete path is done in a unique way.

Example 2.1. Assume the following run: ρ = s0
1,a0→ s1

3,a1→ s2
2,a2→ s3

3,a2→
. . .. Then, we have: Ω0 = [0, 1), Ω1 = [1, 4), Ω2 = [4, 6), Ω3 = [6, 9), . . . . Next,
we have: idxρ(0) = 0 since 0 ∈ Ω0, idxρ(1) = 1 since 1 ∈ Ω1, idxρ(2) = 1
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since 2 ∈ Ω1, idxρ(3) = 1 since 3 ∈ Ω1, idxρ(4) = 2 since 4 ∈ Ω2, idxρ(5) = 2
since 5 ∈ Ω2, idxρ(6) = 3 since 6 ∈ Ω3, idxρ(7) = 3 since 7 ∈ Ω3, idxρ(8) = 3
since 8 ∈ Ω3, etc. Finally, we get the following discrete path λρ corresponding
to run ρ: λρ(0) = s0, λρ(1) = s1, λρ(2) = s1 + 1, λρ(3) = s1 + 2, λρ(4) =
s2, λρ(5) = s2 + 1, λρ(6) = s3, λρ(7) = s3 + 1, λρ(8) = s3 + 2, etc.

The set of all the paths originating from s ∈ S is denoted by Π(s).
The set of all the paths originating from all initial states in S is defined as
Π =

⋃
s0∈ι Π(s0).

2.3. Examples of MASs and Their Models

In the section we present MASs modelled by means of timed interpreted sys-
tems. We utilize the systems to assess the bounded model checking methods
considered in the paper. In what follows we denote by ε the joint null action,
i.e., the action composed of the null actions only.

2.3.1. Timed Generic Pipeline Paradigm (TGPP). The TGPP (adapted
from [18]) consists of n + 2 agents: Producer P that is able to pro-
duce data (ProdReady) within certain time interval [a, b] or being inac-
tive (ProdSend), Consumer C that is able to receive data (ConsReady)
within certain time interval [c, d], to consume data (ConsFree) within cer-
tain time interval [g, h] or being inactive (ConsStart), a chain of n interme-
diate Nodes Ni which can be ready for receiving data (NodeiReady) within
certain time interval [c, d], processing data (NodeiProc) within certain time
interval [e, f ], sending data (NodeiSend), or being inactive (NodeiStart),
and the environment E . The local states, the possible local actions, the local
clocks, the clock constraints, invariants and the local protocol for each agent,
but for the environment E are shown in Figure 1. Null actions are omitted in
the figure. For environment E , to simplify the presentation, we shall consider
just one local state: LE = {·}. The set of actions for E is ActE = {εE}. The
local protocols of E is the following: PE(·) = ActE . The set of clocks of E is
empty, and the invariant function is IE(·) = ∅.

From Figure 1 we can easily deduce the local evolution functions of each
agent. As an example, we show the definition of the local evolution function
of Producer P . The remaining ones are equally straightforward.

Let state denote a local state of Producer P , and Act = ActP ×∏n
i=1 ActNi × ActC × ActE with ActP = {Produce, Send1, εP }, ActC =

{Startn+1, Sendn+1, Consume, εC}, ActNi = {Starti, Sendi, Sendi+1, εNi,
P roci}, and ActE = {εE}. Moreover, let a ∈ Act, and actP (a), actNi

(a),
actC(a) and actE(a), respectively, denote an action of Producer P , Node
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ProdReady
x0 ≤ b

start

ProdSend

Send1

x0 := 0
Produce
x0 ≥ a

Node1Startstart

Node1Ready
x1 ≤ d

Start1
x1 := 0

Node1Proc
x1 ≤ f

Send1

x1 ≥ c
x1 := 0

Node1Send

Proc1

x1 ≥ e

Send2

x1 := 0

· · ·

NodenStartstart

NodenReady
xn ≤ d

Startn
xn := 0

NodenProc
xn ≤ f

Sendn

xn ≥ c
xn := 0

NodenSend

Procn
xn ≥ e

Sendn+1

xn := 0

ConsStartstart

ConsReady
xn+1 ≤ d

Startn+1

xn+1 := 0

ConsFree
xn+1 ≤ h

Consume
xn+1 ≥ g
xn+1 := 0

Sendn+1

xn+1 ≥ c
xn+1 := 0

Figure 1. A TGPP scenario

Ni, Consumer C and environment E . The local evaluation function of Pro-
ducer P is the following:

• tP (state, ·, true, ∅, a) = state if a 
= ε and actP (a) = εP

• tP (ProdReady, ·, x0 > a, ∅, a) = ProdSend if actP (a) = Produce

• tP (ProdSend, ·, true, {x0}, a) = ProdReady if actP (a) = Send1 and
actN1(a) = Send1

We can define the set of possible global states S for the scenario
as the product (LP × IN) ×

∏n
i=1(LNi

× IN) × (LC × IN) × LE , and
we consider the following set of initial states ι = {s0}, where s0

= ((ProdReady, 0), (Node1Start, 0), . . . , (NodenStarts, 0), (ConsStart, 0),
(·)).

The example can be scaled by adding Nodes, or by changing the length
of intervals (i.e., the parameters a, b, c, d, e, f, g, h) that are used to adjust
the time properties of Producer P , Consumer C, and Nodes Ni (i = 1, .., n).

It should be straightforward to infer the timed model that is induced
by the above description of the TGPP scenario. Next, in the timed model
of the scenario we assume the following set of proposition variables: PV =
{ProdSend,ConsReady, ConsFree}, and the following definition of valua-
tion functions for agents the Producer and the Consumer:

• VP (ProdSend) = ProdSend,

• VC(ConsReady) = ConsReady,VC(ConsFree) = ConsFree.

2.3.2. A Timed Train Controller System (TTCS). The TTCS (adapted
from [20]) consists of n (for n ≥ 2) trains T1, . . . , Tn, each one using its own
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Figure 2. A timed train controller system

circular track for travelling in one direction and containing its own clock
yi, together with controller C used to coordinate the access of trains to the
tunnel through all trains have to pass at certain point, and the environment
E . Because there is only one track in the tunnel, trains arriving from each
direction cannot use it simultaneously. There are signals on both sides of
the tunnel, which can be either red or green. All trains notify the controller
when they request entry to the tunnel or when they leave the tunnel. The
controller controls the colour of the displayed signal, and the behaviour of
the scenario depends on the values δ and Δ (Δ > δ + 3 makes it incorrect -
the mutual exclusion does not hold).

Figure 2 shows the local states, the possible local actions, the local clocks,
the clock constraints, invariants, and the local protocol for each agent, but
for the environment E . Null actions are omitted in the figure. Being at state
away, train Ti may express its will to enter the tunnel, provided that the
value of controller C is zero (i.e., no other train has already done the same).
It then advances to state try, where it delays for an arbitrary amount of time,
less than Δ time units, before setting C to i. From there on, it is ready to
enter the tunnel; however, a minimum amount of time δ is necessary for
this. Upon leaving the tunnel, the train sets C to state 0.

Controller C has n+1 states, denoting that all trains are away (state 0),
and the numbers of trains, i.e., 1, . . . , n. Controller C is initially at state 0.
It moves to state i, if it is notified by train Ti. Being at state i, it can either
move to state 0, or ”jump” to state j when notified by train Tj .
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The action Starti of train Ti denotes the passage from state away to the
state where the train wishes to obtain access to the tunnel. As it has been
already said, this is allowed only if controller C is in state 0. The restriction
is ensured by the fact that train Ti synchronises with controller C on action
Starti, and the latter is enabled only from state 0 of C. Similarly, train Ti

synchronizes with controller C on action approachi, which denotes setting
C to state i, as well as outi, which denotes setting C to state 0. Finally,
action ini denotes the entering of train Ti into the tunnel.

For environment E , to simplify the presentation, we shall consider just
one local state: LE = {·}. The set of actions for E is ActE = {εE}. The local
protocol of E is the following: PE(·) = ActE . The set of clocks of E is empty,
and the invariant function is IE(·) = ∅.

From Figure 2 we can easily deduce the local evolution functions of each
agent. As an example, we show the definition of the local evolution function
of train T1. The remaining ones are equally straightforward.

Let state denote a local state of train T1, and Act =
∏n

i=1 ActTi
×ActC ×

ActE with ActC = {Starti, approachi, outi, ini, εC | i = 1, .., n}, ActTi
=

{Starti, approachi, outi, ini, εTi}, and ActE = {εE}. Moreover, let a ∈ Act,
and actTi

(a), actC(a) and actE(a), respectively, denote an action of the i−th
train, the controller, and the environment. The local evaluation function of
train T1 is the following:

• tT1(state, ·, true, ∅, a) = state, if a 
= ε and actT1(a) = εT1 .

• tT1(away, ·, true, {x1}, a) = try, if actT1(a) = actC(a) = Start1.

• tT1(try, ·, x1 < Δ, {x1}, a) = wait, if actT1(a) = actC(a) = approach1.

• tT1(wait, ·, x1 > δ, ∅, a) = tunnel, if actT1(a) = actC(a) = in1.

• tT1(tunnel, ·, true, ∅, a) = away, if actT1(a) = actC(a) = out1.

We can define the set of possible global states S for the scenario as the
product

∏n
i=1(LTi

× IN) × LC × LE , and we consider the following set of
initial states ι = {s0}, where s0 = ((away, 0), . . . , (away, 0), 0, ·).

The example can be scaled by adding trains, or the time-delay constants
δ and Δ. It should be noted that the preservation of the mutual exclusion
property (i.e., the property ensuring that no two trains are in the tunnel at
the same time) depends on the relative values of the time-delay constants δ
and Δ. In particular, the following holds: ”A timed train controller system
ensures mutual exclusion iff Δ ≤ δ + 3”.

It should be straightforward to infer the timed model that is induced
by the above description of the TTCS scenario. Next, in the timed model
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of the scenario we assume the following set of proposition variables: PV =
{tunneli | i = 1, .., n}, and the following definition of valuation functions for
trains: VTi

(tunnel) = tunneli, for i = 1, .., n.

2.4. MTLK

Let p ∈ PV, c ∈ A, Γ ⊆ A, and I be an interval in IN of the form: [a, b)
or [a,∞), for a, b ∈ IN and a 
= b. Metric temporal logic with knowledge
(MTLK) in negation normal form is defined by the following grammar:

ϕ := � | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕUIϕ | GIϕ

| Kcϕ | Kcϕ | EΓϕ | EΓϕ | DΓϕ | DΓϕ | CΓϕ | CΓϕ

The temporal modalities UI and GI are named as bounded until and
bounded globally, respectively. The derived basic temporal modalities for
bounded eventually and bounded release are defined as follows: FIϕ

def
= �UIϕ

and ϕRIψ
def
= ψUI(ψ ∧ ϕ) ∨ GIψ. Hereafter, if the interval I is of the form

[0,∞), then we omit it for the simplicity of the presentation. The epistemic
operator Kc represents ”agent c knows”, while the operator Kc is the corre-
sponding dual one representing ”agent c considers possible”. The epistemic
operators DΓ , EΓ and CΓ represent distributed knowledge in the group Γ,
”everyone in Γ knows”, and common knowledge among agents in Γ, respec-
tively. The epistemic operators DΓ , EΓ and CΓ are the corresponding dual
ones.

