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Abstract. We investigate the notion of classical negation from a non-classical perspec-

tive. In particular, one aim is to determine what classical negation amounts to in a para-

complete and paraconsistent four-valued setting. We first give a general semantic character-

ization of classical negation and then consider an axiomatic expansion BD+ of four-valued

Belnap–Dunn logic by classical negation. We show the expansion complete and maximal.

Finally, we compare BD+ to some related systems found in the literature, specifically a

four-valued modal logic of Béziau and the logic of classical implication and a paraconsistent

de Morgan negation of Zaitsev.
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1. Introduction

One of the initial motivations behind the system of first-degree entailment,
or Belnap–Dunn logic (BD), was to avoid fallacies of classical material im-
plication, such as the so-called fallacies of relevance. Two such instances are
embodied in the following theorems of classical logic:

A → (B → A), (A ∧ ¬A) → B.

It would seem, then, that paraconsistent and relevant logicians should have
no interest in classical material implication or classical negation, at least not
if they wish to avoid fallacies such as these. There are, however, plenty of
good reasons for paraconsistent logicians to be interested in these classical
notions. One prominent example of such interest goes back to Routley and
Meyer in the series of articles (see [16,17]) where they consider adding clas-
sical negation to relevant logic, resulting in what they there called classical
relevant logic. Their reason was mainly a technical curiosity: Does adding
classical negation to relevant logic result in what they called “breakdown”,
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i.e. a collapse to classical logic? The answer, they showed, was “No” and,
better, that the expansion to classical negation is even conservative.

Are there other reasons for a paraconsistentist to be interested in classi-
cal negation? Let us first consider a related question: Why would (revision-
ist) paraconsistists care about metalogical results concerning paraconsistent
logics couched in a classical metatheory? R. K. Meyer’s answer was “to
preach to the gentiles in their own tongue”.1 If classicists claim not to grasp
paraconsistent negation as being a genuine negation,2 why not deliver the
logic to them in terms of a semantics expressed entirely within a classical
metatheory? And that is precisely what relevantists did. We think it is even
better to go one step further by having all classical notions expressible in the
object language itself. What better way to preach to the gentiles in their own
tongue?3 If a classical notion is coherently expressible in your language, why
not help yourself to it? Paraconsistentists might be interested in classical no-
tions simply because they find them coherent.

We are aware that a good number of paraconsistentists have an aversion
to certain classical notions, especially negation and implication. We think,
however, that this aversion stems from a misunderstanding that classical
notions—and in particular negation—somehow lead to triviality in a suitably
rich language. First, paraconsistent logics with classical negation need not
collapse into classical logic, and so naive theories of truth or sets couched in
these languages needn’t be trivial provided they are formulated in the right
way.4

Second, it is hard to see how certain paraconsistentists can deny the
coherence of classical negation, in which case there is no reason to deny it
its place in one’s formal (object) language. Certainly if such a language is
to serve as one in which much of natural language can be regimented, then
if classical negation is coherent, one must allow it into their formal language
for the sake of expressive adequacy.

Finally, a language which succeeds in evading paradox only because it
lacks expressive resources serves as no solution to paradox. One cannot hope
to avoid untoward consequences of one’s theory by simply ignoring notions
one deems problematic, at least not if those notions are coherent (or one
has not shown that they are incoherent). Since this is no place to defend

1See [15, p. 1].
2On which, see [28].
3Indeed, there is no better way if you deny the object-/meta-language distinction in

the first place, as some well-known paraconsistent logicians do (see e.g. [24]).
4See [20].
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the coherence of classical negation, for present purposes we simply assume
it. We will, however, say more about what classical negation amounts to in
a non-classical setting, a topic we come to in the following section.

The aim of this paper is three-fold. First, to motivate a semantic char-
acterization of classical negation applicable to non-classical logics (Sect. 2).
Second, to investigate an axiomatization of the extension of BD by said
classical negation (Sect. 3). Third, to compare the resulting extension to
related systems found in the literature (Sect. 3.5).

2. What is Classical Negation?

We have been using “classical negation” within the context of non-classical
logics without saying exactly what we mean by it. Before extending BD by
classical negation, we need to say precisely what we take classical negation
to be. One typically finds a definition according to which classical negation
is any operation ¬ satisfying certain “characteristic” laws, e.g.

(A ∧ ¬A) → B, ¬¬A → A.

But such a characterization depends crucially on what sort of conditional
→ is, and which laws are taken to be characteristic of classical negation. For
instance, if → is not the classical material conditional, then even if ¬ satisfies
the above laws, it may not satisfy others thought to be characteristically
classical, such as the following form of contraposition5:

(A → ¬B) → (B → ¬A).

The point is that it is especially difficult to say in a purely syntactic
way which laws are characteristic of negation, depending on which other
sentential operators we have in the background. If we have only a relevant
conditional around, how should classical negation interact with it? It is
for this reason that we examine the notion of classicality from a semantic
perspective.6

5See e.g. [16], where what is there called ‘classical negation’ fails precisely this law
when → is a relevant conditional.

6Additional reasons for preferring a semantic over syntactic characterization of negation
are given in [9, Chap. 2].
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2.1. Contradictoriness

Since we will be working with BD, let us begin with the truth tables for its
connectives:

A ∼ A

t f

b b

n n

f t

A ∧ B t b n f

t t b n f

b b b f f

n n f n f

f f f f f

A ∨ B t b n f

t t t t t

b t b t b

n t t n n

f t b n f

Note here that designated values are t (“truth only”) and b (“both truth
and falsity”), and that ∼ is a paraconsistent negation. The values f and n
are to be taken as “falsity only” and “neither truth nor falsity”. Thus, when
we speak of a sentence being true, we mean it takes either the value t or b,
and when we speak of a sentence being false, we mean it takes either the
value b or f. Indeed we take there to be only two genuine truth values, truth
and falsity, that are neither exhaustive nor exclusive. Thus, for instance, by
the assignment of the value b to A we are to understand that A is related
to both truth and falsity, not that there is some further truth value, “both-
truth-and-falsity”, in relation to which A stands. If helpful, the reader may
think of the four values as sets of values consisting of just truth and falsity
so that, e.g., b = {truth, falsity}.

Typically one thinks of t and f as classical values, and the others as
non-classical. As such, we may then say of a pair of formulas A and B that:

Contra: A and B are classically contradictory if and only if A ∨ B is always
true and not false and A ∧ B is always false and not true.

