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Abstract. In this paper we show a duality between two approaches to represent quantum

structures abstractly and to model the logic and dynamics therein. One approach puts

forward a “quantum dynamic frame” (Baltag et al. in Int J Theor Phys, 44(12):2267–2282,

2005), a labelled transition system whose transition relations are intended to represent

projections and unitaries on a (generalized) Hilbert space. The other approach considers a

“Piron lattice” (Piron in Foundations of Quantum Physics, 1976), which characterizes the

algebra of closed linear subspaces of a (generalized) Hilbert space. We define categories of

these two sorts of structures and show a duality between them. This result establishes, on

one direction of the duality, that quantum dynamic frames represent quantum structures

correctly; on the other direction, it gives rise to a representation of dynamics on a Piron

lattice.

Keywords: Quantum logic, Piron lattice, Modal logic, Labelled transition system, Duality,

Orthomodular lattice.

1. Introduction

There is a long tradition of investigating dualities between algebraic struc-
tures and “spatial” structures, showing that categories of certain algebras
and of certain spaces are equivalent to each other, except that they have
opposite directions of morphisms. A classic example is the Stone duality
between Boolean algebras and fields of sets [19]; see [12] for the Stone du-
ality and vast extensions thereof. For dualities seen in modal logic, such as
one between complete atomic Boolean algebras with operators and Kripke
frames, see [7, Chapter 5] and [21, Sect. 5].1 In this paper we build further
on this tradition and study the duality of two different quantum structures,
Piron lattices [18] and quantum dynamic frames [3], which are abstractions

1While duality plays a crucial role both in Kripke semantics and in locale theory [12],
the two fields use the term “frame” to mean quite different structures. In this article we
always use “frame” along the terminology of Kripke semantics.
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of Hilbert spaces. Hilbert spaces are among the standard tools for represent-
ing quantum systems, and these abstractions highlight essential properties
of quantum systems.

Piron lattices provide an algebraic perspective on Hilbert spaces and focus
on testable properties of the system. Testable properties of a physical system
can be represented as closed linear subspaces of a Hilbert space, with the
one-dimensional subspaces being the states of the system. These states form
the atoms of an atomic lattices of closed linear subspaces. A Piron lattice is
such a lattice with the appropriate constraints for it to capture the abstract
structure of a generalized Hilbert space [18]; a Piron lattice that satisfies
“Mayet’s condition” [15] captures the structure of an infinite dimensional
Hilbert space over the complex numbers, reals, or quaternions.2 Such lattices
highlight the algebraic properties of a physical system, where joins and meets
correspond to the disjunction and conjunction of the properties being tested,
and orthocomplementation corresponds to the negation of the property. This
sets the foundation for an algebraic semantics of quantum logic. However,
on the surface, this logical structure is static and timeless.

Quantum dynamic frames provide a dynamic perspective on quantum
systems. The underlying objects are states, and they are related to each
other via actions that transform the system from one state to another. In
this way a quantum dynamic frame is a type of labelled transition system
[3]. Relations are constructed from atomic actions that are either projections
(corresponding to tests) or unitary evolutions (reversible actions). These
quantum dynamic frames are used for reasoning about quantum programs
via the “logic of quantum programs” [4], a natural extension of Hoare logic
and propositional dynamic logic, which are used for reasoning about classical
programs [11].

Given that the Piron lattices focus on testable properties and appear
static and the quantum dynamic frames focus on states and actions and
are clearly dynamic, it might seem that these two approaches are scarcely
related. We show in this paper that these two approaches are categorically
dual to each other, that is, the category of one is equivalent to the dual
(opposite) category of the other. A first step was given in [3], where it was

2 See [1] for a review of the relationship between Piron lattices and Hilbert spaces. Also,
see [20] for how “propositional systems”, which are slightly more general than Piron lattices
(see Definition 2.1), are categorically equivalent to “Hilbert geometries” and “Hilbert lat-
tices”; the former generalize projective geometries given by one-dimensional subspaces of
Hilbert spaces, and the latter generalize lattices of all subspaces, and not just closed ones,
of Hilbert spaces. See [13] for the underlying orthomodular lattice structure of traditional
quantum logic.
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observed that a quantum dynamic frame gives rise to a Piron lattice and
vice versa. This relationship concerns just the objects of the categories.
We provide a detailed and complete proof of this observation, provide full
categorical structure for both Piron lattices and quantum dynamic frames,
and show that these categories are dual to each other. For each of the frames
and the lattices, we consider two types of morphisms. One type is that
defined by Moore [16] for two simpler categories: state spaces (symmetric
anti-reflexive frames that separate points) and property lattices (complete
atomistic orthocomplemented lattices). These categories are weaker than the
ones we consider in this paper as they do not capture superpositions which
are important to quantum theory. However, the definition of the morphisms
used by Moore can be used for our categories as well. We also define stronger
types of morphisms for both the Piron lattices and quantum dynamic frames.
As these morphisms are strictly stronger than Moore’s, we refer to them as
strong and the Moore morphisms as weak. Both Piron lattice morphisms
act directly on properties, while both quantum dynamic frame morphisms
act directly on states. These two types of morphisms are dual to each other
(have reverse arrows), as is noted in the morphism of state property spaces
discussed in [11].

Our duality result shows that quantum dynamic frames and Piron lat-
tices form categories that are essentially the same (except for the direc-
tion of morphisms). We also show this relation can be restricted to the
objects satisfying Mayet’s condition. As Piron lattices satisfying Mayet’s
condition have already been shown to be equivalent to Hilbert spaces, this
result clarifies the close relationship quantum dynamic frames have with
Hilbert spaces. The structures of both quantum dynamic frames and Piron
lattices are each a focal point of quantum logic, and hence our duality adds
a new perspective on the formal relation between these different quantum
structures.

Our paper is structured as follows. We define two categories of Piron lat-
tices in Sect. 2.1, one with homomorphisms defined by Moore, and the other
with homomorphisms preserving more structure. We define two categories of
quantum dynamic frames in Sect. 2.2, similarly with two sorts of structure-
preserving maps. We define functors from the Piron lattices to the quantum
dynamic frames in Sect. 3.1, and opposite ones in Sect. 3.2. These then form
dualities, as is proven in Sect. 3.3, and, in Sect. 3.4, we restrict these duali-
ties to the categories of objects satisfying Mayet’s condition. Finally, Sect. 4
concludes the paper and points to future work.
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2. The Categories

In this section, we define categories of Piron lattices and of quantum dynamic
frames.3 In fact we provide two categories, Lw and Ls, of Piron lattices, and
also two categories, Fw and Fs, of quantum dynamic frames. In each case
the two categories share the same objects, but one (viz., Lw or Fw) has more
morphisms than the other (viz., Ls or Fs); or, in other words, morphisms in
the former preserve less structure than ones in the latter.

2.1. Categories of Piron Lattices

Any Hilbert space H gives rise to a lattice (L,≤), where L is the family
of closed linear subspaces and ≤ is set-inclusion ⊆; moreover, the ortho-
complement in H gives a map −⊥ : L → L. Piron [18] axiomatized lattices
(L,≤,−⊥) that arise from Hilbert spaces in this way— lattices satisfying his
axioms (in Definition 2.1 below) are now called Piron lattices. As he proved,
Piron lattices of height at least 4 correspond to (generalized) Hilbert spaces
of dimension at least 4. In this section we define two categories, Lw and Ls,
of Piron lattices. They share the same objects, but Lw has more morphisms
than Ls.