EMTLK is the existential fragment of MTLK, defined as:

ϕ := � | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕUIϕ | GIϕ | Kcϕ | EΓϕ | DΓϕ | CΓϕ

Observe that we assume that MTLK (and so EMTLK) formulae are given
in the negation normal form, in which the negation can be only applied
to propositional variables. Moreover, EMTLK is existential only w.r.t. the
epistemic modalities.

Turning to semantics, MTLK formulae are interpreted on timed models.
Let Y ∈ {D, E, C}. The satisfiability relation |=, which indicates truth of a
MTLK formula in the timed model M along a path λρ at time t, is defined
inductively with the classical rules for propositional operators and with the
following rules for the temporal and epistemic modalities:

• M,λt
ρ |= αUIβ iff (∃i ∈ I)(M,λt+i

ρ |= β and (∀0 ≤ j < i) M,λt+j
ρ |= α)

• M,λt
ρ |= GIα iff (∀i ∈ I)(M,λt+i

ρ |= α)

• M,λt
ρ |= Kcα iff (∀π ∈ Π)(∀i ≥ 0)(π(i) ∼c λρ(t) implies M,πi |= α)
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• M,λt
ρ |= Kcα iff (∃π ∈ Π)(∃i ≥ 0)(π(i) ∼c λρ(t) and M,πi |= α)

• M,λt
ρ |= YΓα iff (∀π ∈ Π)(∀i ≥ 0)(π(i) ∼Y

Γ λρ(t) implies M,πi |= α)

• M,λt
ρ |= Y Γα iff (∃π ∈ Π)(∃i ≥ 0)(π(i) ∼Y

Γ λρ(t) and M,πi |= α)

The MTLK formula ϕ holds in the model M (denoted M |=∀ ϕ) iff
M,λ0

ρ |= ϕ for all paths λρ ∈ Π. The EMTLK formula ϕ holds in the timed
model M (denoted M |= ϕ) iff M,λ0

ρ |= ϕ for some path λρ ∈ Π.

Example 2.2. Consider TTCS described in Sect. 2.3.2 for two trains T1

and T2, Δ = 5 and δ = 1 (the mutual exclusion does not hold), the EMTLK
formula ϕ = F[0,9)(tunnel1 ∧ tunnel2), and the run ρ with the following
prefix:

((away, 0), (away, 0), 0, ·) 1,(εT1 ,Start2,Start2,εE)→

((away, 1), (try, 0), 0, ·) 1,(Start1,εT2 ,Start1,εE)→

((try, 0), (try, 1), 0, ·) 1,(εT1 ,approach2,approach2,εE)→

((try, 1), (wait, 0), 2, ·) 2,(εT1 ,in2,in2,εE)→

((try, 3), (tunnel, 2), 2, ·) 1,(approach1,εT2 ,approach1,εE)→

((wait, 0), (tunnel, 3), 1, ·)
2,(in1,εT2 ,in1,εE)

→
((tunnel, 2), (tunnel, 5), 1, ·) ...→

The corresponding path λρ is constructed as follows. First, we take Ω0 =
[0, 1), Ω1 = [1, 2), Ω2 = [2, 3), Ω3 = [3, 5), Ω4 = [5, 6), Ω5 = [6, 8), . . . . Next,
we have: idxρ(0) = 0 since 0 ∈ Ω0, idxρ(1) = 1 since 1 ∈ Ω1, idxρ(2) = 2
since 2 ∈ Ω2, idxρ(3) = 3 since 3 ∈ Ω3, idxρ(4) = 3 since 4 ∈ Ω3, idxρ(5) = 4
since 5 ∈ Ω4, idxρ(6) = 5 since 6 ∈ Ω5, idxρ(7) = 5 since 7 ∈ Ω5, idxρ(8) = 6
since 8 ∈ Ω6 etc. Finally, we get the following discrete path λρ corresponding
to run ρ:

λρ(0) = (away, 0), (away, 0), 0, ·), λρ(1) = ((away, 1), (try, 0), 0, ·),
λρ(2) = ((try, 0), (try, 1), 0, ·), λρ(3) = ((try, 1), (wait, 0), 2, ·),
λρ(4) = ((try, 2), (wait, 1), 2, ·), λρ(5) = ((try, 3), (tunnel, 2), 2, ·),
λρ(6) = ((wait, 0), (tunnel, 3), 1, ·), λρ(7) = ((wait, 1), (tunnel, 4), 1, ·),
λρ(8) = ((tunnel, 2), (tunnel, 5), 1, ·), etc.

Let M be the timed model of TTCS. Observe that the following is true:
tunnel1 ∈ V(λρ(8)) and tunnel2 ∈ V(λρ(8)). Therefore, we have M,λ8

ρ |=
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tunnel1 ∧ tunnel2. This implies that M,λ0
ρ |= F[0,9)(tunnel1 ∧ tunnel2) is

valid.

Determining whether a MTLK formula ϕ is existentially (resp. univer-
sally) valid in a timed model M is called an existential (resp. universal)
model checking problem. In other words, the universal model checking prob-
lem asks whether M |=∀ ϕ and the existential model checking problem asks
whether M |= ϕ.

To solve the universal model checking problem, one can negate the for-
mula and demonstrate that the existential model checking problem for the
negated formula has no solution. Intuitively, we are trying to discover a
counterexample, and if we do not find it, then the formula is universally
valid. Now, since bounded model checking is designed for finding a solution
to an existential model checking problem, in the paper we only consider
the EMTLK properties. This is because looking for a counterexample, for
example, to M |=∀ F[0,10)Kcp corresponds to the query whether there exists
a witness M |= G[0,10)Kc¬p.

3. From EMTLK to HLTLK

The translation of the existential model checking problem for EMTLK to the
existential model checking problem for HLTLK, a language defined below
and interpreted over an abstract model for an augmented timed interpreted
system is based on [22], where the translation of the existential model check-
ing problem for Metric Interval Temporal Logic (MITL) [2] with a dense-
time and interleaving semantics defined over timed automata to the exis-
tential model checking problem for HLTL with an interleaving semantics
defined over the region graph has been introduced.

The reason for redefining the translation of [22] in the discrete-time con-
text, and for extending it to the full MTL with epistemic components is the
following. First of all the discrete time semantics is interesting by itself. Sec-
ondly, we can take advantage of the finite-state nature of discrete time and
apply techniques which cannot be applied directly to dense time. Namely, in
our case we can apply the BMC technique directly to the proposed abstract
model. In the case of the dense semantics this step is impossible, since we
need to discretise the proposed abstract model before we can apply the BMC
technique. Moreover, the discretisation process requires additional theoreti-
cal background that will show that the used discretisation preserves consid-
ered logic.
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We begin the section by introducing the definitions of the augmented
timed interpreted system, its abstract model, and paths in this model. Then,
we define the HLTLK language. Next, we show how to translate an EMTLK
formula ϕ into a HLTLK formula H(ϕ), and finally we prove the correctness
and completeness of the proposed translation.

3.1. An Augmented Timed Interpreted System

Let I = ({Lc, Actc, Xc, Pc, tc,Vc, Ic}c∈A∪{E}, ι) be a timed interpreted sys-
tem, ϕ an EMTLK formula, and m the number of intervals appearing in ϕ.
An augmented timed interpreted system (ATIS) is defined as a tuple
Iϕ = ({Lc, Ic,Vc}c∈A∪{E}, {Actc, Xc, Pc, tc}c∈A, Act′E , X ′

E , P ′
E , t′E , ι′) with:

• X ′
E = XE ∪ Y , where Y = {y1, . . . , ym} is a set of new clocks that

corresponds to all the time intervals appearing in ϕ; one clock yi per
one time interval. Each clock yi measures the passage of time for the
i-th interval.

• Act′E = ActE ∪ (2Y \{∅}).

• P ′
E : LE → 2Act′

E is an extension of the protocol function PE : LE → 2ActE

such that (2Y \{∅}) ⊆ P ′
E(�) for all � ∈ LE .

• t′E : LE × C(X ′
E) × 2X′

E × Act′ → LE is an extension of tE such that
Act′ =

∏n
i=1 Acti × Act′E and t′E(�E , true,B, (ε1, . . . , εn, B)) = �E for all

B ∈ 2Y and B 
= ∅.

• ι′ ⊆ Sϕ (with Sϕ =
∏

c∈A
Lc × IN|Xc| × LE × IN|X′

c|) such that for all
c ∈ A and for all x ∈ Xc it holds vc(x) = 0, and for all x ∈ X ′

E it holds
vE(x) = 0.

Example 3.1. Consider TTCS described in Sect. 2.3.2. In the TIS model
of the system the environment E is modelled as follows. The set of local
states is LE = {·}, the set of local action is ActE = {εE}, the set of clocks
is XE = ∅, the local protocol is: PE(·) = ActE , the local valuation function
is: VE(·) = ∅, the invariant function is: IE(·) = ∅, and the local evolution
function is: tE(·, true, ∅, a) = · if actE(a) = εE , where a ∈ Act.