Contra generalizes the usual notion of contradictoriness to allow for a non-
classical understanding of the relation between truth and falsity, i.e. whether
they’re exhaustive or exclusive. It also uniquely determines a contradictory-
forming connective whose truth table is given by

A ¬A

t f

b n

n b

f t

Indeed, from an algebraic viewpoint ¬ is boolean complementation.7

7We criticized syntactic characterizations of negation since they rely crucially on what
properties certain connectives have. Here we have proposed a characterization, Contra,
which relies on the properties ∧ and ∨ have. The difference is that we are assuming
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An alternative notion of classical negation in the context of BD, often
called exclusion negation, has the following truth table:

A ¬eA

t f

b f

n t

f t

It is often read as ‘It is not true that. . . ’, keeping in mind that taking the
value b means being both true and false.8 It is thought of as classical since
the logic in ∧,∨ and ¬e is precisely classical logic.9 It is easily verified that
the logic in ∧,∨, and ¬ too coincides with classical logic. Note, however, that
¬e fails to satisfy Contra, and so is not a contradictory forming operator in
that sense, since A∨¬eA takes the value b (instead of t) when b is assigned
to A. Moreover, once we add the paraconsistent negation ∼ to the language,
¬e and ¬ come apart, as witnessed by Proposition 4 below.

One problem with the above characterization of classical negation as one
satisfying Contra is that the definition does not generalize, e.g. to a three-
valued setting. For suppose we have only three values, t, b, and f. (It will
not matter whether b is designated.) In order to meet Contra, a classical
negation ⇁ must take t to f and conversely. Now what to do with b? It
can’t go to f, lest A∨⇁A not always take t. And it can’t go to b or t either,
lest A∨⇁A not always take t or A∧⇁A not always take f. In other words,
there is no operation satisfying Contra in a three-valued setting. If we wish
our characterization of classical negation to apply when there are arbitrarily
many values, we need a more general notion of classical contradictoriness.
For that, we propose the following account; call it Liberal.

Contrariety: two sentences are contraries if one of them is not true whenever
the other is true;

Footnote 7 continued
with most others that ∧ and ∨ behave classically—algebraically as meet and join—and
we already know how classical negation interacts with these connectives. Apart from any
semantic considerations, it is not clear, however, how classical negation should interact
with e.g. a relevant arrow.

8The expression ‘exclusion negation’ typically refers to a connective in a three-valued
setting with the same reading, ‘It is not true that’. We have lifted the terminology to the
four-valued case.

9For our purposes, a logic is a set of formulae closed under an appropriate relation of
deducibility satisfying e.g. transitivity, reflexivity and substitution. Note that the criterion
of classicality here is entirely proof-theoretic, as is assumed e.g. in [8].
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Subcontrariety: two sentences are subcontraries if one of them is true when-
ever the other is not true.

Call two sentences contradictories if they are contraries and subcontraries.
Liberal generalizes the usual classical notion of contradictoriness so that

it applies in a non-classical setting. In a classical setting, where truth and
falsity are exclusive and exhaustive, falsity is simply untruth, and thus the
above account is equivalent to the more familiar traditional account accord-
ing to which:

• two sentences are contraries if they cannot be true together;

• two sentences are subcontraries if they cannot be false together.

Liberal uniquely secures classical negation when truth and falsity are
exclusive and exhaustive—as they are classically—but it is not by itself
enough to secure a single unary operation when truth and falsity interact
non-classically. It can therefore serve only as a necessary condition on clas-
sical negation. Indeed it can be seen as merely one component of a definition
of classical negation that generalizes to a non-classical setting. We now come
to the further components of this definition.

2.2. Negations Satisfying Liberal in a Non-classical Setting

If truth and falsity are exhaustive but not exclusive (meaning we are in a
paraconsistent setting where the only available values are t, f, and b), then
the following two candidates satisfy Liberal:

A ∼A ¬1A ¬2A

t f f f

b b f f

f t t b

The operator ¬1 is the familiar paraconsistent three-valued exclusion nega-
tion (read, ‘It is not true that’) while ¬2 (which has no intuitive reading)
appears not to be a negation at all. Each operation takes a designated value
to an undesignated one and conversely—a necessary requirement of any clas-
sical negation—but only ¬2 has the unusual property that ∼¬2A is valid
for arbitrary A. But no double negation composed only of de Morgan and
classical negations should be valid: for any such statement intuitively has
the force of an assertion (or something slightly weaker). Moreover, ¬2 makes
any sentence false (thinking relationally) regardless of the value of that sen-
tence. Such an operation seems to us not to be a classical negation. We
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therefore need an additional constraint that rules out ¬2 from qualifying as
classical.

Let us now consider the paracomplete case where truth and falsity are
exclusive but not exhaustive (meaning the only available values are t, f,
and n). Here again we have two candidate negations satisfying Liberal:

A ∼A ¬3A ¬4A

t f f n

n n t t

f t t t

The operator ¬3 is the familiar three-valued paracomplete exclusion nega-
tion while the other, ¬4, again appears not to be a negation at all; for
¬4∼¬4A is valid for arbitrary A. But no triple negation composed only of
de Morgan and classical negations should be valid: for any such statement
intuitively has the force of a denial (or something slightly weaker). More-
over, if not every double negation ∼¬4A is to be valid for arbitrary A (as
we argued above), then for some invalid such double negation ∼¬4B, ap-
pending B with a classical negation won’t yield a validity either. Hence
¬4∼¬4A shouldn’t be valid for arbitrary A. We therefore need an additional
constraint that rules out ¬4 from qualifying as classical.10

Finally, let us consider the paraconsistent and paracomplete case where
truth and falsity are neither exclusive nor exhaustive (meaning all four truth
values are available). Here we have sixteen candidate unary operations sat-
isfy Liberal. Since the negation has to be undesignated (designated) when
the negand is designated (undesignated), there are two possibilities for each

10By our definition, ¬3 is classical since it satisfies both Liberal and Toggle. An anony-
mous referee questions this by considering two interesting cases. The first involves the
weak Kleene interpretation of the connectives. On that interpretation, A ∨ ¬3A is not a
theorem (though it is when ∨ is interpreted according to the strong Kleene tables), which
is to suggest that ¬3 cannot therefore be classical. We disagree. No operation ⊗ is such
that A ∨ ⊗A will be a theorem of weak Kleene logic simply because of the non-classical
interpretation given to ∨. A classical interpretation requires the truth of A ∨ B when ei-
ther A is true or B is and this fails for ∨ in weak Kleene logic. We still maintain that ¬3

is classical even in the weak Kleene setting since it meets the required semantic criteria
and since all the usual classical theorems are valid when the other connectives such as ∨
are read classically. The second case involves giving a non-standard interpretation to the
consequence relation (as preservation of non-falsity) so that it is not taken as the smallest
relation preserving truth over all models. Relative to some such consequence relations, the
inference from e.g. A to ¬3¬3A may fail. This does not by our lights show that ¬3 fails
to be classical simply because the consequence relation does not cohere with the usual
understanding of the truth values in the present non-classical setting.
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input. And since there are four kinds of inputs, we obtain 24 = 16 possi-
bilities. However, again not each of these possibilities counts as a classical
negation; for example, just as in the paraconsistent case, the following four-
valued counterpart ¬5 of ¬2 satisfies Liberal:

A ¬5A

t f

b f

n b

f b

As such, ∼¬5A is valid for arbitrary A, and this rules it out as being a
classical negation on the same grounds as ¬2.

