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Abstract. In the late 1960s and early 1970s, Dana Scott introduced a kind of general-

ization (or perhaps simplification would be a better description) of the notion of inference,

familiar from Gentzen, in which one may consider multiple conclusions rather than single

formulas. Scott used this idea to good effect in a number of projects including the axiomat-

ization of many-valued logics (of various kinds) and a reconsideration of the motivation

of C.I. Lewis. Since he left the subject it has been vigorously prosecuted by a number of

authors under the heading of abstract entailment relations where it has found an impor-

tant role in both algebra and theoretical computer science. In this essay we go back to the

beginnings, as presented by Scott, in order to make some comments about Scott’s cut rule,

and show how much of Scott’s main result may be applied to the case of single-conclusion

logic.

Keywords: Dana Scott, Lindenbaum, Abstract entailment relations, Structural rules.

1. Introduction

Ever since the pioneering work of Gentzen, what has come to be called proof
theory has been identified with his basic method in sequent logic.1 A sequent
consists of two sequences of formulas separated by the provability sign �,
e.g.,

γ1, . . . , γn � δ1, . . . , δm.
The logic in question is a formal system in which a proof consists of a
sequence of lines each containing a number of sequents such that later lines
follow from earlier ones by means of a specified set of rules.

Scott broke with this tradition. He abandoned sequences of formulas in
favor of sets. This effected a simplification by, for example, removing the
need for structural rules dealing with reordering the formulas of a sequent
and for collapsing two or more iterations of the same formula (in the same
cedent–which is to say antecedent or succedent) to a single instance. In what

1See Gerhard Gentzen [3].
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follows we use capital Greek letters for sets of formulas and lower case Greek
letters for individual formulas from a language L. So sequents look like

Γ � Δ.

In this paper we will deal with two aspects of Scott’s work. First we will
examine Scott’s comments on the so-called structural rule of cut. We show
that cut elimination can be applied to what we call Scott Relations. Second,
we discuss one of Scott’s central results in [7], which he says is a generaliza-
tion of Lindenbaum’s Lemma. His result is proved for multiple-conclusion
consequence relations, so one might think it implies an analogous result
for single-conclusion consequence relations. We prove such a result, but we
expose some complications involved.

2. Some Notational Preliminaries

Scott imposes only three structural rules on his consequence relations. They
are versions of those that Gentzen-style proof theorists call Axiom, Thin-
ning,2 and Cut. We introduce a convention that multiple conclusion relations
are indicated by expressions like � with or without scripts either super or
sub. On this convention single-conclusion relations are indicated by expres-
sions like � (with the same remark). These structural rules may then be
displayed respectively:

Γ ∩ Δ �= ∅
Γ � Δ

[R]

Γ � Δ & Γ ⊆ Γ′ & Δ ⊆ Δ′

Γ′ � Δ′ [M]

Γ, α � Δ & Γ � α,Δ
Γ � Δ

[T]

Where the rule names are intended to suggest “reflexivity,” “monotonicity,”
and “transitivity,” respectively. In these formulations we use the accepted
abbreviations, for example, “α,Δ” for “{α }∪Δ” and the like. In other words
we abbreviate the unit set of some formula with the formula in question and
abbreviate the set operation “union” with comma–where that makes sense.3

We recognize and sympathize with Scott’s motivation in this terminological
change but shall stick to the older characterization of the rule names in those

2T.J. Smiley has suggested that the German word that gets translated as thinning
would be better translated as ‘dilution.’ We mostly follow Smiley’s usage below.

3It would definitely not make sense to take the comma in { α, β } as union.
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cases where it seems more pointed to do this. Thus, for example, the move
from an expression like Γ � Σ to Γ, β � Σ seems more strikingly described
as “diluting on the left,” rather than “monotonicity on the left.” Similarly
it seems to capture the spirit of a proof better to describe the transition
from one line to another as “cutting” a certain formula. Transitivity and
monotonicity are not action verbs–we cannot transitivity a formula, nor can
we monotonicity a set of formulas.

We shall call any relation between sets of formulas4 which satisfies these
rules a Scott relation. Typically, and Scott assumes this as well, we take the
sets to be finite. Finally, we do not assume that the relations are structural,
i.e., satisfy the substitution property: If Γ � Δ, and e : L → L is a sub-
stitution of atoms to formulas, then e[Γ] � e[Δ]. Making that assumption
would have us assume that the language has structure. Although such an
assumption is completely reasonable, we don’t need it for our purposes.

3. Scott and Cut Elimination

The goal of many proof theorists, some might even say the whole point of
doing sequent logic, requires proving what is often called a normal form
theorem. The proof of the normal form theorem invariably embeds proving
that one of the structural rules:

Γ, α � Δ Γ � α,Δ
Γ � Δ

[Cut]

can be eliminated. Elimination in this sense means showing that every proof
that uses Cut can be replaced by a proof with the same last line, which
doesn’t use the rule. The reason this was thought so central, was that Cut-
elimination amounts to a consistency proof. In fact the ability to support
a cut-elimination theorem was regarded by Hacking as one of the crucial
things which separates logic from non-logic.5

Scott reminds us, however, that Cut—or the rule of transitivity as he
terms it—is not eliminable in any full-blooded sense.6 It is, after all, the

4To call something a formula is to imply that we have in hand a formal language of
which the object in question is a well-formed expression. For the most part we suppress
the details of that language.