In the ATIS model Iϕ of TTCS for an EMTLK formula ϕ with
two intervals (e.g., G[0,∞)(Kcp ⇒ F[0,100)Kcq)) the environment E is
modelled as follows: LE = {·}, Act′E = {εE , {y1}, {y2}, {y1, y2}}, X ′

E =
{y1, y2}, PE(·) = Act′E ,VE(·) = ∅, IE(·) = ∅, and the local evolution func-
tion is: tE(·, true, ∅, a) = · if actE(a) = εE , tE(·, true, {y1}, a) = · if actE(a) =
{y1}, tE(·, true, {y2}, a) = · if actE(a) = {y2}, tE(·, true, {y1, y2}, a) = · if
actE(a) = {y1, y2}, where a ∈

∏
c∈A

Actc × Act′E .
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3.2. A Model for ATIS

Let ϕ be an EMTLK formula, m a number of intervals appearing in
ϕ,PV ′ = PV ∪ PVy with PVy = {qyh∈Ih

| h = 1, . . . , m}, and Iϕ =
({Lc, Actc, Xc, Pc, tc,Vc, Ic}c∈A∪{E}, ι) be an ATIS. The abstract model for
Iϕ is a tuple Mϕ = (Σϕ, ι, Sϕ, Tϕ,Vϕ), where

• Σϕ = Act ∪ {τ}, where Act =
∏

c∈A∪{E} Actc,

• Sϕ =
∏

c∈A∪{E} Lc × IN|Xc| is the set of all possible global states,

• Vϕ : Sϕ → 2PV′
is the valuation function such that:

1. p ∈ Vϕ(s) iff p ∈
⋃

c∈A∪{E} Vc(lc(s)) for all p ∈ PV,
2. qyh∈Ih

∈ Vϕ(((�1, v1), . . . , (�n, vn), (�E , vE))) iff vE(yh) ∈ Ih,

• Tϕ ⊆ Sϕ × Σϕ × Sϕ is a transition relation defined by action and time
transitions. Let a ∈ Act:

1. Action transition: (s, a, s′) ∈ Tϕ iff (∀c ∈ A) (∃φc ∈ C(Xc)) (∃X ′
c ⊆

Xc) (tc(lc(s), lE(s), φc, X
′
c, a) = lc(s′) and vc(s) |= φc∧I(lc(s)) and

v′
c(s

′) = vc(s)[X ′
c := 0] and v′

c(s
′) |= I(lc(s′))) and (∃φE ∈ C(XE))

(∃X ′
E ⊆ XE) (t′E(lE(s), φE , X ′

E , a) = lE(s′) and vE(s) |= φE ∧I(lE(s))
and v′

E(s′) = vE(s)[X ′
E := 0] and v′

E(s′) |= I(lE(s′)))
2. Time transition: (s, τ, s′) ∈ Tϕ iff (∀c ∈ A ∪ {E})(lc(s) = lc(s′) and

vc(s) |= I(lc(s)) and v′
c(s

′) = succ(vc(s)) and v′
c(s

′) |= I(lc(s))).

Note that each transition is followed by a possible reset of new clocks.
This is to ensure that the new clocks can be reset along the evolution of
the system any time it is needed.

Given an ATIS one can define the indistinguishability relation ∼c⊆ Sϕ ×
Sϕ for agent c as follows: s ∼c s′ iff lc(s) = lc(s′) and vc(s) = vc(s′).

3.3. Paths in Mϕ

Let ϕ be an EMTLK formula, Iϕ an augmented timed interpreted system,
and Mϕ a model for Iϕ.

Definition 3.2. A path π in Mϕ is a sequence π = (s0, s1, . . .) of states
such that (s0, τ, s1) ∈ Tϕ, and for each i > 0, either (si, ai, si+1) ∈ Tϕ or
(si, τ, si+1) ∈ Tϕ, and if (si, ai, si+1) ∈ Tϕ holds, then (si+1, τ, si+2) ∈ Tϕ

holds, and ai ∈ Act for each i ≥ 0.

Observe that the above definition of the path ensures that the first tran-
sition is the time one, and between each two action transitions at least one
time transition appears.
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For a path π, π(i) denotes the i-th state si of π, πi = (si, si+1, . . .) denotes
the suffix of π starting with π(i), Πϕ(s) denotes the set of all the paths
starting at s ∈ Sϕ, and Πϕ =

⋃
s0∈ι Πϕ(s0) denotes the set of all the paths

originating from all initial states in Sϕ.

Assume that each state of Mϕ has the following form: si = ((�i
1, v

i
1), . . . ,

(�i
n, vi

n), (�i
E , vi

E)), for all i ≥ 0. Then, for t ∈ IN, y ∈ Y , and a path
π = (s0, s1, . . .) in Mϕ, we define the (unique) path Υt

y(π) = (s′
0, s

′
1, . . .)

as follows. (∀j ∈ IN) ((∀c ∈ A ∪ {E}) (�′j
c = �j

c) and (∀c ∈ A)(v′j
c = vj

c) and

v′j
E =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vj
E , if 0 ≤ j < t

vj
E [{y} := 0], if j = t

succ(v′j−1
E ), if j > t and vj

E = succ(vj−1
E )

v′j−1
E [X := 0], if j > t and vj

E = vj−1
E [X := 0]

succ(v′j−1
E )[X := 0], if j > t and vj

E = succ(vj−1
E )[X := 0])

Example 3.3. Consider TTCS described in Sect. 2.3.2 for two trains T1 and
T2, Δ = 2 and δ = 1 (the mutual exclusion holds), and an EMTLK formula
ϕ with one interval, and the following path π:

((away, 0), (away, 0), 0, (·, 0)) 1→ ((away, 1), (away, 1), 0, (·, 1))
(Start1,εT1 ,εE)→

((try, 0), (away, 1), 0, (·, 1)) 1→ ((try, 1), (away, 2), 0, (·, 2))
(approach1,εT1 ,εE)→

((wait, 0), (away, 2), 1, (·, 2)) 1→ ((wait, 1), (away, 3), 1, (·, 3)) 1→

((wait, 2), (away, 4), 1, (·, 4))
(in1,εT1 ,εE)→ ((tunnel, 2), (away, 4), 1, (·, 4)) 1→

((tunnel, 3), (away, 5), 1, (·, 5))
(out1,εT1 ,εE)→

((away, 3), (away, 5), 0, (·, 5)) 1→ ((away, 4), (away, 6), 0, (·, 6)) ...→ .

The path Υt
y(π) with t = 4 is the following:

((away, 0), (away, 0), 0, (·, 0)) 1→ ((away, 1), (away, 1), 0, (·, 1))
(Start1,εT1 ,εE)→

((try, 0), (away, 1), 0, (·, 1)) 1→ ((try, 1), (away, 2), 0, (·, 2))
(approach1,εT1 ,{y1})→

((wait, 0), (away, 2), 1, (·, 0)) 1→ ((wait, 1), (away, 3), 1, (·, 1)) 1→

((wait, 2), (away, 4), 1, (·, 2))
(in1,εT1 ,εE)

→ ((tunnel, 2), (away, 4), 1, (·, 2)) 1→

((tunnel, 3), (away, 5), 1, (·, 3))
(out1,εT1 ,εE)→

((away, 3), (away, 5), 0, (·, 3)) 1→ ((away, 4), (away, 6), 0, (·, 4)) ...→ .
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3.4. The HLTLK Language

Let ϕ be an EMTLK formula, m the number of intervals in ϕ, h =
1, . . . , m, p ∈ PV ′, c ∈ A, and Γ ⊆ A. The HLTLK formulae in the negation
normal form are given by the following grammar:

φ := �|⊥|p |¬p |φ ∧ φ |φ ∨ φ |φUhφ |Ghφ |Kcφ |EΓφ |DΓφ |CΓφ

The symbols Uh and Gh denote the indexed until and indexed globally
modalities, respectively. The meaning of until and globally is standard. The
index h denotes the number of a clock that will be set to zero at the start-
ing point of a path along which the until (globally) will be interpreted.
The symbols Kc, EΓ, DΓ, and CΓ denote the existential epistemic modalities
as defined in the previous section. In addition, we introduce some useful
derived temporal modalities: ϕRhψ

def
= ψUh(ϕ∧ψ)∨Ghψ (indexed release),

Fhϕ
def
= �Uhϕ (indexed eventually).

Turning to semantics, HLTLK formulae are interpreted on abstract mod-
els Mϕ. Let Y ∈ {D, E, C}, t ≥ 0, π a path in Mϕ, and π̃ = Υt

yh
(π). The

satisfiability relation |=, which indicates truth of a HLTLK formula ψ in the
abstract model Mϕ along a path π at time t (in symbols Mϕ, πt |= ψ) is
defined inductively with the classical rules for propositional operators and
with the following rules for the temporal and epistemic modalities:

• Mϕ, πt |= αUhβ iff (∃i ≥ t)(Mϕ, π̃i |= β and (∀t ≤ j < i)Mϕ, π̃j |= α)

• Mϕ, πt |= Ghα iff (∀i ≥ t)(Mϕ, π̃i |= α)

• Mϕ, πt |= Kcα iff (∃π′ ∈ Πϕ)(∃i ≥ 0)(π′(i) ∼c π(t) and Mϕ, π′i |= α)

• Mϕ, πt |= Y Γα iff (∃π′ ∈ Πϕ)(∃i ≥ 0)(π′(i) ∼Y
Γ π(t) and Mϕ, π′i |= α)

We use the following notation Mϕ |= ψ iff Mϕ, π0 |= ψ for some π ∈ Πϕ. The
existential model checking problem consists in finding out whether Mϕ |= ψ.

3.5. Translation and Its Correctness

Let ϕ be an EMTLK formula, p ∈ PV, I an interval, y ∈ Y a clock associated
with the interval I, and h the index of the clock y. We translate the formula
ϕ inductively into the HLTLK formula H(ϕ) in the following way:

• H(�) = �,H(⊥) = ⊥,H(p) = p, H(¬p) = ¬p,

• H(α ∨ β) = H(α) ∨ H(β),H(α ∧ β) = H(α) ∧ H(β),

• H(αUIβ) = H(α)Uh(H(β) ∧ py∈I),H(GIα) = Gh(¬py∈I ∨ H(α)),

• H(Kcα) = KcH(α),H(Y Γα) = Y ΓH(α), where Y ∈ {D, E, C}.
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Observe that the translation of literals, Boolean connectives, and epistemic
modalities is straightforward. The translation of the UI operator ensures
that: (1) the translation of β holds in the interval I, which is expressed by
the requirement H(β) ∧ py∈I ; (2) the translation of α holds always before
the translation of β. The translation of the GI operator ensures that if the
value of the clock y is in interval I, then the translation of α holds.

Example 3.4. Consider TTCS described in Sect. 2.3.2 for two trains T1 and
T2, and the following EMTLK formula ϕ = FKP (p ∧ G[5,20)(¬q)) with p =
ProdSend, q = ConsFree. Furthermore, assume that y1 and y2 are clocks
belonging to the set Y , and that correspond to the intervals I1 = [0,∞),
and I2 = [5, 20), respectively. Then the HLTLK formula H(ϕ) is calculated
as follows:

H(ϕ) = Fy1(py1∈I1 ∧ H(KP (p ∧ GI2(¬q))))

= Fy1(py1∈I1 ∧ KP H(p ∧ GI2(¬q)))

= Fy1(py1∈I1 ∧ KP (p ∧ H(GI2(¬q))))

= Fy1(py1∈I1 ∧ KP (p ∧ Gy2(¬py2∈I2 ∨ ¬q))).

Observe that the length of H(ϕ) is linear in the length of ϕ. Furthermore,
our translation preserves the existential model checking problem, i.e., the
existential model checking of ϕ interpreted over the timed model for TIS
can be reduced to the existential model checking of H(ϕ) interpreted over
the abstract model for ATIS.

Lemma 3.5. Let I be a timed interpreted system, ϕ an EMTLK formula,
Iϕ an augmented timed interpreted system, and Mϕ the abstract model for Iϕ.
For each run ρ of I there exists a path πρ of Mϕ that is generated by ρ.