2.3. The Classical Triad

In each the three-valued paraconsistent and paracomplete case, while Liberal
does not by itself secure only classical negations, it does leave us with only
two, one of which is clearly not classical. The following constraint seems a
natural additional to Liberal in securing classical negation in a three-valued
setting. We call it Toggle:

Toggle: an operation on truth values is a classical negation only if it toggles
between the classical values t and f, i.e. it takes t to f and conversely.

This condition seems to us a reasonable constraint on classicality. First,
because it is often taken as a definition of classical negation, though we
have generalized it to a non-classical setting.11 Second and more generally,
classical operations that receive classical inputs should have classical out-
puts. This is already enough (in conjunction with Liberal) to secure a unique
negation in the three-valued cases. Third, because there is no intuitive read-
ing of an operation which takes a sentence that is true only or false only to
one that is both true and false, or one that is neither. Yet classical negation
presumably has an intuitive reading.

With Liberal and Toggle a unique classical negation is secured in the
three-valued cases. The four-valued case presents a separate challenge, since
these constraints do not uniquely secure a single negation. In fact, they
determine the following four candidates:

11Toggle is endorsed as a definition of classical negation, e.g., in [7,22,29]. Toggle and
Liberal are equivalent under the assumption that there are no truth value gaps or gluts,
and hence the two conditions are classically equivalent. In [23], Priest takes Liberal to be
a definition of classical negation.
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A ¬A ¬1A ¬2A ¬eA

t f f f f

b n n f f

n b t b t

f t t t t

So the question is whether there are additional, natural semantic constraints
that, in conjunction with Liberal and Toggle, secure a unique candidate from
these four. We propose the following:

Involution: an operation ⇁ on truth values i is a classical negation only if
⇁⇁i = i,

i.e. the semantic equivalence of a sentence with its double negation. The
triad, Liberal, Toggle and Involution, uniquely secure ¬ as the unique clas-
sical negation in the four-valued setting.

Note that, of the four candidate negations, only boolean negation is sur-
jective. This implies that, for the non-boolean negations, A and its double
negation will never be semantically equivalent for some values of A. For if
some value i is not in the image of a negation, then the double negation of i
must be something other than i. In particular, we have that when (the value
of) A is b, ¬1¬1A,¬2¬2A and ¬e¬eA are all t.

Why think Involution should be a constraint on classicality? Certainly
for ⇁ to be classical, ⇁⇁A must imply A and conversely. This may hold
even when Involution fails. But the idea that this equivalence holds is surely
grounded in the idea that, for any possible interpretation of the language,
⇁⇁A and A have the same value. This is, after all, a consequence of the
intended interpretation of classical negation. We should be careful here,
however. Any negation satisfying Involution in a three-valued setting will
have to fail either Liberal or Toggle, and these latter two conditions strike
us as more to the core of classical negation than does Involution. For note
that this triad of constraints is in fact equivalent to Contra, which can be
taken as a definition of boolean complementation (assuming ∧ and ∨ are
boolean meet and join), so one of them must go if they are to serve as
a characterization of classical negation in a general setting. Involution is
therefore applicable only in certain cases where Liberal and Toggle fail to
be uniquely determining.

Here is a final considerations for siding with boolean negation as classi-
cal in a four-valued setting. The first is that, among the four candidates,
only boolean negation is uniquely determined by the following thoroughly
classical truth and falsity conditions:
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• ¬A is true iff A is not true.

• ¬A is false iff A is not false.

It is important that these conditions together treat truth and falsity on a
par, in the sense that both values are essentially appealed to in the truth and
falsity conditions of negated sentences. It is this symmetry of the standard
connectives of BD and classical logic that is absent with the three other
candidate classical negations. To see this, note that while the four nega-
tions have the same truth conditions, they differ with respect to their falsity
conditions, which are given as follows:

• ¬eA is false iff A is true.

• ¬1A is false iff A is true and not false (iff A is true only).

• ¬2A is false iff A is true or not false (iff A is not false only).

Only the falsity condition for exclusion negation strikes us as natural. Yet
it does not treat truth and falsity on a par, as does the falsity condition for
boolean negation. We take this to be another reason, in the context of BD,
to regard only boolean negation as classical.

Let us briefly summarize the discussion so far. First, the notion of classi-
cal negation in the context of BD can be partially captured by the conditions
Liberal and Toggle. In particular, Liberal and Toggle together uniquely de-
termine the notion of classical negation in the two- and three-valued settings.
In the four-valued setting, further constraints are needed if a negation is to
be uniquely secured as classical. We proposed one such condition, Involu-
tion. These three conditions, Liberal, Toggle and Involution, uniquely secure
boolean negation in any bounded distributive lattice, hence in the matrix for
BD. Indeed, Contra is decomposable into precisely these three conditions.
Finally, boolean negation is the only negation in the four-valued setting
whose truth and falsity conditions, like two-valued classical negation, treat
truth and falsity on a par. We took this as a final consideration for regarding
boolean negation as classical in the context of BD. With that said, we do
think that exclusion negation, ¬e, comes a close second.

Now that we have a grasp on the notion of classical negation, we turn to
the proof-theoretic details of extending BD by classical negation.

3. Expanding BD with Classical Negation

We present a Hilbert style system BD+ which is the expansion of BD by
classical negation. We show it (i) complete with respect to the semantics
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discussed in the previous section, and (ii) maximal with respect to classical
logic.12

3.1. Formulation

The language L consists of the set of logical symbols S and a denumerable
set, Prop, of propositional letters whose members we denote by p, q, etc. In
the following, we assume that {∼,∧,∨} ⊆ S, and indicate the inclusion of
other logical symbols of S using subscripts. For example, the language L→,¬
of BD+ includes, besides {∼,∧,∨}, also {→,¬}. Furthermore, we denote
by FormL the set of formulas defined as usual in L. If L is e.g. L→,¬, we may
denote its set of formulas similarly by Form→,¬. We use uppercase Greek
letters (Γ, Δ, etc.) to denote sets of formulas and uppercase Roman letters
(A,B, etc.) to denote formulas.

In BD+, the classical implication A → B is definable by ¬A ∨ B but
we have chosen to take it as primitive to simplify the comparison of BD+
with other systems we discuss in what follows. We provide its truth table
for convenience.

A → B t b n f

t t b n f

b t t n n

n t b t b

f t t t t

Definition 1. The system BD+ consists of the following axiom schemata
and a rule of inference, where A ↔ B abbreviates (A → B) ∧ (B → A).

