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Abstract. Transfer theorems are central results in abstract algebraic logic that allow to

generalize properties of the lattice of theories of a logic to any algebraic model and its

lattice of filters. Their proofs sometimes require the existence of a natural extension of the

logic to a bigger set of variables. Constructions of such extensions have been proposed in

particular settings in the literature. In this paper we show that these constructions need

not always work and propose a wider setting (including all finitary logics and those with

countable language) in which they can still be used.
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1. Introduction

Abstract algebraic logic (AAL) has evolved into an independent field of
mathematical logic that provides systematic theories to deal with the mul-
tiplicity of logical systems according to their relation with corresponding
algebraic semantics (for comprehensive monographs and surveys see [5–8]).

Some of the main results of AAL are those labeled as transfer theorems,
which can be described as theorems that show that a property of the lattice
of theories of the logic also holds in any matricial model of the logic (i.e.
the property is transferred from the syntax to the semantics of the logic).
Czelakowski proved a general transfer principle encompassing a great deal
of such results (though not all; examples can be found e.g. in [2,3,5,6]).
Namely, he proved in [5, Theorem 1.7.1] that in a finitary protoalgebraic
logic any property of the lattice of its theories expressed by a universal
sentence of elementary lattice theory can be transferred.

The proofs of transfer results, including the general transfer principle of
Czelakowski, can be rather involved and often require to add new variables
to the language of the logic which, roughly speaking, give a syntactical means
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to refer in the logic to the elements of an arbitrary algebra. In those proofs
it is usually important to make sure that the logic obtained in the extended
language does not differ too much from the original one.

This is made precise in [5] by the notion of natural extension. The proof
of the transfer principle in [5, Theorem 1.7.1] and other results (see e.g. [4])
require the existence of natural extensions of a given logic for arbitrary new
sets of variables. A syntactical definition of a candidate of such extension
was given by Shoesmith and Smiley [10] and was claimed to work in general
by Czelakowski in an exercise of his book [5, Exercise 0.3.3].

In this paper we prove that the construction does not work in full gen-
erality and identify a technical restriction that needs to be added to ensure
the existence of natural extensions. We also present a counterexample of a
logic not satisfying the restriction and for which the construction does not
yield a natural extension.

2. Natural Extensions

A propositional language1 L is given by an arbitrary infinite set of variables
Var and a collection (with no restriction on the cardinality) of propositional
connectives of arbitrary finite arities. By FmL we denote the free term al-
gebra in the language L and by FmL its universe, i.e. the set of L-formulae.
Given Γ ⊆ FmL, by V (Γ) denote the set of variables occurring in formu-
lae from Γ. An endomorphism of FmL is called an L-substitution. Each
mapping σ : Var → FmL determines univocally an L-substitution, which
unambiguously we will also denote as σ.

A logic L in a language L is a structural consequence relation on FmL,
i.e. a relation, denoted as �L, between subsets of FmL and elements of FmL
such that for each Γ ∪ Δ ∪ {ϕ} ⊆ FmL:

• ϕ �L ϕ. (Reflexivity)

• If Γ �L ϕ, then Γ, Δ �L ϕ. (Monotonicity)

• If Γ �L ψ for each ψ ∈ Δ and Δ �L ϕ, then Γ �L ϕ. (Cut)

• If Γ �L ϕ, then σ[Γ] �L σ(ϕ) for each L-substitution σ. (Structurality)

Given a propositional language L, an L-matrix is a pair A = 〈A, F 〉
where A is an algebra of type L and F ⊆ A is a subset called the filter of

1All notions considered in the paper mostly agree with the definitions used in [5]. We
work with consequence relations rather than consequence operators and in the definition
of logic we do not restrict the cardinalities of the sets of variables and connectives.
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the matrix. An A-evaluation is a homomorphism e : FmL → A. Each L-
matrix A defines a logic |=A in the following way: for each Γ ∪ {ϕ} ⊆ FmL,
Γ |=A ϕ iff for each A-evaluation e, if e[Γ] ⊆ F then e(ϕ) ∈ F .

