

Fernando Ferreira Gilda Ferreira

The Faithfulness of F_{at}: A Proof-Theoretic Proof

Abstract. It is known that there is a sound and faithful translation of the full intuitionistic propositional calculus into the atomic polymorphic system \mathbf{F}_{at} , a predicative calculus with only two connectives: the conditional and the second-order universal quantifier. The faithfulness of the embedding was established quite recently via a model-theoretic argument based in Kripke structures. In this paper we present a purely proof-theoretic proof of faithfulness. As an application, we give a purely proof-theoretic proof of the disjunction property of the intuitionistic propositional logic in which commuting conversions are not needed.

Keywords: Predicative polymorphism, Faithfulness, Natural deduction, Strong normalization, Intuitionistic propositional calculus, Disjunction property.

1. Introduction

A propositional formula is a formula built from a stock of propositional letters (or constants) P, Q, R, etc using the propositional connectives \bot, \land, \lor and \rightarrow . In [6], Prawitz defined the following translation:

$$(P)^* :\equiv P, \text{ with } P \text{ a propositional constant}$$
$$(\bot)^* :\equiv \forall X.X$$
$$(A \to B)^* :\equiv A^* \to B^*$$
$$(A \land B)^* :\equiv \forall X((A^* \to (B^* \to X)) \to X)$$
$$(A \lor B)^* :\equiv \forall X((A^* \to X) \to ((B^* \to X) \to X))$$

where X is a second-order propositional variable which does not occur in A^* or B^* . The target language is the language of Girard's (polymorphic) system **F** (cf. [5]). It consists of the smallest class of expressions which includes the atomic formulas (propositional constants P, Q, R, \ldots and second-order propositional variables X, Y, Z, \ldots) and is closed under implication and second-order universal quantification. Note that the translation A^* of a propositional formula A is, clearly, a formula without second-order

Presented by Jacek Malinowski; Received February 10, 2015

free variables. Prawitz's translation is actually an embedding of the propositional intuitionistic calculus into system \mathbf{F} in the sense that if $\vdash_i A$ then $\vdash_{\mathbf{F}} A^*$ (here \vdash_i denotes provability in the intuitionistic propositional calculus and $\vdash_{\mathbf{F}}$ denotes provability in the system \mathbf{F}).

In 2006, the first author noticed (cf. [1]) that the above embedding still works if the target system \mathbf{F} is restricted to a predicative system nowadays known as \mathbf{F}_{at} (an acronym for *atomic polymorphism*). The atomic polymorphic system \mathbf{F}_{at} has the same formulas as \mathbf{F} , but replaces the second-order universal elimination rule by a predicative variant. For definiteness, we describe the (natural deduction) rules of \mathbf{F}_{at} . The introduction rules are as in \mathbf{F} :

$$\begin{array}{c} \langle A \rangle \\ \vdots \\ \hline B \\ \hline A \to B \end{array} \to \mathbf{I} \qquad \qquad \begin{array}{c} \vdots \\ \hline \forall X.A \\ \forall X.A \end{array} \forall \mathbf{I} \end{array}$$

where the notation $\langle A \rangle$ says that the formula A is being discharged and, in the universal rule, X does not occur free in any undischarged hypothesis. The elimination rules of \mathbf{F}_{at} are, however,

$$\frac{\begin{array}{ccc} \vdots & \vdots \\ A \to B & A \\ B & \end{array} \to \mathbf{E} & \begin{array}{ccc} & \vdots \\ \forall X.A \\ A[C/X] \end{array} \forall \mathbf{E}$$

where C is an *atomic* formula (free for X in A), and A[C/X] is the result of replacing in A all the free occurrences of X by C. Note that only atomic instantiations are permitted in the $\forall E$ rule. This contrasts with the (impredicative) system **F**, where C can be any formula.