(Ax1) A → (B → A)

(Ax2) (A → (B → C)) → ((A → B) → (A → C))

(Ax3) ((A → B) → A) → A

(Ax4) (A ∧ B) → A

(Ax5) (A ∧ B) → B

(Ax6) (C → A) → ((C → B) → (C → (A ∧ B)))

(Ax7) A → (A ∨ B)

(Ax8) B → (A ∨ B)

(Ax9) (A → C) → ((B → C) → ((A ∨ B) → C))

(Ax10) A ∨ ¬A

12We will not be too careful to distinguish a Hilbert system (i.e. a set of axiom schemata
and rules of inference) from the logic it generates (i.e. a set of formulas, for our purposes),
though we typically use ‘system’ for the former and ‘logic’ for the latter.
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(Ax11) (A ∧ ¬A) → B

(Ax12) ∼¬A ↔ ¬∼A

(Ax13) ∼∼A ↔ A

(Ax14) ∼(A ∧ B) ↔ (∼A ∨ ∼B)

(Ax15) ∼(A ∨ B) ↔ (∼A ∧ ∼B)

(Ax16) ∼(A → B) ↔ (¬∼A ∧ ∼B)

(MP) A A→B
B

Finally, we write Γ �BD+ A if there is a sequence of formulas 〈B1, . . . , Bn, A〉
(n ≥ 0), called a derivation, such that every formula in the sequence either
(i) belongs to Γ; (ii) is an axiom of BD+; (iii) is obtained by (MP) from for-
mulas preceding it in the sequence. As usual, we write Γ, A1, . . . , An �BD+ B
for Γ∪{A1, . . . , An} �BD+ B. We call A a theorem of BD+ when ∅ �BD+ A.

Remark 2. Consider the subsystem of BD+ consisting of axioms (Ax1)
through (Ax9) together with the rule of inference (MP). This system is
equivalent to the negation-less fragment of CL, and we call it CL+. More-
over, the subsystem of CL+ obtained by dropping (Ax3) is the negation-less
fragment of intuitionistic logic, and we call it IL+. Note also that the above
axiomatization is redundant in a sense that some of the axioms are provable
by means of others. We present it this way to ease the comparison of BD+
with other systems.

Proposition 3. The deduction theorem for BD+ holds with respect to →,
that is, Γ, A �BD+ B iff Γ �BD+ A → B.

Proof. The left-to-right direction can be proved in the usual manner in the
presence of axioms (Ax1) and (Ax2), and (MP) the sole rule of inference. For
the other direction, suppose Γ �BD+ A → B, i.e. that there is a derivation
〈B1, . . . , Bn, A → B〉. But then 〈B1, . . . , Bn, A,A → B〉 is a derviation
witnessing Γ, A �BD+ A → B. By (MP), 〈B1, . . . , Bn, A,A → B, B〉 is a
derivation witnessing Γ, A �BD+ B.

3.2. Soundness and Completeness

We now turn to prove the soundness and completeness of BD+ with respect
to the semantics we considered earlier. We begin with a definition of a BD+-
valuation.

Definition 4. A BD+-valuation is a homomorphism from the set FormL of
BD+-formulas to the set {t,b,n, f} of truth values, induced by the following
matrices:
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A ∼ A ¬A

t f f

b b n

n n b

f t t

A∧B t b n f

t t b n f

b b b f f

n n f n f

f f f f f

A∨B t b n f

t t t t t

b t b t b

n t t n n

f t b n f

Note here that the designated values are t and b.

Definition 5. A formula A is a BD+-tautology iff, for any BD+-valuation
v, v(A) is always designated.

Theorem 1. (Soundness) All the theorems of BD+ are BD+-tautologies
and (MP) is sound.

Proof. By a straightforward verification that each instance of each axiom
schema always takes a designated value, and that (MP) preserves designa-
tionhood.

We now turn to completeness. We adopt the constructive method of
Kalmár, used also in [6,27] for the paraconsistent logic P1 of Sette, and
the logics LFI1 and LFI2 of Carnielli, Marcos and de Amo (see also Mendel-
son [14]).

For convenience, we list some formulas that are provable in BD+.

Lemma 6. The following formulas are provable in the system BD+.

(T1) ¬¬A ↔ A (T2) ¬∼¬A ↔ ∼A
(T3) ¬∼(A → B) ↔ (∼A ∨ ¬∼B) (T4) ¬(A → B) ↔ (A ∧ ¬B)
(T5) (A ∧ ¬∼A) ∨ (A ∧ ∼A) ∨ (¬A ∧ ¬∼A) ∨ (¬A ∧ ∼A)

Proof. Left as an exercise for the reader.

Based on this lemma, we prove the key lemma for our completeness proof.

Lemma 7. Given a BD+-valuation v, we define for each formula A an
associated formula Av:

(∗) Av =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A ∧ ¬∼A if v(A) = t
A ∧ ∼A if v(A) = b
¬A ∧ ¬∼A if v(A) = n
¬A ∧ ∼A if v(A) = f

Now, let F be a formula whose set of atomic variables is {p1, p2, . . . , pn},
and let Δv be the set {pv1, p

v
2, . . . , p

v
n}. Then Δv � F v.

Proof. By induction on the number n of connectives. Outline of the proof
is provided in the appendix.
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Theorem 2. (Completeness) All the BD+-tautologies are theorems of BD+.

Proof. Let F be any BD+-tautology and Δ the set of propositional vari-
ables occurring in F . Then by Lemma 7 above, we have Δv � F v. Further-
more, since F is a BD+-tautology, F v is always F ∧ ¬∼F or F ∧ ∼F , so
either Δv � (F ∧ ¬∼F ) or Δv � (F ∧ ∼F ) holds. In either case, we obtain
Δv � F .

Now, let Δv
k be the set Δv \ pk, and suppose the four valuations v1, v2, v3

and v4 are such that Δv1
k = Δv2

k = Δv3
k = Δv4

k (=def. Δk) and v1(pk) =
t, v2(pk) = b, v3(pk) = n and v4(pk) = f .

Then, for v1, Δv1 � F is Δv1
k , {pk∧¬∼pk} � F by the definition of Δv1 . By

the deduction theorem, we have Δv1
k � (pk∧¬∼pk) → F . Similarly we obtain

Δv2
k � (pk∧∼pk) → F, Δv3

k � (¬pk∧¬∼pk) → F and Δv4
k � (¬pk∧∼pk) → F

for v2, v3 and v4 respectively. Putting these four results together by making
use of (Ax9) and the fact that Δv1

k = Δv2
k = Δv3

k = Δv4
k = Δk, we have

Δk � ((pk ∧ ¬∼pk) ∨ (pk ∧ ∼pk) ∨ (¬pk ∧ ¬∼pk) ∨ (¬pk ∧ ∼pk)) → F , where
Δk = Δ \ pk. By (T5), we conclude that Δk � F . Repeating this procedure
k − 1 more times gives us � F as desired.