5See especially his Hacking [4].
6The reason that it isn’t eliminable is because, as Scott tells in [6, p. 797], it is required

to show that Scott relations are determined by valuations. It is the use of [T] in the
argument at the end of Sect. 4.
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rule that allows us to chain together individual bits of reasoning to good
inferential effect. What does it take for Cut to be eliminable? If there isn’t
a full-blooded sense, is there a weaker sense? In fact, there is a kind of Cut
elimination theorem for Scott relations, in special circumstances. This is
what we term T elimination below. We start with the following definition.

Definition 3.1. (R,M,T, Closure) If C is a relation between sets of sen-
tences (not necessarily a Scott relation), then its R, M, T-closure, �rmt is
defined as the set of pairs 〈Γ,Δ〉 such that there is a sequence of pairs,
{ 〈Γi,Δi〉 }n

i=1 such that

(1) either (i) 〈Γ1,Δ1〉 ∈ C or (ii) Δ1 ∩ Γ1 �= ∅,

(2) for each 1 < i ≤ n, either

(c) either (i) 〈Γi,Δi〉 ∈ C or (ii) Δi ∩ Γi �= ∅,
(t) there are j, k < i such that 〈Γj ,Δj〉 = 〈Γi ∪ {β } ,Δi〉, and

〈Γk,Δk〉 = 〈Γi,Δi ∪ {β }〉; or
(m) there is j < i such that Γj ⊆ Γi and Δj ⊆ Δi,

(3) and 〈Γn,Δn〉 = 〈Γ,Δ〉.
We call the sequences construction sequences.

Lemma 3.1. The R,M,T-closure of C obeys [R], [M], and [T].

Proof. We will refer to the R,M,T-closure as ‘the closure’ for simplicity. By
(1) of Definition 3.1, we get that for all 〈Γ,Δ〉 such that Γ∩Δ �= ∅, are in the
closure. They will be added by construction sequences of length 1. If 〈Γ′,Δ′〉
is in the closure, then there is a construction sequence of length n with it
at the end. So any supersets will be in the closure by using 2.m to form
a construction sequence of length n+ 1. If 〈Γ ∪ {β } ,Δ〉 and 〈Γ,Δ ∪ {β }〉
are in the closure, then there are construction sequences with those as pairs
at the end, each of respective length m and n. Thus we can form a con-
struction sequence of length m + n + 1 using 2.t, and get that 〈Γ,Δ〉 is in
the closure.

As we have defined it, the R, M, T-closure of C is the smallest Scott
relation that extends C.

Lemma 3.2. If C⊆ � and � is a Scott relation, then �rmt ⊆ �.

Proof. By induction on the length of construction sequences.

Now we can see under what circumstances [T] is eliminable. What we need
is the notion of a relation C being closed under [T]. This notion amounts
to: if 〈Γ ∪ {β } ,Δ〉 ∈ C and 〈Γ,Δ ∪ {β }〉 ∈ C, then 〈Γ,Δ〉 ∈ C. We will
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say that [T] is eliminable from the R, M, T-closure of C when: If [T] is used
in a construction sequence for 〈Γ,Δ〉, then there is a construction sequence
from C for that pair that doesn’t use [T].

Lemma 3.3. (T-elimination) C is closed under [T] iff [T] is eliminable from
the R, M, T-closure of C.

Proof. Let C be closed under [T]. Suppose that 〈Γm,Δm〉 is the first use of
T (i.e., 2.t) in the construction sequence of 〈Γ,Δ〉. Then there are 〈Γj ,Δj〉
and 〈Γk,Δk〉 such that Γk = Γm∪{β } and Δk = Δm while Δj = Δm∪{β }
and Γj = Γm. If Γm ∩ Δm �= ∅, then we can replace that step with an
instance of [R] (i.e., the first disjunct (2.c) in Definition 3.1). So suppose
Γm ∩ Δm = ∅.

If either Γm ∩ (Δm ∪ {β }) �= ∅ or (Γm ∪ {β }) ∩ Δm �= ∅, then one
of 〈Γm, (Δm ∪ {β })〉 or 〈(Γm ∪ {β }),Δm〉 would be identical to 〈Γm,Δm〉.
That would mean that there would already be a construction sequence of
〈Γm,Δm〉 that didn’t use [T] since we have assumed that this is the first use
of [T].

