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Abstract. There are different views of the logic of plurals that are now in circulation,

two of which we will compare in this paper. One of these is based on a two-place relation

of being among, as in ‘Peter is among the juveniles arrested’. This approach seems to be

the one that is discussed the most in philosophical journals today. The other is based on

Bertrand Russell’s early notion of a class as many, by which is meant not a class as one,

i.e., as a single entity, but merely a plurality of things. It was this notion that Russell used

to explain plurals in his 1903 Principles of Mathematics; and it was this notion that I was

able to develop as a consistent system that contains not only a logic of plurals but also

a logic of mass nouns as well. We compare these two logics here and then show that the

logic of the Among relation is reducible to the logic of classes as many.
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There are different views of the logic of plurals that are now in circulation.1

One of these is based on a two-place relation of being among , as in ‘Peter
is among the juveniles arrested’.2 This approach seems to be the one that
is discussed the most in philosophical journals today. The other is based on
Bertrand Russell’s early notion of a class as many, by which is meant not
a class as one, i.e., as a single entity, but a mere plurality of things. It was
this notion that I developed in 2002 as a provably consistent system that
contains not only a logic of plurals but also a logic of mass nouns as well.3 It
also contains, as we show in this paper, the plural logic based on the Among
relation. We will first briefly describe and compare these two logics here and
then show that the logic of the Among relation as described in Linnebo [13]
is reducible to the logic of classes as many.

1 See, e.g., Boolos [2], Schein [18], Cocchiarella [4], McKay [14], Linnebo [13], Yi [20]
and [21], and Oliver and Smiley [15,16].

2 The alternative reading for the Among relation is: is one of. We will use only ‘Among’
in this paper.

3 See Cocchiarella [4,6, Chap. 11, 7].
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We will first briefly discuss the plural logic based on the Among relation
as described by Linnebo.4 Then we will briefly explain the basics of the
logic of classes as many, and finally we will show how the logic of the Among
relation is reducible to the logic of classes as many.

1. One Among Many

The logic of plurals as based on the Among relation has been developed as
an extension of standard first-order predicate logic with identity. The exten-
sion involves adding a new type of quantifiable variable for what nowadays
are called pluralities (or what Bertrand Russell much earlier called classes
as many). When these plural variables are attached to a quantifier they
are assumed to represent our use in ordinary language of plural quantifier
phrases, such as ‘all republicans who voted against the bill’, ‘some democrats
who voted for the bill’, etc. Pluralities are also what plural definite descrip-
tions denote, as in ‘the juveniles arrested last night’.

Note that these examples illustrate two different roles for pluralities, one
as the referents of plural quantifier phrases such as ‘all republicans who
voted against the bill’ and ‘some democrats who voted for the bill’, which
are plural quantifier (noun) phrases of English, and the other as the denotata
of plural noun phrases, and in particular of plural definite descriptions such
as ‘the juveniles arrested last night’. The important difference here is that
the latter kind of phrase occur as “terms” or “arguments” of predicates,
and in particular as arguments (on the right-hand side) of the predicate ‘is
among’. Linnebo does not include a formal account of the logic of plural
definite descriptions in his account of the logic of the Among relation, but
some of the other works cited on this logic do.5 It is convenient not having
to deal with such definite descriptions here because that will simplify the
details in our proof of the reduction theorem given later. The logic of classes
as many, however, like some of the other works on the Among relation, does
include such an account as part of its logic of names.

Plural (noun) quantifier phrases do not occur as “terms”, of course, but
only as quantifier phrases. Also, strictly speaking, Linnebo’s logic of the
Among relation does not affix quantifiers to complex plural noun phrases
such as ‘republicans who voted against the bill’, which (as we will see) is how

4 We have chosen Linnebo’s paper because it is a quick and easy read, and also because
it is readily accessible by the internet.

5 See, e.g., Yi [21] and Oliver and Smiley [15,16].
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they are represented in the logic of classes as many. Linnebo and others who
work with the logic of the Among relation analyze these phrases in analogy
to the way that most elementary logic texts deal with singular quantifier
phrases, namely as a conjunction of predicates, e.g., as in

Republican(xx) ∧ V oted-against-the-bill(xx),

where xx is a plural variable, which of course suffices. In the plural logic
of classes as many, on the other hand, quantifiers are affixed to complex
plural noun phrases as well as to simple plurals, and so does the definite
description operator (which we take as a special type of quantifier).

The plural variables of the Among plural logic are contrasted with the
so-called “individual” or singular variables, for which we will use x, y, z,
with or without numerical subscripts. The plural variables, as indicated
above, are written as xx, yy, and zz with or without numerical subscripts.
Despite appearances, each plural variable, is of course a single variable, not
two variables. Apparently, writing a single plural variable as xx or yy is
supposed to be suggestive of the fact that these variables have pluralities as
their values.

Now it is noteworthy that a plurality in both the Among logic and the
logic of classes as many can be made up of a single object, despite our usual
view of thinking of them as consisting of two or more individual objects.6 In
other words, each individual object constitutes a plurality and can be a value
of the plural variables. Thus, quantification over pluralities, as in (∀xx)ϕ or
(∃yy)ψ includes quantification over single objects, so that (∀xx)ϕ → (∀x)ϕ
is valid in this logic, though of course the converse is not.7

Why have plural variables as well as the usual first-order variables? If
plural variables can have single objects as values as well as pluralities, then
why can’t first-order variables have pluralities as well as single objects as
values? Certainly there is nothing in ordinary English that suggests that
our use of plurals means a shift to a different ontological category from
that involved in our use of singular expressions—especially given that single
objects are among the values of the plural variables. Plural terms, as well as
singular terms, can occur as arguments of predicates, and in English both can
occur as subjects as well as direct and indirect objects. It is quite different

6 That in fact is how I thought of the situation in my 2002 paper; but this was later
changed in my 2009 paper. The change ensures that the plural ‘some’ is dual to the plural
‘all’.

7 Linnebo does not in fact stipulate this formula as an axiom, and it does not seem to
be derivable from the axioms he does list.
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if one were to add predicate variables and quantifiers binding them, because
predicates clearly have a different functional role grammatically from that of
noun phrases, plural or singular, such as proper names and plural common
nouns, or plural and singular definite descriptions—a difference, moreover,
upon which a good deal of the history of philosophy and metaphysics has
been based.