Definition 2.1. The cardinality of a logic L, denoted as card(L), is the
smallest cardinal κ such that for each Γ ∪ {ϕ} ⊆ FmL we have: if Γ �L ϕ,
then there is Γ0 ⊆ Γ with |Γ0| < κ such that Γ0 �L ϕ. A logic L is finitary
if card(L) = ω.

Definition 2.2. Let L be a logic in a language L with variables Var. Con-
sider a logic L′ in the language L′ which has the same connectives as L and
variables Var ′ ⊇ Var. We say that:

• L′ is an extension of L if for every Γ ∪ {ϕ} ⊆ FmL we have: Γ �L ϕ
implies Γ �L′ ϕ,

• L′ is a conservative extension of L if for every Γ ∪ {ϕ} ⊆ FmL we have:
Γ �L ϕ iff Γ �L′ ϕ,

• L′ is a natural extension of L if it is a conservative extension and card(L′)
= card(L).

The next definition introduces a candidate for a natural extension of a
given logic in a given set of variables, in the same way as in [5, Exercise 0.3.3]
(which was inspired by a previous definition in [10]).

Definition 2.3. Let L be a propositional language with a set of variables
Var and L a logic in L. Consider the language L′ which has the same
connectives as L and variables Var ′ ⊇ Var. We define a relation LVar ′

by
setting for any Γ′ ∪ {ϕ′} ⊆ FmL′:

Γ′ �LVar′ ϕ′ iff there are Γ ∪ {ϕ} ⊆ FmL and a mapping h : Var → FmL′

such that h(ϕ) = ϕ′, h[Γ] ⊆ Γ′, and Γ �L ϕ.

Lemma 2.4. Let L, L′, L, and LVar ′
be as in the previous definition. Then

for any Γ ∪ {ϕ} ⊆ FmL we have:

1. Γ �LVar′ ϕ iff Γ �L ϕ.

Furthermore for any Γ′ ∪ Δ′ ∪ {ϕ′} ⊆ FmL′ we have:

2. ϕ′ �LVar′ ϕ′

3. If Γ′ �LVar′ ϕ′, then Γ′, Δ′ �LVar′ ϕ′

4. If Γ′ �LVar′ ϕ′, then σ[Γ′] �LVar′ σ(ϕ′) for each L′-substitution σ.

5. If Γ′ �LVar′ ϕ′, then there is Γ′
0 ⊆ Γ′ such that |Γ′

0| < card(L) and
Γ′

0 �LVar′ ϕ′.
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Proof. The right-to-left direction in the first claim is trivial. To show the
converse assume that Γ �LVar′ ϕ and let Γ̄ ∪ {ϕ̄} ⊆ FmL and h be witnesses
of that fact according to the definition. Then h must be such that h[V (Γ̄ ∪
{ϕ̄})] ⊆ Var (because h[Γ̄ ∪ {ϕ̄}] ⊆ Γ ∪ {ϕ} ⊆ FmL). Define h′ : Var → Var
as h′(v) = h(v) if v ∈ V (Γ̄∪{ϕ̄}) and h′(v) = v otherwise. We have h′[Γ̄] �L

h′(ϕ̄). Observing that h′[Γ̄] = h[Γ̄] ⊆ Γ and h′(ϕ̄) = h(ϕ̄) = ϕ we obtain:
Γ �L ϕ.

Claims 2 and 3 are trivial. To prove claim 4 assume that Γ′ �LVar′ ϕ′ and
let Γ, ϕ, and h be some witnesses provided by the definition. Next consider
an L′-substitution σ and note that the triple σ ◦ h, Γ, and ϕ witnesses the
fact that σ[Γ′] �LVar′ σ(ϕ′).

