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Jarmo Kontinen Coherence and Computational
Complexity of Quantifier-free
Dependence Logic Formulas

Abstract. We study the computational complexity of the model checking problem for

quantifier-free dependence logic (D) formulas. We characterize three thresholds in the

complexity: logarithmic space (LOGSPACE), non-deterministic logarithmic space (NL)

and non-deterministic polynomial time (NP).
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1. Introduction

Dependence logic D [6] incorporates explicit dependence relations between
terms into first-order logic (FO). The dependence relations between terms
are expressed by means of dependence atoms

=(t1, . . . , tn) (1)

which are taken as atomic formulas. The intuitive meaning of (1) is that
the values of the terms t1, . . . , tn−1 determine the value of the term tn. The
expressive power of D equals that of existential second order logic Σ1

1 [6].
We are interested in characterizing the computational complexity of the

model checking problem for quantifier-free D-formulas. The problem of
charting fragments of logics which fall under specific computational classes
is a widely studied question in descriptive complexity theory. The classic re-
sult in this field by Fagin [1] establishes a perfect match between Σ1

1-formulas
and languages in NP. When we combine Fagin’s result with the result that
D is equally expressive to Σ1

1 [6], we get that the classes of finite structures
definable in D are exactly the ones recognized in NP.

The semantics of D-formulas can be defined in terms of semantic games
and in terms of sets of assignments, which we call teams. We focus in this
paper only on the Team-semantics in which a formula is evaluated with
respect to a set of assignments.
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We study the fragment of k-coherent formulas of dependence logic. A
formula φ is k-coherent, k ∈ N, if for all teams X it holds that φ is satisfied
by X if and only if all k-element subsets of the team X satisfy φ. Coherence
allows us to evaluate the satisfiability of the formula in finite fixed size sub-
teams, which is very useful as the teams are potentially very large.

We will give a syntactic characterization for the k-coherence of
aD-formula. We will show that there are k-coherent formulas for every k ∈ N

and that a disjunction of two distinct dependence atoms is not k-coherent
for any k ∈ N. We will also show that the set of k-coherent D-formulas is a
proper subset of FO.

The main results of the paper are about the computational complexity
of the model checking for D-formulas. We will establish that the model
checking problem for all k-coherent formulas is in LOGSPACE. When we
allow one disjunction in the formula, the model checking can be done in NL.
Furthermore, we will show that the model checking problem of two distinct
dependence atoms, =(x, y)∨ =(z, u), is complete for NL. Last we will show
that the model checking problem for the formula =(x, y)∨ =(z, u)∨ =(z, u)
is NP-complete.

2. Preliminaries

Definition 2.1. The syntax of D extends FO, defined in terms of ∨, ∧, ¬,
∀, ∃, by new atomic formulas of the form

=(t1, . . . , tn) (2)

where t1, . . . , tn are terms. We will denote the set of free variables of φ by
Fr(φ). We write ≈ t1t2 for identity between terms t1 and t2.

The semantics of D is given in terms of sets of assignments, teams.

Definition 2.2. Let V = {xi | i ∈ I}, I ⊆ N, be a set of variables and M a
structure with domain M . Then, an assignment s with domain V and range
M is a function s : V → M . A team X with a domain V and range M is
any set of assignments with domain V and range M . We use the following
notation when the team is given as a relation:

Rel(X) = {(s(x1), . . . , s(xn)) | s ∈ X}.

Notice that all the assignments in a team have the same domain.
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Definition 2.3. Suppose X is a team of domain V and range M , xn ∈ V
and F : V → M is a function. Let X (F, xn) denote the supplement team

{s(F (s)/xn) | s ∈ X},

where s(F (s)/xn) is the assignment obtained by replacing (xn, s(xn)) in s
with (xn, F (s)).

Definition 2.4. Suppose X is a team of domain V and rangeM and xn ∈ V .
Let X (M,xn) denote the duplicated team

{s(a/xn) | a ∈ M, s ∈ X},

where s(a/xn) is the tuple obtained by replacing (xn, s(xn)) in s with (xn, a).

Definition 2.5. (Semantics) Suppose τ is a vocabulary, X is a team of
domain V and range M , M a τ -structure and φ and θ formulas of D(τ).
The semantics of D-formulas is defined in the following way:

1. M |=X =(t1, . . . , tn), n > 1, iff for all s, s′ ∈ X it holds that, if s(ti) =
s′(ti) for i ≤ n− 1, then s(tn) = s′(tn).

2. M |=X ¬ =(t1, . . . , tn) iff X = ∅.
3. M |=X ≈t1t2, iff for every s ∈ X , s(t1) = s(t2).

4. M |=X ¬ ≈t1t2, iff for every s ∈ X , s(t1) �= s(t2).

5. M |=X R(t1, . . . , tn), iff for every s ∈ X , (s(t1), . . . , s(tn)) ∈ RM.

6. M |=X ¬R(t1, . . . , tn), iff for every s ∈ X , (s(t1), . . . , s(tn)) �∈ RM.

7. M |=X φ ∧ θ, iff M |=X φ and M |=X θ.

8. M |=X φ ∨ θ, iff there exists Y and Z, such that Y ∪ Z = X , M |=Y φ
and M |=Z θ.

9. M |=X ∃xφ(x), iff there is F : V → M , such that M |=X (F,x) φ(x).

10. M |=X ∀xφ(x), iff M |=X (M,x) φ(x).

Finally, a sentence φ is true in a structure M if M |={∅} φ. When φ is
quantifier-free, we use X |= φ as a shorthand for M |=X φ and we say that
the team X is of type φ.