The reason why, despite the restriction of the \forall E-rule, the system \mathbf{F}_{at} is still able to embed full intuitionistic propositional calculus lies in the availability of *instantiation overflow*, i.e., for the three types of universal formulas occurring in Prawitz's translation, it is possible to derive in \mathbf{F}_{at} the formulas resulting from instantiations of the second-order variable X by any formula, not only the atomic ones. For a complete description of instantiation overflow and of the embedding see [1,2]. In the former reference, it is also shown that \mathbf{F}_{at} has both the subformula property (for normal derivations) and an appropriate form of the disjunction property. (The notion of subformula only needs explanation for universal formulas. The proper subformulas of a formula of the form $\forall X.A[X]$ are the subformulas of the formulas of the form A[C/X], for C an *atomic* formula free for X in A.) The latter reference is a study on the translation of the commuting conversions of the intuitionistic propositional calculus into \mathbf{F}_{at} . Note that, since the connectives \bot, \lor and \exists are absent from \mathbf{F}_{at} , this system has no commuting conversions. For more on \mathbf{F}_{at} , including a proof that the system is strongly normalizable for $\beta\eta$ -conversions, see [3].

As we have discussed, Prawitz's translation $(\cdot)^*$ gives a sound embedding of the intuitionistic propositional calculus into \mathbf{F}_{at} , that is: If $\vdash_i A$ then $\vdash_{\mathbf{F}_{at}} A^*$. The translation is also faithful. I.e.:

If $\vdash_{\mathbf{Fat}} A^*$ then $\vdash_i A$.

This latter fact was recently proved using a model-theoretic argument in [4]. In the present paper, we give a pure proof-theoretic proof of the faithfulness of \mathbf{F}_{at} . We believe that this approach is interesting in its own right. Furthermore, it shows how to obtain a proof-theoretic proof of the disjunction property for the intuitionistic propositional calculus via natural deduction *without* the need of commuting conversions. As we have suggested in previous papers (cf. [2,3]), the need for the *ad hoc* commuting conversions is a reflection of the fact that we are not considering intuitionistic propositional logic in its proper setting, viz the wider setting of \mathbf{F}_{at} .

The paper is organized in three sections. After this introduction, Sect. 2 presents the new proof-theoretic proof of the faithfulness of \mathbf{F}_{at} . The alternative proof of the disjunction property of the intuitionistic propositional calculus is presented in Sect. 3.

2. A Proof-Theoretic Proof of Faithfulness

A second-order universal formula which is a subformula of a formula of the form A^* (A a propositional formula) must take one of three forms: $\forall X.X, \forall X((C^* \to (D^* \to X)) \to X) \text{ or } \forall X((C^* \to X) \to ((D^* \to X) \to X)), \text{ with } C \text{ and } D \text{ propositional formulas. Hence, the following definition}$ is in good standing:

DEFINITION 2.1. Let A be a propositional formula. For B any subformula of A^* , we define a formula \tilde{B} in the language of propositional calculus $(\perp, \wedge, \lor, \rightarrow)$ extended with second-order variables (but without second-order quantifications) in the following way:

If B is atomic, then $\tilde{B} :\equiv B$. If $B :\equiv C \to D$, then $\tilde{B} :\equiv \tilde{C} \to \tilde{D}$. If $B :\equiv \forall X.X$, then $\tilde{B} :\equiv \bot$.

If
$$B :\equiv \forall X((C^* \to (D^* \to X)) \to X)$$
, then $\tilde{B} :\equiv C \land D$.
If $B :\equiv \forall X((C^* \to X) \to ((D^* \to X) \to X))$, then $\tilde{B} :\equiv C \lor D$

Note that B and \tilde{B} have the same free variables. Also, when C is a propositional formula, $\widetilde{C^{\star}}$ is just C.

LEMMA 2.2. Let Γ be a tuple of formulas in \mathbf{F}_{at} and A be a formula in \mathbf{F}_{at} with their free variables among the variables in \overline{X} . If there is a proof (say \mathcal{D}) in \mathbf{F}_{at} of $A[\overline{X}]$ from $\Gamma[\overline{X}]$ in which all formulas (occurring in \mathcal{D} and $\Gamma[\overline{X}]$) are subformulas of formulas of the form D^* (D a propositional formula), then

 $\tilde{\Gamma}[\bar{F}/\bar{X}] \vdash_i \tilde{A}[\bar{F}/\bar{X}]$

for any tuple of propositional formulas \overline{F} . For $\Gamma[\overline{X}] :\equiv A_1[\overline{X}], \ldots, A_n[\overline{X}], \widetilde{\Gamma}[\overline{F}/\overline{X}]$ denotes the tuple of propositional formulas $\widetilde{A}_1[\overline{F}/\overline{X}], \ldots, \widetilde{A}_n[\overline{F}/\overline{X}]$. (Of course, the reading of $\widetilde{A}[\overline{F}/\overline{X}]$ is to first consider the transformed formula \widetilde{A} and, afterwards, effect the substitution $[\overline{F}/\overline{X}]$ in it. The alternative reading does not make sense in general.)