The implicit assumption of this approach to plural logic, apparently, is
that standard first-order predicate logic (with identity) is exclusively a logic
of singular reference and therefore not an appropriate medium for repre-
senting plurals or what are now also called pluralities. Certainly, beginning
with Gottlob Frege, that is the way first-order logic has been interpreted
throughout the 20th Century. But must it be interpreted that way, espe-
cially given that a logic of plurals had not been developed until recently?
We do not think so, and we reject this assumption in our account of plural-
ities as classes as many. It does not follow, moreover, that having pluralities
as values of the first-order variables means that we are ontologically commit-
ted to a new type or category of entity, namely pluralities, over and above
single objects. Admittedly, that is exactly what is suggested by the logic
of the Among relation with its separate category or type of variables for
pluralities along with quantifiers binding such, which means that the vari-
ables cannot be taken only as schema letters. In contrast, on our view where
pluralities are taken as values of the first-order variables, and in particular
where pluralities are not taken as constituting a separate ontological cate-
gory, we maintain that pluralities are ontologically nothing over and above
the single objects of which they are constituted. This does not mean that all
our commonsense talk about pluralities, whether in terms of plural predica-
tion or plural reference, can be reduced to talk of singulars. The situation
is similar to the irreducibility of mental states to brain states. That is, even
though we cannot reduce all our common-sense talk about mental states to
talk about brain states, it does not follow that mental states are an onto-
logical type over and above that of brain states, and that we must then be
ontologically committed to some form of dualism. Perhaps what is needed
in these matters is a revised characterization of ontological commitment.

In any case, as already indicated, the quantifiers ∀ and ∃ are affixed
to (or indexed by) plural variables, as in (∀xx) and (∃yy), as well as to
so-called singular variables in the plural logic of the Among relation. Predi-
cate constants and constants corresponding to each type of variable can be
added when needed in particular applications. So-called “non-distributive”
predicates, i.e., predicates such as ‘surround’ as in McKay’s example ‘The
students surrounded the Pentagon’, are not (and should not be) excluded. In
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this example, the Pentagon was (supposedly) surrounded by many students
(i.e., a plurality of students), none of which individually (i.e., alone) can be
said to have surrounded the Pentagon. With a distributive predicate, such
as ‘mortal’ as in ‘All men are mortal’, it follows that each individual man is
mortal if all men are.

The one primitive constant of this logic is a two place-predicate ≺ for the
relation of being among. Unlike ordinary two-place predicates between indi-
viduals, however, this predicate is said to result in a well-formed (meaning-
ful) formula only when a singular term occurs on the left (or first-argument
position) and a plural term occurs on the right (in the second-argument
position), as in x ≺ yy. It is not clear why only a plurality term (variable or
constant) can occur in the right-hand position of ≺. After all, single objects,
i.e., individuals, are also values of the plurality variable yy, in which case one
would think that x ≺ x would be meaningful, and valid as well. In any case
the first-order language with ≺ as a primitive and with both distributive
and non-distributive predicates allowed is called PFO+, where PFO stands
for Plural First-Order logic, which is what Linnebo calls it. Of course, one
might well ask whether PFO really is just a first-order logic given that
plural variables and quantifiers binding such are part of its language and
logic.

The most important axiom schema for the Among relation is the following
conditional comprehension principle:

(∃x)ϕ(x) → (∃yy)(∀x)[x ≺ yy ↔ ϕ(x)], (Comp)

where ϕ is a formula of PFO+ that contains x (and possibly other variables)
free but contains no occurrences of the plural variable yy. The antecedent
is essential here because there is no such thing as an empty plurality. So,
before one can posit the “existence” of a plurality of x such that ϕ(x), we
need to know that some object x is such that ϕ(x). The second axiom in
fact stipulates that no plurality is empty:

(∀yy)(∃x)(x ≺ yy).

The final axiom schema is an axiom of extensionality:

(∀yy)(∀zz)[(∀x)(x ≺ yy ↔ x ≺ zz) → (ϕ(yy) ↔ ϕ(zz))].

What this says in effect is that co-extensive pluralities are indiscernible,
which is an indirect way of saying that they are identical. This is not a
problem so long as we are not extending the language to include tense and
modal operators. But then even if we were to extend the language to include
such operators, Linnebo and other defenders of this approach to plural logic
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do not find this problematic. That is because they maintain that a plurality
“must include precisely the objects that it in fact includes,” where ‘must’
is interpreted with necessary force.8 In other words Linnebo and the other
defenders of this position are willing to accept the following two principles:

x ≺ yy → �(x ≺ yy),

¬(x ≺ yy) → �¬(x ≺ yy).

To use Linnebo’s example, the individual people who are among the people
now wearing shoes are necessarily among the people now wearing shoes
(ibid.). Plural common nouns, in other words, such as ‘people who are now
wearing shoes’, are “rigid” in the same way that proper names are said to
be rigid in modal logic.

In our view, this position confuses pluralities with sets, which have their
being in their members and not in the plural concepts expressed by such
phrases as ‘people now wearing shoes’. Clearly, a plural phrase and the
concept it expresses can refer to (or denote) different pluralities at different
times, and certainly in different possible worlds as well. One of the main
reasons for constructing a logic of plurals is to characterize the implicit logic
of natural language where pluralities are what plural noun phrases denote
or refer to. That is certainly why philosophers beginning with Russell were
initially interested in a logic of plurals. And if so, then don’t we use those
phrases to refer to or denote different pluralities over time and in different
possible worlds? Shouldn’t a logic of plurals represent the way it is used in
natural language?

The above two principles, incidentally, can easily be avoided by sim-
ply restricting the above extensionality axiom to extensional formulas, i.e.,
formulas in which no tense or modal operators occur. Leibniz’s law for sin-
gular terms can be left without change, because that law applies only to
singular terms. In any case, regardless whether or not the followers of the
Among plural logic accept this suggested modification, the above theses are
emphatically rejected in our alternative approach of the logic of classes as
many where pluralities are seen as what plural concepts refer to or denote.

