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Abstract. Gödel logic (alias Dummett logic) is the extension of intuitionistic logic by

the linearity axiom. Symmetric Gödel logic is a logical system, the language of which is

an enrichment of the language of Gödel logic with their dual logical connectives. Symmet-

ric Gödel logic is the extension of symmetric intuitionistic logic (L. Esakia, C. Rauszer).

The proof-intuitionistic calculus, the language of which is an enrichment of the language

of intuitionistic logic by modal operator was investigated by Kuznetsov and Muravitsky.

Bimodal symmetric Gödel logic is a logical system, the language of which is an enrichment

of the language of Gödel logic with their dual logical connectives and two modal operators.

Bimodal symmetric Gödel logic is embedded into an extension of (bimodal) Gödel–Löb

logic (provability logic), the language of which contains disjunction, conjunction, negation

and two (conjugate) modal operators. The variety of bimodal symmetric Gödel algebras,

that represent the algebraic counterparts of bimodal symmetric Gödel logic, is investigated.

Description of free algebras and characterization of projective algebras in the variety of

bimodal symmetric Gödel algebras is given. All finitely generated projective bimodal sym-

metric Gödel algebras are infinite, while finitely generated projective symmetric Gödel

algebras are finite.
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Free algebra.
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1. Introduction

A “symmetric” formulation of the intuitionistic propositional calculus, sug-
gested by various authors (G. Moisil, A. Kuznetsov, C. Rauszer), presup-
poses that any connective &,∨,⇀,�,⊥ has its dual ∨, &,⇁, ⊥,�, and
the duality principle of the classical logic is restored. The notion of double-
Browerian algebras was introduced by McKinsey and Tarski in [26], based on
the idea considered by T. Skolem in 1919. In [10] double-Browerian algebras
were named Skolem algebras.
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Heyting–Brouwer logic (alias symmetric Intuitionistic logic Int2) was
introduced by C. Rauszer as a Hilbert calculus with an algebraic seman-
tics [30]. Notice that the variety of Skolem (Heyting–Brouwerian) algebras
are algebraic models for symmetric Intuitionistic logic Int2.

The well-known procedure for an embedding of the intuitionistic propo-
sitional calculus Int into the classical modal system S4 can be extended
on the symmetric intuitionistic logic Int2 [10], which may be embedded
into the bimodal (temporal) logical system S42(= K2C4T ) introduced by
Segerberg [31]. The language of S42 consists of ∨,∧,→,−,�1 (“it always
will be that”), �2 (“it always was that”); the temporal connectives ♦1 (“it
will be the case that”), ♦2 (“it was the case that”) are introduced in the
usual way: ♦1ϕ = −�1 − ϕ and ♦2ϕ = −�2 − ϕ. Axioms of S42: (1)
�1(p → q) → (�1p → �1q), �2(p → q) → (�2p → �2q); (2) �1p → p,
�2p → p; (3) �1p → �1�1p, �2p → �2�2p; (4) ♦2�1p → p, ♦1�2p → p.
Inference rules of S42: ϕ,ϕ → ψ ⇒ ψ, ϕ ⇒ �1ϕ, ϕ ⇒ �2ϕ. For every for-
mula α of Int2 its translation tr1(α) into S42 is defined as follows: (1) if α is a
propositional variable, then tr1(α) = �1α; (2) tr1(α ∨ β) = tr1(α) ∨ tr1(β);
(3) tr1(α ∧ β) = tr1(α) ∧ tr1(β); (4) tr1(α ⇀ β) = �1(tr1(−α ∨ β)); (5)
tr1(α ⇁ β) = ♦2(tr1(α ∧ −β)). This translation turns out to be an embed-
ding of Int2 into S42 in the sense that Int2 	 α iff S42 	 tr1(α) [11,30].
Notice also that we have an embedding of Int into Grz [6].

The proof-intuitionistic calculus, the language of which is an enrichment
of the language of intuitionistic logic by modal operator was investigated by
Kuznetsov and Muravitsky [20] and Muravitsky [29]. A modal operator on
Heyting algebras was introduced in [28] and discussed in [21] (see also [20]) to
give an intuitionistic version of the provability logic GL, which formalizes the
concept of provability in Peano Arithmetic. This operator was also studied
by Caicedo and Cignoli in [17] and Esakia in [14].

The provability Gödel–Löb logic GL can be defined in the following way
[5,32]. The language of GL coincides with the language of S4. In turn, a
Kripke-frame for GL is a Kripke-frame (W ; R) (with W a nonempty set
of so-called worlds or nodes and R a binary relation, the so-called acces-
sibility relation) with R a transitive relation such that the converse of R
is well-founded (Noetherian, in other terms). Such kind Kripke frames are
called GL-frames. Then the provability Gödel–Löb logic GL is defined as
the set of all formulas that are valid in all GL-frames. Of course, a finite
transitive frame is conversely well-founded iff it is irreflexive. Now we can
define symmetric Gödel–Löb logic GL2 in the following way. The language
of GL2 consists of (as in S42) ∨,∧,→,−,�1,�2. GL2 is the set of all for-
mulas that are valid in all Kripke frames (W ; R) with a transitive relation
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R such that the R and its converse ˜R are well-founded. The well-known
procedure of an embedding of the intuitionistic propositional calculus Int
into Gödel–Löb logic GL [6] also can be extended to the symmetric intu-
itionistic logic Int2 into GL2 in the following way. Define the new operators:
�ρ

1p = �1p ∧ p, ♦ρ
2p = ♦2p ∨ p. For every formula α of Int2 its translation

tr2(α) into GL2 is defined as follows: (1) if α is a propositional variable, then
tr2(α) = �ρ

1α; (2) tr2(α∨β) = tr2(α)∨tr2(β); (3) tr2(α∧β) = tr2(α)∧tr2(β);
(4) tr2(α ⇀ β) = �ρ

1(tr2(−α∨β)); (5) tr2(α ⇁ β) = ♦ρ
2(tr2(α∧−β)). Items

(1)–(4) are defined as in [6] for Int and GL, and item (5) as in [11] for Int2

and S42. This translation turns out to be an embedding of the Int2 into
GL2 in the sense that Int2 	 α iff GL2 	 tr2(α).

Recall that Gödel logic G, that is also known as Dummett logic LC [8],
is an extension of intuitionistic logic Int by the linearity axiom

(p ⇀ q) ∨ (q ⇀ p).

Denote by G2 the extension of the symmetric Intuitionistic logic Int2

by Gödel (linearity) axiom and the dual Gödel axiom: (p ⇀ p) ⇁ ((p ⇁
q) ∧ (q ⇁ p)). The language of G2 consists of disjunction ∨, conjunction
∧, implication ⇀, co-implication ⇁ (an algebraic interpretation of ⇁ is
called pseudo-difference) and constants ⊥,�. In other words G2 is a logic
corresponding to Skolem algebras with linearity conditions [11]. We can
define the logic G2 as the set of all formulas which are valid in all finite
Kripke frames (W,R) [11], where R is reflexive, transitive, anti-symmetric
and such that for every x ∈ W R(x) (the R-image of x) and R−1(x) (the
R-inverse image of x) are chains. The translation of Int2 into GL2 can be
specified for G2 into LinGL2, where LinGL2 is the extension of GL2 by two
extra axioms: tr2((p ⇀ q)∨(q ⇀ p)) and tr2((p ⇀ p) ⇁ ((p ⇁ q)∧(q ⇁ p))),
or (♦2�1p ⇀ p) ∧ (p ⇀ ♦2�1p) and (�1♦2p ⇀ p) ∧ (p ⇀ �1♦2p). In other
words it is a restriction of the translation Int2 into GL2 on G2 into LinGL2.

In this paper we investigate symmetric Gödel logic G2 enriched by two
modalities � (=�1) (considered as Prov (the formalized provability predi-
cate for Peano Arithmetic modality) and ♦ (= −�2−). We call this logic a
bimodal symmetric Gödel logic, denoted by MG2. Bimodal symmetric Gödel
logic MG2, which is an extended version of prof-intuitionistic logic contain-
ing with any logical connective its dual, is introduced for the first time.
Moreover, we can regard this logic as a temporal logic with modalities “it
always will be that” and “it always was that” that possesses rich expres-
sive possibilities. To be more precise we investigate the variety of algebras,
named here MG2 − algebras (the precise definition of MG2-algebras will
be given below), corresponding to the logic MG2. Notice that the signature
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of MG2-algebra is an extension of the signature of KM -algebra (Δ-pseudo-
Boolean algebra in other terminology [20]) by dual operations. Semantically
the logic MG2 is defined in the following way: MG2 is the set of all formulas
which are valid in all finite Kripke frames (W ; R) with a transitive relation
R such that the R and its converse are well-founded, while the reflexive
closure Rρ of R is a total order. We can extend the embedding of G2 into
LinGL2 to the one of MG2 into LinGL2 in the same manner as the embed-
ding Int2 into S42, and Int2 into GL2 transferring the translation of � into
�1 and ♦ into �2 in trivial way: (1) if α is a propositional variable, then
tr(α) = �ρ

1α; (2) tr(α ∨ β) = tr(α) ∨ tr(β); (3) tr(α ∧ β) = tr(α) ∧ tr(β);
(4) tr(α ⇀ β) = �ρ

1(tr(−α ∨ β)); (5) tr(α ⇁ β) = ♦ρ
2(tr(α ∧ −β)),

tr(�α) = �1α, tr(♦α) = ♦2α.
We give a description of finitely generated free algebras in the variety

of algebras corresponding to the bimodal symmetric Gödel logic, which is
equivalent to the description of non-equivalent formulas (with a fixed num-
ber of variables) in this logic, and the characterization of finitely generated
projective algebras, which play an important role in the unification problem
for the bimodal symmetric Gödel logic. We will show that in contrast to the
variety of all G2-algebras (and G-algebras as well), the finitely generated
free algebras of which are finite, the finitely generated free MG2-algebras
are infinite (this follows also from the fact that 0-generated free KM -algebra
is infinite [20]); any finite G2-algebra (and G-algebra as well) is projective,
while every projective MG2-algebra is not finite.