To prove the final claim assume that Γ′ �LVar′ ϕ′ and that h, Γ, and ϕ
are witnessing this fact. Due to the cardinality of L there has to be Γ0 ⊆ Γ
such that |Γ0| < card(L) and Γ0 �L ϕ. To complete the proof just observe
that h, Γ0, and ϕ witnesses the fact that h[Γ0] �LVar′ ϕ′ and also h[Γ0] ⊆ Γ′

and |h[Γ0]| < card(L).

Thus we have seen that LVar ′
is a structural, reflexive, monotonic relation

which conservatively extends L and has cardinality card(L) (we have proved
that its cardinality is at worst card(L) and, due to the conservativity, it
cannot be better). Nonetheless, we cannot yet conclude, as claimed in [5,
Exercise 0.3.3], that LVar ′

is a natural extension of L, because we have not
shown that LVar ′

is indeed a logic (it still may fail to satisfy Cut). Before
we show under which conditions LVar ′

is a logic we need the following easy
set-theoretic lemma.

Lemma 2.5. Let V, X, Y be sets such that X, Y ⊆ V , |X| ≤ |Y |, and ω ≤ |Y |.
Then there is a one-to-one function g : V → V and a function ḡ : V → V
such that g[X] ⊆ Y and (ḡ ◦ g)(x) = x for each x ∈ X. Furthermore, if
|X| < |V |, then g can be taken as a bijection and ḡ = g−1.

Proof. Let us first assume that |X| < |V | and take an arbitrary set Y ′ ⊆ Y
such that |Y ′| = |X|. Observe that |V \ X| = |V | = |V \ Y ′| and g can be
taken as the union of the bijections X → Y ′ and V \ X → V \ Y ′.

If |X| = |V | = |Y |, let us consider a set Y ′ ⊆ Y such that |Y ′| = |Y \Y ′| =
|Y |. Thus |V \ X| ≤ |V | = |Y | = |Y \ Y ′| ≤ |V \ Y ′|. Let us now construct g
as the union of a bijection X → Y ′ and an injection V \ X → V \ Y ′. The
function ḡ is constructed as ḡ(v) = p if there is p such that g(p) = v and
ḡ(v) = v otherwise.
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Theorem 2.6. Let L be a propositional language with a set of variables Var,
L a logic in L, and Var ′ ⊇ Var. Further assume that either |Var ′| = |Var |
or card(L) ≤ |Var |+. Then:

1. LVar ′
is a natural extension of L.

2. If L′ is a natural extension of L in the language L′, then L′ = LVar ′
.

Proof. Let us denote |Var | as κ and card(L) as κ0. All we need to prove
is that LVar ′

enjoys Cut. Assume that Γ̄ �LVar′ Δ̄ (i.e., Γ̄ �LVar′ δ for any
δ ∈ Δ̄) and Δ̄ �LVar′ ϕ′; we need to prove that Γ̄ �LVar′ ϕ′.

First we show that there are sets of formulae Δ′ ⊆ Δ̄ and Γ′ ⊆ Γ̄ such
that Γ′ �LVar′ Δ′, Δ′ �LVar′ ϕ′, and |V (Γ′ ∪ Δ′ ∪ {ϕ′})| ≤ κ. In the case that
|Var ′| = |Var | the claim is trivial (just take Δ′ = Δ̄ and Γ′ = Γ̄). In the
other case we assume that κ0 ≤ κ+ and so there has to be Δ′ ⊆ Δ̄ such that
|Δ′| ≤ κ and Δ′ �LVar′ ϕ′. Analogously for each δ ∈ Δ′ there is Γ′

δ ⊆ Γ̄ such
that |Γ′

δ| ≤ κ and Γ′
δ �LVar′ δ. Thus we have a set Γ′ =

⋃
δ∈Δ′ Γδ ⊆ Γ̄ such

that |Γ′| ≤ κ and Γ′ �LVar′ Δ′ and so |V (Γ′ ∪ Δ′ ∪ {ϕ′})| ≤ κ.
Thus we can apply Lemma 2.5 for V = Var ′, Y = Var , and X = V (Γ′ ∪

Δ′ ∪ {ϕ′}) and obtain functions g, ḡ : Var ′ → Var ′ such that g(χ) ∈ FmL
and (ḡ ◦ g)(χ) = χ for each χ ∈ Γ′ ∪ Δ′ ∪ {ϕ′}.