PROOF. By induction on the length of the derivation \mathcal{D} .

If \mathcal{D} is a one node proof-tree, then $A[\bar{X}]$ is in $\Gamma[\bar{X}]$. The result is trivial since for any tuple \bar{F} of propositional formulas we have $\tilde{A}[\bar{F}/\bar{X}] \vdash_i \tilde{A}[\bar{F}/\bar{X}]$.

• Case where the last rule is a \rightarrow I:

$$\begin{array}{c} \langle A[\bar{X}] \rangle & \Gamma[\bar{X}] \\ \vdots \\ \\ \hline B[\bar{X}] \\ \hline A[\bar{X}] \to B[\bar{X}] \end{array}$$

Fix \overline{F} a tuple of propositional formulas. The aim is to prove that $\Gamma[\overline{F}/\overline{X}] \vdash_i \widetilde{A}[\overline{F}/\overline{X}] \to \widetilde{B}[\overline{F}/\overline{X}]$. According to the induction hypothesis, we have $\widetilde{A}[\overline{F}/\overline{X}], \Gamma[\overline{F}/\overline{X}] \vdash_i \widetilde{B}[\overline{F}/\overline{X}]$. Thus, adding an introduction rule for implication which discharges $\widetilde{A}[\overline{F}/\overline{X}]$, we get the desired result.

• Case where the last rule is a \rightarrow E:

Fix \overline{F} a tuple of propositional formulas. By induction hypothesis, we have both $\widetilde{\Gamma}[\overline{F}/\overline{X}] \vdash_i \widetilde{A}[\overline{F}/\overline{X}]$ and $\widetilde{\Gamma}[\overline{F}/\overline{X}] \vdash_i \widetilde{A}[\overline{F}/\overline{X}] \to \widetilde{B}[\overline{F}/\overline{X}]$. Applying the elimination rule for implication, we get $\widetilde{\Gamma}[\overline{F}/\overline{X}] \vdash_i \widetilde{B}[\overline{F}/\overline{X}]$.

• Case where the last rule is a $\forall I$:

Since $\forall X.A[\bar{Y}, X]$ is a subformula of a translated formula D^* , with D a propositional formula, we know that only three cases may occur: (i) A is X; (ii) A has the form $(C^* \to (E^* \to X)) \to X$ or (iii) A has the form $(C^* \to X) \to ((E^* \to X) \to X)$ with C and E propositional formulas. In any of the cases, the only free variable in A is X. So, in the scheme above, $A[\bar{Y}, X]$ and $\forall X.A[\bar{Y}, X]$ may be replaced by A[X] and $\forall X.A[X]$ respectively.

In case (i), fix \overline{F} a tuple of propositional formulas and let us prove that $\tilde{\Gamma}[\overline{F}/\overline{Y}] \vdash_i \bot$. By induction hypothesis we know that $\tilde{\Gamma}[\overline{F}/\overline{Y}] \vdash_i X[G/X]$ for every propositional formula G. Just take G as being \bot .

In case (ii), we need to prove that $\Gamma[\bar{F}/\bar{Y}] \vdash_i C \wedge E$, for every tuple \bar{F} of propositional formulas. Fix \bar{F} . By induction hypothesis, we know that $\Gamma[\bar{F}/\bar{Y}] \vdash_i \tilde{A}[G/X]$ for any propositional formula G. In particular, for $G :\equiv C \wedge E$, we have

 $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i (C \to (E \to C \land E)) \to C \land E.$

Thus, in the natural deduction calculus for the intuitionistic propositional calculus, we have the following proof

Therefore, $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C \wedge E$.

In case (iii), we need to prove that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C \lor E$, for every tuple \bar{F} of propositional formulas. Fix \bar{F} . By induction hypothesis, we know that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i \tilde{A}[G/X]$, for any propositional formula G. In particular, for $G :\equiv C \lor E$, we have

$$\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i (C \to C \lor E) \to ((E \to C \lor E) \to C \lor E).$$

Thus, in the intuitionistic propositional calculus, we have the following proof

Therefore, $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C \lor E$.