2. Preliminaries

An algebra (T, ∨,∧,⇀,⇁, 0, 1) is a Skolem algebra [10,30] (or Heyting-
Browerian algebra), if (T, ∨,∧, 0, 1) is a bounded distributive lattice, ⇀ is
an implication (relative pseudo-complement), ⇁ is co-implication (relative
pseudo-difference) on T . Notice that in [30] C. Rauszer defines x ⇁ y as
x−̇y called pseudo-difference: x ⇁ y(= x−̇y) is the least element z such
that y ∨ z ≥ x.

An algebra (T, ∨,∧,⇀,⇁, 0, 1) is said to be a G2-algebra, if (i) (T, ∨,∧,
⇀, 0, 1) is a G-algebra, i.e. Heyting algebra that satisfies the linearity axiom,
corresponding to Gödel logic; (ii) (T, ∨,∧,⇁, 0, 1) is a dual G-algebra (alias
Brouwerian algebra with linearity condition: (p ⇁ q) ∧ (q ⇁ p) = 0).

G2-algebras, which are algebraic models of the logical system G2, repre-
sent a proper subclass of Skolem algebras.
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The MG2-algebra is an algebra (T, ∨,∧, ⇀, ⇁,�,♦, 0, 1), where
(T, ∨,∧,⇀,⇁, 0, 1) is the G2-algebra and the operators �,♦ satisfy the
following conditions:

x ≤ �x, �x ≤ y ∨ (y ⇀ x), �x ⇀ x = x, �(x ⇀ y) ≤ (�x ⇀ �y),

♦x ≤ x, x ⇁ ♦x = x, ♦(x ∨ y) = ♦x ∨ ♦y,

x ≤ �♦x, ♦�x ≤ x,

♦(x ⇀ y) ≤ ♦x ⇀ ♦y.

We give some comments about these axioms. First of all this set of axioms
have no pretensions of economy. The first three axioms represent the alge-
braic version of the logical axioms of the proof-intuitionistic logic KM
[20,21,27,28]. The fourth axiom �(x ⇀ y) ≤ (�x ⇀ �y) is deducible
from the first three axioms (see [20]) but we add this one for easing proof of
some assertion. The next three axioms are intuitively clear. The last three
axioms are the algebraic counterparts of the logical axioms given in [11,31]
for K2C4T (= S42).

Let us consider simple examples of MG2-algebra. Let C(= {1, 1/2, 0})
be 3-element G2-algebra which we convert into MG2-algebra defining the
operations � and ♦ as follows: �0 = 1/2, �1/2 = 1, �1 = 1, ♦1 = 1/2,
♦1/2 = 0, ♦0 = 0. It is routine to check that all the axioms of MG2-algebra
hold in C3 = ({1, 1/2, 0},∨,∧,⇀,⇁,�,♦, 0, 1).

Now we show that the operations � and ♦ is defined in a unique way in
any MG2-algebra. Indeed, let us suppose that there exist two box operations
�1 and �2. Then �1x ≤ �2x ∨ (�2x ⇀ x) (third axiom) ⇒ �1x ≤ �2x ∨ x
(first axiom) ⇒ �1x ≤ �2x (first axiom). In the same manner we can show
that �2x ≤ �1x and hence �1x = �2x.

Let us suppose that there exist two diamond operations ♦1 and ♦2. Then
♦1x ⇀ ♦2x = ♦1(x ⇁ ♦2x) ⇀ ♦2(x ⇁ ♦2x) (sixth axiom). But ♦1(x ⇁
♦2x) ⇀ ♦2(x ⇁ ♦2x) ≥ (x ⇁ ♦2x) → ♦2(x ⇁ ♦2x) = x ⇁ ♦2x = x
(fifth and sixth axiom). Hence, ♦1x ∧ (♦1x ⇀ ♦2x) ≥ x ∧ ♦1x = ♦1x (fifth
axiom), i.e. ♦1x ∧ ♦2x = ♦1x (since ♦1x ∧ (♦1x ⇀ ♦2x = ♦1x ∧ ♦2x).
Analogically we have ♦1x ∧ ♦2x = ♦2x. So, ♦1x = ♦2x.

Now we show the behavior of � and ♦ in a chain MG2-algebra. Denote
x ≺ y if y covers x (i.e. there is no element between x and y different from
x and y with x ≤ y). Let us consider any chain G2-algebra C and define the
operations � and ♦ as follows: for every a ∈ C if a = 1, then �a = a, if
a �= 1, then �a = b, where b covers a (i.e. there is no element between a and
b different from a and b with a ≤ b); for every a ∈ C if a = 0, then ♦a = a,
if a �= 0, then ♦a = b, where a covers b. Notice, that there is the only way to
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define in C the operations � and ♦ satisfying the axioms of MG2-algebra.
Indeed, if x �= 1, then �x > x. If �x ≤ x, then �x ⇀ x = 1 �= x (that
contradicts to the third axiom). Analogically, if x �= 0, then ♦x < x. Indeed,
if ♦x ≥ x, then x ⇁ ♦x = 0 �= ♦x (that contradicts to the fifth axiom).
Let us suppose a, b, c ∈ C and a < b < c, and �a = c. Then, according
to the second axiom, c = �a ≤ b ∨ (b ⇀ a) = b, that contradicts to the
condition b < c. Now let ♦c = a. Then, according to the eighth axiom,
c ≤ �♦c = �a = b, that contradicts to the condition b < c.

At last we show that the last axiom holds in C. If x ≤ y, the axiom is
trivially holds. If x > y, then x ⇀ y = y and ♦y ≤ ♦x ⇀ ♦y according to
the property of implication ⇀.

Let us denote the variety (and the category, as well) of all MG2-algebras
by MG2.

An algebra (A; ∨,∧,♦,−, 0, 1) is said to be GL-algebra (or diagonalizable
algebra) if (A; ∨,∧,−, 0, 1) is a Boolean algebra and the unary operation ♦
satisfies the following conditions: (1) ♦(a ∨ b) = ♦a ∨ ♦b, (2) ♦0 = 0, (3)
♦a ≤ ♦(a ∧ −♦a).

Let us denote by GL the variety and the category of GL-algebras with
GL-algebra homomorphisms.

Now we shall describe a duality for MG2-algebras, but first we give a
description of a duality for GL- and GL2-algebras. Let (X,R) be a Kripke
frame, where R is at least transitive. We shall say that a subset Y ⊂ X is
an upper cone (or cone) if x ∈ Y and xRy imply y ∈ Y . The concept of a
lower cone is defined dually. A subset Y ⊂ X is called a bicone if it is an
upper cone and a lower cone at the same time.

We say that (X, τ,R) is a descriptive GL-frame [1,16] if R is a transitive
binary relation on X and

(1) X is a Stone space (i.e. 0-dimensional, Hausdorff and compact topolog-
ical space);

(2) R(x) and R−1(x) are closed sets for every x ∈ X;

(3) for every clopen A of X, R−1(A) is a clopen;

(4) for every clopen A of X and every x ∈ A there is an element y ∈
A \ R−1(A) such that either xRy or x ∈ A \ R−1(A).

Let Xi = (Xi, τi, Ri), i = 1, 2. A map f : X1 → X2 from a GL-frame X1 to
a GL-frame X2 is said to be strongly isotone (or p-morphism) if

f(x)R2y ⇔ (∃z ∈ X1)(xR1z&f(z) = y).

Hereinafter instead of (X, τ,R) we will write (X,R) or simply X.
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Let us denote by KGL (the class and) the category of descriptive GL-
frames and continuous strongly isotone maps.

An algebra (A; ∨,∧,−,♦1,♦2, 0, 1) is said to be a GL2-algebra if (1)
(A; ∨,∧,−,♦1, 0, 1) is a GL-algebra (2) (A; ∨,∧,−,♦2, 0, 1) is a GL-algebra
and (3) �ρ

1♦ρ
2x = ♦ρ

2x, ♦ρ
2�

ρ
1x = �ρ

1x, where �ρ
1x = �1x∧x, ♦ρ

2x = ♦2x∨x.
Let us denote by GL2 the variety and the category of GL2-algebras with

GL2-algebra homomorphisms.
Now we shall describe a duality for GL-algebras defining two contravari-

ant functors: GL and KGL [1]. Let X ∈ KGL and A ∈ GL. The set GL(X)
of all clopen subsets of X is closed under the set union, intersection, com-
plementation and the operator R−1 [1]. The set KGL(A) of all ultrafilters
of A ∈ GL with a relation xRy ⇔ (∀a ∈ A)(a ∈ y ⇒ ♦a ∈ x), topologized
by taking the family of sets h(a) = {F ∈ KGL(A) : a ∈ F} as a base, is an
object of GL [1].

