
Sven Ove Hansson A Monoselective
Presentation of AGM
Revision

Abstract. A new equivalent presentation of AGM revision is introduced, in which a

preference-based choice function directly selects one among the potential outcomes of the

operation. This model differs from the usual presentations of AGM revision in which the

choice function instead delivers a collection of sets whose intersection is the outcome. The

new presentation confirms the versatility of AGM revision, but it also lends credibility to

the more general model of direct choice among outcomes (descriptor revision) of which

AGM revision is shown here to be a special case.
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1. Introduction

Choice has a central role in the theory of belief change. In the standard
formal framework an epistemic agent’s belief state is represented by a log-
ically closed set, called the belief set, that corresponds (simplistically) to
the sentences she believes in or (in a more sophisticated interpretation) to
the sentences she is committed to believe in. Operations of change take the
form of replacing one such belief set by another that satisfies a given success
condition. There are two major types of operations. In belief contraction,
the success condition is that the new belief set does not contain a specified
sentence, the sentence we contract by. In belief revision, the success condi-
tion is instead that some specified sentence has to be included in the new
belief set. Clearly, there are many belief sets satisfying this condition, and
we have to settle on one of them.

For the formal representation of choice, belief change theory uses the
notion of a choice function that has been taken over from social choice theory
[15]. Choice functions are also used in several other branches of logic [9].
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A choice function is defined over a set A of alternatives. It can be used to
make a selection among any subset of A. The formal definition is as follows:

Definition 1. C is a choice function for a set A if and only if for each
subset B of A:

(1) C(B) ⊆ B, and

(2) C(B) �= ∅ if B �= ∅.

A choice function C is based on a relation � if and only if for all B and all
X ∈ B:

X ∈ C(B) if and only if X � Y for all Y ∈ B.

It is important to note that a choice function can have multiple outcomes, i.e.
C(B) may have more than one element. When this happens in social choice
theory, all elements of C(B) are (considered to be) equally choiceworthy. It
is then left to the decision-maker to further narrow down the choice to one
single object. Which element of C(B) she ends up with is presumed to be
arbitrary from the viewpoint of rationality. Therefore, strictly speaking, the
choice function only represents the first of two stages in the choice process.
The second stage that slims down the outcome to one single element is often
described as a matter of picking rather than choosing [16]. We can call this
the select-and-pick method.

Choice functions with multiple outputs are also used in belief change.
However, it is in general assumed that an adequate model of belief change
must result in a single, determinate outcome.1 Therefore, just as in social
choice theory, a second stage has to be added in order to obtain a deter-
minate outcome. In belief change, the second stage consists in forming the
intersection of the sets chosen in the first stage, and this intersection is taken
to be the outcome. This has been called the select-and-intersect method [8].
It is a conservative way to deal with a tie between several maximally choice-
worthy alternatives: The outcome contains (only) those beliefs that are held
in all those maximally choiceworthy alternatives.

There are two major versions of the select-and-intersect method. One is
partial meet contraction that was introduced in the original AGM article [1].
This is a method to remove a sentence p from a belief set K. A choice
function (usually denoted γ) is applied to the remainder set K ⊥ p that

1A few studies have been devoted to indeterministic belief change operations. These
are operations that deliver, for each input, a set that may contain more than one possible
outcome [3,12].
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is defined as the set of inclusion-maximal p-excluding subsets of K.2 The
outcome of contracting K by p is the intersection of all elements of γ(K ⊥ p),
i.e.

Partial meet contraction:
K ÷ p =

⋂
γ(K ⊥ p)

Revision, i.e. consistency-preserving addition of a sentence, is defined in
terms of contraction via the so-called Levi identity:

Partial meet revision:
K ∗ p = Cn((K ÷ ¬p) ∪ {p}) (where ÷ is partial meet contraction)

These operations are said to be transitively relational if the selection func-
tion is based on a transitive relation in the manner shown in Definition 1.
Transitively relational partial meet contraction and revision have been
axiomatically characterized (the “AGM postulates”) and are often seen as
the gold standard of belief change theory.