2.1.1. Piron Lattices. Here is a set of axioms of a Piron lattice. Lattices
satisfying certain subsets of the axioms have useful names as well.

Definition 2.1. A bounded lattice is a lattice with a greatest element I
(“top”) and a least element O (“bottom”). An ortholattice L is a bounded
lattice (L,≤) that satisfies (1) below. An orthomodular lattice L is an or-
tholattice (L,≤,−⊥) that satisfies (2). A propositional system L is an or-
thomodular lattice (L,≤,−⊥) that satisfies (3)–(5). Lastly, a Piron lattice
L is a propositional system (L,≤,−⊥) that satisfies (6).

(1) Orthocomplement: L is equipped with a map −⊥ : L → L such that

(a) p⊥⊥ = p;
(b) p ≤ q implies q⊥ ≤ p⊥;
(c) p ∧ p⊥ = O and p ∨ p⊥ = I.

(2) Weak Modularity: q ≤ p implies p[q] = q, where p[q] := p ∧ (p⊥ ∨ q).

(3) Completeness: For any A ⊆ L, its meet
∧

A and join
∨

A are in L.

Call a ∈ L an atom if a �= O and either p = O or p = a holds for every
p ∈ L such that p ≤ a. Write At(L) for the set of atoms of L.

3See [2] for an exposition of category theory.
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(4) Atomicity: For any p �= O, there is an a ∈ At(L) such that a ≤ p.

(5) Covering Law: If a ∈ At(L) and a �≤ p⊥ then p[a] ∈ At(L).4

(6) Superposition Principle: For any two distinct a, b ∈ At(L), there is a
c ∈ At(L), distinct from both a and b, such that a ∨ c = b ∨ c = a ∨ b.5

Atoms are meant to correspond to one-dimensional subspaces, or rays, of
a Hilbert space; so they satisfy, for instance:

(7) a � p iff a ∧ p < a iff a ∧ p = O, for any atom a.

The fact that closed linear subspaces in general are certain sets of rays is
expressed in Piron lattices by

Proposition 2.2. Let L be an orthomodular lattice satisfying Completeness
and Atomicity. Then L is atomistic, meaning that every p ∈ L has p =

∨
�p�,

where �p� := {a ∈ At(L) | a ≤ p}.
Proof. First observe that p = q if both q ≤ p and �p� ⊆ �q�, as follows.
Suppose the antecedents. �p� ⊆ �q� means that, for any a ∈ At(L), if a ≤ p
then a ≤ q, which implies a �≤ q⊥, for otherwise a ≤ q ∧ q⊥ = O. Therefore
no a ∈ At(L) satisfies a ≤ p∧ q⊥, that is, p∧ q⊥ = O, i.e., p⊥ ∨ q = I. Hence
p = p ∧ (p⊥ ∨ q) = q by q ≤ p and Weak Modularity.

Let q =
∨

�p�. Then it holds that both q ≤ p and �p� ⊆ �q�. Here
∨

�p� ≤ p
because a ≤ p for all a ∈ �p�; and if a ∈ �p� then a ≤ ∨

�p�.

The connective p[q] := p ∧ (p⊥ ∨ q) defined in (2) is sometimes [8] called
the “Sasaki projection”. The monotone map p[−] : L → L expresses, in
Hilbert-space terms, the direct-image6 operation under the projector onto
the subspace p; this should make the conceptual meaning of (2) and (5)
transparent. There are many properties an expression of projectors must
satisfy, and the following (the rest of this subsubsection) are some of them.

(8) p[q] = p ∧ (p⊥ ∨ q) ≤ p.

(9) p[a] ∧ a⊥ = p ∧ (p⊥ ∨ a) ∧ a⊥ = (p ∧ a⊥) ∧ (p ∧ a⊥)⊥ = O.

(10) If q ≤ p⊥ then p[q] = p ∧ (p⊥ ∨ q) = p ∧ p⊥ = O.

Lemma 2.3. For any a, b ∈ At(L), a � b⊥ is equivalent to b[a] = b and to

4In an orthomodular lattice, this statement of the Covering Law is equivalent to that
in [18]. See [18] or [5] for proofs.

5Usually a Piron lattice is defined with the property called irreducibility instead of (6);
see, for example, [22]. Yet a propositional system satisfies (6) iff it is irreducible.

6Because of the view of Sasaki projection as a direct-image, we use the notation stan-
dardly used for such. On page 12, we define direct-image for arbitrary functions.
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(a) p[a] = b for some p ∈ L.

Proof. If a � b⊥, then b[a] �= O by the Covering Law, whereas b[a] ≤ b
by (8) for atom b, and hence b[a] = b. Also, b[a] = b obviously implies (a).
Finally, if (a) p[a] = b, then a �≤ b⊥, for otherwise b ≤ a⊥ and (9) would
imply b = b ∧ a⊥ = p[a] ∧ a⊥ = O for atom b.

In an ortholattice L, define [p]q := p⊥ ∨ (p ∧ q) = (p[q⊥])⊥, the so-called
“Sasaki hook”, obtaining a monotone map [p]− : L → L. This expresses the
inverse-image operation under the projector onto p.7 In fact, Weak Modu-
larity amounts to the adjunction8 formed by direct image p[−] and inverse
image [p]− (just as in f [−] 	 f−1[−] for any function f):

Theorem 2.4. Coecke and Smets [8] An ortholattice L satisfies Weak Mod-
ularity iff every p[−] is left adjoint to [p]− (written p[−] 	 [p]−).

−[−] and [−]− are also meant to generalize conjunction and implication
(classical logic has p ∧ − 	 p ⇒ − for classical implication ⇒). They are
supposed to mean, respectively, the following:

• p[q]: We may have moved to the current state by testing whether p or
not (and receiving the answer “Yes”) when q was the case.

• [p]q: If we test p and receive the answer “Yes”, then q will be the case.

These may help make sense of the unit and counit laws of the adjunction,
q ≤ [p](p[q]) and p[[p]q] ≤ q. In fact, it is useful to observe that Weak
Modularity amounts to the equalities among the following six terms.

p[[p]q] def= p ∧ (p⊥ ∨ (p⊥ ∨ (p ∧ q)))=

p[p ∧ q] def=≤

Weak
Modularity

p ∧ (p⊥ ∨ (p ∧ q))=

def

p ∧ q
≤

p ∧ [p]q

(11)

7Here inverse images are meant to include the kernel.
8An adjunction between two partially ordered sets (S1, ≤1) and (S2, ≤2) (often called

a Galois connection) is a pair of monotone maps L : S1 → S2 and R : S2 → S1 such
that L(x) ≤2 y iff x ≤1 R(y) for all x ∈ S1 and y ∈ S2, or, equivalently, for which the
“unit” law x ≤1 RL(x) and the “counit” law LR(y) ≤2 y hold. Such L and R are called
left and right adjoints to each other. In fact, adjunction is defined for categories C, D and
functors L : C → D and R : D → C in general, by requiring certain conditions (that hold
trivially in the case of posets) on the correspondence between morphisms f : L(C) → D
and g : C → R(D), or on natural transformations η : 1C → RL (unit) and ε : LR → 1D

(counit). See [2, Definition 9.6 and Proposition 10.1]. We mention a general adjunction in
Theorem 3.24.
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2.1.2. Morphisms of Piron Lattices. There are options as to how to define
morphisms of Piron lattices. The first one is due to Moore [16,17].