Theorem 2.6. (Downwards closure [6]) Suppose φ ∈ D and X and Y are
teams, such that Y ⊆ X . Then the following holds:

M |=X φ ⇒ M |=Y φ.
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It is know that dependence logic and Σ1
1 are equivalent in the level of

sentences [6]. In the level of formulas the setup of the question is slightly
different, since dependence logic formulas are verified with respect to sets
of assignments. From Theorems 2.7 and 2.8 it follows that the dependence
logic formulas have the same expressive power as the fragment of Σ1

1 in which
the relation symbol interpreting the team appears only negatively.

Theorem 2.7. [6] For every formula φ(x1, . . . , xk) ∈ D(τ), there is a sen-
tence φ(R)∗ ∈ Σ1

1(τ ∪ {R}), where R is k-ary and in which R appears
only negatively, such that for all τ -structures M and teams X with domain
{x1 . . . , xk}:

M |=X φ(x1, . . . , xk) ⇔ (M, Rel(X)) |= φ(R)∗

Theorem 2.8. [4] For every sentence φ ∈ Σ1
1(τ∪{R}), where R is k-ary and

in which R appears only negatively, there is a formula φ(x1, . . . , xk)∗ ∈ D(τ),
such that for all τ -structures M and teams X with domain {x1, . . . , xk}:

(M, Rel(X )) |= φ(R) ⇔ M |=X φ(x1, . . . xk)∗.

3. Coherence

In this section we study the fragment of coherent D-formulas. We first define
k-coherence and then investigate which formulas are coherent and which are
not. We will also show that there are formulas which are incoherent.

Definition 3.1. Suppose φ(x1 . . . , xn) ∈ D is quantifier-free. Then φ is
k-coherent if and only if for all structures M and teams X of range M , such
that Fr(φ) ⊆ dom(X ) the following are equivalent:

1. M |=X φ.

2. For all k-element sub-teams Y ⊆ X it holds that M |=Y φ.

The coherence-level of φ, is the least natural number k, such that φ is k-
coherent.

We will observe that the satisfiability of first-order atomic formula is de-
termined by the singleton sub-teams, whereas the satisfiability of the depen-
dence atom is determined by the two-element sub-teams. Furthermore, we
will show that conjunction preserve coherence, whereas disjunction does not.

The next proposition follows directly from the definition of semantics for
the atomic formulas.
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Proposition 3.2. First-order atomic formulas are 1-coherent.

Proposition 3.3. Dependence atoms are 2-coherent.

Proof. Suppose X |= =(x1, . . . , xn). Then by Downwards closure 2.6 it
holds that for all 2-assignment subsets Y ⊆ X holds Y |= =(x1, . . . , xn).

Suppose that for all {s, s′} ⊆ X holds {s, s′} |= =(x1, . . . , xn). Then
by Definition 2.5, if s(x1) = s′(x1), then also s(x2) = s′(x2). On the other
hand, if s = s′, then s(x2) = s′(x2). Thus for all s, s′ ∈ X holds that
if s(x1) = s′(x1), then s(x2) = s′(x2). This is exactly the condition of
X |= =(x1, . . . , xn).

Proposition 3.4. Suppose φ and ψ are quantifier-free formulas such that
φ is k-coherent and ψ is l-coherent for l, k ∈ N, l ≤ k. Then φ ∧ ψ is
k-coherent.

Proof. Suppose X |= φ ∧ ψ. Then by Downwards closure 2.6 all the k-
element subsets satisfy φ ∧ ψ.

Suppose all k-element subsets Y ⊆ X satisfy φ ∧ ψ. Then Y satisfies φ
and ψ for all k-element Y ⊆ X . Then, by k-coherence of φ it follows that
X |= φ. By Downward closure 2.6 and the fact that all l-element subsets
of X are contained in some k-element subset, we conclude that all l-element
subsets of X satisfy ψ. Then by l-coherence of ψ holds X |= ψ. Thus
X |= φ ∧ ψ.

Disjunction does not preserve coherence in general. In some cases, how-
ever, we can show that disjunction does preserve it.

Proposition 3.5. Suppose φ and ψ are quantifier-free D-formulas, such
that φ is 1-coherent and ψ is k-coherent, k ∈ N. Then φ ∨ ψ is k-coherent.

Proof. Suppose X |= φ∨ψ holds. Then by Theorem 2.6 Xk |= φ∨ψ holds
for all k-element subsets Xk ⊆ X .

The other direction: Suppose that Xk |= φ ∨ ψ holds for all k-element
subsets Xk ⊆ X . Now the division of X into Y and Z, such that Y |= φ and
Z |= ψ is obtained in the following way for all s ∈ X :

• s ∈ Y iff {s} |= φ and s ∈ Z otherwise.

Clearly, it holds that Y |= φ. Let us show that Z |= ψ. By k-coherence
of ψ we have to check that for all k-element subsets Zk ⊆ Z, it holds that
Zk |= ψ. Suppose Zk ⊆ Z, such that Zk �|= ψ. Since all the singletons s ∈ Zk

fail φ it holds that Zk �|= φ∨ψ, which is a contradiction with the assumption.
Thus all the k-element subsets of Z satisfy ψ. Then by k-coherence of ψ
holds Z |= ψ. Thus Y ∪ Z |= φ ∨ ψ.
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As established in the previous proposition, combining a k-coherent for-
mula with a 1-coherent formula does not increase the coherence-level. Thus,
to obtain formulas with higher coherence-level, we have to take disjunctions
over dependence atoms.

We denote the disjunction of size k over a single dependence atom =
(x1, . . . , xn), by

∨
k =(x1, . . . , xn). We will next show that disjunctions over

the same dependence atom increases the coherence-level, i.e. the coherence-
level is increased by 1 for each disjunct. We will first define some notions
we need in the proof:

Definition 3.6. Suppose M is a τ -structure and X is a team of domain
V and range M . Suppose (a1, . . . , an−1) ∈ Mn−1 and x1, . . . , xn ∈ V. Let
S(a1, . . . , an−1) is now defined in the following way:

S(a1, . . . , an−1) = {s ∈ X | (s(x1), . . . , s(xn−1)) = (a1, . . . , an−1)}.