The other version of the select-and-intersect method is most lucidly pre-
sentable for belief revision. When revising a belief set K by a sentence p
we are looking for a new belief set that contains p. The largest (consistent)
such belief sets are the possible worlds including p. By a possible world, in
the logical sense, is meant a subset of the language that is so large that any
addition of a new sentence to it will result in inconsistency (i.e. X is consis-
tent but if q /∈ X then X ∪{q} is inconsistent). In the first stage we apply a
choice function to select the most choiceworthy of the possible worlds that
contain p. In the second stage we form their intersection and take it to be
the outcome K ∗ p. This approach was introduced by Grove [4], who based
it on Lewis’s [11] account of counterfactuals. It is usually presented as a
simple geometrical model, as illustrated in Fig. 1. Each point in the square
represents a possible world. The circle in the middle contains exactly those
possible worlds that are compatible with the current belief state K, and their
intersection is equal to K. The whole system of circles (“spheres”) repre-
sents an ordering of the possible worlds in terms of their choiceworthiness.
The central circle that corresponds to K consists of the most choiceworthy
worlds, the ring immediately surrounding it contains the worlds that come
second in terms of choiceworthiness, etc. The outcome of revision by p is
equal to the intersection of the set of p-worlds in the innermost circle that

2X ∈ K ⊥ p if and only if X is a subset of K that does not imply p, and every set X ′

such that X ⊂ X ′ ⊆ K implies p.



1022 S. O. Hansson

p

Figure 1. Revision by a sentence p that is incompatible with the present

belief set K. The area covered by the central circle represents those

possible worlds that contain K. The worlds in the central circle all have

the same degree of choiceworthiness. Similarly, the worlds in each of

the surrounding rings have the same degree of choiceworthiness. The

degree of choiceworthiness decreases with the distance of the ring from

the central circle. The area covered by the parabola represents those

possible worlds that contain p. The shaded area represents the selected

worlds, namely all the p-worlds in the sphere that contains the most

choiceworthy p-worlds

contains some p-worlds. If p is logically compatible with K (i.e. K ∪ {p} is
consistent), then the selected worlds will all be elements of the central circle.
If the central circle does not contain any p-world, then we will instead select
the p-worlds in the circle that contains the most choiceworthy p-worlds.

The two ways to construct revision, the possible worlds construction and
the partial meet construction, yield exactly the same result. In other words,
an operation on a belief set K is a transitively relational partial meet revi-
sion if and only if it can be constructed in the way indicated in Fig. 1.
This equivalence is based on a one-to-one correspondence called “Grove’s
bijection” between remainders and possible worlds. [4,5, pp. 53–55]

However, both stages in these select-and-intersect procedures are prob-
lematic from an intuitive point of view. In the first stage, a selection is made
among either remainders or possible worlds, but neither of these is itself a
plausible belief set. If K ÷p is a remainder then it has the implausible prop-
erty that for all q: either p ∨ q ∈ K ÷ p or p ∨ ¬q ∈ K ÷ p ([2, p. 29],
[5, p. 124]). If K ∗p is a possible world then it has the even more implausible
property that for all sentences q either q ∈ K ∗ p or ¬q ∈ K ∗ p. Therefore,
in both cases the choice is indirect in the sense of being a choice, not among
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potential outcome candidates, but instead among other objects from which
an outcome is constructed in a subsequent stage.

The second stage, intersection, is also debatable. It would certainly not
be considered in social choice:

Game show host: Congratulations! You have won the first prize.
This means that you now have a choice between two options. One
is a Porsche 991 and 50 litres of petrol. The other is a Lamborghini
Huracán and 50 litres of petrol. Which of them do you choose?

Contestant: I am unable to choose between them. The two alter-
natives are exactly equally good.

Game show host: Thanks for telling us. We will now follow our stan-
dard procedure for such cases of indecision, and give you the intersec-
tion between the two sets you could not choose between. One of the
sets contained a Porsche 991 and 50 litres of petrol, and the other a
Lamborghini Huracán and 50 litres of petrol. Let me congratulate you
once more. You are now the happy owner of the intersection of those
two sets, namely 50 litres of petrol, of the highest quality.