Hence the construction sequence of 〈Γk,Δk〉 = 〈Γm ∪ {β } ,Δm〉 doesn’t
employ [T] (the move to the mth step was the first use of [T]), nor does
the construction sequence of 〈Γk,Δk〉 = 〈Γm,Δm ∪ {β }〉 nor do they use
[R] (2.c (ii)) (there would need to be some sentences in common). So
both must have been derived from members of C by uses of [M] (2.m).
It follows that there are Γ′,Δ′ such that Γ′ ⊆ Γm and Δ′ ⊆ Δm where
〈Γ′ ∪ {β } ,Δ′〉 ∈ C and 〈Γ′,Δ′ ∪ {β }〉 ∈ C. Since C is closed under [T],
〈Γ′,Δ′〉 ∈ C; so 〈Γm,Δm〉 could have been derived from C using [M]. We
can then repeat this process for any other uses of [T] in the construction
sequence.

Conversely, let [T] be eliminable from the R, M, T-closure of C. Then
whenever we have instances of 〈Γ′ ∪ {β } ,Δ′〉 ∈ C and 〈Γ′,Δ′ ∪ {β }〉 ∈ C,
such that no subsets of pairs of subsets of Γ′ and Δ′ that are in C, we must
have 〈Γ′,Δ′〉 ∈ C, otherwise we couldn’t eliminate that use of [T].

We thus see that the eliminability of Cut depends on the starting rela-
tion being closed under Cut. If Cut is eliminable from the base relation,
then Cut is eliminable from the R, M, T-closure. What does this mean?
What if the base relation of what we decide is inference isn’t closed under
[T], i.e., doesn’t have elimination of Cut? Does that mean it isn’t inference?
Scott’s answer was: no. But if we aren’t to prove Cut-elimination of some
base relation C, then what is the new project? Scott answers this question
via another question. What, in its most basic (or even perhaps its purest)
form, is that relation that we call inference?
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This might not seem to offer much of a challenge to any who subscribe to
some particular version of inference, but if we set aside such prejudices for
a moment, we can better appreciate Scott’s question-challenge. We might
put it this way ‘How much structure must our formal language have before
it might legitimately be said to support something very like an inference
relation?’ Our first impulse is likely to be that we must need at least some
minimal set of connectives and the rules governing their inferential use.
When asked about those rules which don’t mention connectives, the struc-
tural rules as they are usually termed, we might say ‘Well of course we shall
have those—that goes without saying, but we shall still need at least some
connectives.’ Scott can and does show us, that when we are talking about
the kind of relation between sets of formulas7 perhaps we don’t really need
connectives at all.

4. The Scott–Lindenbaum Theorem

We now rehearse the Scott result. Scott defines two notions: that of a Scott
relation being consistent, and that of a Scott relation being complete. We
follow another convention here to the effect that the notation for consis-
tency and completeness for multiple conclusion logics are subscripted with
M , while the single-conclusion relations will use the subscript S. Here are
Scott’s definitions in our notation.

Definition 4.1. A Scott relation � is said to be consistent or conM pro-
vided that there is no formula α such that ∅ � α and α � ∅. Equivalently,
given that � is a Scott relation, if there is some 〈Γ,Δ〉 such that Γ � Δ,
then � is conM .8

A Scott relation � is said to be complete or comM provided that for
every formula α either � α or α � ∅.

We will use conM and comM as predicates, e.g., conM (�) means � is
conM . Notice that � being conM is also equivalent to ∅ � ∅. Our state-
ment of the result is slightly simpler than his, since we can use the notion
of a Scott relation, which modesty forbids Scott.

Theorem 4.1. [7] Every Scott relation � is the intersection of all complete
and consistent Scott relations which contain �.

7It would be begging the question were we to begin calling these ‘multiple conclusion
relations’.

8The subscript ‘M’ is for multiple-conclusion.



Remarks on the Scott–Lindenbaum Theorem 1009

Proof. We reproduce the original elegant proof from Scott [7], using our
notation, since we will refer to it later. “The relation [�] is contained in the
intersection of the [comM and conM extensions �+]. Suppose [Γ0 � Δ0].
Let [�+] be a maximal relation such that [� ⊆ �+]. Such a relation exists
by Zorn’s Lemma. The relation [�+] is clearly consistent. Suppose it is not
complete [i.e., not comM ]. Let [α ∈ L] such that [�+ α] and [α �

+]. Define
new relations such that

Φ �0 Ψ iff Φ �+ α,Ψ

Φ �1 Ψ iff Φ, α �+ Ψ

For all [Φ,Ψ ⊆ L]. By choice of [α] both [�0] and [�1] are proper consistent
extensions of [�+]; and they both satisfy [R], [M] and [T], as is easily checked.
It follows that [Γ0 �0 Δ0] and [Γ0 �1 Δ0] both hold by the maximality of
[�+]. But then by [T], we have [Γ0 �+ Δ0], which is a contradiction.”
(p. 416)

The significance of this result is that, as Scott puts it, a complete and
consistent relation is a 2-valued valuation in disguise. Suppose � is a com-
plete and consistent Scott relation, then where L is the set of formulas of
our language we define a valuation V� : L → { 0, 1 }:

Definition 4.2. V�(α) = 1 ⇐⇒ ∅ � α

We shall also require the following abbreviations and definition:

Definition 4.3. “Γ �V ” for “V (α) = 1 for every α ∈ Γ”
“�V Δ” for “V (β) = 1 for some β ∈ Δ”
Next, given any V : L → { 0, 1 }:
Γ �V Δ ⇐⇒ (Γ �V =⇒ �V Δ)

It should be clear that:

�V�=� and that V�V
= V

which is to say that there is a bijection between consistent and complete
Scott relations and 2-valued valuations. But in case it isn’t that clear, here
is a proof sketch of the first conjunct.

