

Fernando Ferreira Gilda Ferreira

The Faithfulness of Fat: A Proof-Theoretic Proof

Abstract. It is known that there is a sound and faithful translation of the full intuitionistic propositional calculus into the atomic polymorphic system **Fat**, a predicative calculus with only two connectives: the conditional and the second-order universal quantifier. The faithfulness of the embedding was established quite recently via a model-theoretic argument based in Kripke structures. In this paper we present a purely proof-theoretic proof of faithfulness. As an application, we give a purely proof-theoretic proof of the disjunction property of the intuitionistic propositional logic in which commuting conversions are not needed.

Keywords: Predicative polymorphism, Faithfulness, Natural deduction, Strong normalization, Intuitionistic propositional calculus, Disjunction property.

1. Introduction

A *propositional formula* is a formula built from a stock of propositional letters (or constants) P, Q, R , etc using the propositional connectives \perp, \wedge, \vee and \rightarrow . In [\[6\]](#page-8-0), Prawitz defined the following translation:

$$
(P)^{\star} := P, \text{ with } P \text{ a propositional constant}
$$

\n
$$
(\bot)^{\star} := \forall X.X
$$

\n
$$
(A \to B)^{\star} := A^{\star} \to B^{\star}
$$

\n
$$
(A \land B)^{\star} := \forall X((A^{\star} \to (B^{\star} \to X)) \to X)
$$

\n
$$
(A \lor B)^{\star} := \forall X((A^{\star} \to X) \to ((B^{\star} \to X) \to X)),
$$

where X is a second-order propositional variable which does not occur in A^* or B^* . The target language is the language of Girard's (polymorphic) system \bf{F} (cf. [\[5](#page-8-1)]). It consists of the smallest class of expressions which includes the atomic formulas (propositional constants P, Q, R, \ldots and second-order propositional variables X, Y, Z, \ldots and is closed under implication and second-order universal quantification. Note that the translation A^* of a propositional formula A is, clearly, a formula without second-order

Presented by **Jacek Malinowski**; *Received* February 10, 2015

free variables. Prawitz's translation is actually an embedding of the propositional intuitionistic calculus into system **F** in the sense that if $\vdash_i A$ then $\vdash_{\mathbf{F}} A^*$ (here \vdash_i denotes provability in the intuitionistic propositional calculus and $\vdash_{\mathbf{F}}$ denotes provability in the system **F**).

In 2006, the first author noticed (cf. [\[1](#page-8-2)]) that the above embedding still works if the target system **F** is restricted to a predicative system nowadays known as **Fat** (an acronym for *atomic polymorphism*). The atomic polymorphic system $\mathbf{F}_{\mathbf{at}}$ has the same formulas as \mathbf{F} , but replaces the secondorder universal elimination rule by a predicative variant. For definiteness, we describe the (natural deduction) rules of **Fat**. The introduction rules are as in **F**:

$$
\langle A \rangle
$$

\n
$$
\vdots
$$

\n
$$
\frac{B}{A \to B} \to I
$$

\n
$$
\frac{A}{\forall X.A} \forall I
$$

where the notation $\langle A \rangle$ says that the formula A is being discharged and, in the universal rule, X does not occur free in any undischarged hypothesis. The elimination rules of **Fat** are, however,

$$
\begin{array}{ccc}\n\vdots & \vdots & \vdots \\
\frac{A \to B & A}{B} \to E & \frac{\forall X.A}{A[C/X]} \,\forall E\n\end{array}
$$

where C is an *atomic* formula (free for X in A), and $A[C/X]$ is the result of replacing in A all the free occurrences of X by C . Note that only atomic instantiations are permitted in the ∀E rule. This contrasts with the (impredicative) system \mathbf{F} , where C can be any formula.

The reason why, despite the restriction of the ∀E-rule, the system **Fat** is still able to embed full intuitionistic propositional calculus lies in the availability of *instantiation overflow*, i.e., for the three types of universal formulas occurring in Prawitz's translation, it is possible to derive in **Fat** the formulas resulting from instantiations of the second-order variable X by *any* formula, not only the atomic ones. For a complete description of instantiation overflow and of the embedding see $[1,2]$ $[1,2]$ $[1,2]$. In the former reference, it is also shown that **Fat** has both the subformula property (for normal derivations) and an appropriate form of the disjunction property. (The notion of subformula only needs explanation for universal formulas. The proper subformulas of a formula of the form $\forall X.A[X]$ are the subformulas of the formulas of the form $A[C/X]$, for C an *atomic* formula free for X in A.) The latter reference

is a study on the translation of the commuting conversions of the intuitionistic propositional calculus into $\mathbf{F}_{\mathbf{at}}$. Note that, since the connectives \perp , \vee and ∃ are absent from **Fat**, this system has no commuting conversions. For more on **Fat**, including a proof that the system is strongly normalizable for β η-conversions, see [\[3\]](#page-8-4).