Perhaps more to the point, Sandqvist [14] has argued convincingly that
similar situations may arise in belief change, i.e. the intersection of two or
more optimal sets of beliefs need not itself be optimal. Based in part on
these considerations, another approach to belief change has recently been
proposed, namely descriptor revision [7]. It is a single-stage procedure that
directly selects one of the potential outcomes of the operation. This requires
that the set of potential outcomes (the outcome set) is available and that
the choice function is monoselective in the following sense:

Definition 2. [6] A choice function is monoselective if and only if it satisfies:

If X ∈ C(B) and Y ∈ C(B), then X = Y .

In this approach, a plausible version of sentential revision (revision by a
sentence) can be introduced as follows :

Definition 3. [7] An operation ∗ on a belief set K is a linear sentential
descriptor revision if and only if there is a set X of belief sets with K ∈ X

(its outcome set), and a total ordering3 � on X, such that (i) K � X for all

3A total ordering is a binary relation that is transitive, complete (X � Y or Y � X,

synonyms: connected, total) and anti-symmetric (If X � Y and Y � X, then X = Y ).
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X ∈ X, and (ii) for all sentences p: K ∗ p is the unique �-minimal element
of X that contains ∗, unless p /∈ ⋃

X, in which case K ∗ p = K.

This is a special case of a much more general framework that easily accom-
modates a wide variety of other success conditions than that of sentential
revision [7]. However, the focus here will be on comparisons with AGM
revision, and therefore we will only have use for the case presented in Defi-
nition 3. We are going to show that the standard AGM operator of revision
(transitively relational partial meet revision) is in fact a special case of linear
sentential descriptor revision. After some formal preliminaries have been pre-
sented in Sect. 2, the new formal result will be presented in Sect. 3 and fur-
ther discussed in Sect. 4. The formal proof of the main result is deferred to an
Appendix.

2. Formal Preliminaries

The belief-representing sentences form a language L. Sentences, i.e. elements
of this language, are represented by lowercase letters (a, b, . . .) and sets of
sentences by uppercase letters (A,B, . . .). The language contains the usual
truth-functional connectives: negation (¬), conjunction (&), disjunction (∨),
implication (→), and equivalence (↔).

A Tarskian consequence operator Cn expresses the logic. It is a func-
tion from and to sets of sentences. Intuitively speaking, for any set A
of sentences, Cn(A) is the set of logical consequences of A. Cn satis-
fies the standard conditions: inclusion (A ⊆ Cn(A)), monotony (If A ⊆
B, then Cn(A) ⊆ Cn(B)), and iteration (Cn(A) = Cn(Cn(A))). Fur-
thermore, Cn is supraclassical (if p follows from A by classical truth-
functional logic, then p ∈ Cn(A)) and compact (if p ∈ Cn(A) then there
is a finite subset A′ of A such that p ∈ Cn(A′)), and it satisfies the
deduction property (q ∈ Cn(A ∪ {p}) if and only if (p → q) ∈ Cn
(A)).

Cn(∅) is the set of tautologies. X � p is an alternative notation for
p ∈ Cn(X) and � p for p ∈ Cn(∅).

A set A of sentences is a (consistent) belief set if and only if it is consistent
and logically closed, i.e. A = Cn(A). K denotes a belief set.

For any set A of sentences and sentence p, the remainder set A ⊥ p
consists of those sets X for which X ⊆ A, X � p, and there is no X ′ such
that X ⊂ X ′ ⊆ A and X ′

� p.
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3. AGM Operations in Monoselective Guise

The following theorem provides an equivalent presentation of transitively
relational partial meet revision. In doing so it shows that transitively rela-
tional partial meet revision is a special case of linear sentential descriptor
revision that was introduced in Definition 3.

Theorem 1. Let ∗ be a sentential operation on a belief set K, with the
outcome set X. Then the following two conditions are equivalent:

(I) ∗ is a transitively relational partial meet revision.