Next, by structurality (of LVar ′
) and conservativity (of LVar ′

over L),
we have g[Γ′] �L g[Δ′] and g[Δ′] �L g(ϕ′) and so g[Γ′] �L g(ϕ′). Thus,
we also have g[Γ′] �LVar′ g(ϕ′) and, applying the substitution ḡ, we obtain
Γ′ �LVar′ ϕ′. The monotonicity of LVar ′

completes the proof.
Let us prove now the second claim. Take Γ′ ∪{ϕ′} ⊆ FmL′ . First we show

that if Γ′ �L′ ϕ′, then there are h, Γ, and ϕ witnessing that Γ′ �LVar′ ϕ′.
We know that there is Γ′

0 ⊆ Γ′ such that |Γ′
0| < κ0 and Γ′

0 �L′ ϕ′. Clearly,
we have |V (Γ′

0 ∪ {ϕ′})| ≤ κ. Thus we can apply Lemma 2.5 for V = Var ′,
Y = Var , and X = V (Γ′

0 ∪ {ϕ′}) and obtain functions g, ḡ : Var ′ → Var ′

such that g(χ) ∈ FmL and (ḡ ◦ g)(χ) = χ for each χ ∈ Γ′
0 ∪ {ϕ′}. Then,

taking h as the restriction of ḡ to Var , Γ = g[Γ′
0], and ϕ = g(ϕ′), we have

the desired witnesses. Indeed, Γ ∪ {ϕ} ⊆ FmL, h[Γ] = (ḡ ◦ g)[Γ′
0] = Γ′

0 ⊆ Γ′,
h(ϕ) = (ḡ◦g)(ϕ′) = ϕ′; finally, we obtain g[Γ′

0] �L g(ϕ′) due to structurality
(of L′) and conservativity (of L′ over L).

For the converse implication take any Γ′ ∪{ϕ′} ⊆ FmL′ and assume that
Γ′ �LVar′ ϕ′. Then there have to be a set Γ ∪ {ϕ} ⊆ FmL and a mapping
h : Var → FmL′ such that h(ϕ) = ϕ′, h[Γ] ⊆ Γ′, and Γ �L ϕ. Thus Γ �L′ ϕ
and so, by extending h to an L′-substitution (in an arbitrary way) and
applying structurality, we obtain h[Γ] �L′ h(ϕ). Therefore, by monotonicity,
Γ′ �L′ ϕ′.
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Therefore we have seen that the construction does indeed give a nat-
ural extension (actually the only possible one) if either |Var | = |Var ′| or
card(L) ≤ |Var |+. In the first case, this is not surprising because having sets
of variables with the same cardinal, we obtain isomorphic algebras of formu-
lae and the construction is essentially just a renaming of variables. If |Var | <
|Var ′| the situation is more interesting and we need to assume that card(L) ≤
|Var |+. In Proposition 2.8 we show the non-triviality of this condition by
constructing a logic that does not satisfy it; however the vast majority of
logics considered in the literature do satisfy this restriction, in particular:

• when L is a finitary logic, because then card(L) = ω and we are assuming
that Var is always infinite,

• when |Var | = |FmL| (e.g. if the set of logical connectives is countable),
because always card(L) ≤ |FmL|+.

Therefore, since it is formulated for finitary logics only, Czelakowski’s
proof of the transfer principle in [5, Theorem 1.7.1], although based on a
flawed exercise, still works.

