
Sven Ove Hansson Descriptor Revision

Abstract. A descriptor is a set of sentences that are truth-functional combinations of

expressions of the form Bp, where B is a metalinguistic belief predicate and p a sen-

tence in the object language in which beliefs are expressed. Descriptor revision (denoted

◦) is an operation of belief change that takes us from a belief set K to a new belief set

K ◦Ψ where Ψ is a descriptor representing the success condition. Previously studied oper-

ations of belief change are special cases of descriptor revision, hence sentential revision

can be represented as Ψ = {Bp}, contraction as Ψ = {¬Bp}, multiple contraction as

Ψ = {¬Bp1, ¬Bp2, . . . , ¬Bpn}, replacement as Ψ = {Bp, ¬Bq}, etc. General models of

descriptor revision are constructed and axiomatically characterized. The common selec-

tion mechanisms of AGM style belief change cannot be used, but they can be replaced by

choice functions operating directly on the set of potential outcomes (available belief sets).

The restrictions of this construction to sentential revision (Ψ = {Bp}) and sentential

contraction give rise to operations with plausible properties that are also studied in some

some detail.

Keywords: Belief change, Descriptor revision, Expansion, Monoselective choice function,

Outcome set, Pure contraction, Revocation, Semirevision.

1. Introduction

In the standard framework for belief change, an individual’s beliefs are rep-
resented by a belief set, i.e. a logically closed set of sentences. Changes are
induced by an input and give rise to an output that is a new belief set
[1,4,11,12]. Different types of change are characterized by different require-
ments on the outcome. In (sentential) revision, a specified sentence should
be present in the outcome. In multiple revision, all elements of a specified
set of sentences should be present. In (sentential) contraction, a specified
sentence should be absent from the outcome. In package contraction, all
elements of a specified set of sentences should be absent, whereas in choice
contraction at least one element of a specified set of sentences should be
absent. In consolidation, falsum should be absent [5,14]. In replacement,
one specified sentence should be present and another absent [7], etc. All
these are success conditions for the respective types of operations.
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In Sect. 2, a general framework for such conditions, belief descriptors, is
proposed. In Sect. 3, a general operation of descriptor revision that covers
all operations on belief sets with input-specified conditions on the outcome
is introduced. The standard AGM mechanism for choosing what to include
in the outcome only works for some descriptors. Therefore, a more general
framework is introduced in which the selection takes place on potential out-
comes rather than on possible worlds or maximal consistent subsets of the
original belief set. Two variants of this construction are axiomatically char-
acterized. In Sect. 4, revision by a single sentence is investigated as a special
case, and an ordering-based model is presented that is characterized with
plausible axioms. It is shown to have AGM revision as a special case. Section
5 is devoted to the removal of sentences, both in the form of contraction and
in the form of a related new type of operation, revocation. All formal proofs
are deferred to an Appendix.

Sentences in the object language L of beliefs will be denoted by lower-case
letters (p, q . . . ) and sets of such sentences by upper-case letters (A,B . . .).
The usual truth-functional operations are denoted ¬, &, ∨, →, and ↔. �
is a tautology and ⊥ a contradiction. The consequence operator Cn for L
expresses a supraclassical and compact logic satisfying the deduction prop-
erty (q ∈ Cn(A∪{p}) if and only if p → q ∈ Cn(A)). X � p is an alternative
notation for p ∈ Cn(X) and X + p (“expansion”) for Cn(X ∪ {p}). We use
K to denote a belief set, i.e. a logically closed subset of the language.

2. Belief Descriptors and Their Interrelations

An atomic belief descriptor is sentence Bp with p ∈ L. It is satisfied by
a belief set K if and only if p ∈ K. Atomic descriptors are atomic in the
sense of being the smallest building-blocks of descriptors, but they are not
logically independent. The symbol B is not part of the object language,
thus it cannot be used to express an agent’s beliefs about her own beliefs.
(It cannot either be iterated.)1

A molecular belief descriptor (denoted by lower-case Greek letters
α, β, . . .) is a truth-functional combination of atomic descriptors. Condi-
tions of satisfaction for molecular descriptors are defined inductively, hence

1The framework can accommodate an operator in the object language that represents
the agent’s beliefs about her own beliefs. That operator may or may not coincide with the
metalinguistic belief operator B, depending on whether the agent’s autoepistemic beliefs
accord with her epistemic conduct.
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K satisfies ¬α if and only if it does not satisfy α, it satisfies α ∨ β if and
only if it satisfies either α or β, etc.

A composite belief descriptor (in short: descriptor; denoted by upper-case
Greek letters Ψ, Ξ, . . .) is a set of molecular descriptors. A belief set K sat-
isfies a composite descriptor Ψ if and only if it satisfies all its elements. A
descriptor is satisfiable within a set of belief sets if and only if it is satisfied
by at least one of its elements.

The symbol � denotes relations of satisfaction. K � Ψ means that K
satisfies Ψ and Ψ � Ξ that all belief sets satisfying Ψ also satisfy Ξ. The
corresponding equivalence relation is written ��, hence Ψ �� Ξ holds if
and only if both Ψ � Ξ and Ξ � Ψ hold. � (descriptor falsum) denotes
{Bp, ¬Bp} for an arbitrary p. � must be distinguished from the falsum ⊥ of
the object language (that is introducible as p&¬p for an arbitrary p). The
inconsistent belief set Cn({⊥}) satisfies the condition K � ⊥, but no belief
set satisfies the condition K � �.
Definition 1. A set Y of belief sets is descriptor-definable if and only if
there is some descriptor Ψ such that for all belief sets Y :

Y ∈ Y if and only if Y � Ψ.

Observation 1. (1) Let Y be a finite set of belief sets. Then Y is descrip-
tor-definable.

(2) If L is logically infinite2 then there are sets of belief sets that are not
descriptor-definable.

3. General Descriptor Revision

By descriptor revision will be meant an operation ◦ that takes us from a
belief set K and an input in the form of a descriptor Ψ to a new belief set
K ◦ Ψ. We want K ◦ Ψ to be a belief set satisfying Ψ but − and this is the
central problem in belief revision − there is typically more than one possi-
ble outcome that satisfies Ψ. The traditional solution to this problem is to
select a set of candidate belief sets satisfying Ψ and use their intersection
as the outcome [1]. This works for contraction since the intersection of a set
of belief sets not containing a sentence p does not contain p. However, the
use of intersection to adjudicate between equally plausible options does not
work for general descriptors. The reason for this is that the intersection of

2A set of sentences is logically infinite if and only if it has infinitely many equivalence
classes in terms of logical equivalence.
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a set of belief sets satisfying Ψ need not satisfy Ψ. This will for instance
be the case for the descriptor {Bp ∨ Bq} that is satisfied by each of the
belief sets Cn({p}) and Cn({q}) but not by their intersection Cn({p ∨ q}).
For general descriptors we therefore need another selection mechanism. We
will use a choice function (selection function) that chooses directly among
the set of potential outcomes of the operation ◦, its outcome set [8,9]. More
precisely, the selection takes place among those elements of the outcome set
that satisfy the descriptor.

Definition 2. A choice function for a set X is a function s such that if
∅ 
= Y ⊆ X then ∅ 
= s(Y) ⊆ Y, and otherwise s(Y) is undefined.

A choice function s for X is monoselective if and only if it holds for all Y

that if ∅ 
= Y ⊆ X then s(Y) has exactly one element.

Definition 3. Let s be a choice function on a set X of belief sets. Then
s(Ψ) is an abbreviation of s({X ∈ X | X � Ψ}).

The following representation theorem introduces what we will take to be the
most general form of selection-based descriptor revision:

Theorem 1. Let ◦ be an operation on a consistent belief set K, with descrip-
tors as inputs and belief sets as outputs. Then the following two conditions
are equivalent:

(I) ◦ is obtainable as K ◦ Ψ = s(Ψ) from a set X of belief sets such that
K ∈ X, and a monoselective choice function s on the descriptor-definable
subsets of X, such that for all Ψ: (a) if there is some X ∈ X with X � Ψ,
then s(Ψ) � Ψ, and (b) otherwise s(Ψ) = K.

