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Abstract. A Hilbert algebra with supremum is a Hilbert algebra where the associated

order is a join-semilattice. This class of algebras is a variety and was studied in Celani

and Montangie (2012). In this paper we shall introduce and study the variety of H∨
♦-

algebras, which are Hilbert algebras with supremum endowed with a modal operator ♦.

We give a topological representation for these algebras using the topological spectral-

like representation for Hilbert algebras with supremum given in Celani and Montangie

(2012). We will consider some particular varieties of H∨
♦-algebras. These varieties are the

algebraic counterpart of extensions of the implicative fragment of the intuitionistic modal

logic IntK♦. We also determine the congruences of H∨
♦-algebras in terms of certain closed

subsets of the associated space, and in terms of a particular class of deductive systems.

These results enable us to characterize the simple and subdirectly irreducible H∨
♦-algebras.
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1. Introduction

The Classical Modal logics are extensions of classical logic with new opera-
tors, called modal operators. Similarly, the Intuitionistic Modal logics are ex-
tensions of the Intuitionistic logic Int with new modal operators. In contrast
with the classical case, the intuitionistic box modality � and the intuitionis-
tic diamond modality ♦ are not interdefinable. So, we have more possibilities
of defining many different Intuitionistic Modal logics. We can consider intu-
itionistic modal logics with a modal operator �, for instance the logic IntK�
axiomatized by adding the following axioms to Int: �(φ ∧ ψ) ↔ �φ ∧ �ψ
and �� = � (see [4,19,31], and [32]). It is possible to consider Intuition-
istic Modal logics with a modal operator ♦, for instance the logic IntK♦,
axiomatized with the axioms ♦(p∨q) ↔ ♦p∨♦q and � → ¬♦⊥. Extensions
of IntK� and IntK♦ were studied in [4,19], and [31]. Finally, we can study
intuitionistic modal logics with the two modal operators � and ♦. For ex-
ample, the logic IntK�♦ is the smallest logic containing both IntK� and
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IntK♦. Extensions of IntK�♦ were studied in [1,4,19–21,26,28,29], and
[32]. Note that, unlike the classical modal logics, the formula ♦φ cannot be
considered as the abbreviation of ¬�¬φ. Similarly, the formula �φ cannot
be considered as the abbreviation of ¬♦¬φ. Thus, the normal intuitionistic
modal logics IntK� and IntK♦ have different behaviors.

Some of these considerations can also be made if we want to study some
fragments of the logic Int with modal operators. For example, we can study
the {→}-fragment of Int with a modal operator �, or we can study the
{→,∨,⊥}-fragment of Int with a modal operator ♦. In [11], we started
with the study of {→,�}-fragment of the normal intuitionistic modal logic
IntK�. This fragment is denoted by IntK→

� , and their algebraic semantics
is the variety Hil� of Hilbert algebras with a necessity modal operator �.
Other interesting fragment is the {→,∨,⊥,♦}-fragment of IntK♦. As in
Intuitionistic Modal logics, the behavior of these fragments is very different,
and thus it is interesting to investigate each of them.

Heyting algebras with modal operators are the algebraic counterpart of
the intuitionistic modal logics IntK�, IntK♦ and IntK�♦ (see [1,17,26,
28] or [29]. Similarly, Hilbert algebras with modal operators are the alge-
braic counterpart of some implicative fragments of some intuitionistic modal
logics.

The main purpose of this paper is to develop the topological representa-
tion of class of algebras associated with the {→,∨,⊥,♦}-fragment of IntK♦,
called H∨

♦ -algebras. This representation is based on the ideas and techniques
on topological representation for distributive semilattices, implicative semi-
lattices and Hilbert algebras using spectral-like topological spaces with a
fixed basis. What makes the topological dualities a powerful mathematical
tool is that it allows us to use topology in the study of algebra (and vice
versa). Many algebraic notions have their dual translation in terms of nice
topological notions. The basic idea underlying the completeness results of
many (propositional) logics is based on duality theory since the canonical
model of a propositional logic is the dual of the Lindenbaum–Tarski algebra
of the logic.

We recall that the first to develop a topological representation by means
of spectral spaces for bounded distributive lattices was M. Stone in [30].
Later, H. Priestley in [27] proved that there is a duality between certains or-
dered topological spaces, called Priestley spaces, and bounded distributive
lattices. Through both versions we can have a duality for Boolean alge-
bras. In [22] George Grätzer gives a spectral-like topological representation
(not a full duality) for distributive semilattices and extends the represen-
tation for bounded distributive lattices given by Stone. The representation
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of Grätzer is used in [7] to develop a full duality between distributive semi-
lattices and certain spectral-like topological spaces, called DS-spaces (see
also [6] and [15]). A DS-space is a sober topological space 〈X, T 〉 such that
the collection KO(X) of compact and open subsets forms a basis for the
topology T (see [15] for others equivalent definitions). The family D(X) =
{X − U : U ∈ KO(X)} is closed under finite intersection, and in [22] it is
proven that 〈D(X),∩, X〉 is a distributive semilattice, called the dual dis-
tributive semilattice of 〈X, T 〉. If 〈X, T 〉 is compact, then ∅ ∈ D(X), i.e.,
〈D(X),∩, ∅, X〉 is a bounded distributive semilattice. In addition, if for each
U, V ∈ D(X) we have U ⇒ V = (U ∩ V c]c ∈ D(X), then 〈D(X),⇒,∩, X〉
is an implicative semilattice (see [6]).

On other hand, Priestley-like dualities for bounded distributive semilat-
tices has been recently developed by G. Bezhanishvili and R. Jansana in
[2], and by G. Hansoul and C. Poussart in [24]. Following [2], a general-
ized Priestley space is a quadruple X = 〈X, ≤, T , X0〉 such that 〈X, ≤, T 〉
is a Priestley space, and X0 is a dense subset of X satisfying additional
conditions. Moreover, if CloUp(X) is the bounded distributive lattice of
all clopen and increasing subsets of 〈X, ≤, T 〉, then the family de sub-
sets X∗ = {U ∈ CloUp(X) : max(X − U) ⊆ X0} is closed under ∩, and
〈X∗,∩, ∅, X〉 is a bounded distributive lattice. In [2] G. Bezhanishvili and
R. Jansana proves that the category of generalized Priestley spaces is dually
equivalent to the category of bounded distributive semilattices. Moreover,
if X is a generalized Priestley space, then the space 〈X0, T0〉 is a DS-space,
where T0 is the topology generated by the basis {X0 − U : U ∈ X∗}. Since
the category of bounded distributive semilattices is dually equivalent to the
category of compact DS-spaces and to the category of generalized Priestley
spaces, it is possible to prove that these two topological categories are equiv-
alent. This fact is similar to the known result that assert that the category
of Priestley spaces is equivalent to the category of the spectral spaces.

Topological dualities for Hilbert algebras have been also recently devel-
oped. A topological duality for the subvariety of Tarski algebras extending
the known duality for Boolean algebras was investigated in [8]. Moreover, in
[9] and [10] is develop a topological duality for Hilbert algebras, and Hilbert
algebras with supremum. These dualities are based on sober spaces with
a fixed basis of compact subsets. If 〈X, TK〉 is the dual space of a Hilbert
algebra and the fixed basis K is the set of all open and compact sets, i.e.,
K = KO(X), then 〈X, TK〉 is the dual space of an implicative semilattice.
Thus, the duality given in [9] and [10] extends the duality given in [6].
Moreover, following the ideas of [3] and [12] a Priestley-style duality for a
categories having Hilbert as objects is studied in [13].
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In this paper we shall define the variety Hil∨♦ of bounded Hilbert alge-
bras with supremum endowed with a modal operator ♦, and we will give
a spectral-like duality for this class of algebras. In a future work we shall
study a Priestley-like duality for Hil∨♦.