Proof. By the definition of a run, we have that ρ must be of the following
form: ρ = s0

δ0,a0→ s1
δ1,a1→ s2

δ2,a2→ . . ., where ai ∈ Act, δi ∈ IN+, and si =
((�i

1, v
i
1), . . . , (�

i
n, vi

n), (�i
E , vi

E)) ∈ S for all i ∈ IN. Now, consider the following

“augmented” run ρ∗ of Iϕ: ρ∗ = s∗
0

δ0,a0→ s∗
1

δ1,a1→ s∗
2

δ2,a2→ . . ., where for all
i ∈ IN, ai ∈ Act′, δi ∈ IN+, and s∗

i = ((�i
1, v

i
1), . . . , (�

i
n, vi

n), (�i
E , v∗i

E )), (∀y ∈
Y )v∗0

E (y) = 0, and (∀i ≥ 0)(∀x ∈ XE)v∗i
E (x) = vi

E(x). By the definition of
the discrete path λρ∗ corresponding to run ρ∗, we have that for all t ∈ IN
and i = idxρ(t), λρ∗(t) = s∗

i + t − bi = ((�i
1, v

i
1 + t − bi), . . . , (�i

n, vi
n + t −

bi), (�i
E , v∗i

E +t−bi)). Observe that λρ∗(t) ∈
∏

c∈A
Lc×INXc

c ×LE ×INX′
E

E = Sϕ.
Thus, πρ = λρ∗(0), λρ∗(1), λρ∗(2), . . . is a path Mϕ.

Lemma 3.6. For each path λ of M there exists a path λ∗ of Mϕ that is
generated by λ.
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Proof. Observe that each path λ = (λ(0), λ(1), . . .) of M is generated by

a run ρ = s0
δ0,a0→ s1

δ1,a1→ s2
δ2,a2→ . . . of I, where ai ∈ Act, δi ∈ IN+, and

si = ((�i
1, v

i
1), . . . , (�

i
n, vi

n), (�i
E , vi

E)) ∈ S for all i ∈ IN. By Lemma 3.5, we
have that there exists a path πρ of Mϕ that is generated by ρ. Thus, it is
enough to take λ∗ = πρ.

Lemma 3.7. Let I be a timed interpreted system, M the timed model for
I, ϕ an EMTLK formula, Iϕ an augmented timed interpreted system, Mϕ

the abstract model for Iϕ, and ρ a run of I. For each subformula ψ of ϕ and
for each t ∈ IN,M, λt

ρ |= ψ implies Mϕ, πt
ρ |= H(ψ).

Proof. We proceed by induction on the length of formulae.

1. ψ = p, for some p ∈ PV. We have that M,λt
ρ |= p iff p ∈ V(λρ(t)). By

Lemma 3.5 and the construction of the path πρ of Mϕ that is generated
by ρ we have that p ∈ Vϕ(πρ(t)). Thus, for each t ∈ IN, M, λt

ρ |= ψ

implies Mϕ, πt
ρ |= H(ψ).

2. ψ = ¬p, for some p ∈ PV. The proof is analogous to the case ψ = p.

3. ψ = α∨β. By the definition of the satisfiability relation we have M,λt
ρ |=

α ∨ β iff M,λt
ρ |= α or M,λt

ρ |= β. Proceeding by induction we have
Mϕ, πt

ρ |= H(α) or Mϕ, πt
ρ |= H(β). Thus, it follows that Mϕ, πt

ρ |=
H(α) ∨ H(β).

4. ψ = α ∧ β. The proof is analogous to the case ψ = α ∨ β.

5. ψ = αUIβ. Assume that y ∈ Y is a clock associated with the interval I,
and M,λt

ρ |= ψ. By the definition of the satisfiability relation we have
(∃i ∈ I)(M,λt+i

ρ |= β and (∀0 ≤ j < i) M,λt+j
ρ |= α). Proceeding by

induction it follows that Mϕ, πt+i
ρ |= H(β) and Mϕ, πt+j

ρ |= H(α) for all
0 ≤ j < i. Consider the unique path π̃ = Υt

y(πρ). By the definition of
π̃ it follows that py∈I ∈ Vϕ(π̃(t + i)). Thus, since Mϕ, πt+i

ρ |= H(β), by
the construction of π̃ we have Mϕ, π̃t+i |= H(β) ∧ py∈I . Furthermore,
since Mϕ, πt+j

ρ |= H(α) for all 0 ≤ j < i, by the construction of π̃, we
have that Mϕ, π̃t+j |= H(α), for all j such that 0 ≤ j < i.

Thus, by the semantics we get that Mϕ, πρ
t |= H(α)Uh(H(β) ∧ py∈I),

where h is the index of the clock y. Therefore, we can conclude that
Mϕ, πρ

t |= H(αUIβ).

6. ψ = GIα. Assume that M,λt
ρ |= ψ. By the definition of the satisfiability

relation we have (∀i ∈ I)(M,λt+i
ρ |= α). Proceeding by induction it

follows that Mϕ, πt+i
ρ |= H(α) for all i ∈ I. Consider the unique path

π̃ = Υt
y(πρ). By the definition of π̃ it follows that py∈I ∈ Vϕ(π̃(t+i)), for
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all i ∈ I. Thus, since Mϕ, πt+i
ρ |= H(α) for all i ∈ I, by the construction

of π̃ we have Mϕ, π̃t+i |= py∈I ∧ H(α) for all i ∈ I. Therefore, for all
i ≥ t we have Mϕ, π̃t+i |= ¬py∈I ∨H(α). Thus, by the semantics we get
that Mϕ, πρ

t |= Gh(¬py∈I ∨ H(α)), where h is the index of the clock y.
Therefore, we can conclude that Mϕ, πρ

t |= H(GIα).

7. ψ = Kcα. Assume that M,λt
ρ |= ψ. By the definition of the satisfiability

relation we have that (∃λ ∈ Π)(∃i ≥ 0)(λ(i) ∼c λρ(t) and M,λi |= α).
Proceeding by induction it follows that Mϕ, πi

λ |= H(α). By Lemmas 3.5
and 3.6 we have that for λρ there exists a path πρ of Mϕ that is gen-
erated by λρ. Since λ(i) ∼c λρ(t) holds, by the construction of the
paths πλ and πρ we have that πλ(i) ∼c πρ(t) holds. Therefore, we have
Mϕ, πρ

t |= H(Kcα).

8. ψ = Y Γα and Y ∈ {D, E, C}. The proof is analogous to the case ψ =
Kcα.

Lemma 3.8. Let I be a timed interpreted system, ϕ an EMTLK formula, Iϕ

an augmented timed interpreted system, Mϕ the abstract model for Iϕ.
For each path π of Mϕ there exists a run ρ of I that is induced by π and

such that for all i ≥ 0, π(i)|X = λρ(i), where X =
⋃

c∈A∪{E} Xc and π(i)|X
denotes the state of Mϕ from which the values of auxiliary clocks from Y
have been removed.

Proof. Each path of Mϕ is of the form π = (s0, s1, . . .) with (s0, τ, s1) ∈ Tϕ,
and for each i ≥ 0, si = ((�i

1, v
i
1), . . . , (�

i
n, vi

n), (�i
E , vi

E)), and either
(si, ai, si+1) ∈ Tϕ or (si, τ, si+1) ∈ Tϕ, and if (si, ai, si+1) ∈ Tϕ holds, then
(si+1, τ, si+2) ∈ Tϕ holds, and ai ∈ Act for each i ≥ 0. This implies that π
has the following shape:

s0, . . .︸︷︷︸
τ0,...,τi−1

, si ,
︸︷︷︸

a0

si+1, . . .︸︷︷︸
τi+1,...,τj−1

, sj ,
︸︷︷︸

a1

sj+1, . . .︸︷︷︸
τj+1,...,τk−1

, sk ,
︸︷︷︸

a2

sk+1, . . .

with i ≥ 1, j > i, and k > j. Thus, we have that the path π is gen-

erated by the following run ρ∗ of Iϕ: ρ∗ = w0
δ∗
0 ,a0→ w1

δ∗
1 ,a1→ w2

δ∗
2 ,a2→

w3 . . . with w0 = s0, w1 = si+1, w2 = sj+1, w3 = sk+1, and so on.
Now, assume that wi = ((�i

1, v
i
1), . . . , (�

i
n, vi

n), (�i
E , vi

E)) for all i ≥ 0,

and consider the following run ρ = r0
δ∗
0 ,a0→ r1

δ∗
1 ,a1→ r2

δ∗
2 ,a2→ r3 . . .

with r0 = ((�01, v
0
1), . . . , (�

0
n, v0

n), (�0E , v0
E |XE )), and for all i > 0, ri =

((�i
1, v

i∗
1 ), . . . , (�i

n, vi∗
n ), (�i

E , vi∗
E |XE )) and (∀c ∈ A ∪ {E})(∀x ∈ Xc)(vi∗

c (x) =
vi−1∗
c (x) + δ∗

i−1). Observe that ρ is a valid run of I, and moreover π(i)|X =
λρ(i) for all i ≥ 0.
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Lemma 3.9. Let I be a timed interpreted system, M the timed model for I, ϕ
an EMTLK formula, Iϕ the augmented timed interpreted system, Mϕ the
abstract model for Iϕ, π a path of Mϕ that is induced by a run ρ of I. Then,
for each subformula ψ of ϕ and for each t ∈ IN,Mϕ, πt

ρ |= H(ψ) implies
M,λt

ρ |= ψ.

Proof. We proceed by induction on the length of formulae.

1. ψ = p, for some p ∈ PV. We have that Mϕ, πt
ρ |= H(ψ) iff p ∈

Vϕ(πρ(t)). By Lemma 3.8 we have that p ∈ V(λρ(t)). Thus, for each
t ∈ IN,Mϕ, πt

ρ |= H(ψ) implies M,λt
ρ |= ψ.

2. ψ = ¬p, for some p ∈ PV. The proof is analogous to the case ψ = p.

3. ψ = α ∨ β. By the definition of the function H and the satisfiability
relation we have Mϕ, πt

ρ |= H(α ∨ β) iff Mϕ, πt
ρ |= H(α) or Mϕ, πt

ρ |=
H(β). Proceeding by induction we have M,λt

ρ |= α or M,λt
ρ |= β. Thus,

it follows that M,λt
ρ |= α ∨ β.

4. ψ = α ∧ β. The proof is analogous to the case ψ = α ∨ β.

5. ψ = αUIβ. Assume that a clock y ∈ Y is associated with the inter-
val I, h is the index associated to the clock y, and Mϕ, πt

ρ |= H(ψ).