(II) X satisfies:

(X1) If X ∈ X then X = Cn(X).
(X2) For all X,Y ∈ X: if X ∪ Y � ⊥ then X ∩ Y ∈ X.

and there is a relation � on X such that:

(�1) � is a total ordering (transitive, complete, and antisymmetric).
(�2) K � X for all X ∈ X.
(�3) If X ⊆ Y then X � Y .
(�4) If X ∩ Z ∈ X and X � Y � Z then X ∩ Y ∈ X and Y ∩ Z ∈ X.
(�5) K ∗ p is the unique �-minimal p-containing element of X.

Proof. See the Appendix.

Properties (X1), (�1), (�2), and (�5) follow from Definition 3. They hold
for all linear sentential descriptor revisions. It is the remaining three prop-
erties, (X2), (�3), and (�4), that characterize transitively relational AGM
revision in contradistinction to other linear sentential descriptor revisions.
These properties may be somewhat opaque but they can be understood in
relation to the AGM postulates for revision. The following are five postulates
that hold for transitively relational AGM revision:

p ∈ K ∗ p (success)

K ∗(p∨q) = K ∗p or K ∗(p∨q) = K ∗q or K ∗(p∨q) = (K ∗p)∩(K ∗q)

(disjunctive factoring)

If ¬p /∈ K ∗ (p ∨ q) then K ∗ (p ∨ q) ⊆ K ∗ p (disjunctive inclusion)

(K ∗ p) ∩ (K ∗ q) ⊆ K ∗ (p ∨ q) (disjunctive overlap)

K ∗ p = K ∗ q if and only if q ∈ K ∗ p and p ∈ K ∗ q (reciprocity)
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(For more information on these postulates, see [5, pp. 270–274] and [13, pp.
107–111].)

For (X2), note first that since X and Y are assumed to be elements of X

we can assume that there are p and q such that X = K ∗ p and Y = K ∗ q.
With this substitution, we are going to derive the contrapositive form of
(X2), i.e.:

If (K ∗ p) ∩ (K ∗ q) /∈ X, then (K ∗ p) ∪ (K ∗ q) � ⊥. (1)

Let (K ∗p)∩ (K ∗q) /∈ X. Then K ∗ (p∨q) �= (K ∗p)∩ (K ∗q). It follows from
disjunctive factoring that either K ∗ (p ∨ q) = K ∗ p or K ∗ (p ∨ q) = K ∗ q.
Without loss of generality we can assume that K ∗ (p ∨ q) = K ∗ p. Now
suppose for contradiction that ¬q /∈ K∗p. Then equivalently ¬q /∈ K∗(p∨q),
and it follows from disjunctive inclusion that K ∗(p∨q) ⊆ K ∗q, equivalently
K ∗p ⊆ K ∗q. Then it follows from K ∗(p∨q) = K ∗p and K ∗p ⊆ K ∗q that
K ∗ (p ∨ q) = (K ∗ p) ∩ (K ∗ q), contrary to our initial assumption. We can
conclude that ¬q ∈ K ∗p. Due to success, q ∈ K ∗q, thus (K ∗p)∪(K ∗q) � ⊥
as desired.

Next, let us turn to (� 3). Since X and Y are assumed to be elements
of X we can replace them by K ∗ p and K ∗ q. Since � is antisymmetric it
would be sufficient to show that:

If K ∗ p ⊂ K ∗ q then K ∗ p < K ∗ q. (2)

However, (2) cannot be derived from the AGM postulates since the language
of those postulates does not contain � or <. Instead we can show that ∗ has
a property that is necessary for (2) to hold. If q ∈ K ∗p, then (�5) makes it
impossible for K ∗ p < K ∗ q to hold. Therefore, in order for (2) (and (�3))
to hold, the following condition must be satisfied:

If K ∗ p ⊂ K ∗ q then q /∈ K ∗ p. (3)

To show that (3) holds, let K∗p ⊂ K∗q. Success yields p ∈ K∗q. Suppose for
contradiction that q ∈ K ∗p. Then reciprocity yields K ∗p = K ∗ q, contrary
to our assumption that K ∗ p ⊂ K ∗ q. We can conclude that q /∈ K ∗ p, as
desired.