Definition 2.5. A function h : L1 → L2 is a weak homomorphism between
two Piron lattices (L1,≤1,−⊥1) and (L2,≤2,−⊥2) if the following hold:

(12) h(
∧

1 A) =
∧

2 h[A] for any A ⊆ L1.

(13) (Moore’s condition) if b is an atom of L2, then there exists an atom a
of L1, such that b ≤2 h(a).

These homomorphisms form a category [16,17]: the composition of two
weak homomophisms is again a weak homomorphism, and the identity map
is the identity. Let us write Lw for this category of Piron lattices and weak
homomorphisms. As a second option we consider the smaller class of mor-
phisms that also preserve orthocomplement, and as a consequence preserve
arbitrary joins including the bottom.

Definition 2.6. A weak homomorphism k : L1 → L2 is a strong homomor-
phism between Piron lattices (Li,≤i,−⊥i) (i = 1, 2) if k moreover satisfies

(14) k(p⊥1) = k(p)⊥2 for all p ∈ L1.

Clearly, the composition of two strong homomorphisms also preserves
the orthocomplement, and the identity map is a strong homomorphism; so
Piron lattices and strong homomorphisms form a subcategory, Ls, of Lw

that is “wide” in the sense of sharing all the objects. Note that strong
homomorphisms preserve I, O, ∨, −[−] and [−]−, since they preserve ∧ and
−⊥.

2.2. Categories of Quantum Dynamic Frames

We now proceed to define two categories Fw and Fs for quantum dynamic
frames. Similarly to the Piron lattice categories we defined earlier, they have
the same objects and only differ in their morphisms.

2.2.1. Quantum Dynamic Frames. Any Hilbert space H gives rise to a
Kripke frame: a tuple (Σ,L, { P?−−→}P∈L) where Σ is the set of rays in H; L
is the family of closed linear subspaces of H, with each subspace expressed
as a set of rays; and, for each closed linear subspace P ∈ L, P?−−→ is the
relation on Σ such that s

P?−−→ t iff the projection of s onto P in H is t. With
these projections we can also define the non-orthogonality relation: s is not
orthogonal to t, written s → t, iff s

P?−−→ t for some P ∈ L. So s is orthogonal
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to t iff s � t. Then we can furthermore define the orthocomplement ∼A of
any subset A ⊆ Σ: s ∈ ∼A iff s � t for all t ∈ A.

The axioms of a quantum dynamic frame given by Baltag and Smets [3]
aim at characterizing Kripke frames (Σ,L, { P?−−→}P∈L) that can be abstracted
away from Hilbert spaces in this manner.

Definition 2.7. A quantum dynamic frame F is a tuple (Σ,L, { P?−−→}P∈L)
such that Σ is a set, L ⊆ P(Σ), and P?−−→ ⊆ Σ × Σ for each P ∈ L, and that
satisfies the following, where → =

⋃
P∈L

P?−−→:

(15) L is closed under arbitrary intersection.

(16) L is closed under orthocomplement, where the orthocomplement of A ⊆
Σ is ∼A := {s ∈ Σ | s � t for all t ∈ A}.

(17) Atomicity: For any s ∈ Σ, {s} ∈ L.

(18) Adequacy: For any s ∈ Σ and P ∈ L, if s ∈ P , then s
P?−−→ s.

(19) Repeatability: For any s, t ∈ Σ and P ∈ L, if s
P?−−→ t, then t ∈ P .

(20) Self-Adjointness: For any s, t, u ∈ Σ and P ∈ L, if s
P?−−→ t → u, then

there is a v ∈ Σ such that u
P?−−→ v → s.

(21) Covering Property: Suppose s
P?−−→ t for s, t ∈ Σ and P ∈ L. Then, for

any u ∈ P , if u �= t then u → v � s for some v ∈ P ; or, contrapositively,
u = t if u → v implies v → s for all v ∈ P .

(22) Proper Superposition: For any s, t ∈ Σ there is a u ∈ Σ such that
s → u → t.

The above definition differs from the one given in [3] in three ways. First,
we have added (16), since (15) and (17)–(22) do not ensure (16).9 Secondly,
the axiom called Mayet’s condition is part of the definition in [3], but we
treat it as an additional axiom; we will discuss it in Sect. 3.4. Lastly, and
perhaps most importantly, even though frames have unitary operators as
part of their structure in [3], they do not in our definition. We will show
how we deal with unitaries in Sect. 2.2.2.

The following series of lemmas show some basic properties of quantum
dynamic frames. They will be used to show the duality result later on, but

9For a counterexample, take an arbitrary Hilbert space H of dimension greater than
2; let Σ be the set of one-dimensional subspaces; let L consist exactly of ∅, Σ, and all

singletons {s} ⊆ Σ; and let relations
{s}?−−−→ be the obvious ones. Since s → t iff s

{t}?−−−→ t, it

is easy to verify that (Σ, L, { P?−−→}P∈L) satisfies (15), (17)–(22) but not (16).
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will also help with conceptual understanding of Definition 2.7. We start
with one of fundamental properties of the relation →, which expresses non-
orthogonality.

Lemma 2.8. → is reflexive and symmetric.

Proof. By Atomicity and Adequacy, s
{s}?−−−→ s. So, assuming s → t, we have

s
{s}?−−−→ s → t. By Self-Adjointness, there is a u ∈ Σ such that t

{s}?−−−→ u → s.

By Repeatability, u ∈ {s}, so u = s. This means that t
{s}?−−−→ s, so t → s.

This justifies writing s ⊥ t and s �⊥ t for s � t and s → t, our expression
of the symmetric relations of orthogonality and non-orthogonality. Note that
s ⊥ t iff s ∈ ∼{t}, since ∼A = {s ∈ Σ | s ⊥ t for all t ∈ A}.

An important consequence of Lemma 2.8 is the following. Let us define
the modal operators �,♦ : P(Σ) → P(Σ) using → as accessibility; i.e.,

�A = {s ∈ Σ | t ∈ A whenever s → t},

♦A = {s ∈ Σ | s → t for some t ∈ A} = ¬�¬A,

where ¬ is the set complement Σ \ −. Clearly, � and ♦ are monotone, and

∼A = {s ∈ Σ | t /∈ A whenever s �⊥ t} = �¬A = ¬♦A.

Then Lemma 2.8 implies the following proposition. There, (23) and (24)
are the modal-logical expressions of reflexivity and symmetry, respectively;
(25) is another way of putting (24), and entails (26) immediately. (27) is by
a classic result in [6]; also see [10] for “orthologic”, the logic of ortholattices,
and its modal-logical representation.

Proposition 2.9. The monotone maps �,♦ : P(Σ) → P(Σ) satisfy:

(23) �A ⊆ A ⊆ ♦A for every A ⊆ Σ.

(24) A ⊆ �♦A = ∼∼A for every A ⊆ Σ.

(25) ♦ 	 �.

(26) �♦� = �, i.e., ∼∼∼ = ∼.

(27) Moreover, L∼∼ = {A ⊆ Σ | ∼∼A = A} = {∼A | A ⊆ Σ} forms an
ortholattice with the top Σ, the bottom ∅, orthocomplement ∼, ∧ = ∩
and ∨ = �, which is defined by A � B = ∼∼(A ∪ B) = �(♦A ∪ ♦B) =
∼(∼A ∩ ∼B) for any A,B ⊆ Σ.