By the definition of the function H we have Mϕ, πt
ρ |= H(α)Uh(H(β)∧

py∈I). By the definition of the satisfiability relation we have (∃i ≥
t)(Mϕ, π̃i |= H(β) ∧ py∈I and (∀t ≤ j < i)Mϕ, π̃j |= H(α)), where
π̃ = Υt

y(π). Observe that by the definition of the path π̃, and by the
construction of the run ρ of I given in the proof of Lemma 3.8, we
have that the run ρ is also induced by the path π̃. Moreover, since
Mϕ, π̃i |= py∈I holds, we have py∈I ∈ Vϕ(π̃(i)). Thus we have i − t ∈
I. Furthermore, by induction, we have M,λi

ρ |= β and (∀t ≤ j <

i)M,λj
ρ |= α. Therefore, we conclude that M,λt

ρ |= αUIβ.

6. ψ = GIα. Assume that a clock y ∈ Y is associated with the interval I, h
is the index associated to the clock y, and Mϕ, πt

ρ |= H(ψ). By the
definition of the function H we have Mϕ, πt

ρ |= Gh(H(α) ∨ ¬py∈I). By
the definition of the satisfiability relation we have (∀i ≥ t)(Mϕ, π̃i |=
H(α)∨¬py∈I), where π̃ = Υt

y(π). Observe that by the definition of the
path π̃, and by the construction of the run ρ of I given in the proof
of Lemma 3.8, we have that the run ρ is also induced by the path π̃.
Thus, if Mϕ, π̃i |= py∈I holds, then we have py∈I ∈ Vϕ(π̃(i)), and thus
we have i − t ∈ I. Therefore, we have that (∀i ≥ t)(i − t ∈ I implies
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Mϕ, π̃i |= H(α)). By induction, we have that (∀i ∈ I)(M,λt+i
ρ |= α).

Therefore, we have M,λt
ρ |= GIα.

7. ψ = Kcα. Assume that Mϕ, πt
ρ |= H(ψ). By the definition of the

satisfiability relation we have (∃π′ ∈ Πϕ)(∃i ≥ 0)(π′(i) ∼c πρ(t)
and Mϕ, π′i |= H(α)). By Lemma 3.8 we have that there exists a
run ρ′ of TIS that is induced by π′. Thus, by induction, we have
(∃λρ′ ∈ Π)(∃i ≥ 0)(M,λρ′ i |= α). Further, by the construction of
the run of I in Lemma 3.8 we have that λρ′(i) ∼c λρ(t). Thus, we can
conclude that M,λt

ρ |= Kcα.

8. ψ = Y Γα and Y ∈ {D, E, C}. The proof is analogous to the case ψ =
Kcα.

The main theorem of the section states that existential validity of the
EMTLK formula ϕ over the timed model for TIS is equivalent to the existen-
tial validity of the HLTLK formula H(ϕ) over the abstract model for ATIS.

Theorem 3.10. Let M be the timed model, ϕ an EMTLK formula, and Mϕ

the abstract model. Then, M |= ϕ iff Mϕ |= H(ϕ).

Proof. The proof of the theorem follows from Lemmas 3.7 and 3.9.

The construction of the augmented timed interpreted system for the
timed interpreted system and an EMTLK formula ϕ involves an exponential
blow-up, the reduction of ϕ into H(ϕ) involves only a linear blow-up, and
the HLTLK language can be viewed as an existential LTLK; notice that
LTLK is a multi-dimensional logic obtained by the fusion (or independent
join) [5] of LTL with S5n, where n is the number of distinct epistemic modal-
ities. Since, the (symbolic) model checking problem for LTLK is PSPACE
[12], Theorem 3.10 suggests a PSPACE model checking algorithm for the
existential model checking problem of EMTLK.

4. A SAT-Based BMC Method for HLTLK

In this section we present a SAT-based BMC method for HLTLK. In SAT-
based BMC we construct a propositional formula that is satisfiable if and
only if there exists a finite set of prefixes of paths of the underlying model
that is a solution to the existential model checking problem. To construct the
propositional formula, first of all we need to define the bounded semantics
for the underlying logic (i.e., in our case for HLTLK), then to encode the
semantics by means of a propositional formula, and finally to represent a
part of the model by a propositional formula.
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We begin the section by introducing the definition of the bounded seman-
tics for HLTLK and proving that the bounded and unbounded semantics are
equivalent. Then, we define a translation of the existential model checking
problem for HLTLK to the propositional satisfiability problem, and we for-
mulate the theorem about the correctness and completeness of the proposed
translation.

4.1. Bounded Semantics

Let Mϕ = (ιϕ, Sϕ, Tϕ,Vϕ) be an abstract model, k ∈ IN, and 0 ≤ l ≤ k.

Definition 4.1. A k-path πl is a pair (π, l), where π is a finite sequence
π = (s0, . . . , sk) of states such that (s0, τ, s1) ∈ Tϕ, and for each 0 < i < k,
either (si, ai, si+1) ∈ Tϕ or (si, τ, si+1) ∈ Tϕ, and if (si, ai, si+1) ∈ Tϕ holds,
then (si+1, τ, si+2) ∈ Tϕ holds, and ai ∈ Act for each 0 ≤ i < k.

Definition 4.2. Let π(i) = ((�i
1, v

i
1), . . . , (�

i
n, vi

n), (�i
E , vi

E)) for all i ≤ k. A k-
path πl is a loop if l < k and (∀c ∈ A ∪ {E})(�k

c = �l
c) and (∀c ∈ A)(vk

c =
vl
c) and vk

E↓XE = vl
E↓XE , where ↓ XE denoted the projection of the clock

valuation vE : XE ∪ Y → IN on the clock valuation v′
E : XE → IN.

The set of all the k-paths πl with π(0) = s is denoted by Πk(s), and
Πk =

⋃
s0∈ιϕ

Πk(s0).

Example 4.3. To illustrate the notion of k-paths and loops let us consider
the TTCS scenario described in Sect. 2.3.2 for two trains T1 and T2, Δ = 2
and δ = 0, and an EMTLK formula ϕ with one interval. Assume that we
have the following states:

s0 = ((away, 0), (away, 0), (0), (·, 0)), s1 =((away, 1), (away, 1), (0), (·, 1)),

s2 = ((away, 2), (away, 2), (0), (·, 2)), s3 =((away, 3), (away, 3), (0), (·, 3)),

s4 = ((try, 0), (away, 3), (0), (·, 3)), s5 =((try, 1), (away, 4), (0), (·, 4)),

s6 = ((wait, 0), (away, 4), (1), (·, 4)), s7 =((wait, 1), (away, 5), (1), (·, 5)),

s8 = ((tunnel,1), (away,5), (1), (·, 5)), s9=((tunnel,2), (away,6), (1), (·, 6)),

s10 = ((away,2), (away,6), (0), (·, 6)), s11 =((away,3), (away,7), (0), (·, 7)),

s12 = ((away, 3), (try, 0), (0), (·, 7)), s13 =((away, 4), (try, 1), (0), (·, 8)),

s14 = ((away, 4), (wait, 0), (2), (·, 8)), s15=((away, 5), (wait, 1), (2), (·, 9)),

s16 = ((away,5),(tunnel,1),(2),(·,9)), s17=((away,6),(tunnel,2),(2),(·,10)),

s18 = ((away,6),(away,2), (0),(·,10)), s19=((away,7),(away,3), (0),(·,11)),

s20 = ((try, 0), (away, 3), (0), (·, 11)), and observe that the pairs:
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π0 = ((s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14,

s15, s16, s17, s18, s19, s20), 0), . . . ,

π4 = ((s0, s1, s2, s3, s4, s5, s6, s7, s8, s9,

s10, s11, s12, s13, s14, s15, s16, s17, s18, s19, s20), 4), . . . ,

π20 = ((s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,

s13, s14, s15, s16, s17, s18, s19, s20), 20) are k-paths for k = 20.

Moreover, only π4 is loop.

Further, let πl = ((s0, . . . , sk), l) be a k-path, t ≤ k a natural number,
and y ∈ Y a new clock. If either πl is not a loop or πl is a loop with
l ≥ t, then (Φt,k

y (π), l) = ((s′
0, . . . , s

′
k), l) is the k-path defined as follows.

(∀0 ≤ j ≤ k)((∀c ∈ A ∪ {E})(�′j
c = �j

c) and (∀c ∈ A)(v′j
c = vj

c) and

v′j
E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vj
E , if 0 ≤ j < t

vj
E [{y} := 0], if j = t

succ(v′j−1
E ), if t < j ≤ k and vj

E = succ(vj−1
E )

v′j−1
E [X := 0], if t < j ≤ k and vj

E = vj−1
E [X := 0]

succ(v′j−1
E )[X := 0], if t < j ≤ k and vj

E = succ(vj−1
E )[X := 0]).

Example 4.4. To illustrate the notion of k-path (Φt,k
y (π), l) let us consider

the 20-path π9 = ((s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15,
s16, s17), 9) which we have described in Example 4.3, and which is not loop.
The 20-path (Φt,20

y (π), 9) with t = 11 is the following: ((s0, s1, s2, s3, s4, s5,
s6, s7, s8, s9, s10, s

∗
11, s

∗
12, s

∗
13, s

∗
14, s

∗
15, s

∗
16, s

∗
17, s18, s19, s20), 9), where

s∗
11 = ((away, 3), (away, 7), (0), (·, 0)), s∗

12 = ((away, 3), (try, 0), (0), (·, 0)),

s∗
13 = ((away, 4), (try, 1), (0), (·, 1)), s∗

14 = ((away, 4), (wait, 0), (2), (·, 1)),

s∗
15 = ((away, 5), (wait, 1), (2), (·, 2)), s∗

16 =((away, 5), (tunnel, 1), (2), (·, 2)),

s∗
17 =((away, 6), (tunnel, 2), (2), (·, 3)), s∗

18 =((away, 6), (away, 2), (0), (·, 3)),

s∗
19 = ((away, 7), (away, 3), (0), (·, 4)), s∗

20 = ((try, 0), (away, 3), (0), (·, 4)).