Finally, (�4) is somewhat more complex but it can be understood with
the help of the following property [7]:

If K ∗ z = (K ∗ p) ∩ (K ∗ q) then K ∗ (p ∨ q) = (K ∗ p) ∩ (K ∗ q). (4)

To show that (4) follows from the AGM postulates, let K∗z = (K∗p)∩(K∗q).
Success yields p ∨ q ∈ K ∗ z and z ∈ (K ∗ p) ∩ (K ∗ q). Due to disjunctive
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overlap, z ∈ K ∗ (p ∨ q). Finally, we apply reciprocity to p ∨ q ∈ K ∗ z and
z ∈ K ∗ (p ∨ q), and obtain K ∗ z = K ∗ (p ∨ q).

The following equivalent form of (4) will be useful:

(K ∗ p) ∩ (K ∗ q) ∈ X if and only if K ∗ (p ∨ q) = (K ∗ p) ∩ (K ∗ q). (5)

We can interpret K ∗(p∨q) = (K ∗p)∩(K ∗q) as saying that if we accept the
information that either p or q, then we enter a state of hesitation between
revising by p and revising by q, presumably because these two alternatives
are equally plausible. Using (5) we can therefore interpret (K∗p)∩(K∗q) ∈ X

as saying that as seen from the viewpoint of K, K ∗ p and K ∗ q are equally
plausible. In this perspective, (�4) can be read as saying that if the belief
sets K ∗ p and K ∗ r are equally plausible, and K ∗ p � K ∗ q � K ∗ r, then
K ∗ q is equally plausible as K ∗ p, and also equally plausible as K ∗ r.

4. Conclusion

AGM operations are commonly constructed with the select-and-intersect
method, which means that the choice function chooses among a set of objects
(remainders or possible worlds) none of which is a plausible outcome of the
intended operation. Even if the outcome turns out to be plausible, such
choice mechanisms are problematic from the viewpoint of justification. It
would seem more reasonable to use a choice function that selects among
the potential outcomes, and delivers one of them as the outcome of the
operation.

The theorem proved in this paper partly defuses the conflict between
AGM revision and the idea of such a direct choice among potential outcomes.
We have shown that transitively relational AGM revision can be recon-
structed with a transitively relational choice function that selects directly
among the potential outcomes. This theorem lends credibility to AGM revi-
sion but also to the more general model of such direct choice (descriptor
revision) of which AGM revision has now been shown to be a special case.

Appendix: Proof of the Theorem

We are going to use systems of spheres as defined by Grove [4], and the
proof is therefore preceded by some definitions and preparatory results for
such spheres.
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Definition 4. Let K be a belief set and ∗ a sentential operation on K. The
outcome set of ∗ is the set {K ∗ p | p ∈ L}.

Definition 5. For all A ⊆ L: [A] = {W ∈ L ⊥ ⊥ | A ⊆ W}.
Brackets of singletons can be omitted, thus [p] = [{p}].

Observation 1.
⋂

[A] = Cn(A)

Proof. See Hansson [5, p. 52].

Lemma 1. (1) [X] = [Y ] if and only if Cn(X) = Cn(Y )

(2) [X] ⊆ [Y ] if and only if Cn(Y ) ⊆ Cn(X)

(3) If X and Y are logically closed, then [X ∪ Y ] = [X] ∩ [Y ]

(4) If X and Y are logically closed, then [X ∩ Y ] = [X] ∪ [Y ]

Proof. Parts 1–3: See Hansson [5, pp. 52–53].

Part 4: Right-to-left: It follows from Part 2 that [X] ⊆ [X ∪ Y ] and
[Y ] ⊆ [X ∪ Y ]

Left-to-right: Suppose to the contrary that [X ∩ Y ] � [X] ∪ [Y ]. Then
there is a possible world W such that X ∩ Y ⊆ W , X � W , and Y � W ,
and there must be some x ∈ X such that x /∈ W and some some y ∈ Y
such that y /∈ W . It follows from x ∨ y ∈ X ∩ Y and X ∩ Y ⊆ W that
x ∨ y ∈ W . Furthermore, it follows from x /∈ W and the maximality of W
that ¬x ∈ W , and ¬y ∈ W follows in the same way. Thus W is inconsistent
which it cannot be since it is a possible world. We can conclude from this
contradiction that [X ∩ Y ] ⊆ [X] ∪ [Y ].