Let � be any consistent and complete Scott relation.

Γ �V� Δ ⇐⇒ Γ �V� =⇒ �V� Δ by definition

⇐⇒ � γ for all γ ∈ Γ =⇒ � δ for some δ ∈ Δ

At this point we shall first prove that � γ for all γ ∈ Γ =⇒ � δ for some δ ∈
Δ implies that Γ � Δ. Then we shall prove the converse.
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Assume that the conditional is true, which is to say that either (1) �

γ for some γ ∈ Γ or (2) � δ for some δ ∈ Δ. If (1) then by the completeness
of �, γ � ∅ for some γ ∈ Γ. But then by dilution on both the left and right,
Γ � Δ. If (2) on the other hand, then the dilution strategy just used may
be used again to the same effect.

For the converse, assume that Γ � Δ. We must show that � γ for all γ ∈
Γ implies that � δ for some δ ∈ Δ. Assume the antecedent of this condi-
tional and now assume, for reductio, that � δ for all δ ∈ Δ. We notice that
by the completeness of �, the latter amounts to: δ � ∅ for all δ ∈ Δ. By a
series of steps9 of the form:

for γ ∈ Γ,Γ � γ,Δ by dilution on the left and right

Γ \ { γ } � Δ by Cut, since Γ � Δ

for γ′ ∈ Γ \ { γ } ,Γ \ { γ } � γ′,Δ dilution

Γ \ { γ, γ′ } � Δ by Cut since Γ \ { γ } � Δ
...

we shall eventually arrive at ∅ � Δ, having cut away all of Γ. But now by
another, similar, series of steps of the form:

for δ ∈ Δ, ∅, δ � Δ by dilution on the left and right

∅ � Δ \ { δ } by Cut, since ∅ � Δ
...

we may likewise cut away all of Δ, leaving us with ∅ � ∅. But to say this is
to say that � is inconsistent, contrary to hypothesis.

5. The Message

We know from the Scott–Lindenbaum result, that every Scott relation is
the intersection of all the complete and consistent Scott relations � which
include the one in question. But each of these relations corresponds to a cer-
tain valuation, namely V�. So to say that a Scott relation is that intersection
is to say that precisely those pairs 〈Γ,Δ〉 belong to the relation for which

9This will not be problematic if we require our sets to be finite. Lacking that require-
ment we shall need to impose compactness on the relation or allow infinite proof figures.
An alternative to these restrictions is presented in Appendix A.
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any of the corresponding truth assignments which make all the formulas in
Γ true make some of the formulas in Δ true.

So what? Well, a charitable person who has been able to purge herself
of prejudices acquired, either consciously or unconsciously, during her logic
training, might think of this as the minimal requirement in order for a rela-
tion to be a recognizable species of inference. The first thing to note in this
connection is that Scott himself is more circumspect than this. In the paper
already mentioned, he says, concerning what we have called Scott relations,
“I now feel that it would be wrong to call [such a relation] a consequence
relation.”10 Scott feels that only those Scott relations which support enough
structure to admit derivations of conclusions from hypotheses, can comfort-
ably wear the mantle of consequence. We shall have cause to examine this
issue, in part at least, below.

Scott says that he would prefer to read the provability symbol in an
expression like Γ � Δ as “gamma entails delta,” even though “extraneous
meanings” attach to the latter. He finally settles on calling Γ � Δ a condi-
tional assertion, but the difficulty in finding some non-cumbersome way of
saying Γ � Δ using the conditional assertion rubric leads him to stick with
entailment. In later developments of Scott’s work, authors have continued
to use the word “entailment,” though it is usually prefixed with the modifier
“abstract.”

6. Single Conclusion Logic

It will naturally occur to us to wonder if the Scott result carries over to the
case in which there is a single formula on the right of the “proves” symbol.
Recall that we use � for single-conclusion consequence relations, and � for
multiple conclusion consequence relations. A first instinct is to think that
since the single-conclusion case is just a special case of the multiple conclu-
sion one, the Scott result must carry over, trivially. But this isn’t quite right,
in the sense that it can comfort only those who agree that the general case
represents inference, and not those who merely view the multiple conclusion
relation with envy.