• Case where the last rule is a $\forall E$:

with C an atomic formula in \mathbf{F}_{at} , i.e., C is a propositional constant or a second-order variable. We assume w.l.o.g that if C is a second-order variable then C is among the variables \overline{Y} , say Y_i .

By hypothesis, since $\forall X.A[X, \bar{Y}]$ is a subformula of a translated formula, we know that this formula falls into one of the following three cases: (i) it is the translation of \perp ; (ii) it is the translation of a conjunction; or (iii) it is the translation of a disjunction. Moreover, $\forall X.A[X, \bar{Y}]$ has no free variables and so, in the scheme above we can replace $\forall X.A[X, \bar{Y}]$ and $A[C/X, \bar{Y}]$ by $\forall X.A[X]$ and A[C/X], respectively.

In case (i), we have the following proof in $\mathbf{F}_{\mathbf{at}}$

$$\Gamma[\bar{Y}]$$

$$\vdots$$

$$\frac{\forall X.X}{C}$$

and we want to prove that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C[F_i/Y_i]$, for any tuple \bar{F} of propositional formulas. By F_i we denote the formula of the tuple \bar{F} which instantiates Y_i in $\tilde{\Gamma}[\bar{F}/\bar{Y}]$.

Fix \overline{F} . By induction hypothesis we know that $\Gamma[\overline{F}/\overline{Y}] \vdash_i \bot$. As a consequence, in the intuitionistic propositional calculus we have the following proof

Hence, $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i C[F_i/Y_i]$. In case (ii), we have the following proof in $\mathbf{F}_{\mathbf{at}}$

$$\begin{split} \Gamma[\bar{Y}] \\ \vdots \\ \forall X((H^{\star} \to (E^{\star} \to X)) \to X) \\ (H^{\star} \to (E^{\star} \to C)) \to C \end{split}$$

We want to prove that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i (H \to (E \to C[F_i/Y_i])) \to C[F_i/Y_i]$, for any tuple \bar{F} of propositional formulas. Fix \bar{F} . By induction hypothesis we know that $\tilde{\Gamma}[\bar{F}/\bar{Y}] \vdash_i H \land E$. Thus, we have the following proof in the intuitionistic propositional calculus

$$\begin{split} & \tilde{\Gamma}[\bar{F}/\bar{Y}] \\ & \vdots \\ & \tilde{\Gamma}[\bar{F}/\bar{Y}] \\ & \vdots \\ & \frac{H \wedge E}{H} \\ & \frac{E \to C[F_i/Y_i]) \land \frac{H \wedge E}{H}}{\frac{E \to C[F_i/Y_i]}{C[F_i/Y_i]}} \\ & \frac{E \to C[F_i/Y_i]}{(H \to (E \to C[F_i/Y_i])) \to C[F_i/Y_i]} \end{split}$$

This is what we want.

In case (iii), we have the following proof in $\mathbf{F}_{\mathbf{at}}$

$$\begin{split} \Gamma[\bar{Y}] \\ \vdots \\ \forall X((H^{\star} \to X) \to ((E^{\star} \to X) \to X)) \\ \hline (H^{\star} \to C) \to ((E^{\star} \to C) \to C) \end{split}$$

Given any tuple \overline{F} of propositional formulas, the aim is to show that $\widetilde{\Gamma}[\overline{F}/\overline{Y}] \vdash_i (H \to C[F_i/Y_i]) \to ((E \to C[F_i/Y_i]) \to C[F_i/Y_i])$. Fix \overline{F} . By induction hypothesis, $\widetilde{\Gamma}[\overline{F}/\overline{Y}] \vdash_i H \lor E$. Thus, we have the following proof in the intuitionistic propositional calculus

$$\begin{split} &\tilde{\Gamma}[\bar{F}/\bar{Y}] \\ &\vdots \\ &H \lor E \quad \frac{\langle H \to C[F_i/Y_i] \rangle \quad \langle H \rangle}{C[F_i/Y_i]} \quad \frac{\langle E \to C[F_i/Y_i] \rangle \quad \langle E \rangle}{C[F_i/Y_i]} \\ &\frac{\frac{C[F_i/Y_i]}{(E \to C[F_i/Y_i]) \to C[F_i/Y_i]}}{(H \to C[F_i/Y_i]) \to ((E \to C[F_i/Y_i]) \to C[F_i/Y_i])} \end{split}$$

We are done.