The paper is organized as follows. In Section 2 we will recall the defi-
nitions and some basic properties of Hilbert algebras and Hilbert algebras
with supremum. We will recall the topological representation and duality
of Hilbert algebras with supremum developed in [10]. In Section 3 we will
introduce the bounded Hilbert algebras with supremum endowed with a
unary operator ♦, or H∨

♦ -algebras for short. We will develop the topological
representation and duality for H∨

♦ -algebras using the representation given
in [10]. In Section 4 we shall characterize the H∨

♦ -algebras that satisfy cer-
tain equations by means of first-order conditions defined in the dual space.
Finally, in Section 5 we will study the congruences of H∨

♦ -algebras, called ♦-
congruences, and introduce the notion of closed deductive systems. Thus, we
prove that the lattice of ♦-congruences and of closed deductive systems are
isomorphic and they are dually isomorphic with certain closed subsets. We
shall apply these results to determine the simple and subdirectly irreducible
algebras of the variety Hil∨♦.

2. Preliminaries

In this section we will fix the terminology adopted in this paper and in-
troduce the main definitions of Hilbert algebra together with the standard
concepts and known results on these algebras that are useful for this paper.

Let 〈X, ≤〉 be a poset. The set of all increasing subsets of X is denoted
by P≤ (X). For each Y ⊆ X, the increasing (decreasing) set generated by Y
is [Y ) = {x ∈ X : ∃y ∈ Y : y ≤ x} ((Y ] = {x ∈ X : ∃y ∈ Y : x ≤ y}). If Y =
{y}, then we will write [y) and (y] instead of [{y}) and ({y}], respectively.
A subset K ⊆ X is called dually directed if for any x, y ∈ K there exists
z ∈ K such that z ≤ x and z ≤ y.

Consider a pair 〈X, K〉 where X is a set and ∅ �= K ⊆ P (X). We define
a relation ≤K⊆ X × X by

x ≤K y iff ∀W ∈ K(x /∈ W then y /∈ W ). (1)

It is easy to see that ≤K is a reflexive and transitive relation. Define the
operators sat and cl on P(X) as follows. For each Y ⊆ X, let

sat(Y ) =
⋂

{W : Y ⊆ W & W ∈ K} ,
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and

cl(Y ) =
⋂

{X − W : Y ∩ W = ∅ & W ∈ K} .

The set sat(Y ) is the saturation of Y , and cl(Y ) is the closure of Y . A
topological space 〈X, T 〉 with a base K we will denote by 〈X, TK〉. If K is
a basis of a topology T defined on X, then ≤K is the specialization dual
order of X. In this case the relation ≤K can be defined as x ≤ y iff x ∈
cl({y}) = cl(y). Recall that ≤K is an order when the space is T0. In this
case, cl(Y ) = [Y ), sat(Y ) = (Y ], and every open (resp. closed) subset is a
decreasing (resp. increasing) subset respect to ≤K.

Let 〈X, T 〉 be a topological space. The set of all closed subsets of 〈X, T 〉
is denoted by C(X). An arbitrary non-empty subset Y of X is irreducible if
for every Z,W ∈ C(X) such that Y ⊆ Z ∪ W , implies Y ⊆ Z or Y ⊆ W . A
topological space 〈X, T 〉 is sober if, for every irreducible closed set Y , there
exists a unique x ∈ X such that cl({x}) = Y . Notice that a sober space is
automatically T0.

Hilbert Algebras with Supremum

It is known that the variety of Hilbert algebras is the algebraic semantics
of the positive implicative fragment Int→ of the intuitionistic propositional
calculus Int (see [16,18] or [25]). Similarly, it is possible to conclude that
the variety of Hilbert algebras with supremum is the algebraic semantics of
the {→,∨}-fragment of Int.

Definition 1. A Hilbert algebra is an algebra A = 〈A,→, 1〉 of type (2, 0)
such that the following axioms hold in A:

1. a → (b → a) = 1,

2. (a → (b → c)) → ((a → b) → (a → c)) = 1,

3. a → b = 1 = b → a implies a = b.

In [18] Diego proves that the class of Hilbert algebras form a variety which
is denoted by Hil. Note that the relation ≤ defined in a Hilbert algebra A
by a ≤ b if and only if a → b = 1 is a partial order on A with top element 1.
We shall say that a Hilbert algebra A is bounded if there exists 0 ∈ A such
that 0 → a = 1, for every a ∈ A. The variety of bounded Hilbert algebras is
denoted by Hil0.

Let A be a Hilbert algebra. A subset D of A is a deductive system, or
implicative filter, if 1 ∈ D, and if a, a → b ∈ D then b ∈ D. The set of all
deductive systems of a Hilbert algebra A is denoted by Ds (A). The deductive
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system generated by a set C is 〈C〉 =
⋂

{D ∈ Ds (A) : C ⊆ D}. If C = {a},
then we write 〈a〉 = {b ∈ A : a ≤ b}. A deductive system D is irreducible
if and only if for any D1, D2 ∈ Ds (A) such that D = D1 ∩ D2, it follows
that D = D1 or D = D2. The set of all irreducible deductive systems of a
Hilbert algebra A is denoted by X(A). Recall that a deductive system D is
irreducible iff for every a, b ∈ A such that a, b /∈ D there exists c /∈ D such
that a, b ≤ c (see [18] or [5]). A decreasing subset I of A is an order-ideal of
A if for each a, b ∈ I there exists c ∈ I such that a ≤ c and b ≤ c. The set
of all order-ideals of A is denoted by Id(A).

Theorem 2. [5] Let A be a Hilbert algebra. Let D ∈ Ds(A) and let I ∈ Id(A)
such that D ∩ I = ∅. Then there exists x ∈ X(A) such that D ⊆ x and
x ∩ I = ∅.

Let 〈X, ≤〉 be a poset. It is known that 〈P≤ (X) ,⇒≤, X〉 is a Hilbert
algebra where the implication ⇒≤ is defined by

U ⇒≤ V = (U ∩ V c]c = {x : [x) ∩ U ⊆ V } (2)

for U, V ∈ P≤ (X).
We will now introduce the definition of Hilbert algebras where the asso-

ciated order is a join-semilattice. It was studied in [10].

Definition 3. An algebra A = 〈A,→,∨, 1〉 of type (2, 2, 0) is a Hilbert
algebra with supremum, or H∨-algebra for short, if

1. 〈A,→, 1〉 is a Hilbert algebra.

2. 〈A,∨, 1〉 is a join-semilattice with top element 1.

3. For all a, b ∈ A, a → b = 1 if and only if a ∨ b = b.

If there exists an element 0 ∈ A such that 0 → a = 1, for all a ∈ A, then
we say that A is an H∨-algebra with bottom element or an H∨

0 -algebra.

The variety of Hilbert algebras with supremum will be denoted by Hil∨.
The variety of Hilbert algebras with supremum with bottom element will be
denoted by Hil∨0 .

Let A,B ∈ Hil. A mapping h : A → B is a semi-homomorphism if
h(1) = 1, and h(a → b) ≤ h(a) → h(b), for all a, b ∈ A. A mapping
h : A → B is a homomorphism if it is semi-homomorphism such that h(a) →
h(b) ≤ h(a → b), for all a, b ∈ A.

Let A,B ∈ Hil∨. A ∨-semi-homomorphism between A and B is a semi-
homomorfism h : A → B such that it preserves the operation ∨, i.e., h(a ∨
b) = h(a) ∨ h(b) for all a, b ∈ A. Similarly, if h is a homomorphism that
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preserves the join, it will be called a ∨-homomorphism. Denoted by Hil∨S
the category of H∨-algebras and ∨ -semi-homomorphisms, and by Hil∨H
the category of H∨-algebras and ∨-homomorphisms.

We note that if 〈A,→,∨, 1〉 is an H∨-algebra, then a subset I is an order-
ideal iff I is an ideal of the join-semilattice 〈A,∨〉.

2.1. H∨-Spaces

In [9] and [10] a full duality for Hilbert algebras and for Hilbert algebras
with supremum was developed, where the dual spaces of Hilbert algebras
are compactly based sober spaces. In this subsection we recall the duality
for Hilbert algebras with supremum.