3.3. Maximality

Maximality was given as a criterion of paraconsistency independently by
Jaśkowski and da Costa, and we here show that BD+ is indeed maximal.
Jaśkowski required that paraconsistent systems “be rich enough to enable
practical inference” ([12, p. 38]), while da Costa requires them to “contain
the most part of the schemata and rules of C0” ([8, p. 498]) where C0 is the
classical propositional calculus. Although these criteria are rather vague, it is
common to interpret them as a maximality constraint, defined as follows.13

Definition 8. Let L1 and L2 be logics taken as sets of formulas closed
under an appropriate relation of deducibility. Then, L1 is said to be maximal
relative to L2 if the following holds:

• The languages of L1 and L2 are the same;

• L1 ⊆ L2;

• L1 ∪ {G} = L2 for any theorem G of L2 which is not a theorem of L1.

The maximality of three-valued paraconsistent logics is relatively well
discussed in the literature. In particular, in [2], some comprehensive results
are presented by Arieli, Avron and Zamansky.14 More general many-valued

13We here adopt the definition employed in [6, p. 135].
14Note that in [2], maximality with respect to consequence relations is also considered.
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logics are considered in [1] in the context of what they call “ideal paraconsis-
tent logics”, though the results contained therein do not cover our case, and
so we deal with it here.15 For the purpose of stating the result, we introduce
the following logic.

Definition 9. Let ECL be classical propositional logic with two classi-
cal negations in the language L→,¬. Namely, we obtain ECL by replacing
(Ax12)–(Ax16) by the two axioms A ∨ ∼A and (A ∧ ∼A) → B in the for-
mulation of BD+.

Then the following maximality result holds.

Theorem 3. BD+ is maximal relative to ECL.

Since the first two conditions of Definition 8 are obviously satisfied, we
only prove the third condition. For this purpose, we make use of an idea
employed in [10].

Lemma 10. Let G be a formula containing only one propositional variable
p. Then one of the following four formulas is provable in the system BD+:

(I) (p ↔ ∼p) → G (II) (p ↔ ∼p) → ¬G
(III) (p ↔ ∼p) → (G ↔ ¬p) (IV) (p ↔ ∼p) → (G ↔ p)

Proof. By induction on the complexity of G.

Lemma 11. Let G be a formula containing only one propositional variable
p such that �ECL G and ��BD+ G. Then ��BD+ (p ↔ ∼p) → G.

Proof. By ��BD+ G and completeness, there is a BD+-valuation v0 such
that v0(G) ∈ {f ,n}. Since �ECL G, it follows that v0(p) ∈ {b,n}. In either
case, v0(p ↔ ∼p) = t. So whether v0(G) = f or v0(G) = n, v0((p ↔ ∼p) →
G) �∈ {t,b}. By soundness, ��BD+ (p ↔ ∼p) → G.

Lemma 12. Let G be a formula containing only one propositional variable
p such that �ECL G and ��BD+ G. Then the system S obtained from the
system BD+ by adjoining G as an axiom schema is equivalent to ECL.

15More precisely, [1, p. 55, Theorem 3] provides a sufficient condition for a many-valued
logic’s being ideal, a condition which requires maximality in our sense. However, ideality
assumes the presence of the conditional ⊃ defined as follows:

v(A ⊃ B) =

{
v(B) if v(A) is designated;

t otherwise

However, this conditional is not definable in BD+, as observed in Corollary 16.
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Proof. By Lemmas 10 and 11, one of the following formulas are provable:
(II) (p↔∼p)→¬G, (III) (p ↔ ∼p)→(G ↔ ¬p), (IV) (p ↔ ∼p)→(G ↔ p).
We here prove that in any of these cases, we have �S ¬p ↔ ∼p is provable
which is sufficient for the desired result.

First, if (II) is provable, then we have �S (p ↔ ∼p) → ¬G, and therefore
by contraposition with respect to ¬, we get �S G → ¬(p ↔ ∼p) which is
equivalent to �S G → (¬p ↔ ∼p). Since G is assumed as an axiom, we ob-
tain �S ¬p ↔ ∼p. Second, if (III) is provable then we have �S (p ↔ ∼p) →
(G ↔ ¬p) and, therefore, �S (p ↔ ∼p) → (G → ¬p). By permutation and
contraposition with respect to ¬, we get �S G → (p → (¬p ↔ ∼p)). Since G
is assumed as an axiom, we obtain �S p → (¬p ↔ ∼p). But then we also have
�S ¬p → (¬¬p ↔ ∼¬p), which is equivalent to �S ¬p → (¬p ↔ ∼p) in view
of (Ax12). Hence, together with (Ax7) and (Ax10), we reach �S ¬p ↔ ∼p
as desired. Finally, if (IV) is provable then the proof is similar to the pre-
vious case, the details of which are left to the reader. This completes the
proof.

Lemma 13. Let G(p1, . . . , pn) be a formula containing no propositional vari-
ables except p1, . . . , pn, such that �ECL G and ��BD+ G. Then there are for-
mulas ϕ1(p), . . . , ϕn(p) containing no propositional variable except p, such
that �ECL G(ϕ1(p)), . . . , ϕn(p)) and ��BD+ G(ϕ1(p)), . . . , ϕn(p)).

Proof. Since �ECL G, it is clear that for any formulas ϕ1(p), . . . , ϕn(p),
G(ϕ1(p), . . . , ϕn(p)) is a tautology. Therefore, we shall only prove that we
can construct formulas ϕ1(p), . . . , ϕn(p) so that ��BD+ G(ϕ1(p)), . . . , ϕn(p)).

By the assumption ��BD+ G and the completeness theorem, there is a
BD+-valuation v0 such that v0(G(p1, . . . , pn)) �∈ {t,b}. Given this valua-
tion, we define ϕk(p) as follows

ϕk(p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p ↔ ∼p if v0(pk) = t
p if v0(pk) = b
¬p if v0(pk) = n
¬p ↔ ∼p if v0(pk) = f

Then we have v0(ϕk(p)) = v0(pk) when v0(p) = b. Indeed,

• If v0(pk) = t, then v0(ϕk(p)) = v0(p ↔ ∼p) = t = v0(pk);

• If v0(pk) = b, then v0(ϕk(p)) = v0(p) = b = v0(pk);

• If v0(pk) = n, then v0(ϕk(p)) = v0(¬p) = n = v0(pk);

• If v0(pk) = f , then v0(ϕk(p)) = v0(¬p ↔ ∼p) = f = v0(pk).
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Hence, we have v0(G(ϕ1(p), . . . , ϕn(p))) �∈ {t,b} when v0(p) = b, and
thus ��BD+ G(ϕ1(p)), . . . , ϕn(p)) as desired.

We are now in a position to prove Theorem 3.