It is for the latter group that we shall concern ourselves with a separate
proof of the Scott–Lindenbaum result for single-conclusion relations. Obvi-
ously we will use as much of the Scott proof as we can, but this will turn out

10Scott [7, p. 417].
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to be less than all of it. To begin with, here are the rules that characterize
the single-conclusion relation:

α ∈ Γ
Γ � α [R]

Γ � α & Γ ⊆ Γ′

Γ′ � α [M]

Γ, α � β & Γ � α
Γ � β [T]

All of the sets mentioned are finite. We keep the corresponding rule labels
and common names letting the context determine when we intend “dilution”
or “cut” to refer to the single-conclusion flavor of the rule in question.

We must next modify the definitions of completeness and consistency,
now indicated by (comS) (conS) respectively, for the more restricted Scott
relations.

Definition 6.1. (Important Properties of Single Conclusion Scott Rela-
tions) Let ϕ, ψ be formulas and � a Scott relation.

� is conS iff there is no ϕ such that ∅ � ϕ and ϕ � ψ for all ψ.
� is comS iff for all ϕ either ∅ � ϕ or ϕ � ψ for all ψ.

We should notice that the original Scott result will not be unproblem-
atically applicable to the single-conclusion case. The reason is that the two
notions of consistency do not match up in general. To see this, consider how
we might get a single-conclusion relation from a multi-conclusion relation.

Definition 6.2. Given �, define �d by Γ �d ϕ iff Γ � {ϕ }.

In [8, Ch. 5], the authors call relations that satisfy the condition in
Definition 6.2 counterparts. They show that �d is the unique counterpart
given �. Now consider the R, M, T-closure of the following set of pairs:
{ 〈∅,Δ〉 : Δ �= ∅ }. It is easy to see that that relation is closed under [T]
since there are no pairs of the form 〈Γ ∪ {β } ,Δ〉. By Theorem 3.3, we get
that [T] is eliminable from the R, M, T-closure of that set. Thus we get the
following result:

Corollary 6.1. The R,M,T-closure of { 〈∅,Δ〉 : Δ �= ∅ }, is conM .

Proof. Let � be the R,M,T-closure of { 〈∅,Δ〉 : Δ �= ∅ }. If ∅ � ∅, then
there would have to be a construction sequence of 〈∅,∅〉 that didn’t employ
T. But that is impossible.

We can conclude that the notions of conM and conS come apart.
Consider the multi-conclusion Scott �, which is the R,M,T-closure of
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{ 〈∅,Δ〉 : Δ �= ∅ }. This relation will contain Γ � Δ for any Γ, and all
Δ �= ∅. But it will not contain ∅ � ∅. Thus, this relation is consistent
according to definition 4.1, i.e., conM (�). But now consider �d based on �;
it will contain, for any α, α �d β for all β, and ∅ �d α. So the counterpart
single-conclusion relation is inconsistent, i.e., not-conS(�d).

The notions come apart going from single to multiple conclusion relations
as well. Consider the following definitions of multi-conclusion relations given
a single-conclusion relation.

Definition 6.3. Let � be a single-conclusion Scott relation. Then define

Γ �min Δ ⇐⇒ ∃δ ∈ Δ s.t. Γ � δ
and

Γ �max Δ ⇐⇒ (∀α)(∀Γ′ ⊇ Γ)[(∀δ ∈ Δ,Γ′, δ � α) ⇒ Γ′ � α]

Γ �max Δ holds when every extension of Γ, Γ′ is such that if α can be
derived from Γ′, δ, for each δ ∈ Δ, then α already follows from Γ′. Γ �min Δ
holds when there is some member of Δ that follows from Γ, relative to the
single-conclusion relation. Scott offers these two possible ways of specify-
ing a multi-conclusion relation from a Tarski-consequence operator, or what
amounts to the same thing, a single-conclusion Scott relation. We offer a
brief aside on some other work on these notions. The definitions presented
in Definition 6.3 are those from Došen [2]. Došen’s paper has an excellent,
detailed investigation of which variations of the structural rules of inference
are satisfied by the min and max relations that Scott offers. Došen’s work
was inspired by the very general investigation of multi-conclusion relations
in [8]. Shoesmith and Smiley call these two relations �∩ and �∪, respectively.
They also investigate the circumstances under which the max relation exists.
If sequents are permitted to be infinite, and relations are assumed to use
different structural rules (which we don’t consider here), the max relation
may not exist.

One immediate difference between the min and max relations is that we
will never have ∅ �min ∅. The reason being that there are no members on
the right hand side for ∅ to prove relative to the single-conclusion relation.
So given a not-conS relation �, �min is always conM .

We should pause to notice a commonality in these two cases of
where the notions of consistency come apart. The R, M, T-closures of
{ 〈∅,Δ〉 : Δ �= ∅ }, and { 〈∅, α〉 : α ∈ L } are identical. The second is just a
special case of the first, and the first is obtained by various uses of [M] from
the second. Furthermore, our example of a � that is inconsistent while �min

is consistent is the single-conclusion R, M, T-closure of { 〈∅, α〉 : α ∈ L }.
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Similarly, the R, M, T-closure of { 〈∅,Δ〉 : Δ �= ∅ } is really the conM Scott
relation �� such that for all α, � α.