Definition 4. An H∨-space is a topological space 〈X, TK〉 such that:

H1. K is a base of open and compact subsets for a topology TK on X,

H2. For every U, V ∈ K, sat(U ∩ V c) ∈ K,

H3. 〈X, TK〉 is sober,

H4. U ∩ V ∈ K, for all U, V ∈ K.

We note that by (1), every open subset of K is decreasing with respect
to induced order ≤K. We note also that U ⇒≤K V = sat(U ∩ V c)c, for all
U, V ∈ P≤K (X), because sat(Y ) = {x ∈ X : ∃y ∈ Y : x ≤K y} = (Y ]≤K , for
any Y ⊆ X. In [10] it was proved that if 〈X, TK〉 be an H∨-space then

D(X) = 〈D(X),∪,⇒≤K , X〉
is a subalgebra of the Hilbert algebra with supremum 〈P≤K(X),∪,⇒≤K , X〉,
where D (X) = {U : U c ∈ K}.

Let A be an H∨-algebra. Let us consider the poset 〈X (A) ,⊆〉 and the
mapping ϕ : A → P⊆ (X (A)) defined by ϕ (a) = {x ∈ X (A) : a ∈ x}. Then
A is isomorphic to the subalgebra D(X(A)) = {ϕ (a) : a ∈ A} of the H∨-
algebra 〈P⊆ (X (A)) ,∪,⇒⊆, X (A)〉. From the results on representation on
H∨-algebra given in [10] it follows that the family KA = {ϕ (a)c : a ∈ A}
is a basis for a topology TKA

and the pair 〈X(A), TKA
〉 is an H∨-space,

called the dual space of A. If A is an H∨
0 -algebra, then ϕ(0) = ∅. So,

X(A) = ϕ(0)c ∈ KA and consequently the H∨-space 〈X (A) , TKA
〉 is com-

pact. Moreover, if 〈X, TK〉 is an H∨-space, then 〈D (X) ,∪,⇒, X〉 ∈ Hil∨,
and ε (x) = {U ∈ D (X) : x ∈ U} belongs to X (D (X)), for each x ∈ X.
Thus, the mapping ε : X → X (D (X)) is well-defined and it is an homeo-
morphism between the topological spaces 〈X, TK〉 and

〈
X(D(X)), TKD(X)

〉
.
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Definition 5. Let 〈X1, TK1〉 and 〈X2, TK2〉 be H-spaces. The relation R ⊆
X1 × X2 is an H-relation if R−1(U) = {x ∈ X1 : R(x) ∩ U �= ∅} ∈ K1, for
every U ∈ K2, and R(x) is a closed subset of X2, for all x ∈ X1.

An H-relation R ⊆ X1 × X2 is an H-functional relation if (x, y) ∈ R,
then there exists z ∈ X1 such that x ≤ z and R(z) = [y).

An H-relation R ⊆ X1 × X2 is irreducible if, for every x ∈ X1 such that
R(x) �= ∅ we have that R(x) is an irreducible closed subset of X2.

In [9] it was proved that if 〈X1, TK1〉 and 〈X2, TK2〉 are H-spaces and
R ⊆ X1 × X2 is an H-relation, then the mapping hR : D(X2) → D(X1)
defined by

hR(U) = {x ∈ X1 | R(x) ⊆ U}
for each U ∈ D(X2), is a semi-homomorphism.

Let A, B be Hilbert algebras and h : A → B be a semi-homomorphism.
In [9] it was proved that the relation Rh ⊆ X(B) × X(A) defined by

(x, y) ∈ Rh iff h−1(x) ⊆ y (3)

is an H-relation. The following result given in [10], characterizes the ∨-
semi-homomorphisms via Rh and it allowed us to prove that the category
Hil∨S is dually isomorphic to the category of H∨-spaces with irreducible
H-relations.

Theorem 6. Let h : A → B be a semi-homomorphism defined between the
H∨-algebras A and B. Then, the following conditions are equivalents:

1. h preserves the operation ∨,

2. the relation Rh is irreducible,

3. h−1(x) ∈ X (A) or h−1(x) = A, for all x ∈ X(B).

In [10] it was shown that the irreducible H-functional relations between
H∨-spaces can be characterized by means of special partial functions defined
between H∨-spaces called H-partial functions. An H-partial function is a
partial map f : X1 → X2 with domain dom(f), defined between the H∨-
spaces 〈X1, TK1〉 and 〈X2, TK2〉 such that:

1. [f(x)) = f([x)) for each x ∈ dom(f).

2. x ∈ dom(f) iff there exists y ∈ X2 such that f([x)) = [y).

3. If U ∈ K2, then
(
f−1(U)

]
∈ K1.
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Consequently, the category Hil∨H is dually isomorphic to the category
of H∨-spaces with irreducible H-functional relations and to the category of
H∨-spaces with H-partial functions.

The ideals of an H∨-algebra A also have a topological characterization.

Definition 7. Let 〈X, TK〉 be an H∨-space. A subset Y ⊆ X is open directed
iff there exists a subset B ⊆ D(X) such that Y =

⋃
{U : U ∈ B}.

The set of all open directed subsets of 〈X, TK〉 is noted by Od(X). In
[10] it was proved that given a subset Y ⊆ X, Y ∈ Od(X) iff Y =

⋃
I(Y ),

where I(Y ) = {U ∈ D(X) : U ⊆ Y }. The next result was shown in [10].

Proposition 8. Let A ∈ Hil∨and let 〈X, TK〉 its H∨-space dual. The map-
ping β : Id(A) → Od(X) defined by

β(I) = {x ∈ X : x ∩ I �= ∅}
for each I ∈ Id(A), is a lattice-isomorphism.

3. H∨
♦ -Algebras: Representation and Duality

In this section we will introduce the Hilbert algebras with an operator ♦,
or H∨

♦ -algebras, and we shall extend the results on representation of Hilbert
algebras to the case of H∨

♦ -algebras.

Definition 9. An algebra 〈A,♦〉 is an H∨
♦ -algebra if 〈A,∨,→, 0, 1〉 ∈ Hil∨0

and ♦ is a unary operator of A that satisfies the following conditions:

(♦1) ♦0 = 0,

(♦2) ♦(a ∨ b) = ♦a ∨ ♦b.

Note that under these conditions ♦ is monotone. The variety of H∨
♦ -

algebras is denoted by Hil∨♦. The variety Hil∨♦ corresponds to the {∨,→,
0,♦}-reduct of the variety of Heyting algebras with a modal operator ♦ (see
[26,31], or [28]).

Let 〈A,♦〉 , 〈B,♦〉 ∈ Hil∨♦. We say that a map h : A → B commutes with
♦ if h(♦a) = ♦h(a) for all a ∈ A. Denote by Hil∨♦S the category whose
objects are H∨

♦ -algebras and whose morphisms are ∨-semi-homomorphisms
that commute with ♦ and h(0) = 0. Also denoted by Hil∨♦H the category of
H∨

♦ -algebras and ∨-homomorphisms that commute with ♦ and h(0) = 0.
Let 〈A,♦〉 ∈ Hil∨♦ and C ⊆ A. We define the set ♦−1(C) = {a ∈ A : ♦a ∈

C}. Note that by the monotony of ♦, for each decreasing (increasing) subset
C of A the set ♦−1(C) is a decreasing (increasing) subset of A. Moreover,
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♦−1(I), (♦(I)] ∈ Id(A) for each I ∈ Id(A). Thus, for all x ∈ X(A), we have
that ♦−1(xc) = ♦−1(x)c ∈ Id(A).

3.1. Duality for Objects

We proceed with the representation for H∨
♦ -algebras. Let X be a set and

S ⊆ X × X. Let us consider the mapping ♦S : P(X) → P(X) defined by:

♦S(U) = {x ∈ X : S(x) ∩ U �= ∅} = S−1(U).

Now, we define the topological spaces associated with the H∨
♦ -algebras.