THEOREM 2.3. (Faithfulness). Let $\Gamma :\equiv A_1, \ldots, A_n$ and A be propositional formulas and consider their translations $\Gamma^* :\equiv A_1^*, \ldots, A_n^*$ and A^* into $\mathbf{F_{at}}$.

If $\Gamma^{\star} \vdash_{\mathbf{F}_{\mathbf{at}}} A^{\star}$ then $\Gamma \vdash_i A$.

PROOF. Suppose that $\Gamma^* \vdash_{\mathbf{F}_{at}} A^*$. Since \mathbf{F}_{at} has the normalization property (see [3]), we know that there is a proof, say \mathcal{D} , in normal form of A^* with premises Γ^* . By the subformula property (see [1, p. 5]), all formulas that occur in \mathcal{D} are subformulas of A^* or are subformulas of formulas in Γ^* . Therefore, we are in the conditions of application of Lemma 2.2. Applying such lemma, we conclude that $\widetilde{\Gamma^*} \vdash_i \widetilde{A^*}$, i.e., $\Gamma \vdash_i A$.

3. Application

An advantage of having a sound and faithful embedding between two systems is the possibility to transfer certain results from one system to the other. In this section, as an application of the (proof-theoretic proof of the) faithfulness of \mathbf{F}_{at} , we give a new proof of the disjunction property of the intuitionistic propositional calculus. Note that the usual proof-theoretic proof via natural deduction of the disjunction property requires the introduction of extra conversions associated with the connectives \perp and \vee : the so called *commuting conversions* or *permutative conversions*. They are needed to ensure that a proof in normal form has the subformula property. The proof-theoretic proof that we present below does not rely on commuting conversions.

THEOREM 3.1. If $\vdash_i A \lor B$ then $\vdash_i A$ or $\vdash_i B$.

PROOF. Suppose that $\vdash_i A \lor B$. Since the embedding of the full intuitionistic propositional calculus into \mathbf{F}_{at} is sound, we have $\vdash_{\mathbf{F}_{at}} (A \lor B)^*$. Applying the disjunction property of \mathbf{F}_{at} (see [1, pp. 5–7]), we know that $\vdash_{\mathbf{F}_{at}} A^*$ or $\vdash_{\mathbf{F}_{at}} B^*$. By Theorem 2.3 (faithfulness), we conclude $\vdash_i A$ or $\vdash_i B$.

Acknowledgements. Both authors acknowledge the support of Fundação para a Ciência e a Tecnologia [UID/MAT/04561/2013] and Centro de Matemática, Aplicações Fundamentais e Investigação Operacional of Universidade de Lisboa. The second author is also grateful to Fundação para a Ciência e a Tecnologia [grant SFRH/BPD/93278/2013], to Large-Scale Informatics Systems Laboratory (Universidade de Lisboa) and to Núcleo de Investigação em Matemática (Universidade Lusófona).

References

- FERREIRA, F., Comments on predicative logic, Journal of Philosophical Logic 35:1–8, 2006.
- [2] FERREIRA, F., and G. FERREIRA, Commuting conversions vs. the standard conversions of the "good" connectives, *Studia Logica* 92:63–84, 2009.
- [3] FERREIRA, F., and G. FERREIRA, Atomic polymorphism, The Journal of Symbolic Logic 78:260-274, 2013.
- [4] FERREIRA, F., and G. FERREIRA, The faithfulness of atomic polymorphism, in A. Indrzejczak, J. Kaczmarek, and M. Zawidzki (eds.), *Proceedings of Trends in Logic XIII*, Łódź University Press, Lodz, 2014, pp. 55–65.
- [5] GIRARD, J.-Y., Y. LAFONT, and P. TAYLOR, *Proofs and Types*, Cambridge University Press, Cambridge, 1989.
- [6] PRAWITZ, D., Natural Deduction, Almkvist & Wiksell, Stockholm, 1965. Reprinted, with a new preface, in Dover Publications, 2006.

F. FERREIRA, G. FERREIRA Departamento de Matemática Faculdade de Ciências da Universidade de Lisboa Campo Grande, Ed. C6, 1749-016 Lisbon, Portugal fjferreira@fc.ul.pt

G. FERREIRA Departamento de Matemática Universidade Lusófona de Humanidades e Tecnologias Av. do Campo Grande, 376, 1749-024 Lisbon, Portugal gmferreira@fc.ul.pt