Before we show that the assumptions of Theorem 2.6 cannot be dropped,
we need to prove one more lemma which shows an equivalent formulation of
LVar ′

à la �Loś–Suszko [9] which can be seen as a strengthening of another
one of Czelakowski’s exercises on natural extensions [5, Exercise 0.3.5]. Note
that, unlike in that exercise, we prove it not only in the case that card(L) ≤
|Var | (which also entails that LVar ′

is a natural extension of L, due to The-
orem 2.6) but also in the case that |Var | < |Var ′| (which will be needed for
our counterexample in which LVar ′

is not a natural extension of L).

Lemma 2.7. Let L, L′, L, and LVar ′
be as in Definition 2.3. Further assume

that either |Var | < |Var ′| or card(L) ≤ |Var |. Then for any Γ′ ∪ {ϕ′} ⊆
FmL′ we have:

Γ′ �LVar′ ϕ′ iff there are Γ ∪ {ϕ} ⊆ FmL and a bijection h : Var ′ → Var ′

such that h(ϕ) = ϕ′, h[Γ] ⊆ Γ′, and Γ �L ϕ.

Proof. The right-to-left direction is trivial (the bijection h : Var ′ → Var ′

determines, in particular, a mapping from Var to FmL′). We show the re-
verse one: assume that Γ′ �LVar′ ϕ′ and let Γ, ϕ, and h be witnesses as given
by the definition. W.l.o.g. we can assume that |Γ| < card(L).

If we assume that |Var | < |Var ′|, then |V (h[Γ ∪ {ϕ}])| ≤ |Var | < |Var ′|.
Assume now that card(L) ≤ |Var |. If Var is uncountable, then clearly
|V (h[Γ ∪ {ϕ}])| ≤ ω × |Γ| = max{ω, |Γ|} < |Var | ≤ |Var ′|. If |Var | = ω,
then Γ is finite and we also obtain that |V (h[Γ ∪ {ϕ}])| < |Var | ≤ |Var ′|.
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Thus, in any case, we can apply Lemma 2.5 for V = Var ′, Y = Var , and
X = V (h[Γ∪{ϕ}]) and obtain a bijection g : Var ′ → Var ′ for which we have
g[V (h[Γ ∪ {ϕ}])] ⊆ Var.

We show that g−1, g[h[Γ]] and g(h(ϕ)) are the needed witnesses for our
characterization: indeed g−1 is a bijection; g[h[Γ]] ∪ {g(h(ϕ))} ⊆ FmL,
g−1[g[h[Γ]]] = h[Γ] ⊆ Γ′, g−1(g(h(ϕ))) = h(ϕ) = ϕ′. The fact that g ◦ h
gives a substitution of FmL entails than g[h[Γ]] �L g(h(ϕ)).

We can now build an example that shows that the conditions of Theo-
rem 2.6 cannot be dropped, i.e. the statement of [5, Exercise 0.3.3] is not
valid in general. Let us first take two sets of variables Var ⊆ Var ′ such that
|Var | < |Var ′|: Var = {vn | n ∈ ω} and Var ′ = {vα | α ∈ ℵ1}. Let L be a
propositional language with a nullary connective ᾱ for each α ∈ ℵ1 and two
binary connectives ≈ and �≈. Let A be the L-matrix with domain ℵ1, filter
F = {0}, and operations defined as: ᾱA = α for each α ∈ ℵ1, ≈A (a, b) = 0
if a = b and 1 otherwise, and �≈A (a, b) = 0 if a �= b and 1 otherwise. Let S
be the logic |=A and let SVar ′

be the relation defined in Lemma 2.4.2

Proposition 2.8. card(S) > |Var |+ and SVar ′
does not satisfy Cut.