(II) ◦ satisfies the postulates:
K ◦ Ψ = Cn(K ◦ Ψ) (closure)
K ◦ Ψ � Ψ or K ◦ Ψ = K (relative success)
If K ◦ Ξ � Ψ then K ◦ Ψ � Ψ (regularity)

Relative success and regularity can be seen as weakened forms of a strong
success postulate K ◦ Ψ � Ψ that cannot be used since it is not satisfied by
the inconsistent descriptor �. These two postulates are both generalizations
of conditions that have been used for the characterization of semi-revision
(not always successful revision) and shielded contraction (not always suc-
cessful contraction). (Relative success was introduced in [15] and regularity
in [10].)

The model of descriptor revision introduced in Theorem 1 includes most
plausible patterns of belief change but also some utterly implausible ones.
It is for instance compatible with the “absolutely stubborn” pattern such
that X = {K} and K ◦ Ψ = K for all Ψ.
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A more orderly class of operations can be obtained by deriving the selec-
tion function from a relation � on X (with the strict part <), in such manner
that K ◦ Ψ is required to be �-minimal among the elements of X that sat-
isfy Ψ. For this to work, all descriptor-definable subsets of X must have a
minimal element (a weakened form of well-foundedness):

Definition 4. (1) Let � be a relation on X and let Y ⊆ X. Then X is
�-minimal in Y if and only if X ∈ Y and X � Y for all Y ∈ Y.

(2) A relation � on a set X of belief sets is descriptor-wellfounded if and
only if each non-empty descriptor-definable subset of X has a �-minimal
element.

Relational descriptor revision can be axiomatically characterized as follows:

Theorem 2. Let ◦ be an operation on a consistent belief set K, with descrip-
tors as inputs and belief sets as outputs. Then the following three conditions
are equivalent:

(I) There is a set X of belief sets with K ∈ X, and a relation � on X,
such that (i) K � X for all X ∈ X, and (ii) K ◦ Ψ is the unique �-minimal
element of X that satisfies Ψ, unless Ψ is unsatisfiable within X, in which
case K ◦ Ψ = K.

(II) There is a set X of belief sets with K ∈ X, and a complete, transi-
tive, antisymmetric, and descriptor-wellfounded relation � on X, such that
(i) K � X for all X ∈ X, and (ii) K ◦ Ψ is the unique �-minimal ele-
ment of X that satisfies Ψ, unless Ψ is unsatisfiable within X, in which case
K ◦ Ψ = K.

(III) ◦ satisfies the postulates:

If Ψ �� Ψ′ then K ◦ Ψ = K ◦ Ψ′ (extensionality)

K ◦ Ψ = Cn(K ◦ Ψ) (closure)

If K � Ψ then K ◦ Ψ = K (confirmation)

K ◦ Ψ � Ψ or K ◦ Ψ = K (relative success)

If K ◦ Ξ � Ψ then K ◦ Ψ � Ψ (regularity)

If K ◦ Ψ � Ξ then K ◦ Ψ = K ◦ (Ψ ∪ Ξ) (cumulativity)

As can be seen from Theorem 2, the distinction between relational and
transitively relational operations that is important in AGM [1,16] cannot
be transferred to this framework. Here, all relational operations are also
transitively relational, i.e. based on a transitive relation. We will refer to the
operation characterized in Theorem 2 as linearly ordered descriptor revision.
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The cumulativity postulate that is used in the theorem can alternatively
be replaced by a postulate of reciprocity:

Observation 2. Let ◦ be a descriptor revision on a consistent belief set K.
If it satisfies regularity and relative success, then it satisfies cumulativity if
and only if it satisfies:

If K ◦ Ψ � Ξ and K ◦ Ξ � Ψ then K ◦ Ψ = K ◦ Ξ (reciprocity)

4. Sentential (Semi)revision Reconstructed

By restricting an operator of descriptor revision to a class of descriptors that
only mention a single object language sentence we can construct a senten-
tial operation on belief sets, i.e. an operation that takes a single sentence as
input and has a new belief set as its output. Most obviously, we can obtain
sentential revision by restricting our attention to descriptors of the form
Bp, using the definition

K ∗ p = K ◦ Bp
We can use the construction in Theorem 1 to obtain a selection-based model
of semirevision (revision that may sometimes fail) as follows:

Theorem 3. Let ∗ be a sentential operation on the consistent belief set K.
Then the following two conditions are equivalent:
(I) K ∗ p = K ◦ Bp for all p ∈ L, where ◦ is a selection-based descriptor
revision whose choice function s satisfies:

(s0) If K � Bp then s(Bp) = K
(II) ∗ satisfies:

K ∗ p = Cn(K ∗ p) (closure)
K ∗ p = K ∗ p′ whenever � p ↔ p′ (extensionality)
If p ∈ K then K ∗ p = K (confirmation)
If K ∗ q � p then K ∗ p � p (regularity)
Either K ∗ p � p or K ∗ p = K (relative success)

The operation axiomatized in Theorem 3 is a semirevision, not a revision,
since it does not necessarily satisfy the success postulate for sentential revi-
sion (p ∈ K ∗ p). Success can be ensured with the additional requirement
that Cn({⊥}) ∈ X. As the following theorem shows, an extension to the
standard (“basic”) AGM model is also easily achievable.

Theorem 4. Let ∗ be a sentential operation on the consistent belief set K.
Then the following two conditions are equivalent:
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(I) K ∗p = K ◦Bp for all p ∈ L, where ◦ is a selection-based descriptor revi-
sion such that the following holds for its choice function s and its outcome
set X :

(X1) If p � ⊥ then p is satisfiable within X\{Cn({⊥})}
(X2) Cn(K ∪ {p}) ∈ X

(s1) If K � Bp then s(Bp) = K
(s2) If Bp � B⊥ then s(Bp) � B⊥
(s3) For all X ∈ X: If K ⊆ X ⊂ s(Bp) then p /∈ X
(s4) If K � ¬p then K ⊆ s(Bp)

(II) ∗ satisfies the basic AGM postulates, i.e.:
K ∗ p = Cn(K ∗ p) (closure)
p ∈ K ∗ p (success)
K ∗ p ⊆ K + p (inclusion)
If ¬p /∈ K, then K + p ⊆ K ∗ p. (vacuity)
K ∗ p is consistent if p is consistent. (consistency)
K ∗ p = K ∗ p′ whenever � p ↔ p′. (extensionality)

(X2) derives form the property of AGM revision that if K � ¬p, then K∗p =
K +p. As the following example will show this is a contestable property due
to the non-monotonic nature of belief revision. John is a neighbour about
whom I know next to nothing. Then I am told that he goes home from work
by taxi every day (t). When incorporating this new information into my
belief set, I also start to believe that John is a rich man (r). Thus r ∈ K ∗ t.
Suppose that K ∗ t = K + t. Then equivalently t → r ∈ K. Consider an
alternative situation in which I receive, together with the information t, also
the information that John is a driver by profession (d). This will lead me
to incorporate the information t&d into my belief set. Since K � ¬(t&d) we
should have K ∗ (t&d) = K + (t&d). It then follows from t → r ∈ K that
r ∈ K ∗ (t&d), i.e. that I will believe in this case as well that John is a rich
man. This is implausible, and we can conclude that K∗t 
= K+t. There does
not either seem to be any other input sentence t′ such that K ∗ t′ = K + t.
This speaks against the property (X2) that was used in Theorem 4.

We can obtain a linearly ordered version of sentential revision from the
linearly ordered descriptor revision of Theorem 2:

Theorem 5. Let ∗ be a sentential operation on the finite-based and consis-
tent belief set K. Then the following two conditions are equivalent:

(I) K ∗ p = K ◦ Bp for all p ∈ L, where ◦ is based on a countable set X of
finite-based belief sets with K ∈ X and a complete, transitive, antisym-
metric, and wellfounded ordering � on X with K � X for all X ∈ K.
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K ◦ Ψ is the unique �-minimal element of X that satisfies Ψ, unless Ψ
is unsatisfiable within X, in which case K ◦ Ψ = K.

(II) ∗ satisfies the following conditions:

K ∗ p = Cn(K ∗ p) (closure)

If K ∗ q � p then K ∗ p � p (regularity)

Either K ∗ p � p or K ∗ p = K (relative success)

If p ∈ K then K ∗ p = K (confirmation)

K ∗ p = K ∗ p′ whenever � p ↔ p′ (extensionality)

If K is finite-based then so is K ∗ p (finite-based outcome)

{X | (∃t)(X = K ∗ (p ∨ t))} is finite (finite gradation)

If q ∈ K ∗ p then K ∗ p = K ∗ (p&q) (cumulativity)

The operation ∗ introduced in Theorem 5 is a semi-revision. To make it a
revision (i.e. make it satisfy the success condition p ∈ K ∗ p) it is necessary
and sufficient to ensure that Cn({⊥}) ∈ X. The standard consistency pos-
tulate of AGM (If p � ⊥ then K ∗ p � ⊥) is satisfied if and only if X and �
satisfy the following two conditions:

(X1) If p � ⊥ then p is satisfiable within X \ {Cn({⊥})}.
(�1) If X � ⊥ and Y � ⊥ then K � X < Y .