Furthermore, setting KGL(h) = h−1 : KGL(B) → KGL(A) for every
morphism h : A → B of GL, and GL(f) = f−1 : GL(Y ) → GL(X) for
every morphism f : X → Y of KGL, we obtain contravariant functors
GL : GL → KGL and KGL : KGL → GL [1].

Theorem 2.1. [1] The functors GL and KGL establish a dual equivalence
between the categories GL and KGL.

As the duality between category of closure algebras and the category of
descriptive frames is extended to the category of closure algebras with con-
jugate operators and the category of symmetric Kripke frames [11], we can
extend the duality between the categories GL and KGL to the categories
GL2 and KGL2 (which will be defined below).

We say that (X,R) is a GL2-frame if (X,R) and (X, ˜R) (where x ˜Ry ⇐⇒
yRx) are both GL-frames. Let us denote by KGL2 the category of GL2-
frames and continuous strongly isotone maps f : X1 → X2 such that
xR2f(z)R2y ⇔ (∃x′, y′)(x′R1zR1y

′) and f(z′) = x, f(y′) = y for X1, X2 ∈
KGL2 [11]. A GL2-frame (X,R) is descriptive if GL-frames (X,R) and
(X, ˜R) are descriptive.

Taking into account that GL-algebra is a Boolean algebra, and GL2-
algebra is also a Boolean algebra as well, and, moreover, (X,R) and (X, ˜R)
are both descriptive GL-frames, we can extend the duality between GL and
KGL to the duality between GL2 and KGL2. Let (A,∨,∧,♦,−, 0, 1) be
a GL-algebra. Then the algebra (A,∨,∧,♦ρ,−, 0, 1), where ♦ρx = x ∨ ♦x,
is a closure algebra (or S4-algebra). The set {x ∈ A : �ρx = x} of open
elements of A forms a Heyting algebra. The Boolean algebra B(T ) generated
by T (inside A) is called trapharet algebra [12,20]. It is well-known that any



122 R. Grigolia et al.

Heyting algebra is embedded into trapharet algebra of some GL-algebra
[12,20]. The letter is called GL-algebra envelope of this Heyting algebra.
Notice that T is closed under the operation �(= −♦−). The same procedure
we can realize for GL2-algebra and MG2-algebra as well.

Let X be an object of KGL2 and A ∈ GL2. GL2(X) of all clopen
subsets of X is closed under the set union, intersection, complementation
and the operators R−1 and R since (X,R) and (X, ˜R) are both descrip-
tive GL-frames. So, GL2((X; R)) = (GL2(X);∪,∩,−, R−1, R, ∅, X) is an
object of GL2 (i.e. GL2-algebra) that is (GL2(X);∪,∩,−, R−1, ∅, X) and
(GL2(X);∪,∩,−, R, ∅, X) are GL-algebras. It is obvious that all axioms of
GL2-algebra are satisfied. Indeed, the conditions (1) and (2) are immediate
consequence of [22] (Corollary 1). As to identity (3), it is obvious that for
every Y ⊂ X −R−1

ρ − (Rρ(Y )) = Rρ(Y ), Rρ(−R−1
ρ − (Y )) = −R−1

ρ − (Y ),
because Rρ(Y ) and −R−1

ρ −(Y ) are upper cones, where Rρ is reflexive closure
of the relation R. The set KGL2(A) of all ultrafilters of A ∈ GL2 with a rela-
tion xRy ⇔ (∀a ∈ A)(a ∈ y ⇒ ♦1(a) ∈ x), topologized by taking the family
of sets h(a) = {F ∈ KGL2(A) : a ∈ F} as a base of clopen sets, is an object
of KGL2. Furthermore, setting KGL2(h) = h−1 : KGL2(B) → KGL2(A)
for every morphism h : A → B of GL2 (which is at the same time
Boolean homomorphism), and GL2(f) = f−1 : GL2(Y ) → GL2(X) for
every morphism f : X → Y of KGL2 (which is at the same time mor-
phism of KGL), we obtain contravariant functors GL2 : GL → KGL2 and
KGL2 : KGL2 → GL2.

Now we describe a duality for MG2-algebras. A Kripke frame (X,R) is
called an MG2-frame if: (1) (X,R) is a GL2-frame, (2) (X,Rρ) is a poset,
(3) R−1

ρ (x), Rρ(x) are chains, where Rρ is the reflexive closure of R. MG2-
frame is descriptive if corresponding GL2-frame is descriptive. Let KMG2

be the category of descriptive MG2-frames and continuous strongly isotone
mappings. Notice, that if a descriptive MG2-frame (X,R) is finite, then the
binary relation R is irreflexive. Notice, also, that if (X,R) is an MG2-frame,
then (X,Rρ) is a strongly symmetric Kripke frame [11]. Such frames are
dual to Skolem algebras, that is, to the algebraic counterparts of symmetric
intuitionistic logic Int2. Taking into consideration that for any MG2-frame
(X,R) the frame (X,Rρ) is a disjoint union of chains we see that (X,Rρ)
is a dual object of a G2-algebra. In other words MG2-frames are disjoint
unions of chains.

Taking into account mentioned above facts we arrived to the following
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Proposition 2.2. The category MG2 of MG2-algebras and algebraic homo-
morphisms is dually equivalent to the category KMG2 of MG2-frames and
continuous strongly isotone maps.

Now we illustrate this duality (for some detail we refer to [11,16])
and describe two contravariant functors: M : MG2 → KMG2 and
S : KMG2 → MG2. Let X ∈ KMG2 and A ∈ MG2. The set S(X)
of all clopen cones of X is closed under the following operations: the set
union, intersection, U ⇀ V = −(R−1(U − V ) ∪ (U − V )), U ⇁ V =
R(U − V ) ∪ (U − V ), �U = −R−1(−U), ♦U = R(U). Moreover, the alge-
bra (S(X),∪,∩,⇀,⇁,�,♦, ∅, X) satisfies to the axioms of MG2-algebras
and, consequently, it is an MG2-algebra. Furthermore, for any morphism
f : (X1, R1) → (X2, R2) in KMG2, S(f) = f−1 : S(X2) → S(X1) is a
homomorphism. The restriction follows from the fact that S(Xi) (i = 1, 2) is
G-algebra because S(Xi) (i = 1, 2) is G2-algebra. Moreover, S(Xi) (i = 1, 2)
is MG2-algebra. Since S(Xi) (i = 1, 2) is G-algebra S(f) is a homomor-
phism preserving Gödel operations. Notice that f−1(Y ) is a clopen for every
clopen Y of X1, and the set {f−1(Y ) : Y is upper cone and clopen of X1},
which is Gödel algebra, is closed under the operations ⇁, �, ♦. On
the other hand, for each MG2-algebra A, the set M(A) of all prime fil-
ters of A with binary relation R on it, defined in the following way:
xRy ⇔ (∀a ∈ A)(�a ∈ x ⇒ a ∈ y), and topologized by taking the fam-
ily β(a) = {F ∈ M(A) : a ∈ F}, for a ∈ A, and their complements as a
subbase of clopen sets is an object of KMG2; and for each MG2-algebra
homomorphism h : A → B, M(h) = h−1 : M(B) → M(A) is a morphism of
KMG2. More precisely, if A ∈ MG2, then A is G2-algebra (and G-algebra
as well). Therefore, MS(A) ∼= A. Analogically, since an object X of KMG2

is a descriptive G2-frame, we have that S(X) is a G2-algebra such that ♦
and � satisfy the axioms of MG2-algebras. So, we have two contravariant
functors: M : MG2 → KMG2 and S : KMG2 → MG2. These functors
establish a dual equivalence between the categories MG2 and KMG2.

Now we consider congruences in an MG2-algebra. Let us introduce some
abbreviations: ¬x = x ⇀ 0, �x = 1 ⇁ x.

Let T be an MG2-algebra. A subset F ⊂ T is said to be a Skolem filter
[11,30], if F is a filter (i.e. 1 ∈ F , if x ∈ F and x ≤ y, then y ∈ F , if
x, y ∈ F , then x ∧ y ∈ F ) and if x ∈ F , then ¬�x ∈ F . The equivalence
relation x ≡ y ⇔ (x ⇀ y) ∧ (y ⇀ x) ∈ F is a congruence relation for
the Skolem reduct of T [30]. In [30] it has been shown also that there is
a lattice isomorphism between the lattice of all congruences of a Skolem
algebra and the lattice of all Skolem filters of the Skolem algebra. A Skolem
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filter F is said to be ♦-filter if in addition it satisfies the following condition:
x ⇀ y ∈ F ⇒ ♦x ⇀ ♦y ∈ F .

Since ♦-filter is a Skolem filter (and, hence, a lattice filter as well), we have
that the equivalence relation ≡ preserves lattice operations and operations
⇀ and ⇁. We say that for any elements x, y ∈ A x ≡ y iff (x ⇀ y) ∧ (y ⇀
x) ∈ F . Observe that the equivalence relation x ≡ y preserves the operations
� and ♦. Indeed, (x ⇀ y) ≤ �(x ⇀ y) ≤ (�x ⇀ �y) (according to the first
and fourth axiom). So, if x ⇀ y ∈ F , then �x ⇀ �y ∈ F . Analogically, if
y ⇀ x ∈ F , then �y ⇀ �x ∈ F . Hence �x ≡ �y. Let x ⇀ y ∈ F . Then
♦x ⇀ ♦y ∈ F since it is a ♦-filter. Analogically we show that if y ⇀ x ∈ F ,
then ♦y ⇀ ♦x ∈ F . So, ♦x ≡ ♦y.