As we have discussed, Prawitz's translation $(\cdot)^*$ gives a sound embedding of the intuitionistic propositional calculus into $\mathbf{F}_{\textbf{at}}$, that is: If $\vdash_i A$ then $\vdash_{\mathbf{F_{at}}} A^*$. The translation is also faithful. I.e.:

If $\vdash_{\mathbf{F_{at}}} A^*$ then $\vdash_i A$.

This latter fact was recently proved using a model-theoretic argument in $[4]$ $[4]$. In the present paper, we give a pure proof-theoretic proof of the faithfulness of **Fat**. We believe that this approach is interesting in its own right. Furthermore, it shows how to obtain a proof-theoretic proof of the disjunction property for the intuitionistic propositional calculus via natural deduction *without* the need of commuting conversions. As we have suggested in previous papers (cf. [\[2,](#page-8-3)[3\]](#page-8-4)), the need for the *ad hoc* commuting conversions is a reflection of the fact that we are not considering intuitionistic propositional logic in its proper setting, viz the wider setting of **Fat**.

The paper is organized in three sections. After this introduction, Sect. [2](#page-2-0) presents the new proof-theoretic proof of the faithfulness of **Fat**. The alternative proof of the disjunction property of the intuitionistic propositional calculus is presented in Sect. [3.](#page-7-0)

2. A Proof-Theoretic Proof of Faithfulness

A second-order universal formula which is a subformula of a formula of the form A^* (A a propositional formula) must take one of three forms: $\forall X. X, \forall X((C^* \rightarrow (D^* \rightarrow X)) \rightarrow X) \text{ or } \forall X((C^* \rightarrow X) \rightarrow ((D^* \rightarrow X) \rightarrow$ X), with C and D propositional formulas. Hence, the following definition is in good standing:

DEFINITION 2.1. Let A be a propositional formula. For B any subformula of A^* , we define a formula \tilde{B} in the language of propositional calculus (⊥,∧,∨,→) *extended with* second-order variables (but without second-order quantifications) in the following way:

If B is atomic, then $\tilde{B} \equiv B$. If $B := C \to D$, then $\tilde{B} := \tilde{C} \to \tilde{D}$. If $B := \forall X.X$, then $\tilde{B} := \bot$.

If
$$
B := \forall X((C^* \to (D^* \to X)) \to X)
$$
, then $\tilde{B} := C \wedge D$.
If $B := \forall X((C^* \to X) \to ((D^* \to X) \to X))$, then $\tilde{B} := C \vee D$.

Note that B and \tilde{B} have the same free variables. Also, when C is a propositional formula, C^* is just C.

LEMMA 2.2. Let Γ be a tuple of formulas in \mathbf{F}_{at} and A be a formula in \mathbf{F}_{at} *with their free variables among the variables in* \overline{X} *. If there is a proof (say* \mathcal{D}) *in* $\mathbf{F}_{\mathbf{at}}$ *of* $A[\bar{X}]$ *from* $\Gamma[\bar{X}]$ *in which all formulas (occurring in* D *and* $\Gamma[\bar{X}]$) are subformulas of formulas of the form D^* (D *a propositional formula)*, *then*

 $\tilde{\Gamma}[\bar{F}/\bar{X}] \vdash_i \tilde{A}[\bar{F}/\bar{X}]$

for any tuple of propositional formulas \overline{F} *. For* $\Gamma[\overline{X}] := A_1[\overline{X}], \ldots, A_n[\overline{X}],$ $\tilde{\Gamma}[\bar{F}/\bar{X}]$ denotes the tuple of propositional formulas $\tilde{A}_1[\bar{F}/\bar{X}]$, \ldots , $\tilde{A}_n[\bar{F}/\bar{X}]$. (Of course, the reading of $A\overline{F}/\overline{X}$) is to first consider the transformed for*mula* \tilde{A} *and, afterwards, effect the substitution* $[\bar{F}/\bar{X}]$ *in it. The alternative reading does not make sense in general.)*

PROOF. By induction on the length of the derivation \mathcal{D} .