Let |S(a1, . . . , an−1)|∗ be the number of different values of xn under the
assignments in S(a1, . . . , an−1).

Lemma 3.7. Suppose M is a τ -structure and X is a team of domain V and
range M . Suppose (a1, . . . , an−1) ∈ Mn−1 and x1, . . . , xn ∈ V. Then, the
following are equivalent:

1. X |= ∨
k =(x1, . . . , xn).

2. |S(ā)|∗ ≤ k + 1 for each ā ∈ Mn−1.

Proof. Suppose (2) holds. Then each S(a1, . . . , an−1) can be divided into
sets S(a1, . . . , an−1)i, 1 ≤ i ≤ k+1, where xn gets a constant value. Now the
following partition of X into sets Xi, 1 ≤ i ≤ k + 1, is what we are looking
for:

Xi =
⋃

ā∈Mn−1

S(a1, . . . , an−1)i.

Next we will show that Xi |= =(x1, . . . , xn) for each Xi, 1 ≤ i ≤ k + 1.
Suppose s, s′ ∈ Xi such that s and s′ are from the same S(a1, . . . , an−1)i

for some (a1, . . . , an−1) ∈ Mn−1. Now s and s′ will agree on xn since xn is
constant in each S(a1, . . . , an−1)i. Thus {s, s′} |= =(x1, . . . , xn) holds. Sup-
pose s and s′ are from different sets, say s from S(a1, . . . , an−1) and s’ from
S(a′1, . . . , a′n−1). Then s and s′ will disagree on the sequence (x1, . . . , xn−1).
Thus {s, s′} |= =(x1, . . . , xn) holds. Now Xi |= =(x1, . . . , xn) holds for each
Xi, 1 ≤ i ≤ k + 1 by 2-coherence of dependence atoms.
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Suppose (2) does not hold. Then there exists (a1, . . . , an−1) ∈ Mn,
such that |S(a1, . . . , an−1)|∗ > k + 1. By pigeon hole principle1 it is not
possible to divide S(a1, . . . , an) into k + 1 subsets S(a1, . . . , an−1)i, 1 ≤
i ≤ k + 1, so that in each set S(a1, . . . , an−1)i the value of xn would be
constant. Since all the tuples in S(a1, . . . , an) agree on sequence x1, . . . , xn−1
it follows that the dependence atom =(x1, . . . , xn) will be dissatisfied in some
subset independent of the division of S(a1, . . . , an). Thus X does not satisfy∨

k =(x1, . . . , xn).

Proposition 3.8. Suppose k ∈ N and φ is a dependence atom. Then
∨

k φ
is k + 1-coherent.

Proof. Suppose φ is the dependence atom =(x1, . . . , xn) and X is a team
of type

∨
k =(x1, . . . , xn). Then, by downwards closure property all k + 1-

element subsets of X satisfy
∨

k =(x1, . . . , xn).
Suppose all k+1-element subsets of X satisfy

∨
k =(x1, . . . , xn). Thus it

holds that there are no such k+1-element subsets in X where the assignments
agree on the first n− 1 terms and all disagree on the last term xn. Thus for
every (a1, . . . , an−1) ∈ Mn−1 it holds that |S(a1, . . . , an−1)|∗ ≤ k + 1. Now
the claim follows from Lemma 3.7.

3.1. Incoherence

We will show that disjunction does not preserve coherence. Given a team
X and a formula

∨
i∈I =(x̄i, yi), where x̄i = (xii , . . . , xin), we interpret the

team as a multigraph in such a way that the |I|-colorability of the multigraph
corresponds to X satisfying

∨
i∈I =(x̄i, yi). The interpretation is such that

each assignment corresponds to a vertex in the graph. Furthermore, each
dependence atom =(x̄i, yi), i ∈ I, induces edges between the vertices in
such a way that if two assignments dissatisfy the dependence atom, then the
corresponding vertices share the corresponding edge Ei.

Definition 3.9. Suppose X = {s1, . . . , sn} is a team of domain V and
range M and φ ∈ D is of the form

∨
i∈I =(x̄i, yi). Then the multigraph

Gφ
X = (V, {Ei| i ∈ I}) is defined in the following way:

1. V = {vj | sj ∈ X}.
2. For each i ∈ I, if {sj , sl} �|= =(x̄i, yi), then (vj , vl) ∈ Ei.

1Formally it states that there does not exist an injective function on finite sets whose
codomain is smaller than its domain.
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The k-colorability of a multigraph is defined as an existence of a coloring
function σ : V → k, such that if two nodes share an edge Ei then they
cannot be colored both with the same color i, i ≤ k. The existence of a
coloring function for Gφ

X matches exactly with the existence of the division
of the team X in the Team-semantics.

Proposition 3.10. Suppose Gφ
X is a multigraph defined as in Definition 3.9

for a team X and formula φ =:
∨

i∈I =(x̄i, yi). Then the following two
conditions are equivalent:

1. There exists a |I|-coloring of the multigraph Gφ
X .

2. X |= ∨
i∈I =(x̄i, yi).

Proof. Suppose σ : V → I is a function, such that if σ(vi) = σ(vj) = m,
m ∈ I, then (vi, vj) �∈ Em. Let Xi, i ∈ I, be defined the following way:

Xi = {sj | sj ∈ X ∧ σ(vj) = i}.