Systems of spheres are defined as follows:

Definition 6. Let W ⊆ L ⊥ ⊥. A set S of subsets of L ⊥ ⊥ is a system of
spheres centered on W if and only if:

(S1) If S1,S2 ∈ S, then either S1 ⊆ S2 or S2 ⊆ S1.

(S2) W ∈ S, and W ⊆ S for all S ∈ S.

(S3) L ⊥ ⊥ ∈ S.

(S4) For all sentences p and spheres S ∈ S, if [p]∩S �= ∅, then there is some
S ′ ∈ S such that [p] ∩ S ′ �= ∅ and that [p] ∩ S ′′ = ∅ for all S ′′ ∈ S with
S ′′ ⊂ S ′.

(S1) tells us that spheres are concentric (totally ordered by set inclusion).
(S2) says that W itself is the minimal sphere. Without loss of generality,
we will assume that W = [K] for some belief set K. (S3) says that the set
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of all possible worlds is itself the maximal sphere. (S4) ensures that for all
sentences p there is a minimal sphere containing some p-world.

Definition 7. Let S be a system of spheres. A world-ring in S is s set R
consisting of all elements of some S ∈ S that are not elements of any S ′ ∈ S

with S ′ ⊂ S.

Obviously, the world-rings are equivalence classes.

Definition 8. Let K be a belief set. A revision operator ∗ on K is based
on a system S of spheres centered on [K] if and only if for all p, [K ∗ p]
is the intersection of all p-worlds in the smallest sphere in S that contains
some p-world; unless there are no p-worlds, in which case [K ∗ p] = ∅.

Grove’s [4] main result was that sphere-based revision coincides exactly with
transitively relational partial meet revision. We will have use for a few more
results on systems of spheres.

Lemma 2. Let X be the outcome set of a sphere-based revision in a sphere
system S, and let X ∈ X. Then all worlds W with X ⊆ W are elements of
the same ring in S.

Proof. From Observation 1 and Definition 8.

Lemma 3. Let X be the outcome set of a sphere-based revision, and let
X,Y ∈ X. Furthermore, let W1,W2 ∈ L ⊥ ⊥ be such that X ⊆ W1 and
Y ⊆ W2. Then: X ∩ Y ∈ X if and only if W1 and W2 are elements of the
same world-ring.

Proof. Since X,Y ∈ X there are p and q such that X = K∗p and Y = K∗q.
For one direction, let W1 and W2 be elements of the same world-ring. It

follows from Lemma 2 that the innermost world-ring containing some K ∗p-
world coincides with the innermost world-ring containing some K ∗ q-world.
Let R be that world-ring. Then [K ∗ (p ∨ q)] = R ∩ [p ∨ q], [K ∗ p] = R ∩ [p],
and [K ∗ q] = R ∩ [q]. We can conclude that K ∗ (p ∨ q) = (K ∗ p) ∩ (K ∗ q),
thus X ∩ Y ∈ X.

For the other direction, let X ∩ Y ∈ X. Due to Lemma 1, [X ∩ Y ] =
[X] ∪ [Y ], and it follows from Lemma 2 that the worlds containing X and
the worlds containing Y all belong to the same ring.

Lemma 4. If X is the outcome set of a sphere-based revision, then: If X∩Y ∈
X and Y ∩ Z ∈ X, then X ∩ Z ∈ X.

Proof. Directly from Lemma 3.
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Lemma 5. Let X be the outcome set of a sphere-based revision, and let
X,Y ∈ X. If X ∪ Y � ⊥, then X ∩ Y ∈ X.

Proof. Since X ∪ Y � ⊥ there is some world W ∈ L ⊥ ⊥ such that
X ∪ Y ⊆ W . It follows from Lemma 3 that X ∩ Y ∈ X.

We are now ready to prove the theorem:

PROOF OF THEOREM 1. We will make use of the well-known result
from Grove [4] showing that (I) is equivalent with:

(I+) ∗ is a revision operator based on some sphere system S.
The proof will therefore proceed by showing the equivalence between (I+)
and (II).