Indeed, as we will show (in Proposition 2.18), L∼∼ = L. Its “⊆” part is
easily obtained by (15)–(17):

Lemma 2.10. For any A ⊆ Σ, ∼A =
⋂

t∈A ∼{t} ∈ L.
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For the “⊇” part, we need to reflect upon P?−−→, which purports to ex-
press a projector on Hilbert spaces. We show that it is a partial function
(Corollary 2.13) and that s

P?−−→ t means that t is the closest state to s
inside P , in the sense that s and t are orthogonal to the same states in P
(Proposition 2.15).

Lemma 2.11. s
P?−−→ t implies

(28) t ∈ P and, for all u ∈ P , if t �⊥ u then s �⊥ u.

Proof. Suppose s
P?−−→ t. By Repeatability, t ∈ P . Assume t �⊥ u for u ∈ P .

Then, by s
P?−−→ t → u, Self-Adjointness yields v ∈ Σ such that u

P?−−→ v → s.
Since u ∈ P and, by Lemma 2.8, u → w implies w → u for all w ∈ P , the
Cover Property (with u

P?−−→ v) implies u = v. So v → s yields s �⊥ u.

Combining this with the Covering Property, we have

Lemma 2.12. s
P?−−→ v implies that v is the unique t ∈ Σ satisfying (28).

Corollary 2.13. P?−−→ is a partial function for each P ∈ L.

Lemma 2.14. If s → u for some u ∈ P , then s
P?−−→ t → u for some unique

t ∈ P .

Proof. Suppose s → u for some u ∈ P . Then u
P?−−→ u → s by Adequacy

and the symmetry of →. Hence by Self-Adjointness s
P?−−→ t → u for some

t ∈ P . The uniqueness is by Corollary 2.13.

Proposition 2.15. s
P?−−→ t is equivalent to each of (28) and

(a) t ∈ P and, for all u ∈ P , t �⊥ u iff s �⊥ u.

Proof. (a) obviously implies (28). We then show (28) implies s
P?−−→ t.

Suppose (28). Then s �⊥ t since t �⊥ t by Lemma 2.8. So Lemma 2.14 yields
v ∈ P such that s

P?−−→ v, where v = t by Lemma 2.12 since t satisfies (28).
Lastly, to show s

P?−−→ t implies (a), suppose s
P?−−→ t. Then the assertion

t ∈ P and the “only if” part of (a) are Lemma 2.11; so, for the “if”, assume
s �⊥ u for u ∈ P . By Lemma 2.14, there is a v ∈ Σ such that s

P?−−→ v �⊥ u.
But s

P?−−→ t and Corollary 2.13 imply v = t and so t �⊥ u.

This characterization of P?−−→ leads to the characterization of L as the fam-
ily L∼∼ of fixed points of ∼∼. First, writing s� t for {s}�{t} = ∼∼{s, t} =
�♦{s, t}, observe
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Lemma 2.16. Suppose s
P?−−→ t ∈ P and that there is no u ∈ s � t such that

s → u ∈ ∼P . Then s = t.

Proof. By (24), s, t ∈ {s, t} ⊆ ∼∼{s, t} = s � t; so t
s�t?−−−→ t by Adequacy.

It is therefore enough by the Covering Property to show that u → t for all
u ∈ s � t such that s → u. Fix such u; by the supposition, u /∈ ∼P , i.e.,
u ∈ ¬∼P = ♦P . Hence Lemma 2.14 yields some v ∈ P such that u

P?−−→ v
and so u → v. Then u ∈ s � t = �♦{s, t} implies v ∈ ♦{s, t}, i.e., either
v → s or v → t; this entails u → t, since Proposition 2.15 with s

P?−−→ t ∈ P

and u
P?−−→ v ∈ P implies that v �⊥ s iff v �⊥ t iff u �⊥ t.

Lemma 2.17. ∼∼P = P for every P ∈ L.

Proof. (24) implies P ⊆ ∼∼P . Also, ∼∼P = �♦P ⊆ ♦P by (23). Fix any
s ∈ ∼∼P ⊆ ♦P . Then Lemma 2.14 yields t ∈ P with s

P?−−→ t ∈ P , whereas
s ∈ ∼∼P means that s → u ∈ ∼P for no u. Hence Lemma 2.16 implies
s = t ∈ P .

This and Lemma 2.10, combined with Proposition 2.9, establish

Proposition 2.18. L = {A ⊆ Σ | ∼∼A = A} = {∼A | A ⊆ Σ}, and it
forms an ortholattice (L,⊆,∩,�, Σ, ∅,∼).

The following import of Propositions 2.18 and 2.15 is worth observing.
That is, when orthogonality ⊥ is abstracted from a quantum dynamic frame,
⊥ gives back L and P?−−→ using ∼. Here is another characterization of P?−−→,
using the frame version of the Sasaki projection P [Q] := P ∩ (∼P � Q).

Proposition 2.19. s
P?−−→ t iff P [{s}] = {t}.

Proof. Recall from Proposition 2.15 that s
P?−−→ t iff (28). Observe

(28) ⇐⇒ t ∈ P and, for all u ∈ P , u ⊥ s implies t ⊥ u

⇐⇒ t ∈ P and t ⊥ u for all u ∈ P ∩ ∼{s}
⇐⇒ t ∈ P ∩ ∼(P ∩ ∼{s})

⇐⇒ t ∈ P ∩ (∼P � {s}) = P [{s}] (by Lemma 2.17).

So P [{s}] = {t} implies (28) and so s
P?−−→ t. On the other hand, if s

P?−−→ t
and (28), then Lemma 2.12 implies P [{s}] = {t}.
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2.2.2. Morphisms of Quantum Dynamic Frames. We discuss two options
for morphisms on quantum dynamic frames. The first option is due to Moore
[16]. First, given a partial function f : Σ1 ⇀ Σ2 and any A ⊆ Σ2, define the
“weakest preimage” of A under f as

f−1[A] := {s ∈ Σ1 | either f(s) is undefined or defined and f(s) ∈ A}, 10

and observe that f−1[−] : P(Σ2) → P(Σ1) is right adjoint to the direct-
image operation f [−] : P(Σ1) → P(Σ2) :: B �→ {f(s) | s ∈ B and f(s) is
defined}.

Definition 2.20. A partial function f : Σ1 ⇀ Σ2 is a weak map between
quantum dynamic frames (Σi,Li, { P?−−→i}P∈Li

) (i = 1, 2) if f−1[−] “preserves
testability”, meaning that f−1[P ] ∈ L1 for all P ∈ L2,

Quantum dynamic frames and weak maps form a category, Fw, where
identity maps are identity morphisms. Another option of morphisms is
bounded morphisms, a familiar concept in modal logic (see [7]). These maps
preserve the structure of quantum dynamic frames in the sense of preserving
all modal formulas.

Definition 2.21. A function g : Σ1 → Σ2 is a strong map between two
quantum dynamic frames (Σi,Li, { P?−−→i}P∈Li

) (i = 1, 2) if g is a bounded
morphism with respect to →i, that is,

(29) if s →1 t, then g(s) →2 g(t); and

(30) if g(s) →2 t, then there exists u ∈ Σ1 such that g(u) = t and s →1 u.