Definition 10. The triple 〈X, TK, S〉 is an H∨
♦ -space if 〈X, TK〉 is an H∨-

space and S is a binary relation on X such that:

1. X ∈ K.

2. For each x ∈ X, S(x)c ∈ Od(X).

3. If U ∈ D(X), then ♦S(U) ∈ D(X).

Lemma 11. Let 〈X, TK, S〉 be an H∨
♦ -space. Then

1. S(x) is a compact subset of 〈X, TK〉 for each x ∈ X.

2.
(
≤−1 ◦S

)
= (S◦ ≤−1) = S, where ≤ is ≤K.

Proof. (1) Let x ∈ X and let L ⊆ K. Consider S(x) ⊆
⋃

{U : U ∈ L}.
This is,

⋂
{U c : U ∈ L} ⊆ S(x)c. As S(x)c ∈ Od(X) it follows that

S(x)c =
⋃

{V ∈ D(X) : V ⊆ S(x)c}

and so,
⋂

{U c : U ∈ L} ∩
⋂

{V c : V ∈ D(X) and V ⊆ S(x)c} = ∅. Note
that {V c : V ∈ D(X) and V ⊆ S(x)c} is a dually directed subset of K. In-
deed, let U, V ∈ D(X) such that V ⊆ S(x)c and U ⊆ S(x)c. Since 〈X, TK〉
is an H∨-space, U ∪ V ∈ D(X). Moreover, U ∪ V ⊆ S(x)c and (U ∪ V )c ⊆
U c, V c. As

⋂
{U c : U ∈ L} is a closed subset of 〈X, TK〉, by Theorem 3.3 of

[10], there exists V0 ∈ D(X) such that V0 ⊆ S(x)c and
⋂

{U c : U ∈ L} ∩
V c
0 = ∅, this is,

V c
0 ⊆

⋃
{U : U ∈ L} .

As V c
0 is a compact subset of 〈X, TK〉, there exist U1, ..., Un ∈ L such that

S(x) ⊆ V c
0 ⊆ U1 ∪ ... ∪ Un.

(2) By the reflexivity of ≤−1, we have immediately that S ⊆
(
≤−1 ◦S

)
.

Let x, y ∈ X. If (x, y) ∈ (≤−1 ◦S), there exists z ∈ X such that z ≤ x
and (z, y) ∈ S. Suppose that y /∈ S(x). As S(x)c ∈ Od(X), there exists
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U ∈ D(X) such that U ⊆ S(x)c and y ∈ U . By assumption, y ∈ S(z)
and consequently, z ∈ ♦S(U). As ♦S(U) ∈ D(X) and z ≤ x, we have
that x ∈ ♦S(U). This is, S(x) ∩ U �= ∅ which is a contradiction. Thus,(
≤−1 ◦S

)
= S. By the reflexivity of ≤−1, we get that S ⊆ S◦ ≤−1. Let

(x, y) ∈ S◦ ≤−1, i.e., there exists z ∈ X such that xSz and y ≤ z. Now,
suppose that y /∈ S(x). So, there exists V ∈ D(X) such that V ⊆ S(x)c and
y ∈ V . Thus, z ∈ V and consequently, z /∈ S(x), which is impossible. So,
(S◦ ≤−1) = S.

In [26] it was proved that if 〈X, ≤〉 is a poset and S a binary relation
defined on X, then the condition

(
≤−1 ◦S

)
⊆

(
S◦ ≤−1

)
is equivalent to ob-

taining that P≤(X) is closed under ♦S. Consequently, we have the following
result.

Lemma 12. If 〈X, TK, S〉 is an H∨
♦ -space, then

〈P≤(X),♦S〉 = 〈P≤(X),∪,⇒,♦S, ∅, X〉
is an H∨

♦ -algebra, and 〈D(X),♦S〉 = 〈D(X),∪,⇒,♦S, ∅, X〉 is a subalgebra
of 〈P≤(X),♦S〉.

Let 〈A,♦〉 be an H∨
♦ -algebra. Let us consider the binary relation SA

defined on X(A) by:

(x, y) ∈ SA iff y ⊆ ♦−1(x).

Lemma 13. Let 〈A,♦〉 ∈ Hil∨♦ and x ∈ X(A). Then, ♦a ∈ x iff there exists
y ∈ X(A) such that (x, y) ∈ SA and a ∈ y.

Proof. Suppose that ♦a ∈ x. This is, a /∈ ♦−1(xc). As ♦−1(xc) ∈ Id(A),
we get [a) ∩ ♦−1(x)c = ∅. By Theorem 2, there exists y ∈ X(A) such that
y ⊆ ♦−1(x) and a ∈ y. The reciprocal is immediate.

Proposition 14. If 〈A,♦〉 ∈ Hil∨♦, then 〈X (A) , TKA
, SA〉 is an H∨

♦ -space.

Proof. In [10] it was proved that 〈X (A) , TKA
〉 is an H∨-space. We will

prove that SA satisfies the conditions of Definition 10:
1. Since 0 ∈ A, ϕ(0) = ∅ ∈ D(X(A)). So, X ∈ KA.
2. Let x, y ∈ X(A).

y ∈ SA(x)c iff y � ♦−1(x) iff y∩ ♦−1(x)c �= ∅
iff y ∈ β

(
♦−1(x)c

)
.

By Proposition 8, SA(x)c ∈ Od(X(A)).
3. Note that if U ∈ D(X(A)) then there exists a ∈ A such that U = ϕ(a).

By Lemma 13, ♦SA
(U) = ♦SA

(ϕ(a)) = ϕ(♦a) ∈ D(X(A)).
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Theorem 15. For each H∨
♦ -algebra 〈A,♦〉 there exists an H∨

♦ -space
〈X, TK, S〉 such that 〈A,♦〉 is isomorphic to 〈D(X),♦S〉.

Proof. Consider the triple 〈X (A) , TKA
, SA〉. In [10] it was proved that

ϕ : A → D (X (A)) is an isomorphism of H∨-algebras and 〈X (A) , TKA
〉 is

an H∨-space. As 〈A,♦〉 is an H∨
♦ -algebra, by Proposition 14 we have that

ϕ(♦a) = ♦SA
(ϕ(a)) for all a ∈ A and 〈X (A) , TKA

, SA〉 is an H∨
♦ -space.

By Lemma 12, 〈D(X(A)),♦SA
〉 is an H∨

♦ -algebra and consequently, ϕ is an
isomorphism between the H∨

♦ -algebras 〈A,♦〉 and 〈D(X(A)),♦SA
〉.

We note that if 〈X, TK, S〉 is an H∨
♦ -space,

〈
X(D(X)), TKD(X) , SD(X)

〉
is

the H∨
♦ -space of 〈D(X),♦S〉.

Theorem 16. Let 〈X, TK, S〉 be an H∨
♦ -space. Then, the mapping εX : X →

X (D (X)) is an homeomorphism between H∨
♦ -spaces such that

(x, y) ∈ S iff (εX(x), εX(y)) ∈ SD(X),

for every x, y ∈ X.

Proof. In [9] it was proved that εX is an homeomorphism between the H∨-
spaces 〈X, TK〉 and

〈
X(D(X)), TKD(X)

〉
. Moreover, since 〈D(X),♦S〉 ∈ Hil∨♦,

Proposition 14 shows that
〈
X(D(X)), TKD(X) , SD(X)

〉
is an H∨

♦ -space, where
for every F, P ∈ X(D(X)), (F, P ) ∈ SD(X) iff P ⊆ ♦−1

S (F ). Let x, y ∈ X. We
only need to show that (x, y) ∈ S iff (εX(x), εX(y)) ∈ SD(X). Assume that
(x, y) ∈ S. To prove that εX(y) ⊆ ♦−1

S (εX(x)), let U ∈ D(X) such that U ∈
εX(y). So, y ∈ U and as y ∈ S(x), we obtain that x ∈ ♦S(U). As ♦S(U) ∈
D(X), ♦S(U) ∈ εX(x) and so, U ∈ ♦−1

S (εX(x)). Conversely, suppose that
y /∈ S(x). As S(x)c ∈ Od(X), and y ∈ S(x)c =

⋃
{U ∈ D(X) : U ⊆ S(x)c},

there exists U ∈ D(X) such that U ∈ εX(y) and U ∩ S(x) = ∅. This is,
x /∈ ♦S(U). So, there exists U ∈ εX(y) such that ♦S(U) /∈ εX(x). Thus,
εX(y) � ♦−1

S (εX(x)), i.e., (εX(x), εX(y)) /∈ SD(X).