If D is a one node proof-tree, then $A[\bar{X}]$ is in $\Gamma[\bar{X}]$. The result is trivial since for any tuple \bar{F} of propositional formulas we have $\tilde{A}[\bar{F}/\bar{X}] \vdash_i \tilde{A}[\bar{F}/\bar{X}]$.

• Case where the last rule is a \rightarrow I:

$$
\langle A[\bar{X}] \rangle \qquad \Gamma[\bar{X}]
$$

$$
\vdots
$$

$$
\frac{B[\bar{X}]}{A[\bar{X}] \to B[\bar{X}]}
$$

Fix \bar{F} a tuple of propositional formulas. The aim is to prove that $\tilde{\Gamma}[\bar{F}/\bar{X}] \vdash_i \tilde{A}[\bar{F}/\bar{X}] \rightarrow \tilde{B}[\bar{F}/\bar{X}]$. According to the induction hypothesis, we have $\tilde{A}[\bar{F}/\bar{X}], \tilde{\Gamma}[\bar{F}/\bar{X}] \vdash_i \tilde{B}[\bar{F}/\bar{X}].$ Thus, adding an introduction rule for implication which discharges $\tilde{A}[\bar{F}/\bar{X}]$, we get the desired result.

• Case where the last rule is a \rightarrow E:

Fix \bar{F} a tuple of propositional formulas. By induction hypothesis, we have both $\tilde{\Gamma}[\bar{F}/\bar{X}] \vdash_i \tilde{A}[\bar{F}/\bar{X}]$ and $\tilde{\Gamma}[\bar{F}/\bar{X}] \vdash_i \tilde{A}[\bar{F}/\bar{X}] \rightarrow \tilde{B}[\bar{F}/\bar{X}]$. Applying the elimination rule for implication, we get $\tilde{\Gamma}[\bar{F}/\bar{X}] \vdash_i \tilde{B}[\bar{F}/\bar{X}].$

• Case where the last rule is a ∀I:

Since $\forall X.A[\overline{Y}, X]$ is a subformula of a translated formula D^* , with D a propositional formula, we know that only three cases may occur: (i) A is X; (ii) A has the form $(C^* \to (E^* \to X)) \to X$ or (iii) A has the form $(C^* \to X) \to ((E^* \to X) \to X)$ with C and E propositional formulas. In any of the cases, the only free variable in A is X . So, in the scheme above, $A[\bar{Y}, X]$ and $\forall X.A[\bar{Y}, X]$ may be replaced by $A[X]$ and $\forall X.A[X]$ respectively.

In case (i), fix \bar{F} a tuple of propositional formulas and let us prove that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i \bot$. By induction hypothesis we know that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i X[G/X]$ for every propositional formula G. Just take G as being \bot .

In case (ii), we need to prove that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C \wedge E$, for every tuple \bar{F} of propositional formulas. Fix \overline{F} . By induction hypothesis, we know that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i \tilde{A}[G/X]$ for any propositional formula G. In particular, for $G :=$ $C \wedge E$, we have

 $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i (C \to (E \to C \land E)) \to C \land E.$

Thus, in the natural deduction calculus for the intuitionistic propositional calculus, we have the following proof

$$
\begin{array}{ccc}\n\langle C \rangle & \langle E \rangle & \tilde{\Gamma}[\bar{F}/\bar{Y}] \\
\hline\nC \wedge E & & \vdots \\
\hline\nC \rightarrow (E \rightarrow C \wedge E) & (C \rightarrow (E \rightarrow C \wedge E)) \rightarrow C \wedge E \\
C \wedge E & & \\
\end{array}
$$

Therefore, $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C \wedge E$.

In case (iii), we need to prove that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C \vee E$, for every tuple \bar{F} of propositional formulas. Fix \overline{F} . By induction hypothesis, we know that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i \tilde{A}[G/X]$, for any propositional formula G. In particular, for $G :=$ $C \vee E$, we have

$$
\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i (C \to C \lor E) \to ((E \to C \lor E) \to C \lor E).
$$

Thus, in the intuitionistic propositional calculus, we have the following proof

$$
\frac{\langle C \rangle}{C \vee E}
$$
\n
$$
\frac{\langle C \rangle}{C \to C \vee E}
$$
\n
$$
\frac{\langle E \rangle}{C \to C \vee E}
$$
\n
$$
\frac{\langle E \rangle}{(E \to C \vee E) \to ((E \to C \vee E) \to C \vee E)}
$$
\n
$$
\frac{\langle E \rangle}{C \vee E}
$$
\n
$$
\frac{\langle E \rangle}{C \vee E}
$$
\n
$$
\frac{\langle E \rangle}{C \vee E}
$$

Therefore, $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C \vee E$.