If πl is a loop with l < t, then (Ψt,k
y (π), l) = ((s′

0, . . . , s
′
k), l) is the k-path

defined as follows. (∀0 ≤ j ≤ k)((∀c ∈ A∪{E})(�′j
c = �j

c) and (∀c ∈ A)(v′j
c =

vj
c) and



664 B. Woźna-Szcześniak, A. Zbrzezny

v′j
E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vj
E , if 0 ≤ j < l

vj
E [{y} := 0], if j = t

succ(v′j−1
E ), if t < j ≤ k and vj

E = succ(vj−1
E )

v′j−1
E [X := 0], if t < j ≤ k and vj

E = vj−1
E [X := 0]

succ(v′j−1
E )[X := 0], if t < j ≤ k and vj

E = succ(vj−1
E )[X := 0]

v′k
E , if j = l

succ(v′j−1
E ), if l < j < t and vj

E = succ(vj−1
E )

v′j−1
E [X := 0], if l < j < t and vj

E = vj−1
E [X := 0]

succ(v′j−1
E )[X := 0], if l < j < t and vj

E = succ(vj−1
E )[X := 0]

Example 4.5. To illustrate the notion of k-path (Φt,k
y (π), l) let us consider

the 20-path π4 = ((s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15,
s16, s17, s18, s19, s20), 4) which we have described in Example 4.3, and
which is loop. The 20-path (Φt,20

y (π), 4) with t = 11 is the following:
((s0, s1, s2, s3, s

∗
4, s

∗
5, s

∗
6, s

∗
7, s

∗
8, s

∗
9, s

∗
10, s

∗
11, s

∗
12, s

∗
13, s

∗
14, s

∗
15, s

∗
16, s

∗
17, s

∗
18, s

∗
19,

s∗
20), 4), where

s∗
4 = ((try, 0), (away, 3), (0), (·, 4)),

s∗
5 = ((try, 1), (away, 4), (0), (·, 5)),

s∗
6 = ((wait, 0), (away, 4), (1), (·, 5)),

s∗
7 = ((wait, 1), (away, 5), (1), (·, 6)),

s∗
8 = ((tunnel, 1), (away, 5), (1), (·, 6)),

s∗
9 = ((tunnel, 2), (away, 6), (1), (·, 7)),

s∗
10 = ((away, 2), (away, 6), (0), (·, 7)),

s∗
11 = ((away, 3), (away, 7), (0), (·, 0)),

s∗
12 = ((away, 3), (try, 0), (0), (·, 0)),

s∗
13 = ((away, 4), (try, 1), (0), (·, 1)),

s∗
14 = ((away, 4), (wait, 0), (2), (·, 1)),

s∗
15 = ((away, 5), (wait, 1), (2), (·, 2)),

s∗
16 = ((away, 5), (tunnel, 1), (2), (·, 2)),

s∗
17 = ((away, 6), (tunnel, 2), (2), (·, 3)),

s∗
18 = ((away, 6), (away, 2), (0), (·, 3)),

s∗
19 = ((away, 7), (away, 3), (0), (·, 4)),

s∗
20 = ((try, 0), (away, 3), (0), (·, 4)).
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Let ϕ be an EMTLK formula, ψ = H(ϕ) the HLTLK formula, Mϕ an
abstract model, k ≥ 0 a bound, and 0 ≤ t ≤ k. The bounded satisfiability
relation |=k, which indicates truth of ψ in Mϕ along the k-path πl at time
t (denoted πt

l ), is defined inductively with the classical rules for proposi-
tional operators and with the following rules for the temporal and epistemic
modalities:

πt
l |=k αUhβ iff [π̃ = Φt,k

yh
(π) and (∃t ≤ i ≤ k)(π̃l

i |=k β and (∀t ≤ j < i)
π̃l

j |=k α)] or [πl is a loop with l < t and π̃ = Ψt,k
yh

(π)
and (∃l < i < t)(π̃l

i |=k β and (∀l ≤ j < i) π̃l
j |=k α)

and (∀t ≤ j ≤ k) π̃l
j |=k α],

πt
l |=k Ghα iff [πl is a loop with t ≤ l < k and π̃ = Φt,k

yh
(π) and

(∀t ≤ i ≤ k)π̃l
i |=k α] or [πl is a loop with l < t and

π̃ = Ψt,k
yh

(π) and (∀t ≤ i ≤ k)π̃l
i |=k α and (∀l < i < t)

π̃l
i |=k α],

πt
l |= Kcα iff (∃π′

l′ ∈ Πk)(∃0 ≤ i ≤ k)(π′(i) ∼c π(t) and M,π′i
l′ |= α),

πt
l |= Y Γα iff (∃π′

l′ ∈ Πk)(∃0 ≤ i ≤ k)(π′(i) ∼Y
Γ π(t) and M,π′i

l′ |= α),
where Y ∈ {D, E, C}.

We use the following notation Mϕ |=k ψ iff Mϕ, π0
l |=k ψ for some πl ∈

Πk. The bounded model checking problem consists in finding out whether
there exists k ∈ IN such that Mϕ |=k ψ.

4.2. Equivalence of Bounded and Unbounded Semantics

Lemma 4.6. Let Mϕ an abstract model, ψ = H(ϕ) an HLTLK formula,
k > 0 a bound, πl a k-path in Mϕ, and 0 ≤ t ≤ k. The following implication
holds: M,πt

l |=k ψ implies

• if πl is not a loop, then Mϕ, π′t |= ψ for each path π′ in Mϕ such that
k-prefix of π′ is equal to πl.

• if πl is a loop, then Mϕ, π′t |= ϕ, where π′ is the path generated by the
loop πl.

Proof. We proceed by induction on the length of formulae ψ. The lemma
follows directly for the propositional variables and their negations. Consider
the following cases:
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• If ψ = α ∨ β | α ∧ β, then the proof is straightforward.

• Let ψ = Kcα | Y Γα. By induction hypothesis - see Lemma 2 of [17]

• ψ = αUhβ and Mϕ, πt
l |=k ψ. By the definition of the bounded semantics

we have that either

(†)[π̃ = Φt,k
yh

(π) and (∃t ≤ i ≤ k)(Mϕ, π̃l
i |=k β and

(∀t ≤ j < i)Mϕ, π̃l
j |=k α)] or (††)[πl is a loop with l < tand

π̃ = Ψt,k
yh

(π) and (∃l < i < t)(Mϕ, π̃l
i |=k β and

(∀l ≤ j < i)Mϕ, π̃l
j |=k α)

and (∀t ≤ j ≤ k)Mϕ, π̃l
j |=k α].

Assume that (†) holds and that πl is a loop. By the definition of
(Φt,k

yh
(π), l) we have l ≥ t. By induction and fact that π̃′ is generated by

π̃l we have (∃i ≥ t)(Mϕ, π̃′i |= β and (∀t ≤ j < i) Mϕ, π̃′j |= α). Thus,
we conclude that Mϕ, π′t |= αUhβ.
Assume now that (†) holds and that πl is not a loop. By the definition of

Φt,k
yh

(π) and by induction we have (∃i ≥ t)(Mϕ, π̃′i |= β and (∀t ≤ j < i)

Mϕ, π̃′j |= α) for each π̃′ in Mϕ such that k-prefix of π̃′ is equal to π̃l.
Thus, we have Mϕ, π′t |= αUhβ.

Assume now that (††) holds. Since πl is a loop, by the definition of
(Ψt,k

yh
(π), l) we have l < t. By induction and fact that π̃′ is generated by

π̃l we have (∃k < i < k + t − l)(Mϕ, π̃i |=k β and (∀t ≤ j < i)Mϕ, π̃j |=k

α). Thus, we have Mϕ, π′t |= αUhβ.

• ψ = Ghα and Mϕ, πt
l |=k ψ. By the definition of the bounded semantics

we have

(†)[πl is a loop with t ≤ l < k and π̃ = Φt,k
yh

(π)

and (∀t ≤ i ≤ k)Mϕ, π̃l
i |=k α] or

(††)[πl is a loop with l < t and π̃ = Ψt,k
yh

(π) and

(∀t ≤ i ≤ k)Mϕ, π̃l
i |=k α and (∀l < i < t)Mϕ, π̃l

i |=k α].

Assume that (†) holds. Since πl is a loop, by the definition of (Φt,k
yh

(π), l)
we have t ≤ l < k. By induction and fact that π̃′ is generated by π̃l we
have (∀i ≥ t)Mϕ, π̃′i |= α. Thus, we have Mϕ, π′t |= Ghα.
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Assume that (††) holds. Since πl is a loop, by the definition of (Ψt,k
yh

(π), l)
we have l < t. By induction and fact that π̃′ is generated by π̃l we have
(∀i ≥ t)Mϕ, π̃′i |= α. Thus, we have Mϕ, π′t |= Ghα.

Lemma 4.7. Let Mϕ be an abstract model, α an HLTL formula, π a path
of Mϕ. The following implication holds: Mϕ, π |= α implies that for some
k ≥ 0 and 0 ≤ l ≤ k,Mϕ, πl |=k α with πl being the k-prefix of π.

Proof. The proof can be completed by the similar arguments as in the
proof of Theorem 3.1 of [4].

Lemma 4.8. Let Mϕ be an abstract model, α an HLTL formula, Y ∈
{Kc, DΓ, EΓ, CΓ}, and π a path of Mϕ. The following implication holds:
Mϕ, π |= Y α implies that for some k ≥ 0 and 0 ≤ l ≤ k,Mϕ, πl |=k Y α with
πl being the k-prefix of π.

Proof. The proof follows from Lemma 4.7 and Lemma 4 of [17].

Lemma 4.9. Let Mϕ be an abstract model, ψ = H(ϕ) an HLTLK formula,
and π a path. The following implication holds: Mϕ, π |= ψ implies that for
some k ≥ 0 and 0 ≤ l ≤ k,Mϕ, πl |=k ψ with πl being the k-prefix of π.

Proof. We proceed by induction on the length of formulae ϕ. The lemma
follows directly for the propositional variables and their negations. Assume
that the hypothesis holds for all the proper subformulae of ϕ and consider
ϕ to be of the following form:

1. ϕ = α ∨ β | α ∧ β | αUhβ | Ghα. Straightforward by the induction
hypothesis and Lemma 4.7.

2. Let ϕ = Y α, and Y, Y1, . . . , Yn, Z ∈ {Kc, DΓ, EΓ, CΓ}. Moreover, let
Y1α1, . . . , Ynαn be the list of all “top level” proper Y -subformulae of α
(i.e., each Yiαi is a subformula of Y α, but it is not a subformula of any
subformula Zβ of Y α, where Zβ is different from Y α and from Y αi

for i = 1, . . . , n).

If this list is empty, then α is a “pure” HLTL formula with no nested
epistemic modalities. Hence, by Lemma 4.8 we have M,π |= ψ implies
that for some k ≥ 0 and 0 ≤ l ≤ k,M, πl |=k ϕ with πl being the
k-prefix of π.

Otherwise, introduce for each Yiαi a new proposition qi, where i =
1, . . . , n. By Lemma 1 of [17], we can augment with qi the labelling
of each state s of M initialising some path along which the epistemic
formula Yiαi holds, and then translate the formula α to the formula α′,
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which instead of each subformula Yiαi contains adequate propositions
qi. Therefore, we obtain “pure” HLTL formula. Hence, by Lemma 4.8
we have M,π |= ϕ implies that for some k ≥ 0 and 0 ≤ l ≤ k,M, πl |=k

ϕ with πl being the k-prefix of π.

The following theorem shows that for some particular bound the bounded
and unbounded semantics are equivalent. A proof of the theorem follows
from Lemmas 4.6 and 4.9.

Theorem 4.10. Let ϕ be an EMTLK formula, Mϕ an abstract model, and
ψ = H(ϕ) the HLTLK formula. The following equivalence holds: Mϕ |= ψ
iff there exists k ≥ 0 such that Mϕ |=k ψ.