Now let ≡ is a congruence relation on an MG2-algebra A. Then F =
{x ∈ A : x ≡ 1} is a ♦-filter. Indeed, it is obvious that F is Skolem filter.
Now suppose that x ⇀ y ≡ 1. Then x ⇀ y ≡ 1 implies ♦(x ⇀ y) ≡ ♦1.
Then ♦1 ⇀ ♦(x ⇀ y) ≡ ♦1 ⇀ ♦1 = 1. Since ♦(x ⇀ y) ≤ ♦x ⇀ ♦y, we
have ♦1 ⇀ ♦(x ⇀ y) ≤ ♦1 ⇀ (♦x ⇀ ♦y) ≤ 1. So, ♦1 ⇀ (♦x ⇀ ♦y) ≡ 1.
But, ♦1 ⇀ (♦x ⇀ ♦y) = (♦1 ∧ ♦x) ⇀ ♦y) = ♦x ⇀ ♦y. From here we
deduce that ♦x ⇀ ♦y ≡ 1.

So we have

Theorem 2.3. Let T be an MG2-algebra. The lattice of all congruences of
the algebra T is isomorphic to the lattice of all ♦-filters of the algebra T .

According to the duality between the category of G2-algebras and the
category of (descriptive) G2-frames (= strongly symmetric Kripke frames)
the lattice of all congruences of an G2-algebra T is anti-isomorphic to the
lattice (by the inclusion relation ⊆) of all closed bicones of the G2-frame
(X,R) corresponding to T [11]. Analogically we have

Theorem 2.4. Let T be an MG2-algebra and (X,R) the MG2-frame cor-
responding to T . Then the lattice of all congruences of T is anti-isomorphic
to the lattice of all closed bicones of (X,R) (ordered by inclusion ⊆).

Proof. Let T be an MG2-algebra and (X,R) the MG2-frame correspond-
ing to T . Identify the elements of T with corresponding clopens of X. Let F
be a ♦-filter of T . Then V =

⋂{Y : Y ∈ F} is a closed cone of X. Taking
into account that F is a Skolem filter we have Y ∈ F ⇒ ¬�Y ∈ F for every
Y ∈ T . Notice that ¬�x ≤ x [30, Theorem 1.3]. But, since X is a disjoint
union of chains, we have that ¬�Y = −R−1

ρ (Rρ(−Y )) is a bicone of X. So,
V = {¬�Y : Y ∈ F} is closed bicone.

Conversely, if V is a closed bicone, then the set FV of all clopen cones of X
that contain V forms ♦-filter. Indeed, it is obvious that F is a filter. It is also
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Skolem filter because if a clopen Y contains V , then ¬�Y (= −R−1
ρ (Rρ(−Y )))

also contains V . Also, by the set-theoretical operations we deduce that if V
contains clopens Y1 and Y2 and Y1 ⇀ Y2 ∈ F , then V ⊂ ♦Y1 ⇀ ♦Y2.

It is obvious that if V1, V2 are closed bicones and V1 ⊂ V2, then
FV1 ⊃ FV2 .

Theorem 2.5. The variety MG2 is generated by its finite members.

Proof. Let P = Q be an equation that does not hold in the variety MG2.
We will show that there exists a finite MG2-algebra in which P = Q does
not hold. Observe, that if an MG2-algebra A is subdirectly irreducible, then
the MG2-frame (X,R) corresponding to A is linearly ordered [11] and A is
a chain as well.

Notice that any linearly ordered MG2-algebra A is subdirectly irre-
ducible. Indeed, the only non-trivial ♦-filter of A is {1} since ¬�a = 0
for any a �= 1. But {1} corresponds to the trivial congruence relation on A.

So, if some equation P = Q does not hold in the variety MG2, then it does
not hold in some subdirectly irreducible MG2-algebra A which is a chain. Let
a1, . . . , am ∈ A be the elements of A where the equation P = Q is refuted,
i.e. (P ⇀ Q) ∧ (Q ⇀ P ) �= 1 on the elements a1, . . . , am. It is clear that the
set of elements of A generated by the elements a1, . . . , am by means of the
operations ∧,∨,⇀,⇁ is finite, say D1(⊂ A). Add to this set D1 all values
of subterms of the term (P ⇀ Q) ∧ (Q ⇀ P ) (on the elements a1, . . . , am).
Notice, that the obtained set is also finite, say having n elements. Observe
that any finite chain algebra can be converted in a unique way into MG2-
algebra, where the operations � and ♦ are defined uniquely (see example
in this section). It is easy to check, that, if we take in such a way obtained
finite n-element chain MG2-algebra, then (P ⇀ Q) ∧ (Q ⇀ P ) �= 1 on
the corresponding elements of the MG2-algebra. From here we deduce the
statement of the theorem.

In that way we have proved that the variety MG2 is generated by its
finite members. Now we define the logic MG2 in algebraic terms: MG2 is
the set of all formulas valid in all finite totally ordered MG2-algebras. This
definition of the logic MG2 is equivalent to the Kripke semantic definition
given in the introduction.

As follows from the duality (Proposition 2.2) there is a one-to-one corre-
spondence between the homomorphic images of an MG2-algebra T and the
closed bicones of the MG2-frame (X,R) corresponding to it, and between
subalgebras of MG2-algebra T and correct partitions of (X,R) (for details
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see [16]), where a correct partition of a MG2-frame (Y, R) is an equivalence
relation E on Y , such that

• E is a closed equivalence relation, i.e. the E-saturation1 of any closed
subset is closed;

• E-saturation of any upper cone (down cone) is an upper cone (a down
cone);

• (∀x, y ∈ Y )(E(x) ∩ R−1(E(y)) �= ∅ ⇒ E(x) ⊆ R−1(E(y));
(∀x, y ∈ Y )(E(x) ∩ R(E(y)) �= ∅ ⇒ E(x) ⊆ R(E(y));

• for every x, y ∈ Y , if ¬(xEy), then there exists a saturated clopen upper
cone (down cone) U such that x ∈ U and y /∈ U or x /∈ U and y ∈ U .

• there is a MG2-frame (Z,Q) and a strongly isotone onto map f : Y → Z
such that Kerf = E.

Remark. Notice that if f : Y → Z is a strongly isotone onto map, then
E(= Kerf) is a correct partition. In this case all E-saturated clopen upper
cones of (Y,R) form a subalgebra of the algebra of all clopen upper cones
(Y,R), i.e. the E-saturated clopen upper cones of (Y, R) are closed under all
operations of MG2-algebra. It is provided by the conditions of the definition,
since for any saturated clopen subset U ⊂ Y we have that the sets R(U)
and R−1(U) are saturated clopen sets; and operations ⇀ and ⇁ are defined
by means of R and R−1. About correct partition (bisimulation equivalence
in other terminology) and correspondence between subalgebras and correct
partition we refer also to [2,3,12] for Heyting and monadic Heyting algebras.

Let (X,R) be a MG2-frame and x ∈ X. A chain out of x is a linearly
ordered subset of R(x) ∪ {x} with the least element x; the depth of x is the
maximum cardinality of a chain out of x denoted by depth(x).

Notice, that if (X,R) is a disjoint union of n-element chain MG2-frames
(Xi, Ri) (i = 1, . . . ,m), then there exists a unique order isomorphism ϕij :
Xi → Xj for every i, j ≤ m. Then the maximal correct proper partition
of (X,R) will be a partition, for which any class containing x contains also
the element ϕij(x) for every i, j ≤ m. If (X,R) is a disjoint union of an n-
element chain MG2-frame and an m-element chain MG2-frame with n �= m,
then there does not exist any non-trivial correct partition (see the example
below Fig. 1).

Indeed, let us consider any finite n-element strongly symmetric Kripke
frame (X,R) and E is non-trivial correct partition. Let us suppose that E(a)

1If V ⊆ Y then E-saturation of V is E(V ) =
⋃

x∈V E(x), where E(x) is a class of all

elements E-equivalent to x.
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(X1, R1) (X2, R2)

b

a c

Figure 1. Correct/incorrect partition

is a nontrivial E-equivalence class such that a is the smallest element of this
class and there exists b ∈ E(a) such that aRb. Then E(a) ∩ R(E(b)) �= ∅
(since it contains b), but E(a) � R(E(b)) (since a /∈ R(E(b))) that contra-
dicts to the correctness of E.

Let us consider strongly symmetric Kripke frame (X,R) which is dis-
joint union of three-element linearly ordered frame, say Y , and four-element
linearly ordered frame, say Z, and E is non-trivial equivalence relation,
where E-equivalent elements are inside ovals (or circle), see Fig. 1. Let a
be the smallest element of Y (three-element chain) and b be the smallest
element of Z (four-element chain). Then, R−1(a) ∪ {a} is a down cone, but
E(R−1(a) ∪ {a}) is not down cone because b /∈ E(R−1(a) ∪ {a}) which
contradicts to the correctness of E.