Finally, the construction of Theorem 5 can be further specified to obtain full
AGM revision (satisfying both the basic and the supplementary postulates):

Theorem 6. Let ∗ be a sentential operation on the consistent belief set K
and X its outcome set. Then the following two conditions are equivalent:
(I) ∗ is based on a transitive, complete, and antisymmetric relation � on X

(with the strict part <), such that:
(∗�) K ∗ p is the unique �-minimal p-containing element of X,

and furthermore:
(X0) K ∈ X

(X1) If p � ⊥ then p is satisfiable within X \ {Cn({⊥})}.
(X2+) If X ∈ X then Cn(X ∪ {p}) ∈ X.
(�1) If X � ⊥ and Y � ⊥ then K � X < Y .
(�2) If s ∈ K ∗ t and (K ∗ s) + v � ⊥, then (K ∗ s) + v � (K ∗ t) + v

(II) ∗ satisfies the complete set of AGM postulates, i.e.:
K ∗ p = Cn(K ∗ p) (closure)
p ∈ K ∗ p (success)
K ∗ p ⊆ K + p (inclusion)
If ¬p /∈ K, then K + p ⊆ K ∗ p. (vacuity)
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K ∗ p is consistent if p is consistent. (consistency)
K ∗ p = K ∗ p′ whenever � p ↔ p′. (extensionality)
K ∗ (p&q) ⊆ (K ∗ p) + q (superexpansion)
If ¬q /∈ K ∗ p, then (K ∗ p) + q ⊆ K ∗ (p&q) (subexpansion)

The sentential revision ∗ of Theorem 6 is derivable from a partial descriptor
revision ◦ that is defined for descriptors of the form Bp (but not necessarily
for other descriptors, since the conditions of part II of the theorem do not
guarantee descriptor-wellfoundedness for the relation �).

The conditions (X2+) and (�2) are both quite strong and arguably
implausible. (X2+) is a strengthened version of (X2) that was shown above
to be problematic. (�2) can be seen as a strengthened version of a principle
that holds already for basic AGM (as in Theorem 4): In basic AGM, the orig-
inal belief set K is preferred to all other potential revision outcomes in the
sense that if K is a potential outcome (i.e. it includes the input sentence),
then K is indeed the outcome, in preference to all other potential outcomes
(belief sets containing the input sentence). This preference is robust under
consistent expansion in the sense that if K + v is consistent then it is the
outcome of revising K by v, in preference to all other potential outcomes
(beliefs sets containing v). In full AGM (satisfying the supplementary postu-
lates), this robustness under consistent expansion is carried one step further.
It extends from the relationship between K and other belief sets to the rela-
tion between any two belief sets. Let K ∗ t be a belief set containing s. Then
K ∗ s � K ∗ t. Provided that v can be consistently added to K ∗ s, according
to (�2) this priority is retained after expansion by v, i.e. it also holds that
(K ∗ s) + v � (K ∗ t) + v.

5. Revocation and Contraction

By contraction is meant an operation that removes a specified sentence (and
whatever needs to go with it) without adding any new beliefs. But in spite
of being a standard operation in belief change theory, contraction does not
seem to be a fully realistic type of operation. Of course there are belief
changes in real life that are driven by a need to give up a certain belief.
However, such changes tend to be caused by the acquisition of some new
information that is added to the belief set. The only credible examples of
pure contraction that have been presented in the literature are hypothetical
contractions such as contractions for the sake of argument [3,13]. Therefore
it is an interesting option to give up the inclusion postulate (K ÷ p ⊆ K)
and search, without this restriction, for an operation satisfying the descrip-
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tor ¬Bp. This type of operation will be called revocation and denoted by
the operation sign ·−. Its most basic form can be characterized as follows (in
a weak form that does not satisfy the success postulate):

Theorem 7. Let ·− be a sentential operator on the consistent belief set K.
Then the following two conditions are equivalent:
(I) K ·− p = K ◦ ¬Bp for all p ∈ L, where ◦ is a descriptor revision that has
the outcome set X with K ∈ X, and ◦ is based on a monoselective choice
function s such that for all Ψ: (a) If K � Ψ then s(Ψ) = K, (b) if there is
some X ∈ X with X � Ψ, then s(Ψ) � Ψ, and (c) if X � Ψ for all X ∈ X,
then s(Ψ) = K.
(II) ·− satisfies:

K ·− p = Cn(K ·− p) (closure)
If K ·− p � p then K ·− q � p (persistence; [2])
Either K ·− p � p or K ·− p = K (relative success; [2])
If p /∈ K then K ·− p = K (vacuity)
K ·− p = K ·− p′ whenever � p ↔ p′ (extensionality)

We can reconstruct contraction as an idealized form of revocation in which
we disregard the additions to the belief set that push out the sentence to be
contracted:

Definition 5. K ÷ p = K ∩ (K ·− p) (revocation-based contraction)

A property of sentential operations is inherited from revocation to contrac-
tion if and only if: whenever the property holds for an operation of revocation
it also holds for the operator of contraction that is based on it in the manner
of Definition 5.

Observation 3. 1. The following properties are inherited from revocation to
contraction: success (If � p then p /∈ K −p), failure (If � p then K −p = K),
vacuity (If p /∈ K then K − p = K), closure (K − p = Cn(K − p)), exten-
sionality (K − p = K − p′ whenever � p ↔ p′), recovery (K ⊆ (K − p) + p),
finite-based outcome (If K is finite-based, then so is K − p), relative suc-
cess (Either K − p � p or K − p = K), persistence (If K − p � p then
K − q � p), conjunctive overlap ((K − p) ∩ (K − q) ⊆ K − (p&q)), con-
junctive factoring (Either K − (p&q) = K − p, K − (p&q) = K − q, or
K −(p&q) = (K −p)∩(K −q)), and conjunctive trisection (If p ∈ K −(p&q)
then p ∈ K − (p&q&r)).

2. If an operation of revocation satisfies vacuity and conjunctive inclu-
sion (If p /∈ K − (p&q) then K − (p&q) ⊆ K − p), then the corresponding
revocation-based contraction satisfies conjunctive inclusion.
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Observation 3 lists all the basic and supplementary AGM postulates except
inclusion (K − p ⊆ K) that holds for revocation-based contraction anyhow.
The observation also enumerates several other contraction postulates that
have been mentioned in the literature (and further such postulates could be
added). The observation therefore confirms the credibility of using (pure)
contraction as an idealization of the more complex processes involved in
giving up beliefs. To the extent that an operation of revocation provides us
with a reasonable model of giving up beliefs, a large part of its properties
should coincide with those of the corresponding contraction operator.

6. Conclusion

The more general form of belief change introduced through descriptor revi-
sion is interesting in its own right. In addition it opens up new ways to
construct traditional sentential operations. The linearly ordered sentential
revision of Theorem 5 is an interesting alternative to the transitively rela-
tional partial meet revision of AGM. It has the more plausible properties of
the latter, including cumulativity, but it lacks some of the more implausible
ones such as superexpansion. (See [17] for a recent review of the controversial
AGM postulates.)

But perhaps the most important advantage of this framework is that it
allows for the construction of operations of change that do not fit in with the
traditional formal framework. This applies to revocation that was used above
in the reconstruction of (pure) contraction. It also applies to the notion of
“making up one’s mind” (with descriptors of the form Bp∨B¬p) and many
others that remain to investigate.

Acknowledgements. I would like to thank an anonymous referee for valuable
comments.

Appendix: Proofs

Definition 6. Let X be a finite-based set of sentences. Then &X is the
conjunction of all elements of some finite set X ′ with Cn(X ′) = Cn(X).

Definition 7. The descriptor disjunction � is defined by the relationship
Ψ � Ξ = {α ∨ β | (α ∈ Ψ) & (β ∈ Ξ)}

Lemma 1. K � Ψ � Ξ holds if and only if either K � Ψ or K � Ξ holds.
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Proof of lemma 1. From the distribution of disjunction over conjunction.