The thought is that the only instance where conS and conM come apart
is in ��. We can apply the notion of conS to multi-conclusion relations
fairly easily giving alternative notions of consistency and completeness for
multi-conclusion relations.

Definition 6.4. (Alternate Properties of Multi-conclusion Relations) Let
Γ,Δ ⊆ L, and ϕ,ψ ∈ L.

� is a-consistent iff there is no ϕ such that ∅ � ϕ, and for all non-empty
Δ, ϕ � Δ.

� is a-complete iff for all ϕ either ∅ � ϕ or ϕ � ψ for all ψ.

We can see that a-consistency is really just conS in a multi-conclusion
guise, similarly for comS . We will refer to the alternative notions of consis-
tency and completeness by conS and comS for multi-conclusion relations
when we are not also discussing single-conclusion relations. That allows us
to show:

Lemma 6.2. Suppose � �= ��. Then conM (�) iff conS(�).

Proof. First notice that not-conM (�) always implies not-conS(�) by [M].
Conversely, suppose conM (�), but not-conS(�). So, equivalently, there is
α such that α � β for all β, and � α. While also ∅ � ∅. But by [T] � β for
all β, i.e., � = ��. A contradiction.

So the only multi-conclusion Scott relation where conM and conS come
apart is ��. We are trying to use the Scott–Lindenbaum result to derive
something similar for single-conclusion relations. So far we have been im-
peded because the notions of consistency and completeness aren’t the same
for both relations. But given the last theorem we see where that fails. Now
consider the following lemma.

Lemma 6.3. Suppose that � is a-consistent and a-complete, then �d is conS

and comS.

Proof. Since � is a-consistent, there is no ϕ such that ∅ � ϕ and ϕ � Δ
for all non-empty Δ. Suppose ∅ �d ϕ for all ϕ, then ∅ � ϕ by definition for
all ϕ. So � is a-inconsistent. Let β, be any formula. Then either (1) β � ψ
for all ψ, or (2) ∅ � β. If (1), then β �d ψ for all ψ. If (2), then ∅ �d β.
Therefore, comS(�d).

We can then show the result that we want.
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Theorem 6.4. (Scott Lindenbaum theorem for single-conclusion Scott rela-
tions) For every Scott relation �, Γ � ϕ, iff for all conS and comS Scott
extensions �+ of �, Γ �+ ϕ.

Proof. Suppose that � obeys the structural rules, and Γ � α. Then for any
conS and comS extension of �, �+, Γ �+ α.

Now suppose that Γ � α. Then Γ �min {α } by definition, and �min is
clearly conM . So there is a conM and comM extension of �min, we call it
�+

min, by Scott’s theorem such that Γ �
+
min {α }. But that means �

+
min α,

so �+
min �= ��. By lemma 6.2, �+

min is also a-consistent and a-complete. But
then there is a conS and comS relation �+

d by lemma 6.3. �+
d extends �

since if Σ � ψ, then Σ �min {ψ } by definition. So Σ �+
min ψ and Σ �+

d ψ.
However, Γ �

+
d α.

Therefore the Scott theorem can give us what we want, once we are clear
about the notions of consistency and completeness. In the appendix we also
provide a direct proof of the following theorem. The proof replicates Scott’s
original proof using the alternative notions of consistency and completeness.

Theorem 6.5. [7] For every a-consistent Scott relation �, Γ � Δ, iff for all
a-consistent and a-complete extensions of �, �+, Γ �+ Δ.

Part of what the result shows is that any Scott relation � such that
Γ � α, can be extended to a maximal Scott relation �+ such that Γ �

+ α.
So it is determined by all of its a-consistent and a-complete extensions;
a-consistency is preserved by taking maximal extensions.

Now we can raise the following question: Do we have everything that
we had in the general case? The answer is: not quite. In the general case
we had no 2-valued valuation left behind. Every one of them had a cor-
responding consistent and complete Scott relation, �. And neither were
there any complete and consistent Scott relations � without a 2-valued
valuation to which such a relation corresponded. A nice result to be sure,
but not one that entirely carries over to the case of single-conclusion Scott
relations.

We still have, given that consistent and complete Scott relations are 2-val-
ued valuations, that each Scott relation is determined by a class of 2-valued
valuations. What we have lost however is that every two-valued valuation
has a corresponding consistent and complete Scott relation. There are some
which don’t enjoy such a correspondence, for instance the valuation v�,
defined by: for every formula α, v�(α) = 1

The relation that would correspond to v� must be such that ∅ � α for
all formulas α, i.e., the single-conclusion version of ��. So then take any ϕ,
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∅ � ϕ and ϕ � α for all α. Which is to say that � is not a-consistent. Interest-
ingly, the same does not seem to apply to the case of v⊥ which assigns every
formula the value 0. Take the single-conclusion relation �⊥ such that for all
Γ �= ∅ and α, Γ �⊥ α. There are no α such that �⊥ α, so it is conS . The
obvious next question is to ask whether we can get all of the valuations back?