It is easy to see that identity maps are strong maps and that strong
maps are composable. So quantum dynamic frames and strong maps form a
category, Fs. (It may be interesting to observe that every strong map with
a nonempty domain is surjective by Proper Superposition.)

Bounded morphisms can be characterized by the � operator as follows,
a characterization commonly found in modal logic. A proof is found, e.g., in
[7] (see the proofs of Proposition 5.51 (iv) and Proposition 5.52 (iv) in [7]).

Proposition 2.22. A function g : Σ1 → Σ2 is a bounded morphism (with
respect to →i) if and only if g−1 commutes with �, in the sense that, for all
B ⊆ Σ2, g−1�2B = �1g

−1B.

An immediate consequence is

10The notation f−1[−] disagrees with the definition that may be more standard, in

which f−1[A] does not contain the “kernel” of f . Our f−1[A] contains the kernel.
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Proposition 2.23. g−1 of any strong map g : Σ1 → Σ2 preserves ∼ (and
therefore � and −[−] as well).

Proof. g−1 preserves ¬ since g is a total function, and preserves � by
Proposition 2.22. So g−1 preserves ∼ = �¬.

This in turn immediately shows that Fs is a wide subcategory of Fw.

Proposition 2.24. Every strong map g : Σ1 → Σ2 is a weak map.

Proof. If P ∈ L2, then ∼∼P = P by Lemma 2.17, and so Proposition 2.23
implies ∼∼g−1[P ] = g−1[∼∼P ] = g−1[P ], which means that g−1[P ] ∈ L1

by Proposition 2.18.

One may wonder how much structure of quantum dynamic frames is
preserved by morphisms of Fw or of Fs, since the definition of Fw-morphism
does not involve P?−−→, and that of Fs-morphism involves neither L nor P?−−→.
The following should give some reassurance:

Proposition 2.25. Given quantum dynamic frames (Σi,Li, { P?−−→i}P∈Li
)

for i = 1, 2, any function g : Σ1 → Σ2 is an isomorphism in Fs, iff (a)–(c)
below hold, and iff (a) and (d) hold.

(a) g is a bijection.

(b) For any A ⊆ Σ1, A ∈ L1 iff g[A] ∈ L2.

(c) For any s, t ∈ Σ1 and P ∈ L1, s
P?−−→ t iff g(s)

g[P ]?−−−→ g(t).

(d) For any s, t ∈ Σ1, s → t iff g(s) → g(t).

Proof. For “only if” of the first “iff”, take an isomorphism g of Fs. (a) is
obvious, and (b) is by Proposition 2.24. (c) holds because Propositions 2.19
and 2.23 (along with (a)) imply that s

P?−−→ t iff P [{s}] = {t} iff g[P ][{g(s)}] =

{g(t)} iff g(s)
g[P ]?−−−→ g(t).

“If” of the first “iff” and the second “iff” are straightforward.

The characterization in terms of (a)–(c) makes it clear that Fs provides
the right notion of isomorphism for (Σ,L, { P?−−→}P∈L). In contrast, isomor-
phisms in Fw are rather too weak.11

In addition, functions g : Σ → Σ satisfying (a) and (d) correspond to
unitary and antiunitary operators on the Hilbert space corresponding to Σ,

11Consider the quantum dynamic frame (Σ, L, { P?−−→}P∈L) of a two-dimensional Hilbert
space. L consists of ∅, Σ and all the singletons. This means that any arbitrary permutation

on Σ, regardless of
P?−−→, is an isomorphism in Fw.
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as implied by Wigner’s theorem.12 (In fact, (a) and (d) for g : Σ → Σ define
“unitaries” in [3].) This justifies our omission of unitaries from the structure
of objects, since unitaries can be recovered as automorphisms.

3. Dualities

In this section we show dualities between the categories of Piron lattices
and those of quantum dynamic frames. In general, a duality between two
categories C and D is a pair of contravariant functors F : C

op → D and
G : D

op → C, such that F ◦G is naturally isomorphic to the identity functor
1D on D and G ◦ F is naturally isomorphic to the identity functor 1C on
C.13 Here we first define contravariant functors between Fw and Lw and
between Fs and Ls, and then show that they form dualities between the
corresponding pairs of categories.

3.1. From Piron Lattices to Quantum Dynamic Frames

In this subsection, we define a contravariant functor F : Lw
op → Fw. Its

restriction to Ls gives another functor Fs : Ls
op → Fs; we may write Fw for

F when the distinction needs emphasizing.

3.1.1. Mapping of Objects. Recall that, given any Piron lattice L = (L,≤,
−⊥), we write At(L) for its set of atoms and �p� = {a ∈ At(L) | a ≤ p} for
every p ∈ L. Now define F (L) to be the structure (Σ,L, { P?−−→}P∈L) given
by

• Σ = At(L);

• L = {�p� ⊆ Σ | p ∈ L};

• for each �p� ∈ L, the relation
�p�?−−→ ⊆ Σ × Σ such that, for any a, b ∈

At(L), a
�p�?−−→ b iff p[a] = b.

Fixing an arbitrary Piron lattice L = (L,≤,−⊥) (for the duration of this
subsubsection), we are going to show that F (L) actually forms a quantum
dynamic frame, that is, we will verify that it satisfies the axioms (15)–(22)

12For a short proof of this theorem, see Section 4 of [9]. For more about the significance
of this theorem to theoretic physics, see Section 3-2 of [18].

13Given two functors F1, F2 : C → D, a natural transformation η from F1 to F2 is
a family of morphisms ηX : F1(X) → F2(X) for all objects X of C such that for any
morphism f : X → Y of C, ηY ◦ F1(f) = F2(f) ◦ ηX . Then η is moreover called a natural
isomorphism if each component ηX is an isomorphism of D.
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of a quantum dynamic frame one by one. It is useful to rewrite Lemma 2.3
as (31), as well as to observe (32):

(31) a → b if and only if a � b⊥, for any a, b ∈ At(L).

(32) Since a ∧ a⊥ = O, (7) implies a �≤ a⊥, and so a → a by (31).

Observe that �−� is in fact a monotone map preserving a lot of structure.

Lemma 3.1. �−� : L → P(Σ) is an order embedding.

Proof. �p� ⊆ �q� implies p =
∨

�p� ≤ ∨
�q� = q by Proposition 2.2, whereas

p ≤ q obviously entails �p� ⊆ �q�.

Lemma 3.2. �−� : L → P(Σ) preserves all meets and orthocomplement.

Proof. �
∧

i∈I pi� =
⋂

i∈I�pi� because, for any a ∈ At(L),

a ≤
∧

i∈I

pi ⇐⇒ a ≤ pi for all i ∈ I

⇐⇒ a ∈ �pi� for all i ∈ I ⇐⇒ a ∈
⋂

i∈I

�pi�.

�p⊥� = ∼�p� because, for any a ∈ At(L),

a ≤ p⊥ ⇐⇒
∨

�p� = p ≤ a⊥ (by Proposition 2.2)

⇐⇒ b ≤ a⊥, i.e., a ≤ b⊥, for all b ∈ �p�

⇐⇒ a � b for all b ∈ �p� (by (31))

⇐⇒ a ∈ ∼�p�

Lemma 3.3. F (L) satisfies (15), (16), (17) Atomicity, (18) Adequacy, and
(19) Repeatability.