3.2. Duality for Morphisms

In order to complete the duality, we need to assign an appropriate irre-
ducible H-relation for each ∨-semi-homomorphism that commutes with ♦
and preserves the bottom element between H∨

♦ -algebras.

Definition 17. Let 〈X1, TK1 , S1〉 and 〈X2, TK2 , S2〉 be H∨
♦ -spaces. Let R ⊆

X1 × X2 a relation. We shall say that R is a strong irreducible H-relation if
it is an irreducible H-relation such that R(x) �= ∅, for each x ∈ X1.
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It is easy to see that

∀x ∈ X1 (R(x) �= ∅) iff hR(∅) = ∅.

Thus, a binary relation R defined between H∨
♦ -spaces is a strong irre-

ducible H-relation iff hR is a ∨-semi-homomorphism which preserves the
bottom element.

Notice that each strong irreducible H-relation R ⊆ X1 × X2 provides us
with a function fR : X1 → X2. Indeed, as 〈X1, TK1〉 is sober, and for all
x ∈ X1, R(x) is an irreducible closed nonempty subset of X2, then for each
x ∈ X1 there exists a unique y ∈ X2 such that

R(x) = cl ({y}) = cl(y) = [y).

Therefore, we can define a function fR : X1 → X2 such that

fR(x) = y iff R(x) = cl(y) = [y).

Note that for each x ∈ X1, we have that R(x) = [fR(x)). Moreover, if we
take every U ∈ K2, we obtain that

R−1(U) = {x ∈ X1 : (x, y) ∈ R for some y ∈ U}
= {x ∈ X1 : [fR (x)) ∩ U �= ∅}
= {x ∈ X1 : fR (x) ∈ U} = f−1

R (U) ,

and as R is an H-relation, f−1
R (U) ∈ K1.

Remark 18. We note that if R is a strong irreducible H-relation between
the H∨

♦ -spaces 〈X1, TK1 , S1〉 and 〈X2, TK2 , S2〉, then

hR(U) = f−1
R (U),

for any U ∈ D(X2). Indeed, let x ∈ hR(U), for some U ∈ D(X2). Then
x ∈ hR(U) iff R(x) = [fR(x)) ⊆ U iff fR(x) ∈ U iff x ∈ f−1

R (U).

Definition 19. Let 〈X1, TK1 , S1〉 and 〈X2, TK2 , S2〉 be H∨
♦ -spaces. Let R ⊆

X1 × X2 be a strong irreducible H-relation. We shall say that R is a ♦-
relation if it satisfies the following conditions:

(MF1) If (x, y) ∈ S1, then (fR(x), fR(y)) ∈ S2.

(MF2) hR(♦S2(U)) ⊆ ♦S1(hR(U)), for every U ∈ D(X2).

Denote by M♦SR∨ the category whose objects are H∨
♦ -spaces and whose

morphisms are ♦-relations.
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Proposition 20. Let 〈X1, TK1 , S1〉 and 〈X2, TK2 , S2〉 be H∨
♦ -spaces. Let R ⊆

X1 × X2 be a strong irreducible H-relation. Then, R satisfies the condition
(MF1) iff ♦S1(hR(U)) ⊆ hR(♦S2(U)), for every U ∈ D(X2).

Proof. ⇒) Let U ∈ D(X2) and x ∈ ♦S1(hR(U)). So, S1(x) ∩ hR(U) �= ∅,
i.e., there exists w ∈ X1 such that w ∈ S1(x) and w ∈ hR(U) = f−1

R (U).
This is, fR(w) ∈ U . As (x,w) ∈ S1, by (MF1), fR(w) ∈ S2(fR(x)). Thus,
S2 (fR(x)) ∩ U �= ∅ and hence, fR(x) ∈ ♦S2(U). So, x ∈ f−1

R (♦S2(U)) =
hR(♦S2(U)).

⇐) Let x ∈ X1. Suppose that there exists y ∈ S1(x) such that fR(y) /∈
S2(fR(x)). Since S2(fR(x))c ∈ Od(X2), we obtain that

fR(y) ∈ S2(fR(x))c =
⋃

{U ∈ D(X2) : U ⊆ S2(fR(x))c} .

There exists U ∈ D(X2) such that U ⊆ S2(fR(x))c and fR(y) ∈ U . Thus,
y ∈ hR(U). As S1(x) ∩ hR(U) �= ∅, we get x ∈ ♦S1(hR(U)). By assumption,
x ∈ hR(♦S2(U)), i.e., fR(x) ∈ ♦S2(U). Thus, U ∩ S2(fR(x)) �= ∅, which
contradicts that U ⊆ S2(fR(x))c.

By Proposition 20 and Theorem 5.12 in [10], we obtain the following
result.

Corollary 21. Let 〈X1, TK1 , S1〉 and 〈X2, TK2 , S2〉 be H∨
♦ -spaces and R ⊆

X1 × X2 be a ♦-relation. Then, hR is a morphism of Hil∨♦S.

Now, we will study the relation Rh defined in (3) when h is a morphism
of Hil∨♦S.

Proposition 22. Let 〈A,♦〉, 〈B,♦〉 ∈ Hil∨♦. Let h : A → B be a ∨-semi-
homomorphism such that it commutes with ♦ and preserves the bottom ele-
ment. Then, Rh is a ♦-relation.

Proof. By Theorem 6, Rh is an irreducible H-relation. We prove that
Rh is a strong irreducible H-relation showing that Rh(x) �= ∅, for each
x ∈ X(B). As h is a ∨-semi-homomorphism, by item 3 of Theorem 6 we
get that h−1(x) ∈ X(A) or h−1(x) = A for every x ∈ X(B). Suppose that
there exists x ∈ X(B) such that h−1(x) = A. So, we have 0 ∈ h−1(x). This
is, h(0) = 0 ∈ x and so, x = A, which is impossible. Thus, h−1(x) ∈ X(A)
and consequently, h−1(x) ∈ Rh(x) for every x ∈ X(B). Since Rh is a strong
irreducible H-relation, we get that Rh(x) =

[
h−1(x)

)
, for each x ∈ X(B).

Then we have a function

fRh
: X(B) → X(A) such that fRh

(x) = h−1(x).
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By Lemma 3.5 of [9], we have that hRh
◦ϕA = ϕB ◦h, i.e., hRh

(ϕA(a)) =
ϕB(h(a)), for all a ∈ A. We will prove that Rh satisfies the conditions of
Definition 19.

We note that for each a ∈ A:

hRh
(♦SA

(ϕA(a))) = hRh
(ϕA(♦a)) = ϕB(h(♦a))

= ϕB(♦h(a)) = ♦SB
ϕB(h(a))

= ♦SB
hRh

(ϕA(a)).

Then by Definition 19 and Proposition 20 we have that Rh is a ♦-relation.

From the previous Proposition it is immediately evident that the cate-
gories Hil∨♦S and M♦SR∨ are dually equivalent.

Let Hil∨♦H be the category with H∨
♦ -algebras and ∨-homomorphisms that

commute with ♦ and preserve the bottom element, and let M♦SF∨ be the
category whose objects are H∨

♦ -spaces and whose morphisms are irreducible
H-functional relations that are ♦-relations. As the category Hil∨H is dually
isomorphic to the category of H∨-spaces with irreducible H-functional rela-
tions, by previous results we can affirm that Hil∨♦H and M♦SF∨ are dually
equivalent.