FROM (I+) to (II): (X1) follows directly and (X2) follows from Lemma 5.
For the rest of the proof, we define for each world-ring R, a cluster R of
elements of X:

R = {X ∈ X | (∃W ∈ R)(X ⊆ W}
It follows from Lemma 2 that each belief set is an element of exactly one
cluster, and from Lemma 3 that the relation � on X such that X�Y iff
X ∩Y ∈ X is an equivalence relation with the clusters as equivalance classes.

Next we define the relation � on X such that X � Y if and only if the
world-ring corresponding to the cluster containing X is included in every
sphere that contains the world-ring corresponding to the cluster containing
Y . Clearly, � is the symmetric part of �. Its strict part is denoted �.

Let ⊂̆ be a strict linear ordering on X satisfying the condition: If X ⊂ Y
then X⊂̆Y . (The existence of such a relation is guaranteed by the order
extension principle that follows from the axiom of choice, see Jech [10],
p. 19.) We let < be the relation on X such that for all X,Y ∈ X:

X < Y if and only if either (i) X � Y or (ii) both X�Y and X⊂̆Y .

Furthermore, let X � Y be the total ordering such that X � Y iff either
X < Y or X = Y .

We need to show that the conditions (�1), (�2), (�3), (�4), and (�5)
are satisfied. (�1) and (�2) follow directly.

For (�3), note that if X ⊆ Y then it follows from Lemma 2 that X and
Y are included only in worlds in one and the same world-ring, thus they
belong to the same cluster, i.e. X�Y . Since X ⊆ Y we have either X = Y
or X⊂̆Y , and in both cases X � Y follows directly.

For (�4), we use Lemma 3 to conclude that X and Z belong to the same
cluster. Due to the definition of �, Y belongs to that same cluster. Again
using Lemma 3 we find that X ∩ Y ∈ X and Y ∩ Z ∈ X.
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For (� 5): K ∗ p is the intersection of the p-worlds in the innermost
world-ring that has p-worlds. Therefore it is an element of the corresponding
cluster. Let X be a p-containing element of X such that X �= K ∗ p. If X
belongs to the same cluster as K ∗p, then K ∗p � X and K ∗p ⊂ X, and if it
belongs to some other cluster then K ∗p � X. Thus in both cases K ∗p < X.

FROM (II) TO (I+): We are first going to define an equivalence relation
on the set consisting of those worlds that contain at least one element of X,
namely the relation ∼ such that:

W1 ∼ W2 iff there are X1, X2 ∈ X such that X1 ⊆ W1, X2 ⊆ W2, and
X1 ∩ X2 ∈ X.

This relation is obviously reflexive and symmetric. To prove that it is an
equivalence relation it remains to show that it is transitive. Let W1 ∼ W2

and W2 ∼ W3. Then there are X1, X2, Y2, Y3 ∈ X such that X1 ⊆ W1,
X2, Y2 ⊆ W2, Y3 ⊆ W3, X1 ∩ X2 ∈ X and Y2 ∩ Y3 ∈ X.

It follows from (X2) that X2 ∩ Y2 ∈ X. Since X1 ∩ X2 ∈ X another use of
(X2) yields X1 ∩ X2 ∩ Y2 ∈ X. We also have Y2 ∩ Y3 ∈ X, and a third use of
(X2) yields X1 ∩ X2 ∩ Y2 ∩ Y3 ∈ X. Combining this with X1 ∩ X2 ⊆ W1 and
Y2 ∩ Y3 ⊆ W3, we obtain W1 ∼ W3.

We will use the equivalence classes over worlds based on ∼ as world-rings,
and define the following relations over these world-rings:

R�R′ if and only if it holds for all X,X ′ ∈ X and all W,W ′ ∈ L ⊥ ⊥
that if X ⊆ W ∈ R and X ′ ⊆ W ′ ∈ R′ then X < X ′.

R � R′ if and only if either R � R′ or R = R′.