Proof. (15) and (16) are by Lemma 3.2. Let a, b ∈ At(L) and �p� ∈ L. (17):
{a} = �a� ∈ L. (18): If a ∈ �p�, i.e. a ≤ p, then Weak Modularity implies

p[a] = a, i.e., a
�p�?−−→ a. (19): If a

�p�?−−→ b, then (8) means that b = p[a] ≤ p,
i.e., b ∈ �p�.

Lemma 3.4. F (L) satisfies (20) Self-Adjointness: Given any a, b, c ∈ At(L)

and �p� ∈ L, suppose a
�p�?−−→ b → c. Then c

�p�?−−→ d → a for some d ∈ At(L).

Proof. b ≤ p and b � c⊥ by Lemma 3.3 (19) and by (31); hence p �≤ c⊥

and so c �≤ p⊥. Hence p[c] is an atom by the Covering Law. While c
�p�?−−→ p[c]

by definition, we claim p[c] → a.
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Suppose that p[c] �→ a; Then (31) implies p[c] ≤ a⊥ and so a ≤ (p[c])⊥ =

[p]c⊥. This implies, since a
�p�?−−→ b, that b = p[a] ≤ p[[p]c⊥] ≤ c⊥ by (11). So

(31) implies b �→ c, contradicting b → c.

Lemma 3.5. F (L) satisfies (21) Covering Property: Given any a, b, c ∈
At(L) and �p� ∈ L, suppose a

�p�?−−→ b, c �= b and c ∈ �p�. Then c → d � a
for some d ∈ �p�.

Proof. Since c �= b are both atoms, c �≤ b, and so b⊥[c] is an atom by

the Covering Law. By definition, c
�b⊥�?−−−→ b⊥[c] and so c → b⊥[c]. We claim

b⊥[c] ∈ �p� and b⊥[c] ≤ a⊥, which implies b⊥[c] � a by (31).
Since b = p[a] ≤ p by (8) and c ≤ p by supposition, b⊥[c] = b⊥ ∧ (b∨ c) ≤

b ∨ c ≤ p, and so b⊥[c] ∈ �p�. Also, b⊥[c] ≤ b⊥ = (p[a])⊥ = [p]a⊥ by (8).
Therefore b⊥[c] ≤ p ∧ [p]a⊥ ≤ a⊥ by (11).

Lemma 3.6. Given any a, b ∈ At(L), there is a c ∈ At(L) such that a �≤ c⊥

and c �≤ b⊥. So, by (31), F (L) satisfies (22) Proper Superposition.

Proof. If a �≤ b⊥ then c = a works by (32); so assume a ≤ b⊥. It follows
that a �= b by (32). So, by the Superposition Principle, there is a c ∈ At(L)
such that c �= a, c �= b and a ∨ b = a ∨ c = b ∨ c. Then observe a �≤ c⊥, for
otherwise a ≤ b⊥ ∧ c⊥ = (b ∨ c)⊥ = (a ∨ b)⊥ = a⊥ ∧ b⊥, contradicting (32).
Similarly, from b ≤ a⊥ we have b �≤ c⊥, i.e., c �≤ b⊥.

Lemmas 3.3 through 3.6 establish

Theorem 3.7. F (L) is a quantum dynamic frame.

3.1.2. Mapping of Morphisms. To define how F acts on morphisms, we
start with the following observation. Given an Lw-morphism h : L1 →
L2, since h preserves all meets, by the adjoint functor theorem there is
a monotone map,

�h : L2 → L1 :: y �→
∧

y≤2h(x)

x,

that is left adjoint to h as a monotone map, �h 	 h, that is, for any x ∈ L1

and y ∈ L2, �h(y) ≤1 x iff y ≤2 h(x). Moreover observe

Lemma 3.8. Let h : L1 → L2 be an Lw-morphism. Then �h maps each atom
to either an atom or O1.

Proof. For each b ∈ At(L2), (13) yileds a ∈ At(L1) such that b ≤2 h(a),
which by �h 	 h implies �h(b) ≤1 a, so �h(b) is either an atom or O1.
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We define F (h) : F (L2) ⇀ F (L1) for any Lw-morphism h : L1 → L2 to
be the restriction of �h to the atoms of L2 that �h maps to atoms of L1.

Lemma 3.9. Given any Lw-morphism h : L1 → L2, F (h) : F (L2) ⇀ F (L1)
has F (h)−1[�p�] = �h(p)� for any �p� ∈ L1 of F (L1).

Proof. Lemma 3.8 and �h 	 h imply

F (h)−1[�p�] = {b ∈ At(L2) | either �h(b) = O1 or �h(b) ∈ �p�}
= {b ∈ At(L2) | �h(b) ≤1 p}
= {b ∈ At(L2) | b ≤2 h(p)} = �h(p)�.

Proposition 3.10. (a) For any Lw-morphism h, F (h) is an Fw-morphism.

(b) F preserves identity morphisms and composition.

Proof. (a) F (h)−1[−] preserves testability since Lemma 3.9 means that,
for any �p� ∈ L1, F (h)−1[�p�] = �h(p)� ∈ L2.

(b) For any Piron lattice L, we have �1L
(y) =

∧
y≤x x = y, that is,

F (1L) = 1F (L). Given any two weak homomorphisms h1 : L1 → L2 and
h2 : L2 → L3, we have F (h2 ◦ h1) = F (h1) ◦ F (h2) because �hi

	 hi implies

(�h1 ◦ �h2)(y) =
∧

�h2(y)≤2h1(x)

x =
∧

y≤3h2◦h1(x)

x = �h2◦h1(y).

This and Theorem 3.7 mean that F is a contravariant functor from Lw

to Fw. We define another functor Fs by restricting F to Ls. Then we have
Fs : Ls

op → Fs, since Fs lands in Fs, as in Proposition 3.12.

Lemma 3.11. Let k : L1 → L2 be an Ls-morphism and suppose At(L2) �= ∅.
Then �k maps atoms to atoms.

Proof. Since p ≤ k ◦ �k(p) by �k 	 k, �k(p) = O1 implies p ≤ k ◦ �k(p) =
k(O1) = O2. Thus, for any b ∈ At(L2), �k(b) �= O1, and so �k(b) ∈ At(L1)
by Lemma 3.8.

Proposition 3.12. For any Ls-morphism k, F (k) is an Fs-morphism.

Proof. Given any strong homomorphism k : L1 → L2, we prove (29)
and (30) of Definition 2.21 for F (k) : F (L2) → F (L1). (29): Observe that,
since k preserves −⊥ and �k 	 k, any b ∈ At(L2) has b ≤2 k ◦ �k(b) =
k ◦ �k(b)⊥⊥ = k(�k(b)⊥)⊥ and so k(�k(b)⊥) ≤2 b⊥. Hence �k(b0) ≤1 �k(b1)⊥
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for b0, b1 ∈ At(L2) implies, by �k 	 k, that b0 ≤2 k(�k(b1)⊥) ≤2 b1
⊥. Thus,

by (31), b0 →2 b1 implies F (k)(b0) = �k(b0) →1 �k(b1) = F (k)(b1).
(30): Suppose F (k)(b) →1 a for b ∈ At(L2) and a ∈ At(L1). Then

�k(b) = F (k)(b) �≤1 a⊥ by (31), and so b �≤2 k(a⊥) = k(a)⊥ because �k 	 k
and k preserves −⊥. Therefore, by the Covering Law, k(a)[b] ∈ At(L2), so

b
�k(a)[b]�?−−−−−−→2 k(a)[b] and hence b →2 k(a)[b]. Moreover, (8) implies k(a)[b] ≤2

k(a) and so �k(k(a)[b]) ≤1 a by �k 	 k. But, because �k(k(a)[b]) is an atom
by Lemma 3.11, F (k)(k(a)[b]) = �k(k(a)[b]) = a.