4. Some Subvarieties of H∨
♦ -Algebras

Let 〈A,♦〉 ∈ Hil∨♦. For each n ∈ N0, we define inductively the formula ♦n as
♦0a = a and ♦n+1a = ♦(♦na). The variety of H∨

♦ -algebras generated by a
finite set of identities Γ will be denoted by Hil∨♦ + {Γ}.

We shall consider some particular varieties of H∨
♦ -algebras. These vari-

eties are the algebraic counterpart of extensions of the implicative fragments
of the intuitionistic modal logic IntK♦ (see [1,4,26,28,29], and [31]).

Consider the following identities:

♦T a → ♦a ≈ 1,
♦4 ♦2a → ♦a ≈ 1,
♦5 ♦ (♦a → ♦b) → (♦a → ♦b) ≈ 1.

We note that Hil∨♦ +{♦T,♦5} is a subvariety of Hil∨♦ +{♦T,♦4}. In fact.
Let 〈A,♦〉 ∈ Hil∨♦ + {♦T,♦5}. Since a ≤ ♦a for all a ∈ A, in particular for
a = 1. So, ♦1 = 1. Thus, for all b ∈ A we have that:

1 = ♦ (♦1 → ♦b) → (♦1 → ♦b) = ♦ (1 → ♦b) → (1 → ♦b) = ♦2b → ♦b.
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We shall establish that certain additional conditions defined in an H∨
♦ -

algebra correspond to additional properties defined in the dual space. For
this, we will use the following result.

Lemma 23. Let 〈A,♦〉 ∈ Hil∨♦ and let 〈X, TK, S〉 be its dual H∨
♦ -space. Let

n ∈ N and x ∈ X. Then, ♦na ∈ x iff there exists y ∈ X such that (x, y) ∈ Sn

and a ∈ y.

Proof. The proof is by induction of n. For n = 1 is valid by Lemma 13.
Suppose the claim holds for n. Consider ♦n+1a = ♦(♦na) ∈ x. By Lemma
13, there exists y ∈ X such that y ∈ S(x) and ♦na ∈ y. By assumption, there
exists z ∈ X such that (y, z) ∈ Sn and a ∈ z. Thus, there exists z ∈ X such
that (x, z) ∈ Sn+1 and a ∈ z. Now, suppose that there exists y ∈ X such
that (x, y) ∈ Sn+1 and a ∈ y. So, there exists z ∈ X such that (x, z) ∈ Sn

and (z, y) ∈ S. Since a ∈ y, we obtain that ♦a ∈ z and as (x, z) ∈ Sn, we
have ♦n(♦a) = ♦n+1a ∈ x, by assumption.

Let 〈X, TK, S〉 be an H∨
♦ -space. Following the notation used in [19], we

denote by � and �′ the next first-order conditions:

� ⇔ ∀x∀y∀z [xSy ∧ xSz ⇒ ∃t(y ≤ t ∧ tSz ∧ ∀u(tSu ⇒ xSu))] ,
�′ ⇔ ∀x∀y [xSy ⇒ ∃t(y ≤ t ∧ tSx ∧ xSt)] ,

Remark 24. Note that if S is reflexive and transitive then � and �′ are
equivalent. Suppose that � is satisfied in 〈X, TK, S〉 and let x, y ∈ X such
that xSy. As S is reflexive, xSy and xSx. By �, there exists t ∈ X such
that y ≤ t, tSx and for all u ∈ X, tSu implies xSu. In particular, as tSt,
we have that xSt. Thus, there exists t ∈ X such that y ≤ t, tSx and xSt.

Reciprocally, assume that �′ is satisfied in 〈X, TK, S〉 and let x, y, z ∈ X
such that xSy and xSz. If xSy then there exists t ∈ X such that y ≤ t,
tSx and xSt. As tSx and xSz, by transitivity of S, result tSz. Now, let
u ∈ X such that tSu. Since xSt, by transitivity of S we obtain that xSu.
Thus, there exists t ∈ T such that y ≤ t, tSz and for all u ∈ X, tSu implies
xSu.

Theorem 25. Let 〈A,♦〉 ∈ Hil∨♦ and 〈X, TK, S〉 its dual H∨
♦ -space. The

following statements are satisfied:

1. ♦na → a ≈ 1 for all a ∈ A iff ∀x, y[(x, y) ∈ Sn ⇒ y ⊆ x], for all n ∈ N.

2. A ∈ Hil∨♦ + {♦T} iff S is reflexive.

3. A ∈ Hil∨♦ + {♦4} iff S is transitive.

4. A ∈ Hil∨♦ + {♦5} iff � is satisfied in 〈X, TK, S〉.
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5. A ∈ Hil∨♦ + {♦T,♦5} iff �′ is satisfied in 〈X, TK, S〉 and S is reflexive
and transitive.

Proof. We will prove only the assertions (1), (4) and (5). The other proofs
are analogous.

(1) Assume that ♦na ≤ a for all a ∈ A. Consider (x, y) ∈ Sn and let
b ∈ y. By Lemma 23, ♦nb ∈ x. As ♦nb ≤ b, we get that b ∈ x. So, y ⊆ x.
Now, assume that (x, y) ∈ Sn implies y ⊆ x and suppose that there exists
a ∈ A such that ♦na � a. So, there exists x ∈ X such that ♦na ∈ x and
a /∈ x. By Lemma 23, there exists y ∈ X such that (x, y) ∈ Sn and a ∈ y.
Under the above assumption, y ⊆ x and so, a ∈ x, which is a contradiction.

(4) Assume that ♦ (♦a → ♦b) ≤ ♦a → ♦b, for all a, b ∈ A. Suppose
that (x, y) ∈ S and (x, z) ∈ S. To show that there exists an element t ∈
X such that y ≤ t and z ∈ S(t), we will consider the deductive system
〈y ∪ ♦z〉 and the order-ideal

(
♦

(
♦−1(xc)

)]
, and we will prove that 〈y ∪ ♦z〉∩(

♦
(
♦−1(xc)

)]
= ∅. Suppose that the contrary holds, this is, there exists

a ∈ A such that a ∈ 〈y ∪ ♦z〉 and a ∈
(
♦

(
♦−1(xc)

)]
. So, there are b ∈ y,

c ∈ z and d ∈ ♦−1(xc) such that b → (♦c → ♦d) = 1 ∈ y. Thus, ♦c → ♦d ∈ y
and as y ⊆ ♦−1(x), ♦(♦c → ♦d) ∈ x. By assumption, ♦c → ♦d ∈ x. Since
z ⊆ ♦−1(x), we get ♦c ∈ x, and so ♦d ∈ x, which is a contradiction. Thus,
there exists t ∈ X such that y ⊆ t, ♦z ⊆ t and ♦

(
♦−1(xc)

)
∩ t = ∅. This

is, z ⊆ ♦−1(t) and ♦−1(xc) ⊆ ♦−1(tc). Let u ∈ X such that tSu, i.e.,
u ⊆ ♦−1(t). As ♦−1(t) ⊆ ♦−1(x), we get xSu. Thus, there exists t ∈ X such
that y ⊆ t, tSz and for all u ∈ X, if tSu then xSu.

Conversely, suppose that there exist a, b ∈ A such that ♦ (♦a → ♦b) �
♦a → ♦b. So, there exists x ∈ X such that ♦ (♦a → ♦b) ∈ x, ♦a ∈ x and ♦b
/∈ x. By Lemma 13, there are elements y, z ∈ S(x) such that ♦a → ♦b ∈ y
and a ∈ z. By assumption, there exists t ∈ X such that y ⊆ t, z ⊆ ♦−1(t) and
tSu implies xSu for all u ∈ X. So, ♦a → ♦b ∈ t, ♦a ∈ t and consequently,
♦b ∈ t. By Lemma 13, there exists u ∈ X such that (t, u) ∈ S and b ∈ u.
So, (x, u) ∈ S and so ♦b ∈ x, which is impossible.

(5) It is immediately by items (2), (3), (4) and Remark 24.