2. The Logic of Names (Noun Phrases)

The logic of classes as many is an extension of a more basic logic called the
logic of names, where by a name we mean a noun phrase consisting of either

8Linnebo [13].
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a proper name, definite description, a common noun, complex or simple,
or a verbal noun, which is used when reference is to events. The theory of
reference implicit in this logic differs from the standard account of analytic
philosophy in that it recognizes general as well as singular reference, whereas
the standard view recognizes only singular reference, i.e., reference involving
the use of a proper name or (singular) definite description. On our account,
because a basic form of judgment is expressed by an assertion that consists
of a noun phrase and a verb phrase, the noun phrase is taken as having
a referential role regardless whether or not it is a proper name, a definite
description, or a quantifier noun phrase. A definite description, incidentally,
is counted in our theory as a quantifier phrase on a par with a universal
or existential quantifier phrase, and, because our first-order logic is free of
existential presuppositions, so is the use of a proper name.

A proper name, such as ‘George’, for example, can occur as part of a quan-
tifier phrase, as in (∃xGeorge)F (x), which indicates that the name ‘George’
is being used with existential presupposition. It is noteworthy, moreover,
that in our logic of classes as many, which is an extension of our logic of
names, all names, proper or common, can be transformed into “terms”, i.e.,
arguments of predicates, and one result of such a transformation is that the
formula (∃xGeorge)F (x) turns out to be equivalent to the more standard
free-logic expression: (∃x)[x = George ∧ F (x)].

Definite descriptions, as far as their logical syntax is concerned, are also
quantifier phrases, and they are like indefinite descriptions in that regard.9

Both definite and indefinite descriptions are quantifier phrases and as such
both can be used as referential expressions, though of course they differ
semantically in their particular referential roles.

A quantifier phrase is made up of two parts, the first being a determiner
such as ‘every’, ‘some’, the indefinite article ‘a’, and the definite article
‘the’—and others as well, such as ‘most’ ‘few’, etc., which we will not deal
with here. The second part of a quantifier phrase is a common noun, or
what we call a common name, which could be a mass noun, a count noun,
or a gerund in its role as a verbal noun (enabling us to refer to a kind of
event). A count noun can be simple, such as, e.g., ‘politician’, or complex,
such as ‘politician who is conservative’, where the complexity is the result
of affixing a qualifying relative clause, such as ‘who (or that, or which) is
conservative’, to the head noun. Similarly, a mass noun can be simple, such
as, e.g., ‘water’, or complex as with ‘water that is polluted’. Because our

9 We agree in this respect with Gareth Evans who held a similar view of definite
descriptions in his [8, p. 57].
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concern here is with plurals, we will not deal with either gerunds or mass
nouns in this paper. The interested reader can find our development of the
logic of mass nouns in Cocchiarella [7].

Definite descriptions, incidentally, can also be used with or without exis-
tential presupposition. We will use ∃1 for the definite description operator
when it is used with such a presupposition. Our analysis of such a use
agrees in essentials with Bertrand Russell’s analysis. Thus, e.g., although
we symbolize ‘The A is (are) F ’ as (∃1xA)F (x), the truth conditions of this
formula are given in the following biconditional (which we assume as an
axiom schema)10:

(∃1xA)F (x) ↔ (∃xA)[(∀yA)(y = x) ∧ F (x)].

The logic of names contains absolute as well as relative quantifier phrases,
i.e., relative quantifier phrases such as (∀xA) and (∃xA), where A is a name,
common or proper, and complex or simple. We will use the standard quanti-
fier forms (∀x) and (∃y) for the absolute quantifier phrases. As indicated, we
will use x, y, z, etc., with or without numerical subscripts, as first-order vari-
ables and A,B,C, with or without numerical subscripts, as name variables.
Complex names are formed by adjoining so-called “defining” or restrict-
ing relative clauses to names. We will use ‘/’, as in A/ϕx to represent the
adjunction of a formula ϕx to the name A (which may itself be complex).
We read A/ϕx as ‘A that is ϕx’. Thus, e.g., the quantifier phrase repre-
senting reference to a politician who is conservative would be symbolized as
(∃xPolitician/Conservative(x)).

Names and formulas are inductively defined simultaneously as follows:
(1) every name variable (or constant) is a name; (2) for all first-order vari-
ables x, y, (x = y) is a formula; and if ϕ,ψ are formulas, B is a name
(complex or simple), and x and C are a first-order and a name variable
respectively, then (3) ¬ϕ, (4) (ϕ → ψ), (5) (∀x)ϕ, (6) (∀xB)ϕ, (7) (∃1xB)ϕ,
and (8) (∀C)ϕ are formulas, and (9) B/ϕ and (10) /ϕ are names. The exis-
tential quantifier and other sentential connectives are understood as defined
in the usual way. We assume the usual definitions of bondage and freedom
for first-order variables and of the proper substitution of one such variable

10 We use the dual quantifier expression ∀1 for the use of a definite description that
is without existential presupposition, as in ‘The student who writes the best essay will
receive a grade of A’ in a context in which two or more students might write the best
essays equally well. The axiom scema for ∀1 is:

(∀1xA)F (x) ↔ (∀xA)[(∀yA)(y = x) → F (x)].
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for another in a formula. We assume as well the definitions of bondage and
freedom of occurrences of name variables in formulas, and the proper substi-
tution in a formula ϕ of a name variable (or constant) B for free occurrences
of a name variable C.11

As noted, the logic of names consists of free first-order predicate logic
(with identity), which we will assume hereafter. Quantifiers, as indicated
in our definition of formulahood, apply to name variables as well as to
first-order variables. The axioms for these are parallel to those for monadic
second-order predicate logic, namely:

(∀C)ϕ → ϕ(B[x]/C), where B is free for C in ϕ with respect to x;

χ → (∀C)χ, where C is not free in χ; and

χ → (∀x)χ, where x is not free in χ.

Two additional axioms show how the relative quantifier phrases are con-
nected with the absolute quantifiers:

(∀xA)ϕ ↔ (∀x)[(∃yA)(x = y) → ϕ], where x, y are different variables;

(∀xA/ψ)ϕ ↔ (∀xA)[ψ → ϕ].