3.2. From Quantum Dynamic Frames to Piron Lattices

In this subsection, we define a contravariant functor Gw = G : Fw
op → Lw,

and obtain another Gs : Fs
op → Ls as the restriction to Fs.

3.2.1. Mapping of Objects. Given any quantum dynamic frame F = (Σ,L,

{ P?−−→}P∈L), we define G(F) as (L,⊆,∼). We will show that this G(F) forms
a Piron lattice, that is, we will verify that it satisfies (1)–(6). In Proposi-
tion 2.18, we established that any G(F) is an ortholattice; so we carry on to
show that G(F) satisfies the other axioms of a Piron lattice, (2)–(6).

We will use the laws of ortholattice as well as the laws in Proposition 2.9
without particular reference.

Lemma 3.13. G(F) satisfies (2) Weak Modularity: if Q ⊆ P for any Q, P ∈
L, then P [Q] = Q.

Proof. Q ⊆ P implies Q ⊆ P [Q] in any ortholattice. For P [Q] ⊆ Q, first
observe P [Q] = P ∩ �¬(P ∩ �¬Q) ⊆ P ∩ (¬P ∪ ♦Q) = P ∩ ♦Q. Fix
s ∈ P [Q] ⊆ P ∩ ♦Q; so s ∈ P , and Lemma 2.14 yields some t ∈ Q with

s
Q?−−→ t. Then s = t ∈ Q by Lemma 2.16, since there is no u ∈ s � t such

that s → u ∈ ∼Q, as follows. s ∈ P and t ∈ Q ⊆ P imply s � t ⊆ P , where
� is the join of L. Therefore s ∈ P [Q] ⊆ ∼P � Q = ∼(P ∩ ∼Q) implies
(s � t) ∩ ∼Q ⊆ P ∩ ∼Q ⊆ ∼{s}, that is, (s � t) ∩ ♦{s} ∩ ∼Q = ∅.

Thus G(F) is an orthomodular lattice; it will be useful shortly to note
that G(F) therefore satisfies the following consequence of (11):

p⊥ ∨ (p[q]) = (p ∧ [p]q⊥)⊥ = (p ∧ q⊥)⊥ = p⊥ ∨ q. (33)

Lemma 3.14. G(F) satisfies (3) Completeness and (4) Atomicity.
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Proof. (3): L has all meets by (15). Given any {Pi ∈ L}i∈I , ∼∼⋃
i∈I Pi is

its join in L, because, for every Q ∈ L,

Pi ⊆ Q for all i ∈ I ⇐⇒
⋃

i∈I

Pi ⊆ Q ⇐⇒ ∼∼
⋃

i∈I

Pi ⊆ Q.

Here “⇐” of the second equivalence is by
⋃

i∈I Pi ⊆ ∼∼⋃
i∈I Pi; “⇒” is

because ∼∼ is monotone and ∼∼Q = Q. Thus L has all joins.
(4): By (17), singletons {s} ∈ L serve as atoms.

Lemma 3.15. G(F) satisfies (5) the Covering Law: if {s} �⊆ P ∈ L, then
(∼P )[{s}] is a singleton.

Proof. Since s ∈ ¬P = ¬∼∼P = ♦∼P , Lemma 2.14 yields t ∈ ∼P with
s

∼P?−−−→ t, which implies (∼P )[{s}] = {t} by Proposition 2.19.

Lemma 3.16. Suppose s �= t and u �= s for s, t ∈ Σ and u ∈ s � t. Then
s � u = s � t.

Proof. Since � is the join in L, s, u ∈ s � t implies s � u ⊆ s � t, and so

(∼{s})[{u}] = ∼{s} ∩ (s � u) ⊆ ∼{s} ∩ (s � t) = (∼{s})[{t}].

Yet, by s �= u and s �= t, Lemma 3.15 implies that both (∼{s})[{u}] and
(∼{s})[{t}] are singletons. Therefore (∼{s})[{u}] = (∼{s})[{t}]. Hence (33)
implies

s � u = {s} � ((∼{s})[{u}]) = {s} � ((∼{s})[{t}]) = s � t.

Lemma 3.17. G(F) satisfies (6) the Superposition Principle: If s, t ∈ Σ are
distinct, then there is a u ∈ Σ distinct from s and t with s�u = t�u = s� t.

Proof. By Lemma 3.16, it is enough to find some u ∈ s � t distinct from s

and t. We consider two cases: Case 1: s �⊥ t. Since s
s�t?−−−→ s �= t ∈ s � t (by

Adequacy), the Covering Property yields some u ∈ s � t such that u � s,
which implies u �= s by s → s (Lemma 2.8) and u �= t by t → s.

Case 2: s ⊥ t. Proper Superposition yields v ∈ Σ such that s → v → t.
Then v ∈ ♦{t} ⊆ ♦(s � t), so Lemma 2.14 yields u ∈ s � t with v

s�t?−−−→ u.
Since s, t ∈ s�t, therefore by Proposition 2.15 s → v → t implies s → u → t,
which means that s �= u �= t because s � t.

By Lemmas 3.13, 3.14, 3.15 and 3.17 as well as Proposition 2.18, we have

Theorem 3.18. G(F) is a Piron lattice.
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3.2.2. Mapping of Morphisms. Here we define how G acts on morphisms.
Given an Fw-morphism f : Σ1 ⇀ Σ2, we can define G(f) : L2 → L1 as
f−1[−] (restricted to L2), because f being an Fw-morphism means that
G(f)(P ) ∈ L1 for all P ∈ L2. Then G : Fw

op → Lw is a functor, by
Theorem 3.18 and

Proposition 3.19. (a) For an Fw-morphism f , G(f) is an Lw-morphism.

(b) G preserves identity morphisms and composition.

Proof. (a): f−1[−] : P(Σ2) → P(Σ1), as a right adjoint, preserves all
intersections. So G(f) preserves all meets. Moore’s condition holds since
it amounts to the triviality that, for every s ∈ Σ1, there is a t ∈ Σ2

such that either f(s) is undefined or else f(s) = t. (b) follows simply
because f �→ f−1[−] is a powerset functor (from the category of partial
functions).

We define a functor Gs : Fs
op → Ls as the restriction of G to Fs, since it

lands in Ls by Proposition 2.23.

3.3. Natural Isomorphisms of the Functors

Now that we have described the two pairs of functors, F : Lw
op → Fw and

G : Fw
op → Lw on the one hand and Fs : Fs

op → Ls and Gs : Fs
op → Ls on

the other, we are ready to prove that each pair forms a duality.
For a set Σ, write ηΣ : Σ → P(Σ) :: s �→ {s}. Then, for any quantum

dynamic frame F = (Σ,L, { P?−−→}P∈L), it is straightforward to check that

FG(F) = (Σ′,L′, { Q?−−→}Q∈L′) consists of Σ′ = ηΣ[Σ], L′ = {ηΣ[P ] | P ∈ L},

and ηΣ(s)
ηΣ[P ]?−−−−→ ηΣ(t) iff s

P?−−→ t (by Proposition 2.19). So, defining ηF :=
ηΣ, Proposition 2.25 implies

Lemma 3.20. Each ηF : F → FG(F) is an isomorphism in Fs.