We lose valuations because the notions of consistency and completeness
have changed from those of conM and comM to a-consistency and a-com-
pleteness. The latter correspond to conS and comS directly. Next we will
look at how we fix the lack of valuations.

Until now we haven’t discussed the structure of the underlying language.
As Došen [2] points out, Γ �max Δ iff Γ � ∨

Δ, i.e., the disjunction of all of
Δ’s members. That requires that we have a disjunction and Δ be finite, of
course. Inspired by this, and Scott’s thoughts about how much structure a
language should have in order to be called inference we take up language in
the next section.

7. You Want More Structure?

In remarking that a Scott relation might not be robust enough to support
an interpretation as a fully-fledged consequence relation, Scott raises the
possibility that more structure might be necessary in the way of something
like connective rules. We follow up on this idea, in a more general way, in
an attempt to repair the broken bijection of Sect. 6.

In [5] we introduce, in logical guise, the notion of a coproduct, the defi-
nition of which we now rehearse.

Definition 7.1. Given a Scott relation �, we say that the relation has co-
products or is coproductival iff for every finite set of formulas Γ there is a
formula

∐
(Γ) which satisfies the following two conditions:

[Canonical injections] If there is δ ∈ Δ such that Γ � δ, then Γ � ∐
(Δ)

[Universal property ] If for all δ ∈ Δ, Γ, δ � α then Γ,
∐

(Δ) � α
From this point on we assume that all the Scott relations we mention

have coproducts. A special case of this is the coproduct of the finite set
∅,

∐
∅. By the universal property, it has the following property: for all α,∐

∅ � α.11

11Wójcicki [9, p. 334] also considers extending the language with disjunction. His defi-
nitions are different from ours, but with the same effect. Czelakowski [1] also has similar
definitions of disjunctions to ours, but pursues different lines of inquiry.
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We now wish to prove that every single-conclusion Scott relation �, is the
intersection of all the consistent and complete Scott relations which contain
�. Here we do this directly using single-conclusion relations, and so invoking
consistency and completeness in the sense of conS and comS , respectively.
Evidently � is included in the intersection just mentioned. To show the con-
verse inclusion we argue contrapositively. Let � be a Scott relation with
the property that Γ � α. We demonstrate the existence of a consistent and
complete extension of � which has this same property.

Let �+ be the maximal Scott relation containing � such that Γ � α.12

Clearly this relation extends � and all we need to know is that it is consis-
tent and complete. Consistency follows immediately from the fact that there
is some formula that isn’t proved by some set of formulas. As for complete-
ness, assume for reductio that �+ is not complete. Thus there must be some
formula β such that

(1) ∅ �
+ β and

(2) there is some formula δ such that β �
+ δ

Define two Scott relations as follows
(�1) Σ �1 σ ⇐⇒ Σ, β �+ σ

(�2) Σ �2 σ ⇐⇒ Σ �+
∐

({β, σ })

�1 properly extends �+ since it is clear that since β �+ β, ∅ �1 β and if
Λ �+ λ, then Λ, β �+ λ, by dilution. It must also be the case that �2 extends
�+ since if Λ �+ λ then Λ �+

∐ {β, λ } by the existence of canonical injec-
tions. Further, �2 must be a proper extension of �+ since from β �+ β, we
must have that β �+

∐ {β, δ } which is to say that β �2 δ.
It thus follows from the maximality of �+ that Γ �1 α and Γ �2 α. By

the definitions then, Γ, β �+ α and Γ �+
∐ {β, α }. By axiom α �+ α

and by dilution Γ, α,�+ α. Then, by the universal property of coproducts,
Γ,

∐ {β, α } �+ α. We may then use Cut to derive that Γ �+ α contrary to
hypothesis.

The question remains whether we have lost any valuations. Since we are
using conS as the notion of consistency, no Scott relation that satisfies conS

will make every formula true. On the other hand, now that we have given
the language more structure, shouldn’t we alter the notion of valuation?
And if we alter the notion of valuation, how should it be altered?

12As Scott remarks in [7], the existence of such a maximal relation is guaranteed by
Zorn’s lemma.
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This takes us into the well explored world of matrix semantics.13 The
idea of a logical matrix is an ordered pair 〈A, D〉 of an algebra14 of values A

and a set of special designated values D which is contained in the algebra.
The designated values are the values from A that we consider to designate
truth. So if a formula gets a value from D, it is interpreted as true. Given a
matrix, we then decide which assignments of formulas to elements of A are
acceptable. In essence, we decide which functions v : L → A are models of
L. Of course, what we have been using is the matrix 〈〈{ 0, 1 } ,∅〉 , { 1 }〉, and
what Scott’s original result shows is that the set of v ∈ { 0, 1 }L corresponds
to all of the conM and comM multi-conclusion Scott relations.