Lemma 2. Let ◦ be a descriptor revision on a consistent belief set K. Then:
(1) If ◦ satisfies extensionality and cumulativity, then it satisfies:

If K ◦ (Ψ � Ξ) � Ψ then K ◦ (Ψ � Ξ) = K ◦ Ψ (disjunctive implication)
(2) If ◦ satisfies regularity and disjunctive implication then it satisfies reci-
procity.

Proof of lemma 2. Part 1: Let Ψ = Ξ � Σ. By substitution into cumul-
ativity we obtain:

If K ◦ (Ξ � Σ) � Ξ then K ◦ (Ξ � Σ) = K ◦ ((Ξ � Σ) ∪ Ξ),
and since (Ξ � Σ) ∪ Ξ �� Ξ extensionality yields the desired result.

Part 2: Let K ◦Ψ � Ξ and K ◦Ξ �Ψ. Then K ◦Ψ � Ψ�Ξ, and regularity
yields K ◦ (Ψ � Ξ) � Ψ � Ξ, thus either K ◦ (Ψ � Ξ) � Ψ or K ◦ (Ψ � Ξ) � Ξ.

If K◦(Ψ�Ξ) � Ψ, then disjunctive implication yields K◦(Ψ � Ξ) = K◦Ψ,
thus K ◦ (Ψ�Ξ) � Ξ, and disjunctive implication yields K ◦ (Ψ�Ξ) = K ◦Ξ.
Hence, K ◦ Ψ = K ◦ Ξ.

If K ◦ (Ψ � Ξ) � Ξ then K ◦ Ψ = K ◦ Ξ is obtained in the same way.

Lemma 3. If ∗ satisfies closure, extensionality and
If q ∈ K ∗ p then K ∗ p ⊆ K ∗ (p&q) ( 8c, one direction of cumulativity),

then it satisfies
If p ∈ K ∗ p and K ∗ p = K ∗ (p ∨ q ∨ r), then K ∗ p = K ∗ (p ∨ q).

(disjunctive interpolation)

Proof of lemma 3. Let p ∈ K∗p and K∗p = K∗(p∨q∨r). Due to closure,
p∨q ∈ K∗(p∨q∨r). 8c yields K∗(p∨q∨r) ⊆ (K∗((p∨q∨r)&(p∨q))), and due
to extensionality K ∗(p∨q∨r) ⊆ K ∗(p∨q). Equivalently, K ∗p ⊆ K ∗(p∨q).

Due to p ∈ K ∗ p we then have p ∈ K ∗ (p ∨ q), 8c yields K ∗ (p ∨ q) ⊆
K∗((p∨q)&p), and extensionality yields K∗(p∨q) ⊆ K∗p. We can conclude
that K ∗ p = K ∗ (p ∨ q) as desired.

Lemma 4. Let ∗ be a revision operator that satisfies the complete set of
AGM postulates (as presented in Theorem 6). Then it satisfies:

(1) Either K∗(p∨q) = K∗p, K∗(p∨q) = K∗q, or K∗(p∨q) = (K∗p)∩(K∗q)
(disjunctive factoring)

(2) (K ∗ p) ∩ (K ∗ q) ⊆ K ∗ (p ∨ q) (disjunctive overlap)

(3) If q ∈ K ∗ p and p ∈ K ∗ q then K ∗ p = K ∗ q (reciprocity)

Proof of lemma 4. See [4], pp. 211–212 or [6], pp. 270–274.
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Lemma 5. Let ∗ be a revision operator that satisfies the complete set of
AGM postulates (as presented in Theorem 6). Then it satisfies:

(1) If p ∈ K ∗ q then p ∈ K ∗ (p ∨ q).

(2) If p ∈ K ∗ (p ∨ q) then K ∗ (p ∨ q) = K ∗ p.

(3) If K ∗ z = (K ∗ p) ∩ (K ∗ q), then K ∗ z = K ∗ (p ∨ q).

(4) If K ∗ q1 = K ∗ q2 then K ∗ (p ∨ q1) = (K ∗ p) ∩ (K ∗ q1) if and only if
K ∗ (p ∨ q2) = (K ∗ p) ∩ (K ∗ q2).

(5) If K ∗ p = K ∗ q then K ∗ p = K ∗ (p ∨ q)

(6) If K ∗ q1 = K ∗ q2 then K ∗ (p∨ q1) = K ∗ q1 if and only if K ∗ (p∨ q2) =
K ∗ q2.

(7) If K ∗ q1 = K ∗ q2 then K ∗ (p ∨ q1) = K ∗ (p ∨ q2).

(8) If p1 ∈ K ∗ p2, p2 ∈ K ∗ p3, . . . pn−1 ∈ K ∗ pn, and pn ∈ K ∗ p1, then
K ∗ p1 = K ∗ p2 = . . . K ∗ pn.

Proof of lemma 5. Part 1: It follows from disjunctive factoring (Lemma
4) that K ∗ (p ∨ q) is either K ∗ p, K ∗ q, or (K ∗ p) ∩ (K ∗ q). We have
p ∈ K ∗ q and due to success also p ∈ K ∗ p, and it follows in all three cases
that p ∈ K ∗ (p ∨ q).

Part 2: Due to success, p ∨ q ∈ K ∗ p. We apply reciprocity (Lemma 4)
to p ∈ K ∗ (p ∨ q) and p ∨ q ∈ K ∗ p.

Part 3: Let K∗z = (K∗p)∩(K∗q). It follows from success that p∨q ∈ K∗z.
Success also yields z ∈ (K ∗ p)∩ (K ∗ q). Due to disjunctive overlap (Lemma
4), we have (K ∗ p) ∩ (K ∗ q) ⊆ K ∗ (p ∨ q), thus z ∈ K ∗ (p ∨ q). We apply
reciprocity (Lemma 4) to p ∨ q ∈ K ∗ z and z ∈ K ∗ (p ∨ q).

Part 4: K ∗ (p ∨ q1) = (K ∗ p) ∩ (K ∗ q1)
K ∗ (p ∨ q1) = (K ∗ p) ∩ (K ∗ q2)
K ∗ (p ∨ q2) = (K ∗ p) ∩ (K ∗ q2) (Part 3 of this lemma)

Part 5: Directly from disjunctive factoring (Lemma 4).
Part 6: Let K ∗ (p∨ q1) = K ∗ q1 = K ∗ q2. Part 5 yields K ∗ q2 = K ∗ (p∨

q1 ∨q2) and disjunctive interpolation (Lemma 3) yields K ∗q2 = K ∗ (p∨q2).
Part 7: Let K ∗ q1 = K ∗ q2. There are three cases:
Case 1, K ∗ (p ∨ q1) = (K ∗ p) ∩ (K ∗ q1): It follows from Part 4 that

K ∗ (p ∨ q2) = (K ∗ p) ∩ (K ∗ q2), thus K ∗ (p ∨ q1) = K ∗ (p ∨ q2).
Case 2, K∗(p∨q1) = K∗q1: It follows from Part 6 that K∗(p∨q2) = K∗q2,

thus K ∗ (p ∨ q1) = K ∗ (p ∨ q2).
Case 3, K ∗ (p ∨ q1) 
= (K ∗ p) ∩ (K ∗ q1) and K ∗ (p ∨ q1) 
= K ∗ q1:

It follows from disjunctive factoring (Lemma 4) that K ∗ (p ∨ q1) = K ∗ p.
Suppose that K ∗ (p ∨ q2) = (K ∗ p) ∩ (K ∗ q2). Then it follows from Part
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4 that K ∗ (p ∨ q1) = (K ∗ p) ∩ (K ∗ q1). This contradiction shows that
K ∗ (p ∨ q2) 
= (K ∗ p) ∩ (K ∗ q2). Next, suppose that K ∗ (p ∨ q2) = K ∗ q2.
Then it follows from Part 6 that K∗(p∨q1) = K∗q1, again contradicting our
assumptions, thus K ∗(p∨q2) 
= K ∗q2. Due to disjunctive factoring (Lemma
4) it follows from K ∗ (p ∨ q2) 
= (K ∗ p) ∩ (K ∗ q2) and K ∗ (p ∨ q2) 
= K ∗ q2

that K ∗ (p ∨ q2) = K ∗ p, thus K ∗ (p ∨ q1) = K ∗ (p ∨ q2) in this case as
well.