4.3. Translation to SAT

Let Mϕ be an abstract model, ψ a HLTLK formula, and k ≥ 0 a bound. The
presented propositional encoding of the BMC problem for HLTLK is based
on the BMC encoding of [24], and it relies on defining the propositional
formula [Mϕ, ψ]k := [Mψ,ι

ϕ ]k ∧ [ψ]Mϕ,k, which is satisfiable if and only if
Mϕ |=k ψ holds.

The definition of [Mϕ, ψ]k assumes that both the states and the joint
actions of Mϕ are encoded symbolically. This is possible, since both the
sets of agents’ states and the set of joint actions are finite. Also, since we
work with a set of k-paths, we can bound the clocks valuation to the set
D = {0, . . . , c+1} with c being the largest constant appearing in any enabling
condition or state invariants of all the agents and in intervals appearing
in ϕ. Moreover, this definition assumes knowledge of the number of k-paths
of Mϕ that are sufficient to validate ψ. To this aim, as usually, we define
the auxiliary function f̂k : HLTLK → IN as f̂k(ψ) = fk(ψ) + 1, where
the function fk : HLTLK → IN is defined as follows. Let p ∈ PV ′. Then,
fk(�) = fk(⊥) = fk(p) = fk(¬p) = 0, fk(α ∧ β) = fk(α) + fk(β); fk(α ∨
β) = max{fk(α), fk(β)}; fk(αUhβ) = k · fk(α) + fk(β) + 1 ; fk(Ghα) =
(k + 1) · fk(α) + 1; fk(CΓα) = fk(α) + k; fk(Y α) = fk(α) + 1 for Y ∈
{Kc, DΓ, EΓ}.

Let us formally define the first conjunct of [Mϕ, ψ]k (i.e., [Mψ,ι
ϕ ]k). We

start by introducing the fundamental notation. First of all we assume that
each state s ∈ Sϕ is represented by a vector w = ((w1, v1), . . . , (wn, vn),
(wE , vE)) (called a symbolic state) of symbolic local states. Each symbolic
local state (wc, vc) is a pair of vectors of propositional variables; the first
vector wc encodes elements of Lc, and the second vector vc encodes the
clock valuations of agent c ∈ A ∪ {E} over D. Secondly, we assume that



Checking EMTLK Properties of TISs via BMC 669

each joint action a = (a1, . . . , an, aE) ∈ Act is represented by a vector
a = (a1, . . . , an, aE) (called a symbolic action) of symbolic local actions, where
each symbolic local action ac is a vector of propositional variables. Next, we
assume that the time action τ is represented by a proposition variable ℘τ ,
and we consider the vector u = (u1, . . . , ut), which we call the symbolic num-
ber. It consists of propositional variables (called natural variables) of length
t = max(1, �log2(k + 1)�). Finally, we assume a symbolic representation of
a k-path πl, the number of which is j, and we call it the j-th symbolic k-
path πj = ((w0,j , . . . ,wk,j),uj), where 0 ≤ j < f̂k(ψ), 0 ≤ i ≤ k,wi,j is a
symbolic state, and uj is a symbolic number.

Let w and w′ be two different symbolic states, a a symbolic action,
and u a symbolic number. We assume definitions of the following auxiliary
propositional formulae:

• p(w) - encodes the set of states of Mϕ in which p ∈ PV holds.

• Is(w) - encodes the state s of Mϕ.

• Hc(w,w′) - encodes the equality of two local states and two local clock
valuations of agent c ∈ A.

• H(w,w′) :=
∧

c∈A
Hc(w,w′) - encodes equality of two global states.

• Hh=0(w,w′) - encodes equality of two global states on local states and
values of the original clocks, and the equality of values of the new clocks
(i.e., clocks from Y ) but the value of clock yh.

• H 	=h(w,w′) - encodes equality of two global states on local states
and on values of the original clocks, and on the values of the new
clocks with the potential exception of clock yh. For clock yh the for-
mula guarantees that its value in the 2nd global state is greater than
zero.

• N ∼

j (u) - encodes that the value j is in the arithmetic relation ∼∈ {<,
�, =, �, >} with the value represented by the symbolic number u.

• TAct(w,a,w′) - encodes the action transition relation of Mϕ.

• Tτ (w, ℘τ ,w′) - encodes the time transition relation of Mϕ.

• HX(w,w′) - encodes equality of two global states on local states and
values of the original clocks.

• Ll
k(πj) := N=

l (uj)∧HX(wk,j ,wl,j), where πj is a jth symbolic k-path.

Having introduced the fundamental auxiliary propositional formulae, we
can formally define the propositional formula [Mψ,ι

ϕ ]k, which encodes the
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unfolding of the transition relation of the abstract model Mϕ fk(ψ)-times
to the depth k. Specifically, let wi,j ,ai,j , and uj be, respectively, symbolic
states, symbolic actions, and symbolic numbers, for 0 ≤ i ≤ k and 0 ≤ j <

f̂k(ψ). The formula [Mψ,ι
ϕ ]k, is defined as follows:

[Mψ,ι
ϕ ]k :=

∨

s∈ι

Is(w0,0) ∧
f̂k(ψ)−1∧

j=0

k∨

l=0

N=
l (uj)

∧
f̂k(ψ)−1∧

j=0

(Tτ (w0,j , ℘τ ,w1,j) ∧
k−1∧

i=1

(Tτ (wi,j , ℘τ ,wi+1,j)

∨TAct(wi,j ,ai,j ,wi+1,j)))

∧
k−2∧

i=1

(Tτ (wi,j , ℘τ ,wi+1,j) ∨ Tτ (wi+1,j , ℘τ ,wi+2,j))

Let us now formally define the second conjunct of [Mϕ, ψ]k (i.e., [ψ]Mϕ,k),
which encodes the bounded semantics of the HLTL formula ψ. In the
definition of [ψ]Mϕ,k we assume the same fundamental notation and the
same crucial ancillary propositional formulae which have been introduced
above. Additionally, we assume knowledge of auxiliary functions that are
defined in [24]. Their purpose is to divide the set A ⊂ IN+ of num-
bers of k-paths such that |A| = fk(ψ) into subsets needed for translat-
ing the subformulae of ψ. Their names and arguments are the follow-
ing: gl(A,m), gr(A,m), gs(A) = A \ {min(A)}, hU

k (A,m), hG
k (A,m), where

A ⊂ IN+ is a finite non-empty set and m ≤ |A|. Finally, let Fk(ψ) =
{j ∈ IN | 0 ≤ j < f̂k(ψ)}, [α][m,n,A]

k denotes the translation of α along
the n-th symbolic path πm

n with the starting point m by using the set A ⊆
Fk(ψ), n′ = min(A), hU

k = hU
k (gs(A), fk(β)), and hG

k = hG
k (gs(A), fk(α)).

The propositional formula [ψ]Mϕ,k is defined as [ψ][0,0,Fk(ψ)]
k , where

[�][m,n,A]
k := �, [⊥][m,n,A]

k := ⊥,
[p][m,n,A]

k := p(wm,n), [¬p][m,n,A]
k := ¬p(wm,n),

[α ∧ β][m,n,A]
k := [α][m,n,gl(A,fk(α))]

k ∧ [β][m,n,gr(A,fk(β))]
k ,

[α ∨ β][m,n,A]
k := [α][m,n,gl(A,fk(α))]

k ∨ [β][m,n,gl(A,fk(β))]
k ,

[αUhβ][m,n,A]

k :=
m−1∧

j=0

H(wj,n,wj,n′) ∧ Hh=0(wm,n,wm,n′)∧

k∧

j=m+1

H 	=h(wj,n,wj,n′) ∧ (
k∨

j=m

([β][j,n
′,hU

k (k)]
k ∧
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j−1∧

i=m

[α][i,n
′,hU

k (i)]
k )

)
∨

k∧

j=m+1

H 	=h(wj,n,wj,n′)∧

Hh=0(wm,n,wm,n′) ∧
( m−1∨

l=0

(Ll
k(πn′)∧

l−1∧

j=0

H(wj,n,wj,n′)∧

H(wl,n′ ,wk,n′) ∧
m−1∧

j=l+1

H 	=h(wj,n,wj,n′))
)
∧

( m−1∨

j=0

(N >
j (un′) ∧ [β][j,n

′,hU
k (k)]

k ∧
j−1∧

i=0

(N >
i (un′) →

[α][i,n
′,hU

k (i)]
k ))

)
∧

k∧

i=m

[α][i,n
′,hU

k (i)]
k ,

[Ghα][m,n,A]

k :=
[ m−1∧

j=0

H(wj,n,wj,n′) ∧
k∧

j=m+1

Hh=0(wm,n,wm,n′)∧

H	=h(wj,n,wj,n′)∧ (
k−1∨

l=m

(Ll
k(πn′)) ∧

k∧

j=m

[α][j,n
′,hG

k (j)]
k

]
∨

[
Hh=0(wm,n,wm,n′) ∧

k∧

j=m+1

H 	=h(wj,n,wj,n′)∧

k∧

j=m

[α][j,n
′,hG

k (j)]
k ∧

( m−1∨

l=0

(Ll
k(πn′) ∧

l−1∧

j=0

H(wj,n,wj,n′)∧

H(wl,n′ ,wk,n′) ∧
m−1∧

j=l+1

H 	=h(wj,n,wj,n′)∧

m−1∧

j=l+1

[α][j,n
′,hG

k (j)]
k )

)]
,

[Kcα]
[m,n,A]

k :=
∨

s∈ιϕ

Is(w0,n′) ∧
k∨

j=0

([α][j,n
′,gs(A)]

k ∧ Hc(wm,n,wj,n′)),

[DΓα]
[m,n,A]

k :=
∨

s∈ιϕ

Is(w0,n′) ∧
k∨

j=0

([α][j,n
′,gs(A)]

k ∧
∧

c∈Γ

Hc(wm,n,wj,n′)),

[EΓα]
[m,n,A]

k :=
∨

s∈ιϕ

Is(w0,n′) ∧
k∨

j=0

([α][j,n
′,gs(A)]

k ∧
∨

c∈Γ

Hc(wm,n,wj,n′)),

[CΓα]
[m,n,A]

k := [
k∨

j=1

(EΓ)jα][m,n,A]
k .
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First of all, observe that in the translation of αUhβ the propositional for-
mula

∧m−1
j=0 H(wj,n,wj,n′)∧Hh=0(wm,n,wm,n′)∧

∧k
j=m+1 H 	=h(wj,n,wj,n′)

encodes the k-path (Φt,k
yh

(π), l). Next, the propositional formula
∨k

j=m([β][j,n
′,hU

k (k)]
k ∧

∧j−1
i=m[α][i,n

′,hU
k (i)]

k ) encodes the part of the bounded
semantics where we look for β on a k-path which is not a loop or
the looping state is after the state t. Further, the propositional for-
mula

∧k
j=m+1 H 	=h(wj,n,wj,n′) ∧ Hh=0(wm,n,wm,n′) ∧

∨m−1
l=0 (Ll

k(πn′) ∧
∧l−1

j=0 H(wj,n,wj,n′) ∧ H(wl,n′ ,wk,n′) ∧
∧m−1

j=l+1 H 	=h(wj,n,wj,n′)) encodes
the k-path (Ψt,k

yh
(π), l), which is a loop with l < t. Next, the propositional

formula
∨m−1

j=0 (N >
j (un′)∧ [β][j,n

′,hU
k (k)]

k ∧
∧j−1

i=0 (N >
i (un′) → [α][i,n

′,hU
k (i)]

k )))∧
∧k

i=m[α][i,n
′,hU

k (i)]
k , encodes the part of the bounded semantics where we look

for β on a k-path which is a loop with l < t. Thus, β must hold at some
state j that is between states l and m, and α must hold at all the states
form m to k, and from l to j − 1.