Therefore, if we have disjoint union of (say) two finite strongly symmet-
ric Kripke frames, then non-trivial equivalence relation E will be correct
partition only in the case when the frames have the same number of ele-
ments and any elements from E(x) have the same depth. Let us illustrate
correct partition by discussing two examples. Two MG2-frames, (X1, R1)
and (X2, R2), are depicted in Fig. 1, where (X1, R1) is a disjoint union of
two three-element MG2-frames and (X2, R2) is a disjoint union of three- and
four-element MG2-frames. The elements in the inside of ovals and circles are
E-equivalent. Then the partition for (X1, R1) is correct, but the partition
for (X2, R2) is not correct, since E(a) ∩ R(E(b)) �= ∅ and E(a) � R(E(b)),
where a is the bottom element of three-element chain and b is the bottom
element of four-element chain. Notice, that we can not take as an equivalence
class three bottom elements (the elements a, b and the element c which cov-
ers b)), since in this case R({a, b, c}) is not E-saturated, because it contains
c and does not contain a, b.

Recall some basic facts from universal algebra. Let K be a variety. Recall
that an algebra A ∈ K is said to be a free algebra over K, if there exists
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a set A0 ⊂ A such that A0 generates A and every mapping f from A0 to
any algebra B ∈ K has a unique extension to a homomorphism h from A
to B. In this case A0 is said to be a set of free generators of A. If the set of
free generators is finite, then A is said to be a free algebra on finitely many
generators. We denote a free algebra A with m ∈ (ω + 1) free generators by
FK(m). We shall omit the subscript K if the variety K is known.

We can characterize the m-generate free algebra A on the generators
g1, . . . , gm over the variety K in the following way: the algebra A is a
free algebra on the generators g1, . . . , gm iff for any m variable equation
P (x1, . . . , xm) = Q(x1, . . . , xm), the equation holds in the variety K iff the
equation P (g1, . . . , gm) = Q(g1, . . . , gm) is true in the algebra A on the free
generators [4,24]. We also formulate the characterization of m-generate free
algebra A on the generators g1, . . . , gm over the variety K given in [19], §26,
Theorem 1: A is a free algebra in K on the generators g1, . . . , gm if and
only if for any equality P (x1, . . . , xm) = Q(x1, . . . , xm), the later belongs the
equational theory of K if and only if P (g1, . . . , gm) = Q(g1, . . . , gm) is true
in A.

Let K be any variety of algebras. An algebra A is said to be a retract of the
algebra B, if there are homomorphisms ε : A → B and h : B → A such that
hε = IdA, where IdA denotes the identity map over A. An algebra A ∈ K
is called projective K, if for any B,C ∈ K, any epimorphism (that is an
onto homomorphism ) γ : B → C and any homomorphism β : A → C, there
exists a homomorphism α : A → B such that γα = β. In varieties, projective
algebras are characterized as retracts of free algebras. A subalgebra A of
FK(m) is said to be a projective subalgebra if there exists an endomorphism
h : FK(m) → FK(m) such that h(FK(m)) = A and h(x) = x for every
x ∈ A.

Now we will give some topological facts for descriptive frames which will
be very useful for a description of free and projective MG2-algebras.

Claim. Let (X,R) is a descriptive MG2-frame and Y ⊂ X a dense subset
of X (i.e. clY = X, where cl is the closure operator of the space X), then
the family {Y ∩ V : V is a closed and open upper subset of X} forms an
MG2-algebra, which is isomorphic to the MG2-algebra of all closed and
open upper subsets of X.

The correctness of this assertion follows from the general topological
property: if V is a clopen of X and Y ⊂ X is a dense subset of X, then
cl(Y ∩ V ) = V . Indeed, cl(Y ∩ V ) = V for any closed and open (clopen)
upper subset V of X, where Y ⊂ X is a dense subset of X, and (Y, RY )
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is a Kripke frame (not a descriptive MG2-frame, where RY is the restric-
tion of R to the subset Y ). Observe, that the set of all clopen subsets of
X forms Boolean algebra which is a base for clopen sets of the topology
τ of the Stone space X. Let Y be a dense subset of X. Then the family
{Y ∩ V : V is closed and open subset of X} forms a Boolean algebra which
is isomorphic to the Boolean algebra of the clopen subsets of the Stone
space (= zero-dimensional, Hausdorf and compact space) X. The topolog-
ical space Y , with the base {Y ∩ V : V is a closed and open subset of X}
of open subsets, is Hausdorff and zero-dimensional, but not compact (in
general). The compactification of the space Y by the base {Y ∩ V :
V is a closed and open subset of X} gives a Hausdorf, zero-dimensional and
compact space κY , which is homeomorphic to the Stone space X. Recall,
that the compactification of the space Y is a pair (κY, κ), where κY is a com-
pact space and κ : Y → κY a homeomorphic embedding such that clκ(Y ) =
κY . In the sequel, we identify Y with the homeomorphic image κ(Y ) ⊂ κY .
Extending this consideration to the relation RY (using the duality) we get
MG2-frame (κY, κRY ) which is isomorphic to (X,R). For detail information
on the topological spaces and compactifications we refer to [9] (where Stone
space is zero-dimensional, Hausdorf and compact space). So, to describe a
free algebra it is enough to have a proper dense subset of the space X.

3. Free MG2-algebras

This section is devoted to a description of the finitely generated free MG2-
algebras and a study some of their properties.

At first we describe the one-generated free MG2-algebra. We will describe
a frame (X,R) such that the free one-generated MG2-algebra may be
obtained as a subalgebra of the MG2-algebra of all upper cones (X,R).
(X,R) is depicted in Fig. 2 and this subalgebra is generated by a sin-
gle upper cone depicted by the encircled points. The above description of
one-generated free MG2-algebra we can generalize to the m-generated case
(m > 1).

Let (Cm
n , Rm

n ) (0 ≤ m ≤ n > 0) be an MG2-frame,2 where Cm
n is an

n-element set {cm
1 , . . . , cm

n } and Rm
n is an irreflexive and transitive relation

such that cm
1 Rm

n cm
2 . . . cm

n−1R
m
n cm

n . Let Xn =
∐n

m=0 Cm
n be a disjoint union of

Cm
n , Rn =

⋃n
m=0 Rm

n and (X,R) =
⋃∞

n=1(Xn, Rn). Let gm
n (0 ≤ m ≤ n > 0)

be the (unique) m-element upper cone of Cm
n and gn = {g0n, . . . , gn

n}. Then

2Notice, that if we have a finite frame, then we have discrete topology on it.
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Figure 2. A part of free cyclic MG2-frame

G =
⋃∞

n=1 gn ⊂ X. A part of X is depicted in the Fig. 2, where the generator
is represented by circles or ovals. So, we have (X,R) and G ⊂ X.

Let (T, ∪,∩,⇀,⇁,�,♦, ∅, X) be the algebra generated by G, within the
algebra of all upper cones of (X,R), by means of the following operations:
the union ∪, the intersection ∩, A ⇀ B = −R−1

ρ − (−A ∪ B), A ⇁ B =
Rρ(A ∩ −B), �(A) = −R−1 − (A), ♦(A) = R(A) for any upper cones of A
and B of Xn, where Rρ is a reflexive closure of the relation R.

Observe, that if A is an upper cone of a MG2-frame, then �A ⊇ A and
♦A ⊆ A (because of irreflexivity of R).

Lemma 3.1. The MG2-algebra Tm
n = S(Cm

n ) = (Con(Cm
n ),∪,∩,⇀, ⇁,

�,♦, ∅, Cm
n ) is generated by any element of Tm

n , where Con(Cm
n ) is the

set of all upper cones of (Cm
n , Rm

n ), ∪ is the union, ∩ is the intersec-
tion, A ⇀ B = −(Rm

n )−1
ρ − (−A ∪ B), A ⇁ B = (Rm

n )ρ(A ∩ −B),
�A = −(Rm

n )−1 − (A), ♦A = Rm
n (A).

Proof. Observe that MG2-algebra Tm
n is generated by the empty set ∅.

Indeed, ∅ < �(∅) < · · · < �n(∅), hence ∅ generates Tm
n . Also, using ¬ and

∧, from any element of Tm
n we can obtain ∅ and this is way any element of

Tm
n generates this algebra.

Theorem 3.2. The algebra

(T, ∪,∩,⇀,⇁,�,♦, ∅, X)

is freely generated in MG2 by a single element.

Proof. It is obvious that (T, ∪,∩,⇀,⇁,�, ♦, ∅, X) is an MG2-algebra,
which is a subdirect product of subdirectly irreducible MG2-algebras Tm

n

corresponding to the MG2-frames (Cm
n , Rm

n ) (0 ≤ m ≤ n > 0. Therefore
any true MG2-algebra equation holds in T . Now, let us suppose that some
equation with one variable P = Q does not hold in the variety MG2. Then
P = Q does not hold in some finite subdirectly irreducible MG2-algebra
A. A MG2-frame corresponding to A is isomorphic to some finite MG2-
frame, say (Y,R), which is isomorphic to (Cm

n , Rm
n ) for some non-negative

integer n. Obviously, (Cm
n , Rm

n ) is a bicone of (X,R). Therefore, there exists
a homomorphism h : T → A, sending the generator of T to the generator of
A. From here we conclude that the equation P = Q does not hold in T .
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Suppose (X; R) is an MG2-frame, A = S(X) and g1, . . . , gn ∈ A. Now
we will present a criterion to decide whether the algebra A is generated by
g1, . . . , gn. Our criterion extends the analogous one for descriptive intuition-
istic frames from [15] to MG2-frames.

Denote by n the set {1, . . . , n}. Given g1, . . . , gn and given p ⊆ n, we
define Gp to be the set of all x ∈ X such that for i = 1, . . . , n, x ∈ gi iff
i ∈ p, and given x ∈ X we set Col(x) = {i ∈ n : x ∈ gi}.