Part 8: It follows from p1 ∈ K ∗ p2 and Parts 1 and 2 that K ∗ p1 =
K ∗ (p1 ∨ p2), and similarly that K ∗ pk = K ∗ (pk ∨ pk+1) for all k with
1 ≤ k < n and K ∗ pn = K ∗ (pn ∨ p1). From K ∗ p1 = K ∗ (p1 ∨ p2) and
K ∗ p2 = K ∗ (p2 ∨ p3) we obtain via Part 7 that K ∗ p1 = K ∗ (p1 ∨ p2 ∨ p3).
Repeating this step we obtain K ∗ p1 = K ∗ (p1 ∨ p2 ∨ · · · ∨ pn). In the same
way we obtain K ∗ pk = K ∗ (p1 ∨ p2 ∨ · · · ∨ pn) for all k with 1 ≤ k ≤ n.

Lemma 6. Let � be a relation on a set X of belief sets. Then the following
three conditions are equivalent:

(A) For all descriptors Ψ that are satisfiable within X there is a unique �-
minimal Ψ-satisfying element X of X, i.e. a unique element X such that
X � Y for all Y ∈ X with Y � Ψ.

(B) � is antisymmetric, complete, transitive and descriptor-wellfounded.

(C) � is antisymmetric and descriptor-wellfounded.

Proof of lemma 6. From (A) to (B): Antisymmetry: Suppose to the con-
trary that X � Y � X and X 
= Y . Then both X and Y are �-minimal
elements for the descriptor Π{X,Y } as defined in the proof of Observation 1.
This contradicts (A).

Completeness: Let X, Y ∈ X. Apply (A) to the descriptor Π{X,Y }.
Transitivity: Let X � Y � Z and suppose to the contrary that X 
� Z.

Since � is complete it is reflexive, thus X 
= Z. It also follows from com-
pleteness and X 
� Z that Z � X.

If X = Y then Y � Z would yield X � Z, contrary to what we have
assumed. Thus X 
= Y . If Y = Z, then X 
� Z would yield X 
� Y , also
contradicting our assumptions. Thus Y 
= Z. We therefore have the cycle
X � Y � Z � X of three distinct elements, which means that there is no
unique �-minimal element for Π{X,Y,Z}, contrary to (A). We can conclude
that X � Z.

Descriptor-wellfoundedness follows directly from (A).
From (C) to (A): Let Ψ be a descriptor that is satisfiable within X. Since

� is descriptor-wellfounded there is some �-minimal Ψ-satisfying element
X of X. Suppose that there is some other such element Y . Then X � Y
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and Y � X, and antisymmetry yields X = Y . This proves the uniqueness
of X.

Lemma 7. If ∗ satisfies closure, confirmation, finite-based outcome, cumul-
ativity, relative success, and extensionality, then it satisfies: K ∗ p = K ∗
&(K ∗ p).

Proof of lemma 7. It follows from closure and finite-based outcome that
&(K ∗p) ∈ K ∗p. If K ∗p = K then confirmation yields K = K ∗&(K ∗p). If
K∗p 
= K we use cumulativity to obtain K∗(p & &(K∗p)) = K∗p. Relative
success yields &(K ∗ p) � p and consequently � p & &(K ∗ p) ↔ &(K ∗ p),
and then extensionality yields K ∗ &(K ∗ p) = K ∗ p.

Definition 8. Let � be a revision operator on the belief set K and let
p, q ∈ L. Then q weakens p if and only if: p � q, K ∗ p � p, K ∗ q � q, and
K ∗ p 
= K ∗ q.

Let K ′ and K ′′ be outcomes of revisions of K. Then K ′′ is a weakening
of K ′ if and only if there are p and q such that K ′ = K ∗ p, K ′′ = K ∗ q,
and q weakens p.

Lemma 8. Let � be a revision operator on the belief set K that satisfies
extensionality and disjunctive interpolation. If p2 weakens p1 and p3 weak-
ens p2, then p3 weakens p1.

Proof of lemma 8. Since p1 � p2 and p2 � p3 we have p1 � p3. Suppose
that K∗p1 = K∗p3. Due to extensionality we have K∗p2 = K∗(p1∨p2) and
K∗p3 = K∗(p1∨p2∨p3). It then follows from our assumption K∗p1 = K∗p3

that K ∗ p1 = K ∗ (p1 ∨ p2 ∨ p3), but this is impossible due to disjunctive
interpolation since K ∗ p1 
= K ∗ p2, i.e. K ∗ p1 
= K ∗ (p1 ∨ p2). We can
conclude from this contradiction that K ∗ p1 
= K ∗ p3, thus p3 weakens p1.

Lemma 9. If ∗ satisfies closure, confirmation, finite-based outcome, cumul-
ativity, relative success, and extensionality, and K ′′ is a weakening of K ′,
then there is some t such that

K ′ = K ∗ &K ′ 
= K ∗ (&K ′ ∨ t) = K ′′ and K ′′ � &K ′ ∨ t

Proof of lemma 9. Since K ′′ is a weakening of K ′ there are r and s such
that

K ′ = K ∗ r 
= K ∗ (r ∨ s) = K ′′, K ′ � r, and K ′′ � r ∨ s.
Using finite-based outcome we note that &(K ∗ r) � r and consequently �
&(K∗r)∨r∨s ↔ r∨s. Due to extensionality, K∗(r∨s) = K∗(&(K∗r)∨r∨s).
We know from Lemma 7 that K ′ = K ∗ &K ′. Letting t = r ∨ s we obtain
directly that
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K ′ = K ∗ &K ′ 
= K ∗ (&K ′ ∨ t) = K ′′

as desired. It follows from K ′′ � r ∨ s that K ′′ � &K ′ ∨ t.

Proof of Observation 1. Part 1: For each belief set Y , let ΠY = {Bp |
p ∈ Y } ∪ {¬Bp | p /∈ Y }. Then it holds for all belief sets X that X � ΠY

if and only if X = Y . Next, for Y = {Y1, . . . , Yn} let ΠY = ΠY1 � · · · � ΠYn
.

Then it holds for all belief sets X that X ∈ Y iff X � ΠY.
Part 2: The set of possible worlds (W) has cardinality 2ℵ0 . Since possible

worlds are belief sets, the set of belief sets has at least cardinality 2ℵ0 . The
set of sets of belief sets is its power set and therefore has higher cardinality
than 2ℵ0 . Descriptors are sets of sentences in a denumerable language and
therefore the cardinality of the set of descriptors cannot be higher than 2ℵ0 .

Proof of Theorem 1. From (I) to (II): Left to the reader.
From (II) to (I): Let X = {X | (∃Ψ)(X = K ◦ Ψ)} and let s be such

that s(Ψ) = K ◦ Ψ. To verify the construction we need to show that (1) all
elements of X are logically closed, (2) K ∈ X, (3) s(Ψ) ∈ X for all Ψ, (4) If
X ∈ X and X � Ψ then s(Ψ) � Ψ, and (5) If X � Ψ for all X ∈ X, then
s(Ψ) = K.

(1) follows from closure.
(2) Let Ψ be inconsistent, i.e. Ψ �� �. Then K ◦ Ψ � Ψ and it follows

from relative success that K ◦ Ψ = K.
(3) follows directly from the construction.
(4) Let X ∈ X and X � Ψ. Due to our construction of X, there is some Ξ

with X = K ◦ Ξ. It follows from K ◦Ξ � Ψ and regularity that K ◦ Ψ � Ψ.
(5) Let X � Ψ for all X ∈ X. Then K ◦Ψ � Ψ, and relative success yields

K ◦ Ψ = K.

Proof of Theorem 2. The equivalence of (I) and (II) follows from Lemma
6. The direction from (II) to (III) is left to the reader. For the direction from
(III) to (I) we define the set X = {X | (∃Ψ)(X = K ◦ Ψ)} and the relation
� on X such that for all Ψ and Ξ:

K ◦ Ψ � K ◦ Ξ if and only if K ◦ Ψ = K ◦ (Ψ � Ξ).
We have to prove that (1) that X is a set of belief sets, (2) that it contains
K, (3) that K is the �-minimal element of X, (4) that if there is some X ∈ X

with X � Ψ, then K ◦Ψ is the unique �-minimal element of X that satisfies
Ψ, and (5) if X � Ψ for all X ∈ X, then K ◦ Ψ = K.