But with this new structure in L, viz. coproducts, what should the mod-
els be? Inspired by disjunction, we say that a function v : L → { 0, 1 } is a
valuation iff

v
(∐

(Δ)
)

= 1 ⇐⇒ ∃δ ∈ Δ s.t. v(δ) = 1.

As the special case of coproducts for ∅, it must be v(
∐

(∅)) = 0. What hap-
pens once we add coproducts, is that the reasonable or acceptable functions,
i.e., valuations, can’t make every formula true. That means, in this case all
of the valuations are represented by the conS and comS single-conclusion
Scott relations. So we face a dilemma: lose valuations, or add structure. But
it is a dilemma that is easily resolved: add structure! The moral of these var-
ious twists and turns is that it requires (some, but not very much) structure
to compress Scott’s insight into a single-conclusion framework.

Acknowledgements. The authors would like to thank the anonymous ref-
erees for their comments. Gillman Payette would like to thank the Killam
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Appendix

In [2] Kosta Došen suggests axiomatizing multiple conclusion entailment relations
by means of

[� 1] Γ � Γ

[� 2.1] for all α ∈ Δ Γ � {α } =⇒ (Δ ∪ Σ � Λ =⇒ Γ ∪ Σ � Λ)

[� 2.2] for all α ∈ Γ {α } � Δ =⇒ (Σ � Λ ∪ Γ =⇒ Σ � Λ ∪ Δ)

13See Wojcicki [9, chapter 3].
14An algebra is a pair 〈A, τ〉 where A is a set, and τ is a collection of functions f :

An → A. Note An = A × · · · × A
︸ ︷︷ ︸

n−times

.
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It’s not difficult to see that since we are using an essentially “set” form of tran-
sitivity in this presentation the argument used in Sect. 4 to sketch the proof of
bijection, would not need to assume that all the sets involved be finite. This is
because we wouldn’t, under the alternate structural rules, be forced to cut one
formula at a time.

Now we replicate the Scott–Lindenbaum theorem in its new setting. This proof
follows the original from Scott [7] almost exactly, hence why we call it Scott’s the-
orem.

Proof. (Proof of Theorem 6.5) Suppose that � is a-consistent. The if direction
is clear. Since � is a-consistent, it follows that there is a γ such that ∅ � γ, or
some δ such that γ � δ. Either way there are some Γ, Δ such that Γ � Δ and Δ is
non-empty. Let C be a chain of a-consistent consequence relations extending � that
obey the structural rules, such that for each �′∈ C, Γ �

′ Δ. Claim: �C=df ∪ C is
a a-consistent consequence relation that obeys the structural rules and Γ doesn’t
prove Δ, but extends �.

Since C is a chain, �⊆�C . Now suppose that Σ ∩ Ψ �= ∅, So for Σ � Ψ, thus
Σ �C Ψ. Suppose that Σ �C Ψ, and Σ ⊆ Σ′, Ψ ⊆ Ψ′, so for some �′∈ C, Σ �′ Ψ,
thus Σ′ �′ Ψ′, so Σ′ �C Ψ′. Now suppose that Σ �C α,Ψ, and Σ, α �C Ψ. So there
are �′ and �′′ in C such that Σ, α �′ Ψ and Σ �′′, α,Ψ. But since C is a chain, one
of the relations is contained in the other, say �′ is the largest, so then Σ �′ Ψ by T.
Thus, Σ �C Ψ. Finally, suppose that Γ �C Δ, so there is �′∈ C such that Γ �′ Δ,
but that is contrary to assumption. So by Zorn’s lemma there is a maximal relation
�+ extending � satisfying the structural rules such that Γ �

+ Δ.
Suppose �+ isn’t a-consistent. So there is ϕ such that both ϕ �+ ψ for all ψ

and ∅ �+ ϕ. Since Δ isn’t empty, there is δ ∈ Δ, and ϕ �+ δ, but then ∅ �+ Δ
by T. So by M, Γ �+ Δ. Therefore, �+ is a-consistent.

Suppose �+ isn’t a-complete. So there is α such that both �
+ α and α �

+ β for
some β. Define new relations

Σ �1 Ψ ⇐⇒ Σ �+ {α } ∪ Ψ
Σ �2 Ψ ⇐⇒ Σ ∪ {α } �+ Ψ

Now, both of these are a-consistent extensions. The first is a-consistent because
∅ �1 α. If ∅ �1 α, then by definition, ∅ �+ {α } ∪ {α }, but that means ∅ �+ α.
For the second, ∅ �2 β since α �

+ β. They both obey the structural rules as the
reader can check. They are both proper extensions: α �1 β since α �+ {α } ∪ {β },
and ∅ �2 α since α �+ α.

Since �+ is maximal, the only things that could fail for 1 and 2 are that Γ �1 Δ
and Γ �2 Δ. But then both Γ �+ α,Δ and Γ, α �+ Δ. So by T, Γ �+ Δ, a
contradiction.
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