Finally, as primitive inference rules we assume modus ponens and universal
generalization for absolute quantifiers indexed by either a first-order or a
name variable. The rule of universal generalization for relative quantifiers is
derivable. The logic of names as briefly described here is equivalent, inciden-
tally, to monadic second-order predicate logic. For proof of the details see
[3]. We might also note that Stanislaw Leśniewski’s logic of names, which
he also called ontology, is reducible to this logic of names.12

The logic of names, like the plural logic of the Among relation, extends
(free) first-order logic by including a new logico-grammatical category with
its own constants, both simple and complex, and corresponding variables
that can be affixed to quantifiers. But, unlike the logic of the Among rela-
tion, the category of names is an essential component of a key grammatical
category of natural language, namely the category of noun phrases. It is this
category that complements verb phrases, and it is by means of this category
that reference, both general and singular, is achieved. This kind of extension,
in other words, allows for a more natural representation of our speech and
mental acts than does a separate category of plurals as in the logic of Among.

11 For details see Cocchiarella [3].
12 For proof of this claim see Cocchiarella [3] or [6, Chap. 10].
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3. Classes as Many (Pluralities)

Now, to obtain the logic of classes as many, we extend the logic of names
by allowing for a transformation (specifically a “nominalization” ) of the
names that occur as parts of quantifier phrases into “terms” that can be
substituends of the first-order variables that occur as arguments of first-
order predicates. As already noted, this does affect how we interpret the
ontological commitments of first-order logic. In our view, just as the nom-
inalization of predicate expressions has come about through the evolution
of language and culture—and hence our introduction and use of abstract
intensional objects—so too our use of “nominalized” common noun phrases,
complex or simple—and hence our introduction and use of pluralities or
classes as many—is a similar development of culture and language. The
logic of both forms of nominalization is part of a more general ontological
framework that I have called conceptual realism.13

With this transformation, proper and common names (count nouns) are
taken as denoting pluralities (including pluralities of one). We need this
feature in a plural logic because predicates can be true of pluralities as
arguments no less so than of single objects, i.e., it is a feature that allows
us to denote pluralities as well as to quantify over and refer to them. In the
case of proper names this means that a proper name can now occur as a
“term”, i.e., as an argument of predicates, just the way it does in standard
free logic where it will either denote nothing or at most a single object.
In the case of a common count noun, such as ‘man’, we similarly obtain a
“term”, e.g., ‘mankind’, which might denote nothing (at a given time, e.g.,
after a nuclear holocaust), or which might denote a plurality such as the
totality of all humans alive today.

The transformation (“nominalization” ) of simple common names and
name variables into terms is no different than that for proper names. But in
order to transform a complex common name into a complex term we need
a variable-binding operator that functions in the way that the λ-operator
functions in the construction of complex predicates. We will use the cap-
notation with brackets, [x̂A/. . .x. . .], for this purpose. Accordingly, where
A is a name, proper or common, complex or simple, we take [x̂A] to be a
complex name in which the variable x is bound and that can occur either as
part of a quantifier phrase or as a complex term. Thus, where A is a name
and ϕ is a formula, [x̂A], [x̂A/ϕ], and [x̂/ϕ] are names in which all of the

13 See, e.g., Cocchiarella [6] for an account of this ontology.
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free occurrences of x in A and ϕ are bound. When they occur as terms, we
read these expressions as follows:

[x̂A] is read as ‘(the) things (i.e., single objects) that are A’ (or just ‘(the)
A’s’);

[x̂A/ϕ] is read as ‘(the) A’s that are ϕ’; and
[x̂/ϕ] is read as ‘(the) things (single objects) that are ϕ’.

It should be noted here that only single objects, i.e., things or individuals,
can be members of classes as many.

The simultaneous inductive definition of names and formulas given in
the last section is now understood to be extended to include names of this
complex form along with n-place predicate constants (for n ∈ ω) as well.14

Note that we now have formulas of the form (∀y[x̂A])ϕ(y/x), as well as those
of the form (∀xA)ϕx and (∀yA(y/x))ϕ(y/x).15 The first of these forms is
reducible to the last because of the addition of the following axiom schema
to the axioms for the simple logic of names:

(∀y[x̂A])ϕ ↔ (∀yA(y/x))ϕ, where y does not occur in A.

The existential counterpart to this axiom, namely,

(∃y[x̂A])ϕ ↔ (∃yA(y/x))ϕ

is theorem 8 of the logic of classes as many. We will later use an instance
of (a rewrite of) this theorem schema in the proof of our counterpart of the
comprehension principle of the logic of Among. There are other axioms and
theorems as well, needless to say, the description of which we will not go
into here. But the interested reader can find them in Cocchiarella [4] or the
appendix of Cocchiarella [7].16

The motivation for these axioms is a result of three important features
of the notion of a class as many as described by Russell in his account of
plurals in his 1903 Principles of Mathematics. The first feature is that a
vacuous common name, i.e., a common name that names nothing, has no
plurality as its denotatum, which is not the same as denoting the empty
class as many—because in fact there is no such thing as an empty plurality.
Thus, according to Russell, “there is no such thing as the null class, though

14 See Cocchiarella [4] for the full definition or see the appendix of Cocchiarella [7].
15 We take A(y/x) and ϕ(y/x) to be the result of properly substituting y for x in A

and ϕ, respectively. The slash ‘/ ’ in these expressions is not to be confused of course with
the slash in the formation of a complex name A/ϕx.

16 For a number of interesting theorems of the logic of classes as many, see
Cocchiarella [4].
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there are null class-concepts.”17 The second feature is that the denotatum of
a plural common name that names just one thing is just that one thing, or,
in other words, single objects are themselves pluralities, which means that
single objects are members of themselves as classes as many. This corre-
sponds to each individual being “among” itself in the plural logic of Among.
Indeed, it provides the basic rationale for single objects being pluralities, a
rationale that cannot be found independently in the logic of Among.