(1) follows from closure.
(2) Since K is a belief set we have K � B�, and it follows from confir-

mation that K ◦ B� = K.
(3) Let X ∈ X. Due to Observation 1 there is some descriptor Ψ such

that X is the only Ψ-satisfying element of X. It follows from regularity that



Descriptor Revision 971

X = K ◦ Ψ. Due to extensionality K ◦ B� = K ◦ (B� � Ψ), and it follows
from our definition of � that K ◦ B� � K ◦ Ψ. It was shown in (ii) that
K ◦ B� = K, thus K � K ◦ Ψ, i.e. K � X.

(4) Let K ◦ Ξ � Ψ. It follows from regularity that K ◦ Ψ � Ψ. To prove
the unique �-minimality of K ◦Ψ among Ψ-satisfying elements of X, we first
prove minimality and then uniqueness.

For minimality, suppose to the contrary that K◦Ξ � Ψ and K◦Ψ 
� K◦Ξ,
i.e. K ◦ Ψ 
= K ◦ (Ψ � Ξ). It follows from disjunctive implication (that holds
due to Lemma 2) that K ◦ (Ψ � Ξ) � Ψ.

It follows from K ◦ Ψ � Ψ that K ◦ Ψ � Ψ � Ξ, and regularity yields
K ◦ (Ψ � Ξ) � Ψ � Ξ, thus either K ◦ (Ψ � Ξ) � Ψ or K ◦ (Ψ � Ξ) � Ξ. Thus
K ◦ (Ψ � Ξ) � Ξ, and disjunctive implication (Lemma 2) yields K ◦ Ξ =
K ◦ (Ψ � Ξ), thus K ◦ (Ψ � Ξ) � Ψ, contrary to what was just shown.

For uniqueness, suppose to the contrary that there is some X ∈ X such
that X � Ψ and X � K ◦ Ψ 
= X. It follows from our definition of X that
X = K◦Ξ for some Ξ. Our definition of � yields K◦Ξ = K◦(Ψ�Ξ) 
= K◦Ψ.
It follows from K ◦ (Ψ�Ξ) � Ψ and disjunctive implication (Lemma 2) that
K ◦ (Ψ � Ξ) = K ◦ Ψ. Contradiction. Since this holds for all X ∈ X with
X � Ψ we can conclude that K ◦ Ψ is the unique �-minimal Ψ-satisfying
element of X.

(5) Let K ◦Ξ � Ψ for all K ◦Ξ ∈ X. Then K ◦Ψ � Ψ, and relative success
yields K ◦ Ψ = K.

Proof of Observation 2. From cumulativity to reciprocity: Let K ◦Ψ �
Ξ and K ◦ Ξ � Ψ. Then cumulativity yields K ◦ Ψ = K ◦ (Ψ ∪ Ξ) = K ◦ Ξ.

From reciprocity to cumulativity: Let K ◦ Ψ � Ξ. There are two cases.
Case (i), K ◦Ψ � Ψ: Regularity yields K ◦(Ψ∪Ξ) � Ψ, thus K ◦(Ψ∪Ξ) �

Ψ ∪ Ξ. Relative success yields K ◦ Ψ = K = K ◦ (Ψ ∪ Ξ).
Case (ii), K ◦Ψ � Ψ: Then K ◦Ψ � Ψ∪Ξ. Regularity yields K ◦(Ψ∪Ξ) �

Ψ ∪ Ξ. We thus have K ◦ Ψ � Ψ ∪ Ξ and K ◦ (Ψ ∪ Ξ) � Ψ, and reciprocity
yields K ◦ Ψ = K ◦ (Ψ ∪ Ξ).

Proof of Theorem 3. From I to II: Left to the reader.
From II to I: Let X = {X | (∃p)(K ∗ p = X)} and let s be a function

from descriptors to X such that for all Ψ:

(i) If there is some p such that Ψ �� Bp, then s(Ψ) = K ∗ p (which is
possible due to extensionality)

(ii) Otherwise: (a) if K � Ψ then s(Ψ) = K, (b) if there is some X ∈ X with
X � Ψ, then s(Ψ) � Ψ, and (c) if X � Ψ for all X ∈ X, then s(Ψ) = K.
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To verify the construction we need to show (1) that X is a set of belief sets,
(2) that K ∈ X, (3) that s(Ψ) ∈ X for all Ψ, (4) that if there is some X ∈ X

with X � Ψ, then s(Ψ) � Ψ, and (5) that otherwise s(Ψ) = K. Finally we
need to show (6) that that ◦ satisfies (s0) and (7) that ∗ is based on ◦ in
the way specified above.

(1) follows from closure.
For (2) note that due to closure, � ∈ K and thus due to confirmation we

have K ∗ � = K and consequently K ∈ X.
(3) follows directly from the construction.
(4) For Ψ �� Bp, note that due to the construction of X, if X ∈ X then

X = K ∗ q for some q. Thus we have K ∗ q � p. Regularity yields p ∈ K ∗ p,
i.e. K ∗ p � Ψ, and our construction yields s(Ψ) = K ∗ p, thus s(Ψ) � Ψ.

For other descriptors, this follows from the construction.
(5) Let Ψ be such that K ◦ Ξ � Ψ for all Ξ.
For Ψ �� Bp: It follows that K ◦ Bp � Bp, thus K ∗ p � p. It follows

from relative success that K ∗ p = K.
For other descriptors, this follows from the construction.
(6) For Ψ �� Bp this follows from confirmation and for other descriptors

it follows from the construction.
(7) follows directly from the construction.

Proof of Theorem 4. From (I) to (II): Closure follows from the definition
of a selection-based descriptor revision in Sect. 3.

Success: It follows from (X2) that for all p ∈ L there is some X ∈ X such
that p ∈ X. It then follows from the definition of descriptor revision that
success holds.

Inclusion: If K � ¬p then K + p = Cn({⊥}) and we are done. If K � ¬p
then (s4) yields K ⊆ s(Bp) and success yields p ∈ s(Bp). Due to (s3), s(Bp)
is the smallest superset of K that contains p, i.e. K ∗ p = K + p.

Vacuity: Let ¬p /∈ K. Then K ⊆ K ∗ p follows from (s4) and p ∈ K ∗ p
from success. Closure yields K + p ⊆ K ∗ p.

Consistency follows from (s2).
Extensionality: Let � p ↔ p′ and use Definition 3 to obtain s(Bp) =

s({X ∈ X | X � Bp}) = s({X ∈ X | X � Bp′}) = s(Bp′).
From (II) to (I): Let X = {X | (∃p)(K ∗ p = X)} and let s be a function

from descriptors to X such that for all Ψ:

(i) If there is some p such that Ψ �� Bp, then s(Ψ) = K ∗ p (which is
possible due to extensionality)
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(ii) Otherwise: (a) if K � Ψ then s(Ψ) = K, (b) if there is some X ∈ X with
X � Ψ, then s(Ψ) � Ψ, and (c) if X � Ψ for all X ∈ X, then s(Ψ) = K.

To verify the construction we need to show (1) that X is a set of belief sets,
(2) that s(Ψ) ∈ X for all Ψ, (3) that if there is some X ∈ X with X � Ψ,
then s(Ψ) � Ψ, and (4) that otherwise s(Ψ) = K. We also need to show
that (X1), (X2), (s1), (s2), (s3), and (s4) hold and (5) that ∗ is based on ◦
in the way specified above. For (1), (2) (3), (4), and (5) the same proofs can
be used as for the corresponding parts of Theorem 3, but (4) is simplified
by use of success.

(X1) follows from success and consistency.
(X2): When K � ¬p then this follows from inclusion and vacuity. When

K � ¬p then success and closure yield K + p = Cn({⊥}) and we are done.
(s1): Let p ∈ K. It follows from inclusion and vacuity that s(Bp) =

K ∗ p = K.
(s2) follows from consistency.
(s3) Let K ⊆ X ⊂ s(Bp).
If � ¬p: It follows from success that s(Bp) = Cn({⊥}), and since X ⊂

s(Bp) we have X � ⊥, thus p /∈ X.
If � ¬p: It follows from consistency that s(Bp) � ⊥, and then from success

and K ⊆ s(Bp) that K + p ⊆ s(Bp), thus K + p � ⊥. Inclusion and vacuity
yield K ∗ p = K + p. Since X is logically closed and K + p is the inclusion-
minimal logically closed set containing both p and K we can conclude from
K ⊆ X ⊂ K + p that p /∈ X.

(s4) Let K � ¬p. It follows from vacuity that K ⊆ K ∗ p = s(Bp).