Next, observe that in the translation of Ghα the propositional formula
∧m−1

j=0 H(wj,n,wj,n′)∧ Hh=0(wm,n,wm,n′) ∧
∧k

j=m+1 H 	=h(wj,n,wj,n′)∧
(
∨k−1

l=m(Ll
k(πn′)) encodes k-path (Φt,k

yh
(π), l), and it ensures that it is a loop

with l ≥ t. Further, the propositional formula
∧k

j=m[α][j,n
′,hG

k (j)]
k encodes

the part of the bounded semantics where we ensure that α holds at all
the states between the states m and k. Further, the propositional for-
mula Hh=0(wm,n,wm,n′) ∧

∧k
j=m+1 H 	=h(wj,n,wj,n′) ∧

( ∨m−1
l=0 (Ll

k(πn′)∧
∧l−1

j=0 H(wj,n,wj,n′) ∧H(wl,n′ ,wk,n′) ∧
∧m−1

j=l+1 H 	=h(wj,n,wj,n′) ∧ ♣)
)

encodes the k-path (Ψt,k
yh

(π), l), which is a loop with l < t. Next, the nested

propositional formula ♣ :=
∧m−1

j=l+1[α][j,n
′,hG

k (j)]
k encodes the part of the

bounded semantics where we ensure that α holds between states l + 1 and
m−1. Lastly, the propositional formula

∧k
j=m[α][j,n

′,hG
k (j)]

k encodes the part
of the bounded semantics where we ensure that α holds between states m
and k.

Finally, observe that in the translation of Kcα the propositional formula∨
s∈ιϕ

Is(w0,n′) ensures that we look for a new k-path that starts at an initial

state. Next, the propositional formula
∨k

j=0([α][j,n
′,gs(A)]

k ∧Hc(wm,n,wj,n′))
encodes the part of the bounded semantics where we ensure that α holds at
some state j on the new initial k-path and that this state is in the epistemic
relation with the state encoded by the symbolic state wm,n; the translation
of other epistemic modalities follows from the translation of Kcα.
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The following theorem guarantees that the BMC problem for HLTLK and
for ATIS can be reduced to the SAT-problem. The theorem can be proven
by induction on the length of the formula ψ. Moreover, the scheme of the
proof follows closely the proof of Theorem 2 of [17].

Theorem 4.11. Let Mϕ be an abstract model, and ψ a HLTLK formula. For
every k ∈ IN,Mϕ |=k ψ if, and only if, the propositional formula [Mϕ, ψ]k is
satisfiable.

5. Experimental Results

5.1. The Timed Generic Pipeline Protocol (TGPP)

The specifications we checked for TGPP are given in the universal form,
for which we verify the EMTLK formulae that are negated and interpreted
existentially. For every specification given, there exists a counterexample in
the model of the benchmark. Let n be the number of nodes. Then:

ϕ1 = G(KP (ProdSend ⇒ F[0,2n+2)ConsFree)). It expresses that Producer
knows that each time Producer produces data, then Consumer receives
this data not later than in 2n + 1 time units.

ϕ2 = G[0,2n+3)(ConsFree ⇒ KP (F (ProdSend∧ConsFree))). It expresses
that always in the interval [0, 2n + 3) if Consumer receives data, then
Producer knows that eventually it will produce data again and Con-
sumer will keep the old data.

ϕ3 = G[2n−2,2n+2)(ConsReady ⇒ KP (F[0,2)(ConsFree))). It expresses
that always in the interval [2n − 2, 2n + 2) if Consumer is ready to
receive data, then Producer knows that no later than one unit after
that Consumer will receive data.

To apply the BMC method for the TGPP scenario and, e.g., for formula
ϕ1, first, we have to define the ATIS for the given TIS and for the negation of
ϕ1. To this aim, it is enough to extend the set of clocks, the set of actions, the
protocol function, and the evolution function of the environment E by taking
into account the intervals appearing in ϕ1. Since there are two intervals in
ϕ1 (i.e., I1 = [0,∞) and I2 = [2n − 2, 2n + 2)) and the set XE is empty,
the new set X ′

E is equal to {y1, y2}. The set Act′E of actions is of the form
ActE ∪ {{y1}, {y2}, {y1, y2}}, and the protocol is defined as P ′

E(·) = Act′E =
{εE , {y1}, {y2}, {y1, y2}}. Finally, the local evolution function is defined as
follows: t′E(·, true,B, a) = ·, if either actE(a) = εE and B = ∅ or actE(a) = B
and B ∈ {{y1}, {y2}, {y1, y2}}. Having defined the ATIS for TIS and for
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ϕ1, it should be straightforward to infer the model Mϕ1 . Further, we need
to translate the negation of ϕ1, denoted ϕ′

1, (which is in EMTLK) into
the HLTLK formula H(ϕ′

1). Let p = ProdSend, q = ConsFree, and ϕ′
1 =

FKP (p∧GI2(¬q)).H(ϕ′
1) = Fy1(py1∈I1 ∧H(KP (p∧GI2(¬q)))) = Fy1(py1∈I1 ∧

KP H(p ∧ GI2(¬q))) = Fy1(py1∈I1 ∧ KP (p ∧ H(GI2(¬q)))) = Fy1(py1∈I1 ∧
KP (p ∧ Gy2(¬py2∈I2 ∨ ¬q))).

Finally, we apply the BMC method for the HLTLK formula H(ϕ′
1) (sim-

ilarly for H(ϕ′
2) and H(ϕ′

3)) and for the model Mϕ1 (resp. for Mϕ2 and
Mϕ3). Checking that the TGPP does not satisfy the properties ϕ1, ϕ2, and
ϕ3 can now be done by feeding a SAT solver with the propositional formulae
generated in the way explained above.

5.2. The Timed Train Controller System (TTCS)

The specifications we checked for TTCS are given in the universal form,
for which we verify the EMTLK formulae that are negated and interpreted
existentially. Moreover, for every specification given, there exists a coun-
terexample in the model of the benchmark.

ϕ4 = G[0,2δ+7)(
n−1∧

i=1

n∧

j=i+1

(¬tunneli ∨ ¬tunnelj)). It expresses that the sys-

tem satisfies mutual exclusion property.

ϕ5 = G[0,2δ+7)(tunnel1 =⇒ KT1(G[0,∞)(
n∧

j=2

¬tunnelj))). It expresses that

always at time in the interval [0, 2δ + 7) if the Train1 enters its critical
section, then it knows that always in the future no other train will enter
its critical section.

Analogously as for TGPP we apply the BMC method for the HLTLK
formulae H(¬ϕ4) and H(¬ϕ5), and for the models Mϕ4 and Mϕ5 respec-
tively. Checking that the TTCP does not satisfy the properties ϕ4 and ϕ5

is done by feeding a SAT solver with the propositional formulae generated
in the way explained in Sect. 4.6.

5.3. Performance Evaluation

For the tests we used a computer with I7-3770 processor, 32 GB of RAM,
and running Arch Linux 3.19.3. We set the CPU time limit to 3600 sec-
onds. Moreover, we used PicoSAT [3] in version 957 to test the satisfiabil-
ity of the propositional formulae generated by our SAT-based BMC encod-
ing. We did not compare our results with other model checkers for MASs,
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e.g. MCMAS [16] or MCK [11], simply because they do not support EMTLK
and TIS.

5.3.1. Timed Generic Pipeline Paradigm. The number of considered k-
paths for all the tested properties is equal to 4. The length of the counterex-
ample for formula ϕ1 is is equal to 4n+7. The length of the counterexample
for formula ϕ2 is equal to 12 if n = 1, and 4n + 10 if n > 1. The length of
the counterexample for formula ϕ3 is equal to n + 1 if n ∈ {1, 2}, 2n − 1 if
n ∈ {3, 4}, and 2n if n > 4.

5.3.2. Timed Train Controller System. The number of considered k-paths
for the formula ϕ4 is equal to 2 and for the formula ϕ5 is equal to 3. The
length of the counterexample for both the formulae ϕ4 and ϕ5 depends on δ
and is equal to 2δ+12. We tested both of the formulae by scaling separately
the number of trains and the value of the constant delta.

5.3.3. Performance Evaluation Summary. As one can see from the line
charts in Figures 3, 4, and 5 showing the total time and the memory con-
sumption for all the tested properties, the experimental results confirm that
our new SAT-based BMC for TIS and for EMTLK is indeed feasible. More-
over, we can observe that as in the case of other known SAT-based BMC
methods, this new method is also sensitive on the size of the counterexam-
ple, where the size of the counterexample is defined as the length of the
k-path in the counterexample (i.e., the value k) multiplied by the number
of k-paths (i.e., the value of the function f̂k). The high efficiency of our
method in the case of the formula ϕ3 results from the shorter length of the
counterexample.
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Both properties

6. Conclusions

We have proposed TISs as a new formalism to model MASs with the agents
that have real-time deadlines to achieve intended goals, and that possess
their private clocks. Further, we have defined, implemented, and experimen-
tally evaluated a SAT-based BMC for TISs and for properties expressed
in EMTLK. The method is based on a translation of the existential model
checking problem for EMTLK to the existential model checking problem
for HLTLK, and then on the translation of the existential model checking
problem for HLTLK to the SAT-problem.

In [15] a formalism of Real Time Interpreted Systems has been defined
to model MASs with hard real-time deadlines. However, the agents of this
model do not enjoy having access to the private clocks, namely, all the
clocks are public. This constraint, in our opinion, violates the self gov-
ernance (autonomy) of agents. Therefore, we plan to extend the TIS to
a formalism that is able to model MASs with the agents that have hard
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real-time deadlines, and to define SAT-based BMC for this new formalism
and for both the branching and the linear real time epistemic logics.

Open Access. This article is distributed under the terms of the Creative Commons Attribu-

tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-

mits unrestricted use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.
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