It is obvious that {Gp}p⊆n is a partition of X which we call the colouring
of X.3 A point x ∈ Gp is said to have the colour p, written as Col(x) = p.
Let us note that gi =

⋃{Gp : i ∈ p}, i = 1, . . . , n.

Lemma 3.3. Suppose E is a correct partition of X and {g1, . . . , gn} is an
arbitrary set of subsets of X. The following two conditions are mutually
equivalent:

(1) Every gi is E-saturated, that is E(gi) = gi(1 ≤ i ≤ n);

(2) Every class Gp is E-saturated, that is E(Gp) = Gp(p ⊆ n).

Proof. Easy.

Theorem 3.4. (Colouring Theorem) A is generated by g1, . . . , gn iff for
every non-trivial correct partition E of X(= M(A)), there exists an equiva-
lence class of E containing points of different colours.

Proof. Let us identify A with the set of clopen upper cones of X(= M(A))
and g1, . . . , gn with corresponding clopen upper cones of X. Suppose A is
generated by g1, . . . , gn and E is a non-trivial correct partition of X. Con-
sider the set AE of E-saturated elements of A. Notice, that AE is the sub-
algebra of E-saturated upper cones of X which is a subalgebra of A cor-
responding to the partition E and, since E is non-trivial, AE �= A. Since
g1, . . . , gn generate A and E is a proper correct partition of X, there exists
i ≤ n such that gi /∈ AE . Therefore there exists p ⊆ n such that Gp is not
E-saturated. But then there exists x ∈ Gp such that E(x) ∩ Gp �= ∅ and
E(x) ∩ −Gp �= ∅. Hence E(x) contains points of different colour.

Conversely, suppose A is not generated by g1, . . . , gn. Denote by A0 the
least subalgebra of A containing g1, . . . , gn. Obviously A0 is a proper sub-
algebra of A and the correct partition E of X corresponding to A0 is non-
trivial.4 Moreover, since g1, . . . , gn ∈ A0, E(gi) = gi(1 ≤ i ≤ n) and hence

3It is also clear that Gp are the atoms of the Boolean algebra B(g1, . . . , gn) generated
(in the Boolean algebra of all subsets of X) by g1, . . . , gn ⊂ X.

4E is defined on X by putting xEy iff x ∈ U ⇔ y ∈ U for every U ∈ A0.
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Figure 3. Colouring of MG2-frame

E(Gp) = Gp(p ⊆ n). But then every equivalence class of E contains only
points of the same colour.

We now turn to the general case and describe the m-generated free MG2-
algebra. We do so by constructing a Kripke frame and by specifying a sub-
algebra of the MG2-algebra of its upper cones.

Let X(m) be a disjoint union of finite linearly ordered MG2-frames such
that for any positive integer n the number of n-element chains is defined in
the following way. The number of n-element chains in X(m) is defined to be
the number of colorings of the n-element chain (X,R) that satisfy, for all
x, y ∈ X, if xRy, then Col(x) ⊆ Col(y).

Let Gi = {x ∈ X(m) : i ∈ Col(x)}, i = 1, . . . ,m and (T (m),∪,∩, ⇀, ⇁,
�,♦, ∅, X) be an algebra of all upper cones of X(m) generated by Gi =
{x ∈ X(m) : i ∈ Col(x)}, i = 1, . . . , m by means of the operations: ∪, ∩,
A ⇀ B = −R−1

ρ − (−A ∪ B), A ⇁ B = Rρ(A ∩ −B), �A = −(R−1 − (A),
♦A = R(A). Then the MG2-algebra (T (m),∪,∩,⇀, ⇁,�,♦, ∅, X) will be
the m-generated free algebra in the variety MG2. In the one-generated case,
depicted in Fig. 2, the elements inside circles or ovals are colored in color
{1} and other elements in color ∅.

In Fig. 3 the part of X(2) containing the one and two-element chains is
depicted. The elements of these chains is colored by p ⊂ {1, 2} colors.

Now we give some facts concerning to the representation of m-generated
MG2-algebra as a subalgebra of inverse limit of the family of m-generated
free MG2-algebras in the subvarieties of MG2 generated by finite number
of finite chain MG2-algebra. Moreover, we will give a characterization of
finitely presented MG2-algebras.

We denote by MG2
n the variety of MG2-algebras generated by

{S1, . . . , Sn}, where Si (1 ≤ i ≤ n) is the (i + 1)-element linearly ordered
MG2-algebra, i.e. M(Si) is linearly ordered i-element MG2-frame. This sub-
variety of the variety MG2 can be picked out by the identity: �n0 = 1.
Notice that MG2

n is a locally finite variety and MG2 is generated by
⋃

n∈ω MG2
n.
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Observe that the m-generated free MG2
n-algebra FMG2

n
(m) is a homo-

morphic image of FMG2(m) such that dually the MG2-frame Xn(m) of
FMG2

n
(m) is the bicone of the MG2-frame X(m) of FMG2(m) containing

the i-element linearly ordered subframes for i ≤ n. It is clear that FMG2
n
(m)

is finite.
We recall that if K is a variety of algebras and Ω is a set of m-ary

K-equations, then FK(m, Ω) is the object free over K with respect to the
conditions Ω on the generators (see [19]).

An algebra A is called finitely presented if A is finitely generated, by the
generators a1, . . . , am ∈ A, and there exist a finite number of equations
P1(x1, . . . , xm) = Q1(x1, . . . , xm), . . . , Pn(x1, . . . , xm) = Qn(x1, . . . , xm)
holding in A on the generators a1, . . . , am ∈ A such that if there exists an m-
generated algebra B, with generators b1, . . . , bm ∈ B, such that the equations
P1(x1, . . . , xm) = Q1(x1, . . . , xm), . . . , Pn(x1, . . . , xm) = Qn(x1, . . . , xm)
hold in B on the generators b1, . . . , bm ∈ B, then there exists a unique
homomorphism h : A → B sending ai to bi.

Observe that we can rewrite any equation P (x1, . . . , xm) = Q(x1, . . . , xm)
in the variety MG2 into an equivalent one P (x1, . . . , xm) ↔ Q(x1, . . . , xm)
= 1, where P (x1, . . . , xm) ↔ Q(x1, . . . , xm) = (P (x1, . . . , xm) ⇀ Q(x1, . . . ,
xm)) ∧ (Q(x1, . . . , xm) ⇀ P (x1, . . . , xm)). So, for MG2 we can replace n
equations by one

n
∧

i=1

Pi(x1, . . . , xm) ↔ Qi(x1, . . . , xm) = 1.

Lemma 3.5. Let P be an m-ary polynomial. Then there is a principal ♦-filter
J of FMG2(m) such that FMG2(m, {P = 1}) ∼= FMG2(m)/J .

Proof. Let J = {x : x ∈ FMG2(m), x ≥ ¬�P (g1, . . . , gm)}, where
g1, . . . , gm are free generators of FMG2(m), that is ♦-filter since
¬ �P (g1, . . . , gm) corresponds to clopen bicone. Then g1/J, . . . , gm/J are
generators of FMG2(m)/J , which has required universal property. Let A
be an MG2-algebra generated by a1, . . . , am, P (a1, . . . , am) = 1 and f :
FMG2(m) → A be the homomorphism such that f(gi) = ai, i = 1, . . . , m.
Then P (g1, . . . , gm) ∈ f−1({1}) and J ⊂ f−1({1}). By the homomor-
phism theorem there is a homomorphism f ′ : FMG2(m)/J → A such
that f ′πJ = f , where πJ is a natural homomorphism from FMG2(m) to
FMG2(m)/J . It should be clear that f ′ is needed homomorphism extending
the map gi/J → ai. Observe that the same statement holds for FMG2(m,E)
where E = {P (x1, . . . , xm) = 1}.



134 R. Grigolia et al.

Lemma 3.6. Let 0 �= u ∈ FMG2(m). Then J = {x : x ≥ ¬ �u} is a proper
♦-filter in FMG2(m) such that FMG2(m)/J ∼= FMG2(m, {P = 1}) for some
m-ary polynomial P .

Proof. Let J be a ♦-filter satisfying the condition of the Lemma. Then u =
P (g1, . . . , gm) for some polynomial P, where g1, . . . , gm are free generators.
We have that FMG2(m)/J is generated by g1/J, . . . , gm/J , and that

P (g1/J, . . . , gm/J) = P (g1, . . . , gm)/J = 1F (m)/J .

The rest can be verified as in the proof of Lemma 3.5.

Theorem 3.7. If A ∈ MG2 is finite and generated by m elements, then
there is a principal filter J such that A ∼= FMG2(m)/J .

Proof. Let A ∈ MG2 be finite and suppose that A is generated by
a1, . . . , am ∈ A. Let Pai

be the m-ary polynomial xi, i = 1, . . . , n, and in gen-
eral let Px be a polynomial such that Px(a1, . . . , am) = x, for each x ∈ A. Let
Ω be the collection of equations of the type Px ∨Py = Px∨y, Px ∧Py = Px∧y,
Px ⇀ Py = Px⇀y, Px ⇁ Py = Px⇁y, �Px = P�x, ♦Px = P♦x and
P0 = 0, P1 = 1. Then A ∼= FMG2(m, Ω). For if B is generated by b1, . . . , bm

and b1, . . . , bm satisfy Ω then {Px(b1, . . . , bm) : x ∈ A} = B and the map
f : A → B defined by f(x) = Px(b1, . . . , bm) is a homomorphism extending
the map ai �→ bi, i = 1, . . . , m. Since Ω is finite, the theorem follows.