Proof of Theorem 5. From (I) to (II): Left to the reader.
From (II) to (I): We are going to construct a set X and a relation � on

X, and define ◦ as indicated in the theorem. It then needs to be verified
that (1) X is a countable set of finite-based belief sets, (2) K ∈ X, (3) � is
a complete, transitive, antisymmetric, and wellfounded ordering on X, (4)
K � X for all X ∈ X, (5) if Ψ is satisfied by some element of X then K ◦ Ψ
is the �-minimal element of X that satisfies Ψ, (6) if Ψ is not satisfied any
element of K then K ◦ Ψ = K, and (7) K ∗ p = K ◦ Bp for all p.

The construction: Let X = {X | (∃p)(X = K ∗ p)}. We are going to con-
struct inductively a relation � on X, numbering its elements K0, K1, . . . ,.
This series will also inductively be shown to have the following property:

If X is a weakening of Km, then X ∈ {K0, K1, . . . , Km−1} (the tightness
condition)



974 S. O. Hansson

We begin by setting K0 = K. Clearly, since K0 is the first element of the
series the tightness condition is satisfied vacuously at this stage. For the
inductive construction we use a list containing all sentences p ∈ L such that
K ∗p � p. In each step, we assume that we already have a series K0, . . . , Km

of belief sets and that this series satisfies the tightness condition.
Let p be the first sentence on our list such that K ∗ p � p and p /∈

K0 ∪ · · · ∪ Km.
If it holds for all sentences q that weaken &(K ∗ p) that K ∗ q ∈

{K0, . . . , Km}, then let Km+1 = K ∗p. If not, then let Km+1 be a weakening
of K ∗ p such that all weakenings of it are in {K0, . . . , Km}. This is possible
due to finite gradation and Lemma 8. Clearly there is one less weakening of
K ∗p not included in the series K0, . . . , Km+1 than not included in the series
K0, . . . , Km. We repeat this process, finding a sentence q that weakens p and
such that K ∗ q has no weakening in the series K0, . . . , Km+1, etc., until we
arrive at some belief set Km+k that is identical to K ∗ p. After this the pro-
cess is repeated with the next sentence after p on the list of sentences, etc.
Due to Lemma 9, the tightness condition is still satisfied after each addition
to the series K0, K1, . . ..

To finish the construction we define � such that Ks � Kt if and only if
s ≤ t. We define ◦ such that K ◦ Ψ is the unique �-minimal element of K

that satisfies Ψ, unless Ψ is not satisfied by any element of K, in which case
K ◦ Ψ = K. Furthermore, we let ∗ be a sentential operator such that for all
p ∈ L, K ∗ p = K ◦ Bp.

Verification of the construction: (1), (2), (3), (4), (5), and (6) follow
directly from the construction. For (7), first consider the case when there is
some X ∈ X with r ∈ X. We are going to show inductively that K ∗ r is
equal to the �-minimal element of X that contains r. Due to regularity and
our construction of X it follows from r ∈ X ∈ X that K ∗ r � r.

It follows from K0 = K and confirmation that for all r ∈ L: If r ∈ K0

then K ∗ r = K0 iff K0 is the lowest ranked set containing r. For the induc-
tive step, we assume that for all r, if r ∈ K0∪· · ·∪Km, then K ∗r is equal to
the lowest �-ranked of the sets K0, . . . , Km. In order to show that the same
holds for all sentences r ∈ K0 ∪ · · · ∪Km+1, let r ∈ Km+1 \ (K0 ∪ · · · ∪Km).
Due to Lemma 7 we have Km+1 = K∗&(Km+1). Since &(Km+1) � r we have
� r ↔ &(Km+1) ∨ r, and extensionality yields K ∗ r = K ∗ (&(Km+1) ∨ r).
Since our construction satisfies the tightness condition K ∗&(Km+1) has no
weakening outside of the list K0, . . . , Km. We can conclude that K ∗ r =
K ∗ &(Km+1) = Km+1, as desired.

In the other case, X � r for all X ∈ X. Then K ∗ r � r, and relative
success yields K ∗ r = K as desired.
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Proof of Theorem 6. From (I) to (II): Closure: Due to the above defini-
tion of sentential operations (at the beginning of Sect. 4), X is a collection
of belief sets.

Success: It follows from (X2+) that for all p ∈ L there is some X with
p ∈ X ∈ X. The rest follows from (∗�).

Inclusion: There are three cases. 1. If K � ¬p then K + p = Cn({⊥}),
and we are done.

2. If K � ¬p and p ∈ K, we note that due to (�1), K � X for all X ∈ X.
Therefore (∗�) yields K ∗ p = K, i.e. K ∗ p = K + p.

3. If K � ¬p and p /∈ K: We obtain K + p ∈ X from (X0) and (X2+).
Let Z be an element of X that contains p. It follows from (�2), K = K ∗ �
and � ∈ Z that K + p � Z. (Substitute � for s, Z for K ∗ t, and p for v.)
Thus K + p is the �-minimal p-containing element of X, and due to our
construction K ∗ p = K + p.

Vacuity follows from parts 2-3 of the proof of inclusion.
Consistency follows from (X1), (�1), and (∗�).
Extensionality follows from (∗ �) since if p and p′ are equivalent, then

they are included in the same elements of X.
Superexpansion and subexpansion: If ¬q ∈ K ∗ p then (K ∗ p) + q =

Cn({⊥}) and we are done.
If ¬q /∈ K ∗p we need to show that (K ∗p)+q is the �-minimal element of

X that contains p&q. It clearly contains p&q. Let Z be some p&q-containing
element of X. We can use (�2) (substituting p for s, q for v, and Z for K ∗ t)
to obtain (K ∗ p) + q � Z + q, i.e. equivalently (K ∗ p) + q � Z.

From (II) to (I): We will use the following construction: Let X = {X |
(∃p)(K ∗ p = X)}. Due to closure, X is a set of belief sets. We will construct
the relation � inductively. The initial step will result in a relation �0 that
covers only part of X × X. Since L is denumerable, so is X, and then so is
X×X. We can therefore have a denumerable list of all pairs of non-identical
elements of X. For each �k we take the first pair 〈X, Y 〉 on that list such
that X 
�k Y 
�k X and extend the relation to that pair in order to construct
�k+1.

Initial step, preliminary part : As a preliminary step in the construction
of �0, we introduce the relation �′ on X such that:

For all X, Y ∈ X: X �′ Y if and only if there is some p ∈ Y such that
X = K ∗ p.
We need to show that �′ satisfies (∗�), (X0), (X1), (X2+), (�1), and (�2).

(∗�): It follows from our definition of �′ that K ∗p is �′-minimal among
the p-containing elements of X. Suppose there is another belief set K ∗ s
that is also �′-minimal among the p-containing elements of X. Then we
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have both K ∗ p �′ K ∗ s and K ∗ s �′ K ∗ p, thus s ∈ K ∗ p and p ∈ K ∗ s.
Reciprocity (Lemma 4) yields K ∗ p = K ∗ s. Thus K ∗ p is the unique
�′-minimal p-containing element of X.

(X0) Since K is consistent it follows from inclusion and vacuity that
K ∗ � = K.

(X1) follows from success and consistency.
(X2+) Let X = K ∗ t. If (K ∗ t)+ p � ⊥, then (K ∗ t)+ p = Cn({⊥}), and

due to success and closure we have Cn({⊥}) = K ∗ ⊥, thus Cn({⊥}) ∈ X.
If (K ∗ t) + p � ⊥, i.e. (K ∗ t) � ¬p, then subexpansion and superexpansion
yield (K ∗ t) + p = K ∗ (t&p), thus (K ∗ t) + p ∈ X.

(�1) Since K is consistent it follows from inclusion and vacuity that
K ∗ � = K. Due to closure, � ∈ X for all X ∈ X, thus K �′ X.

Next, let X � ⊥ and Y � ⊥. Then X = K ∗ p for some p. Due to closure,
Y = Cn({⊥}). We can conclude from p ∈ Y that K ∗ p �′ Y , thus X �′ Y .
Suppose that Y �′ X. Then there is some q ∈ X such that K ∗q = Cn({⊥}).
Due to consistency, q � ⊥, thus X � ⊥, contrary to the conditions. Thus
Y 
�′ X, thus X <′ Y .