(< is the strict part of �.) If there are any worlds not containing any element
of X then they are added as the lowest-ranked world-ring.

We need to show that � is a total ordering of the world-rings, i.e. that
it is transitive, complete and antisymmetric.

To show the transitivity of �, let R1�R2 and R2�R3. Excluding trivial
cases we can assume that R1, R2, and R3 are pairwise non-identical. Thus
R1 � R2 and R2 � R3, and we suppose for contradiction that R1 � R3.
Then there are X1, X3 ∈ X and W1,W3 ∈ L ⊥ ⊥ such that X1 ⊆ W1 ∈ R1

and X3 ⊆ W3 ∈ R3 and X1 � X3. (�1) yields X3 � X1. Since R1 and R2

are disjoint, X3 < X1. Let X2 ⊆ W2 ∈ R2. Due to R1 � R2 and R2 � R3

we have X1 < X2 and X2 < X3. This makes < cyclic, contrary to (�1).
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Antisymmetry of �: Suppose to the contrary that R � R′, R′ � R and
R �= R′. Then R � R′ � R. Let X ⊆ W ∈ R and X ′ ⊆ W ′ ∈ R. Then
X < X ′ < X, contrary to (�1).

As a preparation for the proving the completeness of � we prove the
following:

(X) If R1 �= R2, X1 ⊆ W1 ∈ R1, X ′
1 ⊆ W ′

1 ∈ R1, X2 ⊆ W2 ∈ R2,
X ′

2 ⊆ W ′
2 ∈ R2 and X1 < X2, then X ′

1 < X ′
2.

Proof of (X): First suppose that X ′
2 < X1. We then have X ′

2 < X1 < X2.
Due to our definition of world-rings as ∼-equivalence classes, this contradicts
(�4). Since � is complete due to (�1) we can conclude that X1 � X ′

2. Next
suppose that X ′

2 < X ′
1. Then due to the result we just obtained we have

X1 � X ′
2 < X ′

1, again contrary to (� 4). Thus not X ′
2 < X ′

1, and since R1

and R2 are disjoint, it follows from the completeness and antisymmetry of
� that X ′

1 < X ′
2 as desired.

Completeness of �: For the two distinct world-rings R and R′, let X ⊆
W ∈ R and X ′ ⊆ W ′ ∈ R′, Since R and R′ are disjoint, it follows from the
completeness and antisymmetry of � that either X < X ′ or X ′ < X. In the
former case, (X) yields R � R′ and in the latter case R′ � R.

Next, let S be the set consisting of the sets S such that S =
⋃{R′ |

R′ � R} for some world-ring R. We need to show that S satisfies the four
conditions given in Definition 6 for being a system of spheres centered on
[K], and that ∗ is based on S in the manner described in Definition 8.

(S1) follows directly from the construction of S. For (S2), note that it
follows from (� 1) and (� 2) that K < X for all X ∈ X \ {K}. It follows
from (�3) that X contains no proper subset of K, from the construction of
∼ that the K-containing worlds form a world-ring of their own, and from
our definition of S that this world-ring is also the innermost sphere.

(S3) follows from the construction of S, since all worlds are included in
one of the world-rings.

For (S4), let [p] ∩ S �= ∅. There is then some p-containing world, and
according to (� 1) and (� 5) there is some Xp ∈ X such that Xp < Y
for all Y ∈ X with p ∈ Y . Let Rp be the world-ring containing the worlds
including Xp. Then it holds for all world-rings R′ that if R′�Rp then R′ has
no element containing p. It follows that the sphere Sp =

⋃{R′ | R′ � Rp}
has the desired property, i.e. it has a non-empty intersection with [p] but no
sphere that is its proper subset has a non-empty intersection with [p].

Finally, it follows from the construction of the world rings that for all
worlds W , if Xp ⊆ W then W ∈ Rp. Due to (X1) and Observation 1,
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Xp =
⋂{W ∈ Rp | p ∈ W} =

⋂{W ∈ Sp | p ∈ W}, i.e. Xp is the outcome
of S-based revision of K by p according to Definition 8. Due to (� 5),
K ∗ p = Xp. This concludes the proof.
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