Russell’s third feature is that, unlike sets, classes as many are literally
made up of their members, i.e., they are merely pluralities (Vielheiten),
and as such they cannot themselves be members of classes as many. Thus,
according to Russell, “though terms may be said to belong to . . . [a] class [as
many], the class [as a plurality] must not be treated as itself a single logical
subject.”18 It is this feature of not being a member of any class as many—
unless it is itself a single object and therefore a member of itself—that partly
characterizes the non-individuality of a class as many as a mere plurality
having no being beyond the objects that make it up, but which neverthe-
less can be referred to by means of plural quantifier phrases or denoted by
“nominalized” plural noun phrases occurring as terms of predicates.

Now it is just as natural, we claim, to speak of membership in a class as
many in the sense of being one among the many that make up that class
as it is of membership in a set, or class as one. We can define this notion of
being a member of a class as many, or being among, as follows.

Def: x ∈ y ↔ (∃A)[(y = A) ∧ (∃zA)(x = z)].

Note that in the definition of ∈ the occurrence of A in (y = A) is as a
term denoting the plurality of things that fall under the name concept that
A stands for, whereas the occurrence of A in the quantifier phrase (∃zA)
stands for the name concept itself. With membership understood in this way
we can define inclusion, proper or otherwise, in the usual way.

Def: x ⊆ y ↔ (∀z)[z ∈ x → z ∈ y].

Def: x ⊂ y ↔ x ⊆ y ∧ y � x.

Russell’s paradox is not derivable in this logic, incidentally. Instead of
leading to a contradiction, the Russell class as many, [x̂/(∃A)(x = A ∧
x /∈ A)], is easily shown not to exist (as a value of the bound first-order

17Russell [17, §70].
18Russell [17, §70].
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variables).19 Similarly, the empty class as many, namely, the class of things
that are not self-identical, [x̂/x �= x], also does not exist (as a value of
the bound first-order variables); and neither does the universal class,
[x̂/(x = x)], if there are at least two single objects, i.e., individuals. Following
Nelson Goodman [9], we will also call individuals atoms.20 The (complex)
name for atoms is defined as follows:

Def: Atom = [x̂/¬(∃y)(y ⊂ x)].

This definition of an atom goes back to Goodman and the so-called
Leonard–Goodman calculus of individuals, which when formulated within a
free logic turns out to be reducible to our present logic of classes as many.21

We retain this terminology here because Goodman’s nominalistic dictum
that things are identical if they have the same atoms is provable in the logic
of classes as many. That is,

(∀x)(∀y)[(∀zAtom)(z ∈ x ↔ z ∈ y) → x = y]

is a theorem of the logic of classes as many. Indeed, not only is this dictum
provable but it is a consequence of the unqualified extensionality principle,

(∀z)(z ∈ x ↔ z ∈ y) → x = y,

which is taken as an axiom of the logic of classes as many.
The extensionality axiom is a natural assumption for the concept of a

class as many. After all, if plurality A is made up of the same single objects
as plurality B, then they must be the same plurality (regardless of the dif-
ference, if any, between the concept A and the concept B). But perhaps one
might argue that if we were to extend the system to include a tense or modal
logic as well, then we would seem to be committed to the two theses that
Linnebo finds unproblematic for pluralities, namely, that if x is among a plu-
rality A, then necessarily x is among that plurality, and similarly that if x is
not among the plurality A, then necessarily x is not among that plurality22:

19 It should be remembered that in free logic being a substituend of free first-order
variables is not the same as denoting a value of the bound first-order variables. In free
logic, in other words, some terms may denote nothing.

20 For details on these matters see Cocchiarella [4] or [6, Chap. 11].
21 See Leonard and Goodman [12]. See Eberle [10, Chap. 2], for a reconstruction of the

calculus of individuals in a free first-order logic.
22 As is well-known, various notions of necessity can be defined within tense logic. So

this result would apply in tense logic as well.
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x ∈ A → �(x ∈ A),

x /∈ A → �(x /∈ A).

This result, we have said, should be rejected in a logic of plurals, and cer-
tainly it should be rejected in the logic of classes as many. After all, common
name concepts generally change the pluralities they refer to or denote over
time, and certainly over different possible worlds.23 Names of animals and
plants that have become extinct, for example, will no longer denote what
they once may have denoted, and they will no doubt refer to or denote dif-
ferent pluralities in different possible worlds. The claim that common name
concepts cannot refer to or denote different pluralities over time or in dif-
ferent possible worlds is certainly a consequence we do not want, and, we
maintain, it should be rejected.

Of course, as noted, this result depends on extending our logic of classes as
many to include a tense or modal logic as well. There is no problem, in other
words, so long as we restrict ourself to a strictly extensional logic. But then,
actually there is no problem even with a tense or modal logic added to the
system—so long as we restrict the applications of Leibniz’s law for pluralities
to strictly extensional contexts. Doing so, moreover, does not mean that the
full, unqualified version of Leibniz’s law does not apply to atoms, i.e., single
objects. Indeed, the natural solution to this problem is to have two ver-
sions of Leibniz’s law, one restricted to extensional contexts, and the other
applicable to all contexts but only for atoms. The extensional identity of plu-
ralities would then not lead to their being necessarily identical. Thus, the end
result is that we have two versions of Leibniz’s law, one for all extensional
contexts, which is derivable by induction on formulas from the atomic case:

x = y → (ϕ → ψ), where ϕ,ψ are atomic formulas and ψ is
obtained from ϕ by replacing an
occurrence of y by x24

and the other for all contexts:

(∃zAtom)(x = z) ∧ (∃zAtom)(y = z) → [x = y → (ϕ ↔ ψ)],
where ψ is obtained from ϕ by replacing one or more
free occurrences of x by free occurrences of y.

23 Common names will refer to pluralities when they occur as parts of quantifier
phrases, and they will denote the same pluralities when they occur as terms.

24 The full version of Leibniz’s law is derivable from this and the other axioms by a
simple induction on extensional formulas, i.e., formulas in which no intensional operators
occur.
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This last axiom is redundant, we want to emphasize, if we do not add any
nonextensional contexts to the logic of classes as many. Finally, we note
that the difference between how Leibniz’s law applies to atoms and how it
applies to pluralities is significant in how it distinguishes ontologically the
individuality of atoms from the mere plurality of classes as many.