Since σ is defined on the domain of Gφ
X , it holds that X =

⋃
i∈I Xi. We will

show next that Xi |= =(x̄i, yi), holds for each i ∈ I:
Suppose sl, sk ∈ Xi. Then, the corresponding vertices vl and vk are

assigned the value i under σ. Then, by assumption on σ, it follows that
(vl, vk) �∈ Ei. Thus by Definition 3.9, it follows that {sl, sk} |= =(x̄i, yi). By
2-coherence of the dependence atoms, it holds that Xi |= =(x̄i, yi). Thus
X |= ∨

i∈I =(x̄i, yi) holds.
The other direction: Suppose X |= ∨

i∈I =(x̄i, yi) holds. Then, there is
a partition of X into sets Xi, such that Xi |= =(x̄i, yi) for each i ∈ I, and
X =

⋃
i∈I Xi. Let σ : V → |I| be defined the following way:

• σ(vj) = m, if sj ∈ Xm.

Clearly, σ is well defined and it holds that if σ(vi) = σ(vj) = m, then
(vi, vj) �∈ Em.

The next lemma will show that disjunction does not preserve coherence.
An important detail to notice is that the two dependence atoms do not use
the same variables.

Theorem 3.11. =(x, y)∨ =(z, v) is not k-coherent for any k ∈ N.

Proof. We will actually show that a stronger claim holds, namely that
=(x, y)∨ =(z, v) is not f(n)-coherent for any function f : N → N, such that
f(n) < n, for all n. Here the meaning of f(n)-coherence is that a formula
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φ is f(n)-coherent, if for all teams X , such that |X | = n, it holds that
X |= φ ⇔ Y |= φ for every Y ⊆ X , such that |Y| = f(n).

We will construct a team X such that every proper subset of X satisfies
= (x, y)∨ =(z, v), but the whole team dissatisfies = (x, y)∨ =(z, v). We
represent the team as a multigraph as in Definition 3.9. Each of the vertices
corresponds to an assignment of the team. Suppose sv, sw ∈ X . There are
two type of edges we assign between vertices in the following way.

• If {sv, sw} �|= =(x, y), then we draw a straight edge between the vertices
v and w.

• If {sv, sw} �|= =(z, v), then we draw a wavy edge between the correspond-
ing vertices v and w.

A |2|-coloring of the multigraph will be a partition of the universe into two
sets, black and white vertices, such that the black vertices do not share any
wavy edges and the white vertices do not share any straight edges. The
graph in Figure 1 is such that every proper subgraph is 2-colorable, but the
whole multigraph is not.

v1

v2

v3

vn−1

vn−2

vn

v5 v6v4 . . .

Figure 1. Multigraph GX

GX is not 2-colorable: Suppose v2 is colored black. Then vertices v1, v3
should be colored white as they both share a wavy edge with v2. But since
there is a straight edge between v1 and v3 and the fact that white color does
not allow straight edges, this cannot be a proper coloring. Thus the only
way to properly color the triangle is to color v2 white. The colors of v1, v3
can be chosen black or white as long as v1, v3 are not both white. Similar
reasoning shows that vn−2 has to be colored also white and the colors of
vn−1 and vn cannot be both white.
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The triangles {v1, v2, v3} and {vn−2, vn−1, vn} are connected with a path
of even length (even number of vertices). The path is such that the edges
alternates between straight and wavy, which forces the proper coloring also
to alternate between black and white for the vertices on the path. Since the
length of the path is even, there cannot be a coloring for the whole graph as
the color of v2 determines the coloring of the whole path, in the same way as
the color of vn−2. They both force different colors on the path, thus making
the proper coloring impossible. Thus the whole graph is not 2-colorable.

v1

v2

v3

vn−1

vn−2

vn

v5 v6v4 . . .

Figure 2. Coloring of the multigraph GX

Every proper subgraph of GX is 2-colorable: We will show that
if we remove a vertex from either of the triangles, then the coloring of the
vertex v2 (or vn−2), which is connected to the path, can be chosen either
black or white. Suppose v1 is removed. Then we can choose so that v2
is colored black and v3 is colored white. The vertex vn−2 has to be still
colored with white. Now, since v2 and vn−2 are colored with different colors
and the path connecting them is even, it holds that the whole graph can be
colored. The cases where we remove any other vertex from the two triangles
are analogous to this one.

On the other hand, suppose one of the vertices from the path connecting
the two triangles is removed. Then we have two components of the graph
that are not connected by edges. The coloring of the whole graph reduces to
the coloring of the two subgraphs for which there is a trivial coloring induced
by the coloring of two nodes v2 and vn−2.

The team that corresponds to the graph GX is given in the Table 1.
As one can observe, the values of the whole path are not explicitly given

in the picture. If two vertices share a straight edge, the corresponding as-
signments of the team in Table 1 are assigned the same value for x and
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assignment x y z v
s1 0 0 0 0
s2 1 2 0 1
s3 0 2 0 0
s4 1 1 1 2
s5 2 3 1 3
s6 2 4 2 4
.
.
.

sn−2 n n+ 2 n n+ 1
sn−1 n+ 1 n+ 3 n n+ 2
sn n+ 1 n+ 4 n n+ 2

Table 1. Team corresponding to multigraph GX

different ones for y. Similarly, if two vertices share a wavy edge the corre-
sponding assignments assign the same value for z and different one for v.
When we choose the values for the assignments that correspond to a vertex
in the path, we always use new values for the variables if possible. This way
we ensure that there will be no unintended edges between the vertices in
the triangle and the vertices in the path, just the ones that appear in the
picture.

For example, s4(x) is assigned the same as s2(x) and s4(y) is assigned
different to s2(y), but s4(z) and s4(v) are chosen new values. With the next
vertex on the path, which is v5, we can already assign new values for s5(x)
and s5(v). We also have to take care that the values of s5(z) and s5(v) are
assigned such that the dependence =(z, v) is dissatisfied. At this point of the
path the values that the assignments s1, s2 and s3 assign to variables x, y, z, v
are no more assigned when we go left in the path. Thus, the ranges of the
variables under the assignments corresponding to the vertices of the triangles
are disjoint with ranges of variables under the assignment that correspond
to the vertices on the path (excluding the endpoints of the path).