Proof. Consider the set of formulae Δ = {v0 �≈ ᾱ | α ∈ ℵ1 \ {0}} ⊆ FmL
and note that Δ �S v0 ≈ 0. Indeed, if e is an arbitrary A-evaluation and
β = e(v0), then either β = 0 and the conclusion is valid or β �= 0 in which
case one of the premises is not valid. Now consider an arbitrary subset
Δ0 ⊆ Δ of cardinality ℵ0. Take B = {α ∈ ℵ1 | v0 �≈ ᾱ ∈ Δ0}. Clearly, any
A-evaluation e such that e(v0) /∈ B ∪ {0} shows that Δ0 �S v0 ≈ 0. Thus
card(S) = ℵ2 > ℵ1 = |Var |+.

Now consider the set of L′-formulae Γ′ = {vα ≈ ᾱ, vα �≈ v0 | α ∈ ℵ1\{0}}.
We prove the following three claims:

• Δ �SVar′ v0 ≈ 0

• Γ′ �SVar′ Δ, i.e., Γ′ �SVar′ v0 �≈ ᾱ for each α ∈ ℵ1 \ {0}
• Γ′

�SVar′ v0 ≈ 0.

2The logic S is rather artificial, but it is tailored to provide a simple counterexample
without distraction to any possible additional properties. One could also find more natural
examples: consider, for instance, any prototypical fuzzy logic (see e.g. [1]) given by an
algebra defined over the real unit interval (e.g. �Lukasiewicz or Gödel–Dummett logics)
and enrich it with the so-called Monteiro–Baaz projection (interpreted as �x = 1 if x = 1
or 0 otherwise, which allows to define the connectives ≈ and �≈) and a truth constant r̄
for each r ∈ [0, 1] (interpreted as r̄ = r, which would play the rôle of ᾱ).
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The first claim is trivial. To show the second one, fix any α ∈ ℵ1 \ {0} and
take the set Γ = {v1 ≈ ᾱ, v1 �≈ v0} and a mapping h such that h(v0) = v0

and h(v1) = vα and observe that h[Γ] ⊆ Γ′, h(v0 �≈ ᾱ) = v0 �≈ ᾱ and
Γ �S v0 �≈ ᾱ (trivial, as the premises are satisfied only if e(v0) �= e(v1) = α).

For the final claim, assume for a contradiction that Γ′ �SVar′ v0 ≈ 0.
Then (using the characterization of SVar ′

proved in Lemma 2.7) there must
be formulae Γ ∪ {ϕ} ⊆ FmL (hence Γ has only countably many variables)
and a bijection h in Var ′ such that h[Γ] ⊆ Γ′, h(ϕ) = v0 ≈ 0, and Γ �S ϕ.
Let us denote h−1(v) as v̂. Then ϕ = v̂0 ≈ 0 and there has to be a countable
set B ⊆ ℵ1 \ {0} such that Γ ⊆ Γ̂ = {v̂α ≈ ᾱ, v̂α �≈ v̂0 | α ∈ B}. Thus
we would also have Γ̂ �S v̂0 ≈ 0, which can be easily refuted by setting
e(v̂α) = α for each α ∈ B and e(v̂0) /∈ B ∪ {0}; a contradiction.

Thus, in our example SVar ′
is not even a logic and so it cannot be a

natural extension of S in the language L′. However, there would still be an
easy way to define a natural extension of S in that language. Take now A
as an L′-matrix and define the logic S′ in L′ as |=A. Then S′ is a natural
extension of S. Indeed, the conservativity is trivial, thus card(S′) ≥ card(S)
and, since trivially card(S′) ≤ |FmL′ |+, we obtain card(S′) = ℵ2 = card(S).
Thus the question whether each logic has a natural extension to languages
of arbitrary cardinality remains open; we have only shown that Shoesmith–
Smiley construction is not universally applicable.

Finally, it is worth noting that our example does not refute Czelakowski’s
claim in [5, Exercise 0.3.4] that all natural extensions (on a fixed set of vari-
ables) of a given logic coincide. We can obtain this fact, under our additional
assumption, as a trivial corollary of Theorem 2.6.
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