Finally, we should note that although most common names are not “rigid”
in the pluralities they refer to or denote, nevertheless the common name
‘Atom’ is “rigid”, i.e., atoms are necessarily atoms:

Atom =df [x̂/�¬(∃y)(y ⊂ x)].

4. Plural Reference and Plural Predication

What is generally called plural quantification in the literature corresponds to
what in our conceptualist framework of general as well as singular reference
we call plural reference, a terminology that we will continue here. Plural
reference and predication are important, if not central, motivating features
of the logic of classes as many.

Now there are two parts to our analysis of plural reference and plural
predication, which we will briefly review here.25 The first deals with a log-
ical analysis of plural reference and predication in our speech and mental
acts. The second deals with the logical forms that represent the truth con-
ditions of those acts in terms of our logic of classes as many. The logical
forms representing our speech and mental acts are a part of the deductive
machinery of our overall logic only insofar as they are connected by meaning
postulates to the logical forms that represent their truth conditions in the
logic of classes as many.

We extend the simultaneous inductive definition of the meaningful (well-
formed) expressions of the logic of classes as many to include the following
clauses, which are designed to represent plural reference and predication in
our speech and mental acts. Because we are concerned only with plurals in
the present paper, we restrict our definition to count nouns.

1. if A is a common count noun, then AP is a plural name;

2. if A is a common count noun, x is a first-order variable, and ϕx is a
formula, then [x̂A/ϕx]P and [x̂/ϕx]P are plural names;

3. if A/ϕ(x) is a (complex) common count noun, then (A/ϕx)P is

25 For a more detailed account see Cocchiarella [6, Chap. 11].
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AP /[λxϕx]P (x) and [x̂A/ϕx]P is [x̂AP /[λxϕx]P (x)];

4. if F is a one-place predicate constant, or of the form [λxϕ(x)], then FP

is a one-place plural predicate constant ; and

5. if AP is a plural name, x is a first-order variable, and ϕ is a formula,
then (∀xAP )ϕ and (∃xAP )ϕ are formulas.

In regard to clause (5), we read, e.g., ‘(∀xRepublicanP )’ as the plural
phrase ‘all republicans’ and ‘(∃xR epublicanP )’ as the plural phrase ‘some
republicans’, and similarly ‘(∀xRepublicanP /Conservative)(x)’ as ‘all repub-
licans who are conservative’, or more simply ‘all conservative republicans’,
and ‘(∃xRepublicanP /Conservative(x))’ as ‘some conservative republicans’,
etc. We note that a plural name is not a name simpliciter (in the logic) and
that unlike the latter there is no rule for the “nominalization” (or trans-
formation) of a plural name into a term. We also note that only monadic
predicates are pluralized. With the addition of λ-abstracts, a two-place rela-
tion R can be pluralized in either its first- or second-argument position, or
even in both, by using a λ-abstract, as, e.g.,

[λxR(x, y)]P ,

[λyR(x, y)]P ,

[λx[λy[R(x, y)]P (y)]P ,

respectively; and a similar observation applies to n-place predicates for
n > 2.

We can now represent the plural references and predications we express
in our speech acts in a natural and intuitive way. Also, given the following
meaning postulates, we can then represent the truth conditions of these
speech acts in terms of our logic of classes as many. The first meaning
postulate is for the plural ‘Some’:

(∃xAP )ϕx ↔ (∃x/x ⊆ A)ϕx, (SmCount)

and the second is for the plural ‘All’:

(∀xAP )ϕx ↔ (∀x/x ⊆ A)ϕx. (AllCount)

Thus, for example, the truth conditions of the sentence ‘All republicans
are conservative’, which can be symbolized as:

(∀xRepublicanP )ConservativeP (x),

can now be represented as:
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(∀x/x ⊆ Republican))ConservativeP (x),

where x ⊆ Republican means that x is a subplurality of the totality (or class
as many) of republicans. Then, given a meaning postulate to the effect that
the predicate adjective ‘conservative’ is distributive, i.e., the postulate

ConservativeP (x) ↔ (∀y/y ∈ x)Conservative(y),

it follows that the original sentence ‘All republicans are conservative’ is
equivalent to ‘Every republican is conservative’, i.e.,

(∀yRepublican)Conservative(y).

A similar analysis, which we will not go into here, can then be given for
‘Some republicans are conservative’. Non-distributive predicates, such as in
‘The students surrounded the Pentagon’ will of course be irreducible in their
application to a plurality. Where A is a name symbol for ‘the Pentagon’, this
sentence can be symbolized as follows:

(∃1xStudentP )[λxSurrounded(x,A)]P (x),

which, by (SmCount), initially can be reduced to

(∃1x/x ⊆ [ŷStudent])[λxSurrounded(x,A)]P (x).

But because ‘surrounded’ is non-distributive in its first-argument position,
no further reduction can be given. More examples can be found in Coc-
chiarella [6, Chap. 11].26

Before concluding this brief description of the logic of classes as many,
we note that one possible application of the logic of plurals suggested by
Linnebo is that pluralities might be used in set theory as a way of quantify-
ing over collections of sets, or what are usually called proper (or ultimate)
classes. Indeed, such a use of classes as many as pluralities had already been
formalized by Bell [1]. It is noteworthy that Bell’s system was shown to be
reducible to the above logic of classes as many in [4].

5. The Reduction of the Plural Logic of Among

We turn now to the reduction of the plural logic of Among to the logic
of classes as many. We first describe a translation function from Linnebo’s

26 In Cocchiarella [4–6], I took there to be at least two single objects in each plural-
ity; that is, pluralities consisting of just a single object were not considered pluralities. I
corrected that position in [7].
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plural logic to the logic of classes as many. Then, in the next section we
show that the translation of every theorem of Linnebo’s plural logic is a
theorem of the logic of classes as many, and hence that Linnebo’s plural
logic is reducible to the logic of classes as many.

We first describe the formal language LPFO of Linnebo’s Plural First-
order Logic with or without nondistributive predicates or predicates that
take plural arguments. As already indicated, the logic of classes as many
can accommodate both distributive and nondistributive predicates.