Theorem 3.8. If A ∈ FMG2(m) is finitely presented with the collection
of symbols z1, . . . , zm and an equation P (z1, . . . , zm) = 1, then there is a
principal ♦-filter J of FMG2(m) such that A ∼= FMG2(m)/J .

Proof. Let B ∈ MG2 and B is generated b1, . . . , bm with P (b1, . . . , bm) =
1. Then the map gi �→ bi, i = 1, . . . , m and g1, . . . , gm are free genera-
tors of FMG2(m), can be extended to a homomorphism of FMG2(m) onto
B. That is, there exists a ♦-filter F such that B ∼= FMG2(m)/F . Since
P (b1, . . . , bm) = 1, we have P (g1, . . . , gm) ∈ F . Let J be the principal ♦-
filter of FMG2(m) generated by P (g1, . . . , gm). It is obvious that J ⊆ F . By
the homomorphism theorem there is a homomorphism of FMG2(m)/J onto
FMG2(m)/F and hence a homomorphism of FMG2(m)/J onto B. Hence,
FMG2(m)/J is a finitely presented algebra with collection of generating
symbols z1, . . . , zm and the equation P (z1, . . . , zm) = 1. According to [23]
(Chapter 5, Corollary 2) A ∼= FMG2(m)/J .

From the Lemmas 3.5, 3.6 and Theorem 3.8 we have

Theorem 3.9. An m-generated MG2-algebra A is finitely presented iff

A ∼= FMG2(m)/[u),
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where [u) is a principal ♦-filter generated by some element u ∈ FMG2(m).

Now we represent m-generated free MG2-algebra by means of inverse
limit, and so we construct inverse system, which will be useful for charac-
terization of finitely generated projective MG2-algebras.

Theorem 3.10. FMG2(m) is isomorphic to a subalgebra of an inverse limit
F∞(m) of a chain of order type ω∗ of finite algebras, for m ∈ ω, and the
finite algebras are isomorphic to FMG2

n
(m).

Proof. Let g
(n)
1 , . . . , g

(n)
m be the free generators of FMG2

n
(m), m ∈ ω. By

Theorem 3.7 there is a principal ♦-filter J , that is generated by �n0, such
that FMG2(m)/J ∼= FMG2

n
(m), where gi/J corresponds to g

(n)
i for i =

1, . . . , m. In fact, there is a chain of filters J1 ≤ J2 ≤ J3 ≤ · · · , where
Ji ≤ Jj iff Ji ⊃ Jj , such that for each n ∈ ω there is an isomorphism
σn : FMG2(m)/Jn → FMG2

n
(m), with the property that σn ◦ hn = fn,

fn being the homomorphism FMG2(m) → FMG2
n
(m) satisfying fn(gi) =

g
(n)
i , i = 1, . . . , m, and hn being the projection FMG2(m) → FMG2(m)/Jn,

defined by gi → gi/Jn. Observe, that the inclusion Jj ⊂ Ji with j > i is
based on the inequality �i0 < �j0 which valid in FMG2(m).

Let πkl : FMG2(m)/Jk → FMG2(m)/Jl for k ≥ l ≥ 1 be the
homomorphism defined by x/Jk �→ x/Jl (Jk ⊂ Jl) (See Fig. 4). Then
πlt ◦ πkl = πkt for k ≥ l ≥ t ≥ 1. Thus, we have an inverse sys-
tem UMG2

m = {FMG2(m)/Jk, πkl : k ≥ l ≥ 1} and its inverse limit
F∞(m) = lim UMG2

m exists, since the quotients FMG2(m)/Jk, k ≥ 1, are
finite. F∞(m) = {(xk)k ∈ ∏∞

k=1 FMG2(m)/Jk : πlt(xl) = xt, l ≥ t ≥ 1}.
Let πn : F∞(m) → FMG2(m)/Jn be the canonical projections and

zi = (gi/J1, gi/J2, . . .), i = 1, . . . ,m. Then zi ∈ F∞(m). We consider the
subalgebra of F∞(m) generated by {z1, . . . , zm} and show that it is isomor-
phic to FMG2(m) by proving that it has the required universal property.
Since MG2 =

⋃

n∈ω MG2
n, we only need to show that every map zi �→ ai to

an algebra A generated by {a1, . . . , am} which belongs to some MG2
n can be

extended to a homomorphism from the algebra A1 generated by {z1, . . . , zm}
to A. But if A ∈ MG2

n, then there is a homomorphism h : FMG2
n
(m) → A

such that h(g(n)i ) = ai i = 1, . . . ,m and h ◦ σn ◦ πn|A1 : A1 → A is the
needed homomorphism extending the map zi �→ ai, i = 1, . . . , m.

FMG2(m)/J1 FMG2(m)/J2 FMG2(m)/J3 ...F∞(m) FMG2(m)
π12 π23 π34

Figure 4. Inverse system of factors of FMG2(m)
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4. Projective MG2-algebras

This section is devoted to a study of finitely generated projective MG2-
algebras.

Theorem 4.1. For every m and n any subalgebra A of the algebra FMG2
n
(m)

is a retract of FMG2
n
(m), i.e. for any injective homomorphism ε : A →

FMG2
n
(m) there is a surjective homomorphism h : FMG2

n
(m) → A such that

hε = IdA.

Proof. We will prove this Theorem using duality. Let (Xn(m), Rn) be the
MG2-frame corresponding to the m-generated free MG2

n-algebra FMG2
n
(m),

i.e. (Xn(m), Rn) = M(FMG2
n
(m)). Let E be the correct partition of

(Xn(m), Rn) corresponding to the subalgebra ε(A) of the algebra FMG2
n
(m).

Then (Xn(m)/E,RE
n ) is an MG2-frame corresponding to the algebra

A, where (∀V1, V2 ∈ Xn(m)/E) V1R
E
n V2 ⇔ (∃v1, v2)(v1 ∈ V1, v2 ∈

V2)(v1Rnv2). Notice, that Xn(m) is a finite set (as well as Xn(m)/E). The
algebra A is isomorphic to the saturated upper cones of Xn(m). Identify
the elements of A with the corresponding saturated cones of Xn(m). Let
U be a join irreducible bicone of Xn(m)/E (i.e. if U = U1 ∪ U2, where
U1, U2 are bicones of Xn(m)/E, then either U = U1 or U = U2). The
bicone U contains a join irreducible bicone XU of Xn(m). The disjoint union
X =

∐

E(U)=U XU of all such kind of bicones is a bicone of (Xn(m), Rn).
It is clear that (Xn(m)/E,RE

n ) ∼= (X,R′
n), where R′

n is the restriction of
Rn on X(⊂ Xn(m)). To see this phenomenon more sharply let us con-
sider the MG2-frame (X1, R1) depicted in the Fig. 1. (X1, R1) is a cardinal
sum of two three-element chains. The elements in the inside of ovals are
equivalent. The only saturated bicone U of the MG2-frame is (X1, R1).
Obviously that U(= X1) contains a three-element bicone, say XU , and
(X1/E,RE

1 ) ∼= (X,R′
1), where X = XU and R′

1 is the restriction of R1 on
X. So, we have a strongly isotone embedding f : X → Xn(m) and strongly
isotone onto map g : Xn(m) → X, corresponding to the existing correct
partition E, such that gf = IdX , where g(x) = E(x) ∩ X. So, according to
the duality, for a given injective homomorphism ε : A → Fn(m) there exists
a surjective homomorphism h : Fn(m) → A such that hε = IdA, where
ε = S(g) and h = S(f).

From this theorem we it follows

Corollary 4.2. Any m-generated subalgebra A of the m-generated free
MG2

n-algebra FMG2
n
(m) is projective.
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FMG2
1
(m) FMG2

2
(m) FMG2

3
(m) ...F∞(m) FMG2(m)

A1 A2 A3
... A∞ A

π12 π23 π34 δ

ε1h1 h2 ε2 h3 ε3 h∞ ε∞ h ε

π12 π23 π34 δ

Figure 5. Inverse system MG2-algebras

Proof. The proof immediately follows from Theorem 4.1.

From Theorems 3.10, 4.1 and Corollary 4.2 follows

Theorem 4.3. Any m-generated subalgebra of the m-generated free MG2-
algebra FMG2(m) is projective.

Proof. Let A be an m-generated MG2-subalgebra of FMG2(m). We rep-
resent FMG2(m) as a subalgebra of the inverse limit F∞(m) of the inverse
system {FMG2

k
(m), πkl : k ≥ l ≥ 1} (Theorem 3.10). Let An = πn(A) ⊂

FMG2
n
(m) be the subalgebra of FMG2

n
(m) that is the image of the canon-

ical projection πn : FMG2(m) → FMG2
n
(m). Then the subalgebra A of

FMG2(m) can be represented as a subalgebra of an inverse limit A∞ of
inverse system {Ak, π′

kl : k ≥ l ≥ 1}, where π′
kl is a restriction of πkl

on the subalgebra Al ⊂ FMG2
l
(m) (see Fig. 5). Let ε : A → FMG2(m)

(εn : An → FMG2
n
(m)) be an embedding (identity map). According to the

Theorem 4.1 for the embedding εn there exists surjective homomorphism
hn : FMG2

n
(m) → An such that hnεn = IdAn

. Dually, we have the dia-
gram depicted in the Fig. 5, where we denote by f∗ its dual S(f). Using
the duality we have ε∗

i+1 = π′∗
i(i+1)ε

∗
i , π∗

i(i+1)h
∗
i = h∗

i+1π
′∗
i(i+1) and hence

πi(i+1)εi+1 = εiπ
′
i(i+1), hiπi(i+1) = π′

i(i+1)hi+1 (Fig. 6).
Let us consider a fragment of this diagram represented in the Fig. 7.