Let us show that the team in Table 1 indeed translates into the graph
in Figure 1. Recall that straight edges are drawn when two assignments
dissatisfy the dependence atom = (x, y) and wavy edges when = (z, v) is
dissatisfied;
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Straight edges from vertex v1: It holds that s1(x) = 0 = s3(x), but
s3(y) �= s1(y). Thus there is a straight edge (v1, v3). All the other assign-
ments assign value other than 0 for x. Thus there cannot be straight edges
from a to other vertices.

Wavy edges from vertex v1: s1(z) = s2(z) = 0 and s1(v) = 0 �= 2 = s2(v),
thus there is a wavy edge (v1, v2). Indeed s3(z) = 0 but s3(v) �= s1(v), thus
there is no wavy edge (v1, v3). All the other assignments assign a value
different to 0 for z, thus there are no wavy edges between v1 and other
vertices.

Straight edges from vertex v3: The only straight edge from v3 is the one
that is shared with v1. All other assignments assign a value different from 0
to x, thus there are no other straight edges from v3.

Wavy edges from vertex v3: s3(z) = s2(z) = 0 and s3(v) = 0 �= 2 = s2(v),
thus there is a wavy edge (v3, v2). Again, s3(v) = s1(v), thus there is no
wavy edge between them. All the other assignments assign a value different
from 0 to z. Thus there are no other wavy edges from v3.

Straight edges from vertex v2: The only assignment that assigns x as 1
is s4, but they disagree on y. Thus there is straight edge (v2, v4). As we
earlier noted, after the next vertex on the path, the values that are assigned
by the assignments that correspond to nodes that appear in the triangle do
not appear in the ranges of the assignments that correspond to the vertices
that come later in the path. Thus all the other assignments disagree with
s2 on x. Thus there are no other straight edges from the node v2.

Wavy edges from vertex v2: The edges (v2, v1) and (v2, v3) have been
already established. The value s2(z) does not appear as a value for z under
the assignment corresponding the nodes that appear later in the path. Thus
there are no other wavy edges from v2.

The other triangle {vn−2, vn−1, vn} is isomorphic to that of {v1, v2, v3}.
It can be checked analogously that exactly the edges that appear in the
graph will be drawn under the translation given in Definition 3.9.

We have given a construction of collection of graphs like in Figure 1,which
are not 2-colorable, but for which hold that every proper sub-graph is. Now
by Proposition 3.10 the following are equivalent:

1. GX is 2-colorable.
2. X |= =(x, y)∨ =(z, v).

Thus the whole team X as in Table 1 does not satisfy =(x, y)∨ =(z, v), but
every proper sub-team of X satisfies =(x, y)∨ =(z, v). By increasing the
number of vertices on the path that connects the two triangles in Figure 1
we get the same counter example for different cardinalities.
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4. Computational complexity of quantifier-free D-formulas

Model checking is one of the central problems considered in finite model
theory. Given a structure M and a formula φ it is to decide whether M is
a model of φ. When we fix the formula φ and let the structure vary, we talk
about the model checking problem for a formula φ.

Each φ ∈ D(τ) defines a collection of pairs (M,X ), where M is a τ -
structure and X is a team of range M , such that Fr(φ) = dom(X ) =
{x1, . . . , xn}. Given a team X we define a relation Rel(X ) in the following
way:

Rel(X ) = {(s(x1), . . . , s(xn)) | s ∈ X}.
Definition 4.1. Suppose φ ∈ D(τ). The Model checking problem for a
formula φ, MC(φ), is to decide whether it holds that

M |=X φ,

where M is a τ -structure and X is a team, such that Fr(φ) = dom(X ).

We will use the following versions of Boolean satisfiability problem to
show the NL- and NP-completeness of MC(φ) for certain φ ∈ D.

Definition 4.2. Boolean satisfiability problem(SAT) is a problem to deter-
mine whether a given quantifier-free first order formula is satisfiable. The
variables are boolean and may occur positively or negatively in the formula.
The formulas are assumed to be in the conjunctive normal form. The prob-
lem is to determine, whether there is an assignment, that satisfies the given
formula. There are several variations of SAT from which we consider the
following two:

• 2-SAT: At most 2 disjuncts in each clause.

• 3-SAT: At most 3 disjuncts in each clause.

It is known that 2-SAT is NL-complete [5] and 3-SAT is NP-complete [3].

4.1. Logarithmic space

We will start by showing that the model checking problem for k-coherent
formulas is in LOGSPACE. We will establish this by showing that for every
k-coherent τ -formula there is an equivalent FO-sentence over vocabulary
τ ∪ {R}, where R is a | dom(X )|-ary relation symbol interpreting the team.
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We say that the formula φM characterizes the τ -structure M up to
isomorphism if M |= φM, and the following equivalence holds for all τ -
structures N :

M ∼= N ⇔ N |= φM.

We want to characterize finite fixed size teams up to isomorphism. For
this, we introduce the notion of team-structure, which is essentially the
substructure induced by the team. First we give a definition of substructure:

Definition 4.3. Suppose M is a relational τ -structure and S ⊆ M . Then
let the substructure induced by S, denoted by M|S, be the S endowed with
a k-ary relation RMi ∩ Sk, for each k-ary Ri ∈ τ .