Proof of Theorem 3. Let G be a formula such that �ECL G and ��BD+ G.
Let S be the system obtained from the system BD+ by adjoining G as an
axiom schema. In view of Lemma 12, it is sufficient to prove that there
is a formula G′ which contains only one propositional variable such that
�ECL G′ and ��BD+ G′. Given Lemma 13, we can construct such a formula
from G, concluding the proof of Theorem 3.

Remark 14. If we consider maximality with respect to consequence rela-
tions, then BD+ is not maximal relative to ECL. Indeed, the addition of
the rule A,∼A � B to BD+ gives us a strictly stronger system compared
to BD+, and also a strictly weaker system compared to ECL. This may be
observed in the truth tables that are exactly like those for the connectives
of BD+ except that the designated value is restricted to only t.

3.4. The Definability of Other Negations in BD+

In light of our discussion in Sect. 2, a natural question that arises is whether
any of the other candidate classical negations discussed therein (i.e. precisely
those satisfying Liberal and Toggle) are definable in BD+. The answer turns
out to be negative; i.e., none of ¬e,¬1 and ¬2 are definable in BD+. For the
purpose of proving this result, we need the following lemma.

Lemma 15. Let ϕ(p) be any formula in BD+ whose only propositional vari-
able is p. Then, in terms of the four valued semantics, there are only the
following four cases when we assign the values b and n respectively to p:

(i) values of ϕ(p) are both f ,

(ii) values of ϕ(p) are both t,

(iii) values of ϕ(p) are b and n respectively,

(iv) values of ϕ(p) are n and b respectively.

Proof. We proceed by induction on the complexity of ϕ(p). For the base
case, if ϕ(p) is p or ⊥, then it satisfies the condition (iii) or (i) respectively.
For the induction step, we cover only two of the four cases, as the others are
similar.

Case 1: let ϕ(p) be of the form ∼ψ(p). Then, by induction hypothesis, ψ(p)
satisfies one of the four conditions. And with the truth table for ∼ in mind,
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ϕ(p) satisfies (ii), (i), (iii) and (iv) when ψ(p) satisfies (i), (ii), (iii) and (iv)
respectively.
Case 2: let ϕ(p) be of the form ψ(p) ∧ ξ(p). Then, by induction hypothesis,
ψ(p) and ξ(p) both satisfy one of the four conditions. And with the truth
table for ∧ in mind, ϕ(p) behaves as follows:

ψ(p)∧ξ(p) (i) (ii) (iii) (iv)

(i) (i) (i) (i) (i)

(ii) (i) (ii) (iii) (iv)

(iii) (i) (iii) (iii) (i)

(iv) (i) (iv) (i) (iv)

This completes the proof.

Based on this lemma, we can prove the desired result as follows.

Theorem 4. The negations ¬e,¬1 and ¬2 (of Sect. 2) are not definable in
BD+.

Proof. Suppose that ¬e is definable in BD+. This implies that there is a
formula whose values are f and t when we assign the values b and n to p
respectively. But this contradicts the previous lemma. The proof for other
two cases are similar.

Corollary 16. The conditional ⊃ is not definable in BD+.

Proof. If ⊃ is definable in BD+, then it follows that ¬eA is definable in
BD+ by A ⊃ (A ∧ ¬A). But this contradicts Theorem 4.

Corollary 17. BD+ is not functionally complete.16

Proof. This follows immediately by Theorem 4.

The following proof-theoretic considerations may be of interest to some
readers. Consider the systems obtained by adding, respectively, ¬e,¬1 and
¬2 to BD, which we refer to as BDe, BD1 and BD2. For ease of exposition,
we rewrite all negations and conditionals uniformly as ¬ and →. These
systems are obtained by modifying only axioms (Ax12) and (Ax16) of BD+
as follows:

(Ax12) (Ax16)
BD+ ∼¬A ↔ ¬∼A ∼(A → B) ↔ (¬∼A ∧ ∼B)
BDe ∼¬A ↔ A ∼(A → B) ↔ (A ∧ ∼B)
BD1 ∼¬A ↔ (A ∧ ¬∼A) ∼(A → B) ↔ ((A ∧ ¬∼A) ∧ ∼B)
BD2 ∼¬A ↔ (A ∨ ¬∼A) ∼(A → B) ↔ ((A ∨ ¬∼A) ∧ ∼B)

16We will say that a logic is functionally complete when at least one of its corresponding
or characteristic matrices is functionally complete.
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The following observations are of interest. The exclusion negation ¬e is
definable in both BD1 and BD2 by ¬1¬1¬1A and ¬2¬2¬2A respectively.
Therefore, BD1 and BD2 are extensions of BDe. Moreover, this extension is
strict in the sense that neither ¬1 nor ¬2 is definable in BDe. Finally, ¬ is
definable in neither BD1 and BD2.

Remark 18. BD1 and BD2 do not occur in the literature as far as we
know. However, BDe is not a new system in the sense that there are at
least three systems in the literature that are equivalent to it. These include
i.e. B→

4 of Odintsov [18], BD� of Sano and Omori [25], and BS4 of Omori
and Waragai [21]. Moreover, the subsystem of BDe in the language L⊃
obtained by eliminating (Ax10), (Ax11) and (Ax12) is called HBe by Avron
[3]. Closely related to HBe is the subsystem obtained by replacing CL+ by
IL+ and it is known as N4, the paraconsistent version of Nelson logic. It has
been investigated by Kamide and Wansing [13], Odinstov [19] and others.

3.5. Relations Between BD+ and Other Systems

We now wish to draw some comparisons between BD+ and some closely
related systems. That these systems turn out so closely related may be
surprising given the vast difference in motivation from which these systems
arose. We remark on some further interesting curiosities along the way.

3.5.1. A Comparison of PM4N with BD+. In [5], Béziau considers a four-
valued modal logic inspired by a four-valued modal logic �L of �Lukasiewicz.
One problem faced by �L was that it validated inferences such as p → q |=
�p → �q and ♦p ∧ ♦q |= ♦(p ∧ q) which are quite counter-intuitive given
a necessity and possibility reading of the modalities. According to Béziau,
these counterintuitive inferences are avoided in a preferred system PM4N.
However, PM4N can be viewed as an expansion of BD and, in fact, as
nothing more than the expansion BD+. Thus the extensional many-valued
logic BD+ may be seen as a modal logic that avoids certain modal fallacies
faced by its cousin �L.

The language of PM4N consists of the set of logical symbols {∧,∨,¬,�},
where � obeys the following truth table:

A �A

t t

b f

n f

f f

Note here that the designated values are t and b.
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Proposition 19. Both ∼ and → of BD+ are definable in PM4N, e.g.
A → B is definable by ¬A∨B, and ∼A by ¬A ↔ (�A∨�¬A).

Proposition 20. �A is definable in BD+ by A ∧ (A ↔ ¬∼A).