Observe that π∗
n(n+1) : Xn(m) → Xn+1(m) is an embedding, i.e.

π∗
n(n+1)(Xn(m)) is a subbicone of Xn+1(m). Then En+1 ∩ X2

n(m) = En,
where Kerε∗

i = Ei for i = n, n + 1.
Observe, that π∗

n(n+1)h
∗
n = h∗

n+1π
′∗
n(n+1). Let h = (h1, h2, h3, . . .) and ε =

(ε1, ε2, ε3, . . .). Let ai = (a(i)
1 , a

(i)
2 , a

(i)
3 , . . .), i = 1, . . . ,m, be generators of A.

Then hε(ai) = (h1ε1(a
(i)
1 ), h2ε2(a

(i)
2 ), h3ε3(a

(i)
3 ), . . .) = (a(i)

1 , a
(i)
2 , a

(i)
3 , . . .) =

ai. So, A is projective.
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X1(m) X2(m) X3(m) ... X∞ X(m)

XA1 XA2 XA3
... X∞ XA

π∗
12 π∗

23 π∗
34 δ∗

ε∗
1h∗

1 h∗
2 ε∗

2 h∗
3 ε∗

3 h∗∞ ε∗∞ h∗ ε∗

π ∗
12 π ∗

23 π ∗
34 δ ∗

Figure 6. Direct system of MG2-frames

Xn(m) Xn+1(m)

XAn XAn+1(m)

π∗
n(n+1)

h∗
n ε∗

n h∗
n+1

π ∗
n(n+1)

ε∗
n+1

Figure 7. A part of diagram of direct system of MG2-frames

MG2-frame X3(1) with a correct partition is depicted in the Fig. 8, where
non-trivial classes are represented by elements inside rectangle.

Notice, that any finite MG2-algebra is not projective, since it is not a
retract of any free MG2-algebra. Indeed, FMG2(m) have no finite subalge-
bras. If A is a subalgebra of FMG2(m) then there exists non-trivial correct
partition with non-trivial equivalence class containing infinitely many ele-
ments having different depths.

Proposition 4.4. [7,25] Let V be a variety and FV(m) be an m-
generated free algebra of the variety V, and let g1, . . . , gm be its free
generators. Then an m-generated subalgebra A of FV(m) with genera-
tors a1, . . . , am ∈ A is projective if and only if there exist polynomials
P1(x1, . . . , xm), . . . , Pm(x1, . . . , xm) such that

Pi(g1, . . . , gm) = ai

and

Pi(P1(x1, . . . , xm), . . . , Pm(x1, . . . , xm)) = Pi(x1, . . . , xm), i = 1, . . . , m.
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Figure 8. MG2-frame X3(1) with a correct partition

From the Proposition we obtain that in FV(m) holds

Pi(P1(g1, . . . , gm), . . . , Pm(g1, . . . , gm)) = Pi(g1, . . . , gm) = ai,

i = 1, . . . ,m, i.e. Pi(a1, . . . , am) = ai in A. This suggests to consider the
free object FV(m, Ω) over the variety V with respect to the set of equations
Ω = {P1(x1, . . . , xm) = x1, . . . , P1(x1, . . . , xm) = xm}.

Adapting the result obtained in [25] for the variety MG2 it holds the
following

Theorem 4.5. If A is an n-generated projective MG2-algebra, then A is
finitely presented.

Proof. Since A is n-generated projective MG2-algebra, A is a retract of
FMG2(n), i.e. there exist homomorphisms h : FMG2(n) → A and ε : A →
FMG2(n) such that hε = IdA, h(gi) = ai, and moreover, according to Propo-
sition 4.4, there exist n polynomials P1(x1, . . . , xn), . . . , Pn(x1, . . . , xn) such
that

Pi(g1, . . . , gn) = ε(ai) = εh(gi)

and

Pi(P1(x1, . . . , xn), . . . , Pn(x1, . . . , xn)) = Pi(x1, . . . , xn), i = 1, . . . , n,

where g1, . . . , gn are the free generators of FMG2(n). Observe that h(g1), . . . ,
h(gn) are generators of A, where h(gi) = ai ∈ A, i = 1, . . . , n. Let e be
the endomorphism εh : FMG2(n) → FMG2(n). This endomorphism has
properties: ee = e and e(x) = x for every x ∈ ε(A).

Let us consider the set of equations Ω = {Pi(x1, . . . , xn) ↔ xi = 1 : i =
1, . . . , n} and let u =

∧n
i=1(Pi(g1, . . . , gn) ↔ gi) ∈ FMG2(n), where x ↔ y

is an abbreviation of (x ⇀ y) ∧ (y ⇀ x). Then, according to Theorem 3.9,
FMG2(m)/[u) ∼= FMG2(n, Ω). We will show that A ∼= FMG2(n, Ω). Observe
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that the equations from Ω are true in A on the elements ai and ε(ai) =
e(gi), i = 1, . . . , n. Indeed, since e is an endomorphism

e(u) =
n
∧

i=1

e(gi) ↔ Pi(e(g1), . . . , e(gn)).

But taking into account that e(gi) = Pj(g1, . . . , gn), we have Pi(e(g1), . . . ,
e(gn)) = Pi(P1(g1, . . . , gn), . . . , Pn(g1, . . . , gn)) = Pi(g1, . . . , gn) = εh(gi) =
e(gi), for i = 1, . . . , n. Hence e(u) = 1 and u ∈ e−1(1), i.e. [u) ⊆ e−1(1).
Therefore there exists a homomorphism f : FMG2(n)/[u) → ε(A) such that
the diagram

commutes, i.e. fr = e, where r is a natural homomorphism sending x to
x/[u). Now consider the restrictions e′ and r′ on ε(A) ⊆ FMG2(n) of e and
r respectively.

Then fr′ = e′. But e′ = Idε(A). Therefore fr′ = Idε(A). We conclude
that r′ is an injection. Finally we show that r′ is surjective by proving
that r(ε(ai)) = r(gi) for all i. That is, we show that ε(ai) ↔ gi ∈ [u).
Indeed e(gi) = Pi(g1, . . . , gn) and gi ↔ Pi(g1, . . . , gn) = gi ↔ e(gi), where
e(gi) = εh(gi). So gi ↔ Pi(g1, . . . , gn) ≥ ∧n

i=1 gi ↔ Pi(g1, . . . , gn), i.e. gi ↔
Pi(g1, . . . , gn) ∈ [u). Hence r′ is an isomorphism between ε(A) and F (n)/[u).
Consequently A(∼= ε(A)) is finitely presented.

Hereby, we arrived to the following

Theorem 4.6. An m-generated MG2-subalgebra of the m-generated free
MG2-algebra FMG2(m) is finitely presented if and only if it is projective.

Analogous results were obtained by Ghilardi for MVn-algebras (alias n-
valued Lukasiewicz algebras), Gödel algebras [18].

The rest of the paper is devoted to analysis of the m-generated free MG2-
algebra FMG2(m) and its Kripke frames.
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Recall that (X,R) is an MG2-frame, then X is a Stone space, i.e. 0-
dimensional, Hausdorff and compact space. Let (κX(m), κR) be the MG2-
frame corresponding to the algebra FMG2(m). Then κX(m) is the set of all
prime filters of FMG2(m). And the Boolean algebra generated by all clopen
upper cones of κX(m) forms the basis for the topology of the space κX(m).
κX(m) contains the set of all principal prime filters of FMG2(m) which we
identify with X(m). These principal prime filters are generated by upper
cones of Cm

n . We will show that X(m) is a dense subset of κX(m).

Theorem 4.7. Any finite cone of (X(m), R) is an element of FMG2(m).

Proof. Recall that the binary relation R is irreflexive and ♦(A) = R(A) for
A ⊂ X(m). So, notice, that if A is an upper cone, then ♦(A) = A − minA,
where minA is the set of all minimal elements of A. From this observation
we have that ¬(♦(X)) consists of the set of all one-element bicones (which
is finite and isomorphic to (X1(m))), and ¬(♦2(X)) consists of the set all
one- and two-element bicones (which is finite and isomorphic to (X2(m)));
and ¬(♦n(X)) consists of the set all i-element bicones (which is finite and
isomorphic to (Xi(m))) where i ≤ n and ¬Y = −R−1

ρ (Y ), ♦k+1(Y ) =
♦(♦k(Y ))). So, any finite cone of (X(m), R) is an element of FMG2(m).

Corollary 4.8. Any singleton {x}, for x ∈ X(m), is closed and open
(clopen) in κX(m).

Proof. Any element x of any irreducible bicone of X(m) represents a prin-
cipal prime filter generated by R(x) ∪ {x}. From here we conclude that a
singleton {x}, for x ∈ X, is closed and open (clopen).

Corollary 4.9. X(m) is a dense subset of κX(m).

Proof. Since X is the unit (top) element of FMG2(m), we have that clX =
κX, where cl is the closure operator of the space κX.

From this Corollary we conclude that if Y is an element of FMG2(m), then
clY will be a clopen subset of κX which we denote by κY .
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