• Case where the last rule is a ∀E:

$$
\Gamma[\bar{Y}] \quad : \quad \frac{\forall X.A[X,\bar{Y}]}{A[C/X,\bar{Y}]}
$$

with C an atomic formula in \mathbf{F}_{at} , i.e., C is a propositional constant or a second-order variable. We assume w.l.o.g that if C is a second-order variable then C is among the variables Y, say Y_i .

By hypothesis, since $\forall X.A[X, Y]$ is a subformula of a translated formula, we know that this formula falls into one of the following three cases: (i) it is the translation of \perp ; (ii) it is the translation of a conjunction; or (iii) it is the translation of a disjunction. Moreover, $\forall X.A[X,\overline{Y}]$ has no free variables and so, in the scheme above we can replace $\forall X.A[X,\overline{Y}]$ and $A[C/X,\overline{Y}]$ by $\forall X.A[X]$ and $A[C/X]$, respectively.

In case (i), we have the following proof in **Fat**

$$
\Gamma[\bar{Y}] \begin{array}{c} \Gamma[\bar{Y}] \\ \vdots \\ \forall X.X \\ C \end{array}
$$

and we want to prove that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C[F_i/Y_i]$, for any tuple \bar{F} of propositional formulas. By F_i we denote the formula of the tuple \overline{F} which instantiates Y_i in $\tilde{\Gamma}[\bar{F}/\bar{Y}]$.

Fix \bar{F} . By induction hypothesis we know that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i \bot$. As a consequence, in the intuitionistic propositional calculus we have the following proof

$$
\frac{\tilde{\Gamma}[\bar{F}/\bar{Y}]}{\vdots}
$$

$$
\frac{\bot}{C[F_i/Y_i]}
$$

Hence, $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C[F_i/Y_i].$ In case (ii), we have the following proof in $\mathbf{F}_{\mathbf{at}}$

$$
\Gamma[\bar{Y}] \qquad \qquad \vdots
$$
\n
$$
\forall X((H^* \to (E^* \to X)) \to X)
$$
\n
$$
(H^* \to (E^* \to C)) \to C
$$

We want to prove that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i (H \to (E \to C[F_i/Y_i])) \to C[F_i/Y_i],$ for any tuple \bar{F} of propositional formulas. Fix \bar{F} . By induction hypothesis we know that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i H \wedge E$. Thus, we have the following proof in the intuitionistic propositional calculus

$$
\frac{\tilde{\Gamma}[\bar{F}/\bar{Y}]}{\vdots} \n\frac{\tilde{\Gamma}[\bar{F}/\bar{Y}]}{\tilde{\Gamma}[\bar{F}/\bar{Y}]}\n\frac{\tilde{H} \wedge E}{\tilde{H}} \qquad \frac{\tilde{H} \wedge E}{\tilde{H} \wedge E}\n\frac{E \rightarrow C[F_i/Y_i]}{C[F_i/Y_i]}\n(\tilde{H} \rightarrow (E \rightarrow C[F_i/Y_i])) \rightarrow C[F_i/Y_i]
$$

This is what we want.

In case (iii), we have the following proof in **Fat**

$$
\Gamma[\bar{Y}]
$$

\n
$$
\vdots
$$

\n
$$
\forall X((H^* \to X) \to ((E^* \to X) \to X))
$$

\n
$$
(H^* \to C) \to ((E^* \to C) \to C)
$$

Given any tuple \overline{F} of propositional formulas, the aim is to show that $\overline{\Gamma}[\overline{F}/\overline{Y}] \vdash_i (H \to C[F_i/Y_i]) \to ((E \to C[F_i/Y_i]) \to C[F_i/Y_i])$. Fix \overline{F} . By induction hypothesis, $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i H \vee E$. Thus, we have the following proof in the intuitionistic propositional calculus

п

$$
\frac{\tilde{\Gamma}[\bar{F}/\bar{Y}]}{\vdots} \quad \frac{\langle H \to C[F_i/Y_i] \rangle \qquad \langle H \rangle}{C[F_i/Y_i]} \quad \frac{\langle E \to C[F_i/Y_i] \rangle \qquad \langle E \rangle}{C[F_i/Y_i]}
$$
\n
$$
\frac{C[F_i/Y_i]}{(E \to C[F_i/Y_i]) \to C[F_i/Y_i]}
$$
\n
$$
\overline{(H \to C[F_i/Y_i]) \to ((E \to C[F_i/Y_i]) \to C[F_i/Y_i])}
$$

We are done.