Definition 4.4. Suppose M is a τ -structure and X is a team of domain V
and range M . Let AX = {a ∈ M | s(xi) = a, for s ∈ X and xi ∈ V }.
Definition 4.5. Suppose M is a τ -structure and X is a team of domain
{x1, . . . , xn} and range M . Then the team-structure induced by X is the
τ ∪ {R}-structure (M|AX , Rel(X )), which we denote by MX .

Let K(k, n) be the class of all team-structures MX where |X | = k and
dom(X ) = {x1, . . . , xn}. We will characterize the isomorphism type of the
team-structures inside the class K(k, n), k, n ∈ N. This can be done with a
first-order quantifier-free formula. For this, we need the notion of k-τ -type.

Definition 4.6. Suppose τ is a relational vocabulary. Then a k-τ -type
tkτ (x1, . . . , xk) is a maximal consistent set of τ -atomic-, negated τ -atomic-,
identity- and negated identity formulas over {x1, . . . , xk}.

Suppose M is a τ -structure and ā = (a1, . . . , ak) ∈ Mk. We say that the
tuple (a1, . . . , ak) realizes the k-τ -type tkτ (x1, . . . , xk) in M if

(M, ā) |=
∧

φ∈tkτ
φ(x1, . . . , xk).

We denote the k-τ -type realized by the tuple ā in M by tM̄a .
Suppose Rel(X ) ⊆ Mn, such that |Rel(X )| = k and Π(X ) is the set

of all orderings of the tuples of Rel(X ). Let π ∈ Π(X ). Then āπx is the
concatenation of the tuples of Rel(X ) in the order π. Let

ΦM,τ
Π(X )(x1, . . . , xkn) =:

∨

π∈Π(X )

∧

ψ∈tM,τ
āπx

ψ(x1, . . . , xkn).
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The next lemma shows that we can characterize the isomorphism type of
a team-structure MX ∈ K(k, n) with a quantifier-free formula. Since all the
elements of the domain are in one of the tuples of Rel(X ) we do not have
to explicitly state the cardinality of structure. With the assumption that
both of the teams have the same domain and that they are of same size, it
is enough to state all the identities between the elements occurring in the
tuples of Rel(X ). This determines the cardinality of the domain. We also
state all the relational atomic formulas the elements in the tuples of Rel(X )
satisfy.

Since the tuples of Rel(X ) are not in order, we have to consider all the
possible orders of the tuples. Thus, the formula characterizing MX is a
disjunction over all orders of the tuples of Rel(X ), where each disjunct is a
conjunction over all the formulas in the type the concatenated tuple realizes.

Lemma 4.7. Suppose MX ,NY ∈ K(k, n) are team-structures. Then

MX ∼= NY ⇔ NY |= ΦMX ,τ∪{R}
Π(X ) (x1, . . . , xkn).

Proof. Suppose f : AX → AY is an isomorphism. Suppose π1 is an order-
ing of the tuples of Rel(X ). Then let π2 : Rel(Y) → Rel(Y), such that for
all āi, āj ∈ Rel(Y): (āi, āj) ∈ π2 ⇔ (f−1(āi), f−1(āj)) ∈ π1. Here f−1(āi) is
a shorthand for (f−1(ai1), . . . , f−1(ain)). Since f is isomorphism π2 is well
defined and it is an ordering of the tuples of Rel(Y).

Let us show that t
MX ,τ∪{R}
ā
π1
x

= t
NY ,τ∪{R}
ā
π2
y

. Since f is isomorphism it

holds (ai1 , . . . , aim) ∈ RMX
i ⇔ (f(ai1), . . . , f(aim)) ∈ R

NY
i for all m-ary

Ri ∈ τ ∪ {R}.
Since f is a bijection, it holds that ai = aj ⇔ f(ai) = f(aj) for all

i, j ≤ kn. Thus (MX , ai, aj) |= (xi = xj) ⇔ (NY , bi, bj) |= (xi = xj). Thus
t
MX ,τ∪{R}
ā
π1
x

= t
NY ,τ∪{R}
ā
π2
y

holds.

The other direction: Suppose NY |= ΦMX ,τ∪{R}
Π(X ) (x1, . . . , xkn). Then,

there is kn-tuple (b1, . . . , bkn) ∈ (AY)nk, such that

(NY , b1, . . . , bkn) |= ΦMX ,τ∪{R}
Π(X ) (x1, . . . , xkn).

Let tNY ,τ∪{R}
b̄

be the kn-τ ∪ {R}-type the tuple b̄ realizes in NY .
On the other hand, by definition of ΦMX ,τ∪{R}

Π(X ) (x1, . . . , xkn) there is an

order π of the tuples of Rel(X ), such that tMX ,τ∪{R}
āπX

= t
NY ,τ∪{R}
b̄

. Let āπX =
(a1, . . . , akn).
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Let f =
⋃

i≤kn(ai, bi). We will show that f : AX → AY is an isomor-
phism.

f is a function: Clearly f is defined in the wholeAX . Suppose ai = aj , i �=
j, i, j ≤ kn. Then (MX , ai, aj) |= (xi = xj). Since t

MX ,τ∪{R}
āπX

= t
NY ,τ∪{R}
b̄

,
it holds that (NX , bi, bj) |= (xi = xj). Thus it holds that f(ai) = f(aj).

f is surjection: We need to show that the tuple b̄ contains all the elements
of the domain AY . For each order π, the type tMX ,τ∪{R}

āπX
contains the formu-

las R(x1, . . . , xn),. . . , R(x(k−1)n+1, . . . , xkn). Since t
MX ,τ∪{R}
āπX

= t
NY ,τ∪{R}
b̄

it also holds that R(x1, . . . , xn),. . . , R(x(k−1)n+1, . . . , xkn) are in t
NY ,τ∪{R}
ā .