5. Congruences of H∨
♦ -Algebras

A well-known result given by A. Diego and A. Monteiro (see [16,18,25] or
[23]) ensures that the lattice of congruences of a Hilbert algebra is isomorphic
to the lattice of the deductive systems. This result can be extended to Hilbert
algebras with supremum as was proved in [14].
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Let A = 〈A,→,∨, 1〉 be an H∨-algebra. A congruence of A is an equiv-
alence relation θ ⊆ A × A compatible with the implication → and with ∨.
If A is an H∨

0 -algebra, then every equivalence relation θ ⊆ A × A compati-
ble with the implication → is also compatible with the negation ¬, because
¬a = a → 0, for every a ∈ A. In [14] it was proved that θ is a congruence
of A if and only if θ is an equivalence relation compatible with the impli-
cation →. Thus the lattice of the congruences of 〈A,→,∨, 1〉 is the same as
the lattice of the congruences of 〈A,→, 1〉. So, we denote the lattice of the
congruences of A by Con(A).

Let A be a Hilbert algebra. Let θ ∈ Con(A). The equivalence class

[1]θ = {a ∈ A | (a, 1) ∈ θ} ,

is a deductive system. Reciprocally, if D ∈ Ds (A), then

θ(D) =
{
(a, b) ∈ A2 | a → b, b → a ∈ D

}
,

is a congruence of A. The lattice Ds (A) and Con(A) are isomorphic under
the mutually inverse mappings θ → [1]θ, and D → θ(D) (see [18,23], or
[16]).

If L is a lattice, we denote by Ld the lattice with the dual order and if
two lattices L1 and L2 are isomorphic, we write L1

∼= L2.
Let A be a Hilbert algebra and 〈X, TK〉 its dual H-space. If D ∈ Ds (A),

then μ (D) = {x ∈ X(A) : D ⊆ x} is a closed subset of 〈X, TK〉. If Y is a
closed subset of 〈X, TK〉, then π(Y ) = {a ∈ A : Y ⊆ ϕ(a)} is a deductive
system of A. Moreover, if Y ∈ C(X), then μ (π(Y )) = Y , and if D ∈ Ds (A),
then π (μ (D)) = D. Thus, μ is a dual isomorphism between Ds (A) and
C(X). Therefore

Con(A) ∼= Ds (A) ∼= C(X)d.

Let 〈A,♦〉 ∈ Hil∨♦. We say that θ is a ♦-congruence iff θ is an equivalence
relation defined on A which is compatible with →, ∨ and ♦. Denote by
Con♦ (A) the lattice of congruences of 〈A,♦〉.

Definition 26. Let 〈X, TK, S〉 be an H∨
♦ -space. A subset Y ⊆ X is said to

be S-maximum if for all x ∈ Y , maxS(x) ⊆ Y .

It is clear that X and ∅ are trivially S-maximum sets and it is easy to
check from the above definition that the intersection and the union of any
family of S-maximum sets is again an S-maximum set. So, we can conclude
that the set of all S-maximum subsets of X is a complete sublattice of P(X).
In particular, the S-maximum and closed subsets of X, ordered by inclusion,
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form a sublattice of C(X) closed under arbitrary intersections which shall
be denoted by Cmax(X).

Let 〈X, TK, S〉 be an H∨
♦ -space. The family of all S-maximum and closed

subsets of X defines a topology

TS = {X − Y : Y ∈ Cmax(X)}
on X, such that their closed subsets are exactly the members of Cmax(X). We
shall denote by clmax(Y ) the closure of a subset Y ⊆ X, when X is endowed
with the topology TS . Note that clmax(Y ) ∈ Cmax(X). In particular, if Y ∈
Cmax(X), then clmax(Y ) = cl(Y ). A subset Y of X is called S-closed (S-
dense), if it is a closed (dense) subset of X with respect to the topology TS .

Remark 27. Let 〈A,♦〉 ∈ Hil∨♦ and 〈X, TK, S〉 its dual H∨
♦ -space. Note that

if S(x) �= ∅ then maxS(x) �= ∅, for x ∈ X.

To prove this, we will see that every chain in S(x) has an upper bound
in S(x). Let x ∈ X and let {yi}i∈α be a totally ordered family of S(x).
Let z =

⋃
{yi : i ∈ α}. We will prove that z ∈ X. It is clear that z

is an increasing subset and that if a ∨ b ∈ z then a ∈ z or b ∈ z. Let
a, a → b ∈ z. So, there are i, j ∈ α such that a ∈ yi and a → b ∈ yj . Without
loss of generality, we may assume that i ≤ j and so, that yi ⊆ yj . Thus,
a, a → b ∈ yj and hence, b ∈ yj . Thus, b ∈ z and consequently, z ∈ X. We
shall prove that z ∈ S(x). Let a ∈ z. So, there exists i ∈ α such that a ∈ yi.
As yi ∈ S(x), it follows that a ∈ ♦−1(x). So, every chain in S(x) has an
upper bound in S(x) and by Zorn’s Lemma, there is m ∈ maxS(x).

Now we shall give a characterization of the ♦-congruences applying the
duality.

Theorem 28. Let 〈A,♦〉 ∈ Hil∨♦ and 〈X, TK, S〉 its dual H∨
♦ -space. Then,

Cmax(X)d ∼= Con♦ (A).

Proof. We shall prove that the map Φ : Cmax(X) → Con♦ (A) defined by

Φ(Y ) = {(a, b) ∈ A × A : a → b, b → a ∈ π(Y )}
is an anti-isomorphism, where π(Y ) = {a ∈ A : Y ⊆ ϕ(a)}.

Let Y ∈ Cmax(X). As π (Y ) ∈ Ds (A), result that Φ(Y ) = θ(π(Y )) ∈
Con(A). To prove that Φ is well-defined we need to show that Φ(Y ) preserves
the operator ♦.

Let (a, b) ∈ Φ(Y ). We will prove that (♦a,♦b) ∈ θ(Y ). For this, we show
that ♦a → ♦b ∈ π(Y ), i.e., Y ⊆ ϕ(♦a) =⇒ ϕ(♦b) = {x ∈ X : [x) ∩ ϕ(♦a) ⊆
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ϕ(♦b)}. Let x ∈ Y and let y ∈ X such that y ∈ [x) ∩ ϕ(♦a). So, x ⊆ y and
♦a ∈ y. By Lemma 13, there exists z ∈ X such that z ∈ S(y) and a ∈ z.
By Remark 27, there exists w ∈ maxS(y) such that z ⊆ w ⊆ ♦−1(y) and
since a ∈ z, we get a ∈ w. On the other hand, as x ∈ Y and Y is an
increasing set, we get y ∈ Y and since maxS(y) ⊆ Y , we have w ∈ Y . By
assumption, a → b ∈ π(Y ) and so, [w) ∩ ϕ(a) ⊆ ϕ(b). As w ∈ ϕ(a), we have
w ∈ ϕ(b). Thus, b ∈ w ⊆ ♦−1(y) and consequently ♦b ∈ y, i.e., y ∈ ϕ(♦b).
So, ♦a → ♦b ∈ π(Y ). By a similar argument we can prove that ♦b → ♦a ∈
π(Y ). So, we have proved that Φ(Y ) ∈ Con♦ (A) for each Y ∈ Cmax(X).

Let Y,W ∈ Cmax(X). It is clear that if Y ⊆ W then Φ(W ) ⊆ Φ(Y ). To
prove that the map Φ is one-to-one, assume that Φ(Y ) = Φ(W ) and suppose
that Y �= W . Without loss of generality, we assume that there exists x ∈ Y
such that x /∈ W . As W is a closed set, there exists a ∈ A such that
W ⊆ ϕ(a) and x /∈ ϕ(a). Thus, a = 1 → a ∈ π(W ) and as π(W ) ∈ Ds(A),
1 = a → 1 ∈ π(W ). So, (1, a) ∈ Φ(W ) = Φ(Y ) and consequently, a ∈ π(Y ).
This is, Y ⊆ ϕ(a) and so, x ∈ ϕ(a), which is a contradiction.

Thus, to complete the proof, we need to prove that Φ is onto. Let θ ∈
Con♦ (A) and

Z =
⋂

{ϕ (a) : a ∈ [1]θ} = {x ∈ X : [1]θ ⊆ x} .