THEOREM 2.3. (Faithfulness). Let $\Gamma := A_1, \ldots, A_n$ and A be propositional *formulas and consider their translations* $\Gamma^* := A_1^*, \ldots, A_n^*$ *and* A^* *into* $\mathbf{F}_{\textbf{at}}$ *.*

If $\Gamma^* \vdash_{\mathbf{F_{at}}} A^*$ then $\Gamma \vdash_i A$.

PROOF. Suppose that $\Gamma^* \vdash_{\mathbf{F_{at}}} A^*$. Since $\mathbf{F_{at}}$ has the normalization property (see [\[3](#page-8-4)]), we know that there is a proof, say D , in normal form of A^* with premises Γ^* . By the subformula property (see [\[1,](#page-8-2) p. 5]), all formulas that occur in $\mathcal D$ are subformulas of A^* or are subformulas of formulas in Γ^* . Therefore, we are in the conditions of application of Lemma [2.2.](#page-3-0) Applying such lemma, we conclude that $\Gamma^* \vdash_i A^*$, i.e., $\Gamma \vdash_i A$.

3. Application

An advantage of having a sound and faithful embedding between two systems is the possibility to transfer certain results from one system to the other. In this section, as an application of the (proof-theoretic proof of the) faithfulness of **Fat**, we give a new proof of the disjunction property of the intuitionistic propositional calculus. Note that the usual proof-theoretic proof via natural deduction of the disjunction property requires the introduction of extra conversions associated with the connectives \bot and \vee : the so called *commuting conversions* or *permutative conversions*. They are needed to ensure that a proof in normal form has the subformula property. The proof-theoretic proof that we present below does not rely on commuting conversions.

THEOREM 3.1. *If* $\vdash_i A \lor B$ *then* $\vdash_i A$ *or* $\vdash_i B$ *.*

PROOF. Suppose that $\vdash_i A \lor B$. Since the embedding of the full intuitionistic propositional calculus into $\mathbf{F}_{\mathbf{at}}$ is sound, we have $\vdash_{\mathbf{F}_{\mathbf{at}}} (A \lor B)^*$. Applying the disjunction property of $\mathbf{F}_{\mathbf{at}}$ (see [\[1,](#page-8-2) pp. 5–7]), we know that $\vdash_{\mathbf{F}_{\mathbf{at}}} A^*$ or $\vdash_{\mathbf{F_{at}}} B^*$. By Theorem [2.3](#page-7-1) (faithfulness), we conclude $\vdash_i A$ or $\vdash_i B$.

Acknowledgements. Both authors acknowledge the support of Fundação para a Ciˆencia e a Tecnologia [UID/MAT/04561/2013] and Centro de Matemática, Aplicações Fundamentais e Investigação Operacional of Universidade de Lisboa. The second author is also grateful to Fundação para a Ciˆencia e a Tecnologia [grant SFRH/BPD/93278/2013], to Large-Scale Informatics Systems Laboratory (Universidade de Lisboa) and to Núcleo de Investigação em Matemática (Universidade Lusófona).

References

- [1] Ferreira, F., Comments on predicative logic, *Journal of Philosophical Logic* 35:1–8, 2006.
- [2] Ferreira, F., and G. Ferreira, Commuting conversions vs. the standard conversions of the "good" connectives, *Studia Logica* 92:63–84, 2009.
- [3] Ferreira, F., and G. Ferreira, Atomic polymorphism, *The Journal of Symbolic Logic* 78:260–274, 2013.
- [4] Ferreira, F., and G. Ferreira, The faithfulness of atomic polymorphism, in A. Indrzejczak, J. Kaczmarek, and M. Zawidzki (eds.), *Proceedings of Trends in Logic* XIII, Lódź University Press, Lodz, 2014, pp. 55–65.
- [5] Girard, J.-Y., Y. Lafont, and P. Taylor, *Proofs and Types*, Cambridge University Press, Cambridge, 1989.
- [6] Prawitz, D., *Natural Deduction*, Almkvist & Wiksell, Stockholm, 1965. Reprinted, with a new preface, in Dover Publications, 2006.

F. Ferreira, G. Ferreira Departamento de Matemática Faculdade de Ciências da Universidade de Lisboa Campo Grande, Ed. C6, 1749-016 Lisbon, Portugal fjferreira@fc.ul.pt

G. Ferreira Departamento de Matemática Universidade Lusófona de Humanidades e Tecnologias Av. do Campo Grande, 376, 1749-024 Lisbon, Portugal gmferreira@fc.ul.pt