Thus all the n-tuples (b1, . . . , bn),. . . , (bn(k−1)+1, . . . , bnk) ∈ Rel(Y). Fur-
thermore, since all the tuples in Rel(X ) are pairwise distinct and since the
both of the types tMX ,τ∪{R}

āπX
and t

NY ,τ∪{R}
b̄

contain all the identities between
the elements of the tuples, it also hold that all the tuples (b1, . . . , bn),. . . ,
(bn(k−1)+1, . . . , bnk) are pairwise distinct. Thus it holds {(b1, . . . , bn),. . . ,
(bn(k−1)+1, . . . , bnk)} = Rel(Y).

Suppose bj ∈ AY , j ≤ kn. Then bj is in the tuple b̄. Then by definition
of f it holds that (aj , bj) ∈ f .

f is injection: Suppose ai, aj ∈ AX , ai �= aj . Then (MX , ai, aj) |= ¬(xi =
xj). Since t

MX ,τ∪{R}
āπX

= t
NY ,τ∪{R}
b̄

, it holds (NY , bi, bj) |= ¬(xi = xj). Thus
it holds that f(ai) �= f(aj).

f is homomorphism: Suppose Ri ∈ τ ∪ {R} and (ai1 , . . . , aik) ∈ RMX
i .

Since t
MX ,τ∪{R}
āπX

= t
NY ,τ∪{R}
b̄

, it holds (bi1 , . . . , bik) ∈ R
NY
i .

We use the following lemma in the proof of Theorem 4.9. We will omit
the proof, which is a straightforward induction on the structure of formula.

Lemma 4.8. Suppose M is a τ -structure and X a team of range {x1, . . . , xn}
and of domain M . Then the following equivalence holds for all quantifier-free
φ(x1, . . . , xn) ∈ D(τ):

M |=X φ ⇔ M|AX |=X φ.

Theorem 4.9. Suppose φ(x1, . . . , xn) is a quantifier-free k-coherent D(τ)-
formula. Then there is a sentence φ∗ ∈ FO(τ ∪ {R}), where R is n-ary,
such that for all τ -structures M and for all teams X of domain {x1, . . . , xn}
the following holds:

M |=X φ(x1, . . . , xn) ⇔ (M, Rel(X )) |= φ∗(R).
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Proof. Suppose φ(x1, . . . , xn) is a k-coherent D(τ)-formula. Then for all
teams X of domain {x1, . . . , xn} holds:

M |=X φ ⇔ for all Y ⊆ X ( if |Y| = k, then M |=Y φ).

By Lemma 4.8 it holds that

M |=Y φ ⇔ M|AY |=Y φ.

Let Y ⊆ X , such that |Y| = k and MY is the team-structure induced
by Y. The size of the domain of MY is bounded by kn. Since also the
vocabulary is finite, there are only finitely many different τ -isomorphism
types of MY . By lemma 4.7 the isomorphism type of a team-structure
MY ∈ K(k, n) can be characterized in FO with a quantifier-free formula.
Let Iφ be the set of all different isomorphism types ψNZ of NZ ∈ K(k, n),
such that ψNZ ∈ Iφ ⇔ N |=Z φ. Notice that for a given pair (N , Z), the
structure NZ is unique. Now φ∗(R) can be written in the following way:

φ∗ =: ∀x̄1 . . . ∀x̄k((
∧

i≤k
x̄i ∈ R

∧

i �=j

x̄i �= x̄j) →
∨

ψ∈Iφ
ψ(x̄1, . . . , x̄k)),

where x̄i is a shorthand for a tuple (xi1 , . . . , xin), i ≤ k. Let us show that
the claimed equivalence holds.

Suppose M |=X φ. Let ā1, . . . , āk ∈ RM such that āi �= āj for i �= j,
i, j ≤ k. Then {ā1, . . . , āk} = Rel(Y) for a Y ⊆ X , |Y| = k. By assumption
it holds that M |=X φ. Then by k-coherence of φ it holds that M |=Y φ.
Thus the isomorphism type of the team-structure MY is in Iφ. Thus it holds
that (M, Rel(X )) |= φ∗(R).

Suppose (M, Rel(X )) |= φ∗(R). Suppose Y ⊆ X such that |Y| = k.
Then, the isomorphism type of the team-structure MY is in Iφ. Thus it
holds that M |=Y φ. Then M |=X φ follows by k-coherence of φ.

The model checking problem of FO-formulas is in LOGSPACE [2]. This
yields the following corollary for the computational complexity of k-coherent
formulas.

Corollary 4.10. Suppose φ ∈ D is a k-coherent formula. Then MC(φ) ∈
LOGSPACE.

We have shown that the fragment of k-coherent D-formulas is contained
in FO and thus the model checking problem for k-coherent formulas is in
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LOGSPACE. Natural question arises whether coherent fragment of D is as
expressive as FO?

This question can be answered by using the Downwards Closure property
2.6. It states that if a team X is of type φ, then all subsets Y ⊆ X are also of
type φ. Thus any property of teams that is not downwards monotone is not
expressible in D. This follows from the result of Juha Kontinen and Jouko
Väänänen [4].

Proposition 4.11. Let Coh(D) be the set of all k-coherent D-formulas, for
all k ∈ N. Then Coh(D) � FO.

Proof. Coh(D) ⊆FO by Theorem 4.9. Let Mk be the class of τ ∪ {R}-
structures, where R is n-ary and interprets the team X , such that:

(M, Rel(X )) ∈ Mn
k ⇔ |X | = k.

Let us assume that Mk is definable in D: Suppose φk(x1, . . . , xn) ∈ D is
such that for all τ ∪ {R}-structures (M, Rel(X )):

M |=X φk(x1, . . . , xn) ⇔ (M, Rel(X )) ∈ Mk.