(1) singular and plural terms:
singular variables xi

plural variables xxi

singular constants ai

plural constants aai

(2) two dyadic predicates:
= (the identity sign).
≺ (the relation of “is one of” ).
nonlogical predicate constants Rn

i (for n-place relations).

(3) Formulas:
Atomic formulas:
Rn

i (t1, . . . , tn) for each n-place predicate and singular terms t1,..,tn.

t ≺ T when t is a singular term and T is a plural term.

Complex formulas:
¬ϕ, (ϕ ∧ ψ) are formulas when ϕ,ψ are formulas.

∃vϕ and ∃vvϕ are formulas when ϕ is a formula, v is a singular variable
and vv is a plural variable.

Note: Other connectives and operators are understood as abbreviations
in the usual way. As noted in our first section, unlike the logic of classes as
many, there are no complex terms in Linnebo’s system, and in particular no
complex terms based on a variable-binding operator, as well as no analysis
of plural definite descriptions. We also note here that Linnebo assumes stan-
dard first-order logic with identity as the background first-order logic part
of his system. This contrasts with the free first-order logic of the logic of
classes as many. As a result, the translation function formulated here must
take into consideration that the free singular variables of Linnebo’s plural
logic have values that “exist” in his logic, i.e., their values are the values
of bound singular variables, and that each value of the free plural variables
is a plurality that consists of at least one single object. To accommodate
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this difference makes the translation function seem more complicated than
it really is.

5.1. The Translation Function

The translation function f is defined on all terms, predicates and formulas
of Linnebo’s plural logic.

(Note: We assume a 1-1 correlation between plural variables xxi and
name variables Ai.)

1) For all singular variables xi, f(xi) =df xi.
2) For all plural variables xxi, f(xxi) =df Ai.
3) For each n-place predicate Rn

i , f(Rn
i ) =df Rn

i .
4) For each atomic formula Rn

i (t1, . . . , tn), where Rn
i is other than ≺,

f(Rn
i (t1, . . . , tn)) =df (∃yAtom)(y = xj1) ∧ · · · ∧ (∃yAtom)(y = xjk) ∧

(∃y)(y ∈ f(xxi1)) ∧ · · · ∧ (∃y)(y ∈ f(xxik)) → Rn
i (f(t1), . . . , f(tn)),

where xj1 , . . . , xjk are all the (free) singular variables among the terms
t1, . . . , tn, and xxi1 , . . . , xxik are all of the (free) plural variables among the
terms t1, . . . , tn, and y is a singular variable not occurring in Rn

i (t1, . . . , tn).
5) For each singular variable x and each plural variable xx,

f(xi ≺ xxi) =df (∃yAtom)(y = xi) ∧ (∃yAtom)(y ∈ f(xxi)) → xi ∈ f(xxi),

where ∈ is as defined in the logic of classes as many, and y is other than xi.

6) For all formulas ϕ,

f(¬ϕ) =df (∃yAtom)(y = xj1) ∧ · · · ∧ (∃yAtom)(y = xjk) ∧ (∃y)(y ∈
f(xxi1)) ∧ · · · ∧ (∃y)(y ∈ f(xxim)) → ¬f(ϕ),

where xj1 , . . . , xjk are all the singular variables and xxi1 , . . . , xxim are all
of the plural variables occurring free in ϕ, and y is a singular variable not
occurring in ϕ.
7) For all formulas ϕ,ψ,
f(ϕ ∧ ψ) =df (∃yAtom)(y = xj1) ∧ · · · ∧ (∃yAtom)(y = xjk) ∧ (∃y)(y ∈
f(xxi1)) ∧ · · · ∧ (∃y)(y ∈ f(xxim)) → f(ϕ) ∧ f(ψ),

where xj1 , . . . , xjk are all the singular variables and xxi1 , . . . , xxim are all of
the plural variables occurring free in ϕ or ψ, and y is a singular variable not
occurring in ϕ or ψ.

8) For each formula ϕ and singular variable xi,

f(∃xiϕ) =df (∃yAtom)(y = xj1) ∧ · · · ∧ (∃yAtom)(y = xjk) ∧ (∃y)(y ∈
f(xxi1)) ∧ · · · ∧ (∃y)(y ∈ f(xxim)) → (∃xiAtom)f(ϕ),
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where xj1 , . . . , xjk are all the singular variables and xxi1 , . . . , xxij are all of
the plural variables occurring free in ∃xiϕ, and y is a singular variable not
occurring in ∃xiϕ.

9) For each formula ϕ and plural variable xxi,

f(∃xxiϕ) =df (∃yAtom)(y = xj1) ∧ · · · ∧ (∃yAtom)(y = xjk) ∧ (∃y)(y ∈
f(xxi1)) ∧ · · · ∧ (∃y)(y ∈ f(xxim)) → (∃Ai)[(∃yAtom)(y ∈ Ai) ∧ f(ϕ)],

where xj1 , . . . , xjk are all the singular variables and xxi1 , . . . , xxim are all
of the plural variables occurring free in ∃xxiϕ, y is a singular variable not
occurring in ∃xxiϕ, and Ai is the name variable corresponding to the plural
variable xxi.

5.2. Logical Axioms and Inference Rules for the Logic FPO

Linnebo assumes a natural deduction system as a background logic, but the
system is not described, and we remain unsure just what the rules for his
plural logic are. In any case, for our purposes of showing that the translation
of every theorem of Linnebo’s plural logic is a theorem of our logic of classes
as many, it is preferable to use an axiomatic formulation of the background
logic. The axiomatic version of standard first-order logic with identity we
will use here is Tarski’s substitution-free axiom set.27

Axioms for standard first-order logic with identity:

1) All tautologous formulas.

2) ϕ → ∀xiϕ, where xi is a singular variable not occurring free in ϕ.

3) ∀xi(ϕ → ψ) → (∀xiϕ → ∀xiψ).

4) ∃xi(xj = xi), where j �= i.

5) xi = xj → (ϕ → ψ), where ϕ is an atomic formula and ψ is obtained
from ϕ by replacing an occurrence of xj by an occurrence of xi.28

Note: As inference rules we assume modus ponens and universal general-
ization (of what is provable), i.e.,

If � ϕ and � ϕ → ψ, then � ψ, and
If � ϕ, then � ∀xiϕ and � ∀xxiϕ.