(�2): Let s ∈ K ∗ t and K ∗ s � ¬v. It follows from superexpansion and
subexpansion that K∗(s&v) = (K∗s)+v. Since (K∗t)+v contains s&v, our
definition of �′ yields K ∗ (s&v) �′ (K ∗ t)+v, i.e. (K ∗s)+v �′ (K ∗ t)+v.

Concluding the initial step: Next we define �0 as the transitive closure of
�′. We are going to show that �0 satisfies antisymmetry, (∗�), (�1), and
(�2).

Antisymmetry: Let X �0 Y �0 X. Then there is a cycle Z1 �′ Z2 �′

· · · �′ Zn �′ Z1, two of whose elements are equal to X, respectively Y .
Let Z1 = K ∗ p1, . . . Zn = K ∗ pn. Due to the construction of �′, we have
pk ∈ K ∗ pk+1 for all k with 1 ≤ k ≤ n − 1 and pn ∈ K ∗ p1. If follows from
Lemma 5, Part 8, that K ∗ p1 = K ∗ p2 = · · · = K ∗ pn, thus X = Y .

(∗ �): That K ∗ p is �0-minimal among the p-containing elements of X

follows from �′ ⊆ �0. For uniqueness, let K ∗s be �0-minimal among the p-
containing elements of X. We then have both K∗s �0 K∗p and K∗p �0 K∗s,
and antisymmetry that we have just proved yields K ∗ p = K ∗ s.

(�1) Let X � ⊥ and Y � ⊥. Since (�1) holds for �′ as shown above,
and �′ ⊆ �0 we have K �0 X �0 Y . To show that Y 
�0 X, suppose to
the contrary that Y �0 X. Since �0 is the transitive closure of �′ there
must then be Z1, . . . , Zn ∈ X that are all non-identical to Y and such that
Y �′ Z1 �′ . . . , Zn �′ X. But Y �′ Z1 contradicts (�1) for �′. We can
conclude that Y 
�0 X, thus (�1) holds for �0.

(�2) follows from �′ ⊆ �0.
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The inductive step: We assume that �0 ⊆ �1 ⊆ · · · ⊆ �k and that �k

satisfies transitivity, antisymmetry, (∗�), (�1), and (�2). Let 〈X, Y 〉 be the
first element of X×X on the list referred to above such that X 
�k Y 
�k X.
Let �k+1 be the transitive closure of �k ∪ {〈X, Y 〉}. We are going to prove
that it satisfies antisymmetry, (∗�), (�1), and (�2).

Antisymmetry: Suppose to the contrary that there are Z1 and Z2 such
that Z1 �k+1 Z2 �k+1 Z1 and Z1 
= Z2. Since �k is antisymmetric, 〈X, Y 〉
appears in at least one of the two chains between Z1 and Z2 in the underlying
�k ∪ {〈X, Y 〉}.

First case, it occurs only in one of these chains: Without loss of gener-
ality, we assume that it appears in the chain from Z2 to Z1. If it appears
more than once, then the chain can be contracted, so we can assume that it
appears exactly once. We then have:

Z1 �k Z2, Z2 �k X, and Y �k Z1

Since �k is transitive it follows immediately that Y �k X, contrary to the
assumptions of our choice of 〈X, Y 〉.

Second case, it occurs in both chains: We then have:
Z1 �k X, Y �k Z2, Z2 �k X, and Y �k Z1

In this case as well it follows from the transitivity of �k that Y �k X,
contrary to the assumptions of our choice of 〈X, Y 〉. We can conclude that
�k+1 is antisymmetric.

(∗ �): It follows from �k ⊆ �k+1 that K ∗ p is �k+1-minimal among
the p-containing elements of X. To show that it is unique, let K ∗ s be
�k+1minimal among the p-containing elements of X. Then K ∗p �k+1 K ∗s
and K ∗ s �k+1 K ∗ p, and antisymmetry that we have just proved yields
K ∗ p = K ∗ s.

(�1) Let Z � ⊥. Since (�1) holds for �k and �k ⊆ �k+1 we have
K �k+1 Z �k+1 Cn({⊥}). To show that Z <k+1 Cn({⊥}), suppose to the
contrary that Cn({⊥}) �k+1 Z. Then the relation �′′= �k ∪ {〈X, Y 〉}
forms a chain Cn({⊥}) �′′ V1 �′′ · · · �′′ Vn �′′ Z, where V1, . . . , Vn

of elements of X and each of them is non-identical to Cn({⊥}). Due to
(�1) for �k, Cn({⊥}) 
�k V1, thus Cn({⊥}) = X. Due to (�1) for �k,
it follows from X = Cn({⊥}) that Y �k X, contrary to the above selec-
tion criterion for 〈X, Y 〉, namely that X 
�k Y 
�k X. We can con-
clude from this contradiction that Cn({⊥}) 
�k+1 Z, thus (�1) holds for
�k+1.

(�2) follows from �k ⊆ �k+1.
Conclusion: Finally, let � = �0 ∪ �1 ∪ . . .. It follows directly that �

is transitive and complete and that it satisfies the conditions inductively
shown, namely antisymmetry, (∗�), (�1), and (�2).
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Proof of Theorem 7. From I to II: Left to the reader.
From II to I: Let X = {X | (∃p)(K ·− p = X)} and let s be a choice

function such that: For all Ψ, if Ψ �� ¬Bp then s(Ψ) = K ·− p. (This is
possible due to extensionality.) For all other descriptors: (a) if K � Ψ then
s(Ψ) = K, (b) if there is some X ∈ X with X � Ψ, then s(Ψ) � Ψ, and (c)
if X � Ψ for all X ∈ X, then s(Ψ) = K.

To verify the construction we need to show that (1) X is a set of belief
sets, (2) K ∈ X, (3) s(Ψ) ∈ X for all Ψ, (4) if K � Ψ then s(Ψ) = K,
(5) if there is some Ξ with K ◦ Ξ � Ψ, then s(Ψ) � Ψ, and (6) otherwise
s(Ψ) = K. Finally we need to show (7) that K ·− p = K ◦ ¬Bp for all p ∈ L.

(1) follows from closure.
For (2) note that since K is consistent, vacuity yields K ·− ⊥ = K and

consequently K ∈ X.
(3) follows directly from the construction.
(4) follows from vacuity and the construction.
(5) For Ψ �� ¬Bp, note that due to the construction of X, K ◦Ξ = K ·− q

for some q. Thus we have K ·− q � p. Persistence yields K ·− p � p, i.e.
K ·− p � Ψ, and our construction yields s(Ψ) = K ·− p, thus s(Ψ) � Ψ. For
other descriptors, (4) follows directly from the construction.

(6) Let Ψ be such that K ◦ Ξ � Ψ for all Ξ. For Ψ �� ¬Bp it follows
that K ◦ ¬Bp � Ψ, thus K ·− p � p. It follows from relative success that
K ·− p = K, thus K ◦Ψ = K. For other descriptors, (5) follows directly from
the construction.

(7) follows directly from the construction.

Proof of Observation 3. Part 1: All these proofs are straight-forward.
The following are given as examples:

Recovery: K ⊆ (K ·− p) + p
If r ∈ K then p → r ∈ K ·− p
If r ∈ K then p → r ∈ (K ·− p) ∩ K
If r ∈ K then p → r ∈ K ÷ p
K ⊆ (K ÷ p) + p
Finite-based outcome: If K is finite-based, then there is a sentence &K

such that Cn({&K}) = K, and since ·− satisfies the postulate there is for
each p a sentence &(K ·− p) such that Cn({&(K ·− p)}) = K ·− p. Then
K ÷ p = K ∩ (K ·− p) = Cn({(&K) ∨ (&(K ·− p))}).

Persistence: Let ·− satisfy persistence, and let K ÷ p � p. Then:
K � p and K ·− p � p
K � p and K ·− q � p (persistence for ·−)
K ÷ q � p
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Part 2: Let ·− satisfy vacuity and conjunctive inclusion, and let p /∈
K ÷ (p&q). Then either p /∈ K ·− (p&q) or p /∈ K.

Case i, p /∈ K ·− (p&q):
K ·− (p&q) ⊆ K ·− p (conjunctive inclusion for ·−)
K ∩ (K ·− (p&q)) ⊆ K ∩ (K ·− p)
K ÷ (p&q) ⊆ K ÷ p
Case ii, p /∈ K: Then K ·− p = K due to vacuity for ·−. It follows that

K ÷ p = K, hence K ÷ (p&q) ⊆ K ÷ p.
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