Furthermore,

Lemma 3.21. η is a natural transformation from 1Fw
to Fw ◦ Gw.

Proof. Given an Fw-morphism f : F1 ⇀ F2, we have G(f) = f−1[−], and
its left adjoint �G(f) has �G(f)({s}) =

⋂
s∈f−1[P ],P∈L2

P . If f(s) is undefined,
then s ∈ f−1[∅] for ∅ ∈ L2, and so �G(f)({s}) = ∅. If f(s) is defined, then
s ∈ f−1[P ] iff f(s) ∈ P , whereas {f(s)} ∈ L2 by Lemma 3.3 (17); thus
�G(f)({s}) = {f(s)}. Therefore FG(f)({s}) is {f(s)} if f(s) is defined and
otherwise undefined. This clearly makes FG(f) ◦ ηF1 = ηF2 ◦ f .
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Thus, η is a natural isomorphism both from 1Fw
to Fw ◦ Gw and from

1Fs
to Fs ◦ Gs. On the other hand, given any Piron lattice L = (L,≤,−⊥),

write GF (L) = (L,⊆,∼) and define τL : L → GF (L) by �−� : L → L.

Lemma 3.22. Each τL : L → GF (L) is an isomorphism in Ls.

Proof. Lemma 3.1 means, because �−� is onto L = {�p� | p ∈ L}, that τL
is an order isomorphism; so τL satisfies (12) and (13). Also, it satisfies (14)
by Proposition 3.2. Hence τL is an isomorphism in Ls and so in Lw.

Lemma 3.23. τ is a natural transformation from 1Lw
to Gw ◦ Fw.

Proof. Given any h : L1 → L2, Lemma 3.9 implies GF (h) ◦ τL1(p) =
GF (h)(�p�) = F (h)−1[�p�] = �h(p)� = τL2 ◦ h(p).

Thus τ is a natural isomorphism both from 1Lw
to Gw ◦Fw and from 1Ls

to Gs ◦ Fs. Moreover, it is easy to check that FτL ◦ ηFL :: a ( ∈ At(L)) �→
{a} = �a� �→ ∧

�a�⊆�p� p = a and that GηF ◦ τGF :: P ( ∈ L) �→ �P � �→
ηF

−1[�P �] = {s ∈ Σ | {s} ∈ �P �} = P ; thus Fτ ◦ηF = 1F and Gη ◦ τG = 1G.
Therefore we have established

Theorem 3.24. (F,G, η, τ) and (Fs, Gs, η, τ) form dualities between Fw and
Lw and between Fs and Ls, respectively. Moreover, G 	 F with η unit and
τ counit, where we write F : L

op → F and G : F → L
op.

3.4. Mayet’s Condition

The duality result we have just proven extends to certain (full) subcategories
of Lw, Ls, Fw and Fs; namely, the categories of Piron lattices and quantum
dynamic frames that satisfy the property called Mayet’s condition [15]. As
mentioned in the introduction, this condition added to a Piron lattice cap-
tures the structure of an infinite dimensional Hilbert space over the complex
numbers, reals, or quaternions.

Definition 3.25. By a strong automorphism, let us mean an isomorphism,
either of Ls or of Fs, on the same object. A Piron lattice L = (L,≤,−⊥) is
said to satisfy Mayet’s condition if there is a strong automorphism k : L → L
such that

(34) there is a p ∈ L such that k(p) < p, and

(35) there is a q ∈ L such that there are at least two distinct atoms below q
and k(r) = r for all r ≤ q.

A quantum dynamic frame F = (Σ,L, { P?−−→}P∈L) is said to satisfy Mayet’s
condition if there is a strong automorphism g : Σ → Σ such that
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(36) there is a P ∈ L such that g−1[P ] ⊂ P , and

(37) there is a Q ∈ L that has at least two distinct elements and such that
g(s) = s for all s ∈ Q.

Using this condition let us define a full subcategory L
M
w (respectively,

L
M
s , F

M
w or F

M
s ) of Lw (respectively, Ls, Fw or Fs); that is, the objects of

L
M
w are the objects of Lw satisfying Mayet’s condition, whereas any pair of

objects L1, L2 of L
M
w has the same set of morphisms as it has in Lw. Then

L
M
w and L

M
s are dual to F

M
w and to F

M
s , respectively, which follows from

Proposition 3.26. A Piron lattice L satisfies Mayet’s condition iff F (L)
satisfies Mayet’s condition. A quantum dynamic frame F satisfies Mayet’s
condition iff G(F) satisfies Mayet’s condition.

Proof. We first show the two “only if” parts. Suppose L = (L,≤,−⊥)
satisfies Mayet’s condition and let k : L → L be a strong automorphism that
satisfies (34) and (35). While F (k) is a strong automorphism, it satisfies (36)
and (37) as follows. We have p, q ∈ L as in (34) and (35). Then F (k)−1[�p�] =
�k(p)� ⊂ �p� by Lemmas 3.9 and 3.1. By (35), �q� has at least two elements;
also each s ∈ �q� has s = k(s), which implies by �k 	 k that �k(s) ≤ s and
so F (k)(s) = �k(s) = s by Lemma 3.11.

Suppose F = (Σ,L, { P?−−→}P∈L) satisfies Mayet’s condition and let g : Σ →
Σ be a strong automorphism that satisfies (36) and (37). While G(g) is a
strong automorphism, it satisfies (34) and (35) as follows. (36) means that
there is a P ∈ L such that G(g)(P ) = g−1[P ] ⊂ P . We have Q as in (37);
then it contains two dinstinct singletons, and R ⊆ Q implies G(g)(R) =
g−1(R) = R since g restricted to Q is the identity.

Now the “if” parts follow from the “only if” parts because Mayet’s con-
dition is stable under isomorphisms in Ls and in Fs. For the first “if”, for
instance, if F (L) satisfies Mayet’s condition, then by the second “only if”
GF (L) satisfies it as well, and so does L.

It immediately follows from this fact that the functors Fw, Gw, Fs, and
Gs restrict to the subcategories L

M
w , L

M
s , F

M
w and F

M
s , and moreover, by

Theorem 3.24 (and the fullness of these subcategories),

Theorem 3.27. The pair (FM
w , GM

w ) forms a duality between F
M
w and L

M
w

and the pair (FM
s , GM

s ) forms a duality between F
M
s and L

M
s .
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4. Conclusions and Future Work

This paper provides duality results connecting Piron lattices and quantum
dynamic frames. We have defined a functor Fw from Lw to Fw and a functor
Gw from Fw to Lw. We similarly have functors Fs and Gs between Ls

and Fs. We have shown that (Fs, Gs) forms a duality between categories
Ls and Fs and that (Fw, Gw) forms a duality between categories Lw and
Fw. We have also shown that these dualities are preserved when restricting
these categories to those objects that satisfy Mayet’s condition. Future work
may involve forming dualities between algebraic and set theoretic quantum
structures that are even richer. Adding probability to the setting may be a
useful step to take, and there exist dualities involving probability already,
such as [14]. Another line of future investigation is to develop categories
and duality or correspondence results relating to a variation of quantum
dynamic frames that do not have parametrized relations, but rather just
the non-orthogonality relation.
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