Combining these results, we obtain the following.

Theorem 5. PM4N and BD+ are equivalent.

3.5.2. A comparison of FDEP with BD+. We could have presented BD+
in the language with set of logical symbols {∼,→}, i.e. de Morgan nega-
tion and classical implication. In [30], Zaitsev presents a logic FDEP in the
same language. As we show below, FDEP and BD+ are equivalent theorem-
wise. Since BD+ can be viewed as an expansion of classical logic by de
Morgan negation, and since BD+ and FDEP are equivalent, FDEP can be
viewed in the same light. Yet FDEP is got by weakening classical negation
to the strictly weaker de Morgan negation which does not e.g. satisfy ex
falso quodlibet, from A ∧ ∼A � B.17 That weakening the negation yields an
expansion of classical logic can be seen by the fact the classical negation ¬A
of A is definable by A → ∼(A → A). Some will find this result analogous
to what Béziau’s has called a “translation paradox” in [4]. Whether para-
doxical or not, it is somewhat surprising that what is clearly an expansion
of classical logic turns out equivalent to an apparent weakening of classical
logic.

Definition 21. The system FDEP consists of the following axioms together
with rules of inference:

(A1) A → (B → A)

(A2) (A → (B → C)) → ((A → B) → (A → C))

(A3) ((A → B) → A) → A

(A4) ∼(A → A) → B

(A5) ∼∼A → A

(A6) A → ∼∼A

(A7) ∼(A → ∼(B → B)) → (∼A → ∼(B → B))

(A8) (∼A → ∼(B → B)) → ∼(A → ∼(B → B))

(R1) If � A and � A → B then � B

(R2) If � A → B then � ∼B → ∼A

17The observation that FDEP extends classical logic was already made in [30].
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We write Γ �FDEP A iff there is a finite subset Γ′ of Γ such that �FDEP∧
Γ′ → A, where

∧
Γ′ is a conjunction of members of Γ′.

Remark 22. Consider the subsystem of FDEP which consists of axioms
(A1)–(A4) together with (R1). In this subsystem we can define classical
negation since ∼(A → A) is a bottom according to (A4); whence ¬A := A →
∼(A → A) defines classical negation. One may check that ¬ and → satisfy
the axioms for classical logic. For example, if we take the axiomatization
of Mendelson (cf. [14, p. 35]), then it suffices to show that (¬A → B) →
((¬A → ¬B) → A) is provable. We make use of the classicality of ¬ in the
following proofs.

Our original presentation of BD+ had (MP) as the only rule of inference,
so a comparison to FDEP would be made easier if there were an equivalent
presentation of FDEP without (R2). We give such a presentation shortly.

Definition 23. The system FDEP′ consists of the following axioms in ad-
dition to (A1)–(A6), along with sole rule of inference (R1):

(A7′) ∼(A → B) → (∼A → ∼(B → B))

(A8′) ∼(A → B) → ∼B

(A9′) (∼A → ∼(B → B)) → (∼B → ∼(A → B))

We define �FDEP′ in the same manner as �FDEP.

Remark 24. The above system FDEP′ is a natural variation of BD+ in the
following sense. Schemas (A5) and (A6) replace (Ax13) of BD+, and (A7)′,
(A8)′ and (A9)′ replace (Ax16) of BD+ since L∼,→ is without primitive
conjunction.

The following lemmas connect the above two systems, proofs of which
are provided in the appendices.

Lemma 25. (A7) and (A8) of FDEP are provable in FDEP′.

Lemma 26. (A7)′, (A8)′ and (A9)′ of FDEP′ are provable in FDEP.

We then obtain the following result.

Lemma 27. FDEP′ and FDEP are equivalent.

Proof. Lemma 26 proves that FDEP′ is a sublogic of FDEP. For the other
direction, on the basis of Lemma 25, what remains to be shown is that
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(R2) is valid in FDEP′, and this follows by a result of Scroggs in [26, The-
orem 3, p. 118] showing that provable formulas of FDEP′ always take the
value t.

Proposition 28. FDEP′ and BD+ are equivalent.

Proof. We need to show that (i) axioms (A1) through (A9′) of FDEP′

are BD+-derivable and that (R1) is BD+-admissible, and (ii) axioms (Ax1)
through (Ax16) of BD+ are FDEP′-derivable and that (MP) is a derivable
rule in FDEP′.

For (i), (A1) through (A3) are identical to (Ax1) through (Ax3), while
(A5) and (A6) correspond in an obvious way to (Ax13), and (A7′) through
(A9′) correspond to (Ax16). (A4) is BD+-derivable by substituting A for B
in (Ax16), and then applying (Ax11). Finally, (R1) is BD+-admissible given
(MP).

For (ii), we need to show that defining A ∧ B and A ∨ B as ¬(A →
¬B) and ¬A → B respectively in FDEP′ (recalling that ¬A is defined by
A → ∼(A → A)) yields the FDEP′-derivability of (Ax4) through (Ax16),
and that (MP) is a derivable rule in FDEP′. For the latter, we have that
Γ �FDEP′ A → ((A → B) → B) by (A1), (A2) and (R1). By the definition
of �FDEP′ it immediately follows that Γ, A,A → B �FDEP′ B. For the
former, it is straightforward by the fact that ¬ is classical negation.

Corollary 29. FDEP and BD+ are equivalent.

Proof. The result follows immediately from Lemma 27 and Proposition
28.

4. Concluding Remarks

We provided a general semantic analysis of classical negation so that it is
applicable in a non-classical setting. We hope this serves to settle debates
concerning whether certain negations are classical or not, or whether cer-
tain negations are “genuine” or not, depending on whether e.g. they are
contradictory-forming operators (in the sense of Sect. 2), a condition we
take to be minimally necessary for any operator’s being deemed a negation.
(For an excellent updated survey on this topic, see [11].) Our main interest
of this endeavour, however, was to expand four-valued Belnap-Dunn logic
by classical negation.