It is clear that Z ∈ C(X). We will show that Z is an S-maximum set. On
the contrary, let x ∈ Z, y ∈ maxS(x) and suppose that y /∈ Z. Hence, there
exists a ∈ [1]θ such that a /∈ y. We prove that

〈y ∪ {a}〉 ∩ ♦−1(xc) = ∅.

Suppose that the contrary holds, this is, there exists b ∈ A such that
b ∈ 〈y ∪ {a}〉∩♦−1(xc). So, there exists c ∈ y such that c → (a → b) = 1 ∈ y
and ♦b /∈ x. As c ∈ y, we get a → b ∈ y, and since y ∈ S(x), ♦ (a → b) ∈
x. On the other hand, since (a, 1) ∈ θ we get (a → b, b) ∈ θ. Thus,
(♦ (a → b) ,♦b) ∈ θ and so, (♦ (a → b) → ♦b, 1) ∈ θ. Hence, ♦ (a → b) →
♦b ∈ [1]θ and as [1]θ ⊆ x, ♦ (a → b) → ♦b ∈ x. As ♦ (a → b) ∈ x, we obtain
that ♦b ∈ x, which is a contradiction. Thus, there exists w ∈ X such that
〈y ∪ {a}〉 ⊆ w and w ∩ ♦−1(xc) = ∅. This is, y ⊆ w and w ∈ S(x). As
y ∈ maxS(x), y = w and so, a ∈ y which is impossible. We have proved
that max S(x) ⊆ Z, for all x ∈ Z. Thus, Z ∈ Cmax(X).

Now, we will prove that Φ(Z) = θ. Note that Z ⊆ ϕ(a) iff a ∈ [1]θ. Indeed,
it is clear that if a ∈ [1]θ then Z ⊆ ϕ(a). Now, suppose that a /∈ [1]θ. So,
[1]θ ∩ (a] = ∅. So, there exists x ∈ X such that [1]θ ⊆ x and a /∈ x. This is,
Z � ϕ(a). Thus,
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(a, b) ∈ Φ(Z) ⇐⇒ a → b, b → a ∈ π(Z) ⇐⇒
Z ⊆ ϕ(a → b), ϕ(b → a) ⇐⇒ a → b, b → a ∈ [1]θ ⇐⇒
(a → b, 1), (b → a, 1) ∈ θ ⇐⇒ (a, b) ∈ θ.

Now we will study the deductive systems in H∨
♦ -algebras that are in

correspondence with ♦-congruences.

Definition 29. Let 〈A,♦〉 ∈ Hil∨♦. A deductive system F of A is a closed
deductive system if a → b ∈ F implies ♦a → ♦b ∈ F , for every a, b ∈ A.

The lattice of all closed deductive systems of 〈A,♦〉 ∈ Hil∨♦ is denoted by
Ds♦ (A).

Proposition 30. Let 〈A,♦〉 ∈ Hil∨♦ and 〈X, TK, S〉 its dual H∨
♦ -space. Then,

Ds♦ (A) ∼= Cmax(X)d.

Proof. Let μ : Ds♦ (A) → Cmax(X) such that μ (F ) = {x ∈ X : F ⊆ x}
for all F ∈ Ds♦ (A). We know that μ (F ) is a closed subset of 〈X, TK〉 for
all F ∈ Ds(A). It is clear that if F,D ∈ Ds♦ (A) such that F ⊆ D then
μ (D) ⊆ μ (F ). Now, we prove that μ(F ) is an S-maximum set for each
F ∈ Ds♦ (A). Let x ∈ μ(F ). Suppose that there exists y ∈ maxS (x) such
that y /∈ μ(F ), i.e., F � y. Then, there exists f ∈ F such that f /∈ y. Let us
consider the deductive system 〈y ∪ {f}〉. Since y ∈ maxS (x),

〈y ∪ {f}〉 � ♦−1 (x) .

Thus, there is d ∈ A such that d ∈ 〈y ∪ {f}〉 and d /∈ ♦−1 (x). This is, there
exists q ∈ y such that f → (q → d) = 1 and ♦d /∈ x. So, q → d ∈ F and
as F is a closed deductive system, ♦q → ♦d ∈ F ⊆ x. Taking into account
that q ∈ y ⊆ ♦−1 (x), we have that ♦d ∈ x, which is a contradiction. Thus,
μ(F ) ∈ Cmax(X).

Let π : Cmax(X) → Ds♦ (A) such that π(Y ) = {a ∈ A : Y ⊆ ϕ(a)}. By
proof of Theorem 28, we know that π(Y ) is a closed deductive system for
all Y ∈ Cmax(X). As μ and π are inverses of each other, we deduce that μ
is an anti-isomorphism of lattices.

Corollary 31. Let 〈A,♦〉 ∈ Hil∨♦ and 〈X, TK, S〉 its dual H∨
♦ -space. Then,

Con♦ (A) ∼= Ds♦ (A) ∼= Cmax(X)d.

5.1. Simples and Subdirectly Irreducible H∨
♦ -Algebras

Let A = 〈A,♦〉 ∈ Hil∨♦. Let us recall that A is subdirectly irreducible if
and only if there exists the smallest non trivial ♦-congruence relation θ in
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A. A particular case are the simple algebras. Recall that an H∨
♦ -algebra A

is simple if and only if A has only two ♦-congruence relations. By Theo-
rem 28 and Proposition 30, we can affirm that an H∨

♦ -algebra A is subdi-
rectly irreducible iff in its dual H∨

♦ -space 〈X, TK, S〉 there exists the largest
Y ∈ Cmax(X) distinct from X and ∅ iff there exists the smallest non-trivial
♦-deductive system of A. Moreover, A is simple iff Cmax(X) = {∅, X} iff
Ds♦(A) = {{1} , A}.

Now, we can characterize the simple and subdirectly irreducible H∨
♦ -

algebras.

Theorem 32. Let A ∈ Hil∨♦ and 〈X, TK, S〉 its dual H∨
♦ -space. Then:

1. A is simple iff every unit subset of X is S-dense in X, i.e., clmax(x) = X,
for each x ∈ X.

2. A is subdirectly irreducible iff {x ∈ X : clmax(x) �= X} ∈ Cmax(X)−{X}.

Proof. (1) Assume that A is simple. So, Cmax(X) = {∅, X}. Let x ∈ X.
As x ∈ clmax(x), we get clmax(x) �= ∅ and since clmax(x) ∈ Cmax(X), result
clmax(x) = X. Reciprocally, assume that clmax(x) = X for each x ∈ X and
suppose that there exists Y ∈ Cmax(X) such that Y �= ∅. So, there exists
y ∈ Y and consequently, X = clmax(y) ⊆ Y . Thus, X = Y and so, A is
simple.

(2) Consider the set

V = {x ∈ X : clmax(x) �= X}.

Assume that A is subdirectly irreducible and let Y be the largest element
of Cmax(X) − {X}. We will prove that Y = V . Let x ∈ Y . So, clmax(x) ⊆
Y �= X and consequently, x ∈ V . Thus, Y ⊆ V . Now, let x ∈ V . So,
clmax(x) ∈ Cmax(X) − {X} and by assumption, clmax(x) ⊆ Y . So, x ∈ Y .
Thus, V = Y ∈ Cmax(X) − {∅, X}. Reciprocally, let V ∈ Cmax(X) − {X}.
We will prove that V is the largest element of Cmax(X)−{X}. Suppose that
there exists Y ∈ Cmax(X) such that Y � V . So, there exists x ∈ Y such
that x /∈ V . Hence, X = clmax(x) ⊆ Y . Thus, Y = X, which complete the
proof.

The subvariety Hil∨♦ + {♦T,♦5} is the algebraic counterpart of the
{→,∨,♦}-fragment of the Prior’s Intuitionistic Modal logics MIPC (see [1]).
For this variety we have found other theory of representation. This repre-
sentation will be presented in a future paper.
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