27See Tarski [19] and Kalish and Montague [11].
28 Leibniz’s law, (LL), for all formulas, atomic or otherwise, follows from axioms (5) and

the other axioms by a simple induction on formulas. Then by universal generalization of
(LL), axioms (3) and (1), and then (2), the schema: ∀xiϕ(x) → ϕ(y) follows. The identity
thesis xi = xi is provable from axioms (5) and (1).
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The f -transform of axioms (1)–(3) remain unchanged in structure except
for having antecedent clauses regarding the existence and non-emptiness
of the free singular and plural variables occurring free in the formulas in
question, and therefore, because (1)–(3) are also axioms of the logic of classes
as many, those f -transforms are theorems of the free first-order logic of the
logic of classes as many. The f -transform of axiom 4 becomes:

(∃xkAtom)(xj = xk) → ∃xi(xj = xi),

where xi, xj , xk are distinct (singular) object variables. This result is trivially
provable in the logic of classes as many.

Axiom (5) becomes:

χ1 . . . ∧ χn ∧ (∃yAtom)(xi = y) ∧ (∃yAtom)(xj = y) →
(xi = xj → [f(ϕ) → f(ψ)]),

where χ1, . . . , χn are the existence statements as described above for the
remaining free variables occurring in ϕ and ψ. This formula is equivalent to:

χ1 . . . ∧ χn → (∀xiAtom)(∀xjAtom)(xi = xj → [f(ϕ) → f(ψ)]),

the consequent of which is trivially provable in the logic of classes as many,
and therefore so is the entire formula.

Except for replacing singular variables by plural variables, the axioms
for the plural quantifiers are entirely similar to the above, and the proof of
the translations of these axioms into the logic of classes as many is entirely
similar. The inference rules of Linnebo’s plural logic lead only from provable
translations to provable translations.

5.3. The Plural Axioms of the Plural Logic FPO

Every instance of the extensionality axiom schema in Linnebo’s logic,
namely:

(∀yy)(∀zz)[(∀x)(x ≺ yy ↔ x ≺ zz) → (ϕ(yy) ↔ ϕ(zz))],

is easily seen to be a consequence of the following instance of the extension-
ality axiom of the logic of classes as many:

(∀A)(∀B)[(∀x)(x ∈ A ↔ x ∈ B) → A = B].

The f -translation of Linnebo’s extensionality axiom would have an initial
conditional clause regarding the variables occurring free in ϕ, which we can
ignore here because the consequent of the whole conditional is provable in
the logic of classes as many. The f -translation of the indiscernibility clause in
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Linnebo’s axiom schema, i.e., the biconditional ϕ(yy) ↔ ϕ(zz), is of course
a consequence of Leibniz’s law applied to A = B.

The remaining two axioms of Linnebo’s plural logic are the comprehen-
sion principle,

∃uϕ(u) → ∃xx∀u[u ≺ xx ↔ ϕ(u)] (comp)
and an axiom stipulating that every plurality is nonempty:

∀xx∃x(x ≺ xx).

The f -translation of this axiom is:

(∀A)(∃xAtom)[(∃yAtom)(y = x) ∧ (∃yAtom)(y ∈ A) → x ∈ A],

where f(xx) = A. This f -translation says in effect that every nonempty
class as many is nonempty, which is trivially provable.

The f -translation of (comp) is as follows:

χ1 . . . ∧ χn →
[(∃uAtom)f(ϕ(u)) → (∃A)((∃yAtom)(y ∈ A) ∧ (∀uAtom)[u ∈ A ↔ f(ϕ)])],

where χ1, . . . , χn are the existence statements as described above for all
the free variables in ∃uϕ(u). Suppose the antecedent χ1 ∧ · · · ∧ χn and
also that (∃uAtom)f(ϕ(u)) are given, and let A = [û/((∃yAtom)(u = y) ∧
f(ϕ(u))]. Finally, let ψ(u) be f(ϕ(u)), which, by hypothesis, means that
(∃uAtom)ψ(u) is given. It then suffices to show that

(∃yAtom)(y ∈ A) ∧ (∀uAtom)[u ∈ A ↔ ψ(u)])

follows. Assume now that u is an atom. Accordingly, if u ∈ A, i.e., if u ∈
[û/(∃yAtom)(u = y)∧ψ(u)], then, by definition of ∈ in the logic of classes as
many, (∃z[û/(∃yAtom)(u = y)∧ψ(u)])(z = u), and by a rewrite of Theorem
8 of the same logic, namely the schema,

(∃z[ûB])χ ↔ (∃zB(z/u))χ,

(substituting [û/(∃yAtom)(u = y) ∧ ψ(u)] for [ûB]), (∃z/(∃yAtom)(z =
y) ∧ ψ(z))(z = u) follows, from which (∃yAtom)(u = y) ∧ ψ(u) then follows,
which is the left-to-right direction of the biconditional to be shown. For
the right-to-left direction, assume ψ(u) and show that u ∈ A follows, i.e.,
that u ∈ [û/(∃yAtom)(u = y) ∧ ψ(u)] follows. Note that by assumption
(∃yAtom)(u = y), and therefore we have the conjunction (∃yAtom)(u =
y) ∧ ψ(u). Now by assumption and theorem 8 again we have:

(∃z[û/(∃yAtom)(u = y) ∧ ψ(u)])(u = z),
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and hence, by definition of ∈, u ∈ [û/(∃yAtom)(u = y) ∧ ψ(u)], i.e., u ∈ A.
We conclude then that

(∀uAtom)[u ∈ A ↔ ψ(u)],

which what was to be shown. Finally, we note that by assumption

(∃uAtom)f(ϕ(u)),

that is, (∃uAtom)ψ(u), and therefore by the above biconditional

(∃uAtom)(u ∈ A).

It follows accordingly by existential generalization on A that the f -
translation of (comp) is provable in the logic of classes as many.

6. Conclusion

The f -translation of every theorem of Linnebo’s plural logic is a theorem of
my logic of classes as many, and hence Linnebo’s plural logic is reducible to
my logic classes as many.
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