We then presented a Hilbert-style axiom system for the system BD+, an
expansion of Belnap-Dunn logic by classical negation, which we showed is
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complete and maximal. We went on to compare BD+ to two related system
in the literature that we find of particular interest, the modal logic of [4] and
the apparent weakening of classical logic of [30]. We showed these three logics
are equivalent despite their being obtained through disparate motivations.
Indeed, there are a good number of interesting connections between BD+
and other systems of the literature, a topic we shall have to leave for another
occasion.
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Appendix

Outline of the Proof of Lemma 7

We proceed by induction on the number n of connectives. For the base case,
if n = 0, then F is pi so we need to prove pv � pv, but this holds in BD+. For
the induction step, assume the conclusion for the cases where the number
of connectives is less than k + 1. We split the cases depending on the main
connective, and here we will only deal with ∼,¬ and →.
Case 1. If F = ∼G, then by induction hypothesis, we have Δv � Gv. We
split the cases further depending on the value of G.

v(G) Δv � Gv v(F )(= v(∼G)) Δv � F v, i.e. Δv � (∼G)v

t Δv � G ∧ ¬∼G f Δv � ¬∼G ∧ ∼∼G
b Δv � G ∧ ∼G b Δv � ∼G ∧ ∼∼G
n Δv � ¬G ∧ ¬∼G n Δv � ¬∼G ∧ ¬∼∼G
f Δv � ¬G ∧ ∼G t Δv � ∼G ∧ ¬∼∼G

Then, in all four cases, Δv � Gv implies Δv � F v by (Ax13). Therefore, since
we have Δv � Gv as induction hypothesis, we obtain Δv � F v as desired.
Case 2. If F = ¬G, then by induction hypothesis, we have Δv � Gv. We
split the cases further depending on the value of G.
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v(G) Δv � Gv v(F )(= v(¬G)) Δv � F v, i.e. Δv � (¬G)v

t Δv � G ∧ ¬∼G f Δv � ¬¬G ∧ ∼¬G
b Δv � G ∧ ∼G n Δv � ¬¬G ∧ ¬∼¬G
n Δv � ¬G ∧ ¬∼G b Δv � ¬G ∧ ∼¬G
f Δv � ¬G ∧ ∼G t Δv � ¬G ∧ ¬∼¬G

Then, Δv � Gv implies Δv � F v by (T1), (T1) and (T2), (Ax12) and (T2)
when v(G) takes the value t,b,n and f respectively. Therefore, since we
have Δv � Gv as induction hypothesis, we obtain Δv � F v as desired.
Case 3. If F = G → H, then by induction hypothesis, we have Δv � Gv and
Δv � Hv. We split the cases depending on the values of G and H.

Cases v(G) v(H) Gv Hv v(F ) F v

(i) f any ¬G ∧ ∼G — t F ∧¬∼F
(ii) any t — H ∧ ¬∼H t F ∧¬∼F
(iii) b b G ∧ ∼G H ∧ ∼H t F ∧¬∼F
(iv) n n ¬G ∧ ¬∼G ¬H ∧ ¬∼H t F ∧¬∼F
(v) t or n b ¬∼G H ∧ ∼H b F ∧∼F
(vi) n f ¬G ∧ ¬∼G ¬H ∧ ∼H b F ∧∼F
(vii) t or b n G ¬H ∧ ¬∼H n ¬F ∧¬∼F
(viii) b f G ∧ ∼G ¬H ∧ ∼H n ¬F ∧¬∼F
(ix) t f G ∧ ¬∼G ¬H ∧ ∼H f ¬F ∧∼F

• For (i) and (ii), we get Δv � (G→H)∧ (∼G∨¬∼H), and hence by (T3)
Δv � (G→H) ∧ ¬∼(G→H), i.e. Δv � F ∧ ¬∼F . Thus Δv � F v by (∗).

• For (iii) and (iv), we have Δv � H∧∼G and Δv � ¬G∧¬∼H respectively
which both imply Δv � (G→H)∧(∼G∨¬∼H), and by (T3), we get
Δv � (G→H)∧¬∼(G→H), i.e. Δv � F∧¬∼F . Thus Δv � F v by (∗).

• For (v) and (vi), we have Δv � H ∧(¬∼G∧∼H) and Δv � ¬G∧(¬∼G∧
∼H) respectively which both imply Δv � (G → H) ∧ ∼(G → H), i.e.
Δv � F ∧ ∼F , by (Ax16). Thus Δv � F v by (∗).

• For (vii) and (viii), we have Δv � (G ∧ ¬H) ∧ ¬∼H and Δv � (G ∧
¬H) ∧ ∼G respectively which both imply Δv � ¬(G→H) ∧ ¬∼(G→H),
i.e. Δv � ¬F ∧ ¬∼F , by (T4) and (T3). Thus Δv � F v by (∗).

• For (ix), we obtain Δv � (G ∧ ¬H) ∧ (¬∼G ∧ ∼H) and hence by (T4)
and (Ax16), we get Δv � ¬(G→H) ∧ ∼(G→H), i.e. Δv � ¬F ∧ ∼F .
Thus Δv � F v by (∗).

This completes the proof.
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Proofs of Lemma 25 and Lemma 26

We use the following formulas which are well-known theorems of CL+:

(Suffixing) (A → B) → ((B → C) → (A → C))

(Permutation) (A → (B → C)) → (B → (A → C))

(Prefixing) (B → C) → ((A → B) → (A → C))

(Identity) A → A

Moreover, we write formulas of the form ∼(A → A) as ⊥ when it is useful.

Proof of Lemma 25. For (A7), we obtain ∼(A→⊥)→(∼A→∼(⊥→⊥))
by (A7′). We also get (∼A→∼(⊥→⊥))→(∼A→⊥) by (A4) and (Prefixing).
Thus, by applying (Suffixing), we get ∼(A→⊥)→(∼A→⊥). For (A8), we
have (∼A→∼(⊥→⊥))→(∼⊥→∼(A→⊥)) by (A9′). And by (A4) and (Pre-
fixing), we have (∼A→⊥)→(∼A→∼(⊥→⊥)). Thus, by applying (Suffix-
ing), (Permutation) to these, we obtain ∼⊥→((∼A→⊥)→∼(A→⊥)). More-
over, we get ∼⊥ by (Identity) and (A6). Therefore, by (R1), we obtain
(∼A→⊥)→∼(A→⊥). This completes the proof.

Proof of Lemma 26. For (A7′), we obtain (A → ⊥) → (A → B) by (A4)
and (Prefixing). Then, by an application of gives us ∼(A → B) → ∼(A →
⊥), and therefore, by (A7) we obtain ∼(A → B) → (∼A → ⊥). For (A8′),
it is immediate by (A1) and (R2). Finally (A9′) is provable as follows.

1 (∼(∼B → ∼A) → B) → (∼(∼B → ∼A) → ⊥) [(A7′), (A6), (A2)]
2 ∼(∼B → ∼A) → A [(A1), (R2), (A5)]
3 (A → B) → (∼(∼B → ∼A) → B) [2, (Suffixing)]
4 (A → B) → ∼((∼B → ∼A) → ⊥) [1, 3, (A8)]
5 (¬(∼B → ∼A)) → ∼(A → B) [4, (R2), (A6), def. of ¬]
6 (∼B → ¬(∼B → ∼A)) → (∼B → ∼(A → B)) [5, (Prefixing)]
7 ∼B → ((∼B → ∼A) → ∼A) [(Identity), (Permutation)]
8 ¬∼A → (∼B → ¬(∼B → ∼A)) [7, (Suffixing), (Permutation)]
9 ¬∼A → (∼B → ∼(A → B)) [6, 8, (Suffixing)]

This completes the proof.
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