Suppose (M, Rel(X )) ∈ Mk. Thus M |=X φk(x1, . . . , xn). Then it
holds M |=Y φk(x1, . . . , xn) for all Y � X by Downwards Closure 2.6. Thus
(M, Rel(Y)) ∈ Mk. But |Y| �= k since Y � X , which is a contradiction.
Thus there is no such φk(x1, . . . , xn) ∈ D. It follows that Mk is not definable
in D.

On the other hand, we can define Mk in first order logic for all k ∈ N.

∃x̄1 . . . ∃x̄k∀x̄k+1(
∧

i≤k
R(x̄i)

∧

i �=j,i,j≤k
(x̄i �= x̄j) ∧ (R(x̄k+1) →

∨

i≤k
(x̄i = x̄k+1)))

(3)
x̄i is a shorthand for the tuple (xi1 , . . . , xin) and ∀x̄i is a shorthand for the
sequence ∀xi1 . . . ∀xin . The formula 3 is true in a structure (M, Rel(X )) if
and only if |Rel(X ))| = k.

4.2. Non-deterministic logarithmic space

In the previous section we established that all quantifier-free formulas with-
out disjunction are coherent. Furthermore, we showed that with the use of
one disjunction one obtains already formulas which are incoherent. In this
section we will show that the model checking problem for all quantifier-free
formulas with at most one disjunction is in NL. We will also show that the
model checking problem of the formula =(x, y)∨ =(z, v) is complete for NL.
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We write P1 ≤LOGSPACE P2, if there is a LOGSPACE-reduction from
problem P1 to problem P2. Notice that in the following theorem we do not
restrict the number of disjunctions in the formula, but rather the coherence-
level of the disjuncts. The coherence-level of formulas without disjunctions
is at most 2.

Theorem 4.12. Suppose φ and ψ are 2-coherent quantifier-free D-formulas.
Then MC(φ ∨ ψ) ≤LOGSPACE 2-SAT.

Proof. Suppose we are given a team X = {s1, . . . , xk}. We will go through
all the two-element subsets {si, sj} ⊆ X , and construct an instance ΘX of
2-SAT in the following way:

• If {si, sj} �|= φ, then (xi ∨ xj) ∈ C.

• If {si, sj} �|= ψ, then (¬xi ∨ ¬xj) ∈ C.

We let ΘX =
∧

ψ∈C ψ. By the construction, it holds thatΘX is a proper
instance of 2-SAT. We will next show that there is an assignment S that
satisfies ΘX , if and only if X |= φ∨ψ holds: Suppose there is an assignment
S : V ar(ΘX ) → {0, 1} that satisfies ΘX . Let us define the partition of X in
the following way:

• Z = {si ∈ X | S(xi) = 1}.
• Y = X \ Z.

Clearly it holds that X = Z ∪ Y. Let us show that Z |= ψ and Y |= φ hold:
Suppose si, sj ∈ Z. Since S satisfies ΘX , (¬xi ∨¬xj) cannot be a clause

in ΘX . By the construction above, it follows that {si, sj} |= ψ holds. Now,
by 2-coherence of ψ it follows that Z |= ψ.

Suppose si, sj ∈ Y. Since S was assumed to satisfy ΘX , (xi ∨ xj) cannot
be a clause in ΘX . It follows by the construction above that {si, sj} |= φ
holds. Again, from 2-coherence of φ it follows that Y |= φ holds.

The other direction: Suppose X |= φ∨ψ holds. Then, by Definition 2.5 it
holds that there is a division of X into two sets Z and Y, such that X = Z∪Y,
Z ∩ Y = ∅, Y |= φ and Z |= ψ. Let S be defined the following way:

• S(xi) = 1, if si ∈ Z.

• S(xi) = 0, if si ∈ Y.

Clearly it holds that S : V ar(ΘX ) → {0, 1} is a function. Let us show that
S satisfies ΘX : Suppose θ ∈ ΘX of form (xi∨xj). Then {si, sj} dissatisfies φ
by the construction of ΘX . Then si and sj cannot be both in Y, since Y was
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supposed to satisfy φ. Thus, either si or sj must be in Z. Then, it holds
that S(xi) = 1 or S(xj) = 1, which implies that S(xi ∨ xj) = 1.

Suppose θ is (¬xi∨¬xj). Then, by the construction of ΘX , it holds that
{si, sj} fails ψ. Then, si and sj cannot be both in Z, since Z was supposed
to satisfy ψ. Thus either si or sj must be in Y. Then, it holds that S(xi) = 0
or S(xj) = 0, which implies that S(¬xi ∨ ¬xj) = 1.

Last, the complexity of this reduction is in LOGSPACE: We need to go
through the 2-element subsets of the team X and check if they dissatisfy φ
or ψ. All the 2 assignment sub-teams of X can be generated in LOGSPACE
when X is given. Since φ and ψ were coherent, the model checking for both
of these formulas can be done in LOGSPACE.

Corollary 4.13. Suppose φ and ψ are 2-coherent D-formulas. Then

MC(φ ∨ ψ) ∈ NL.

Next we will show that the model checking of the formula = (x, y)∨ =
(z, v) is complete for NL. We will reduce 2-SAT to the model checking prob-
lem of the formula =(x, y)∨ =(z, v).

Theorem 4.14. 2-SAT ≤LOGSPACE MC(=(x, y)∨ =(z, v)).

Proof. Suppose θ(p0, ..., pm−1) is an instance of 2-SAT of the form
∧

i∈I Ei,
where each conjunct Ei = (Ai1 ∨ Ai2), i ∈ I, where Aij , j ≤ 1, are positive
or negative boolean variables.

We will construct a team X , such that the following are equivalent:

1. X |= =(x, y)∨ =(z, v).

2. θ(p0, . . . , pm−1) is satisfiable.

For each conjunct Ei, i ∈ I, we create a team XEi with two assignments si1
and si2 of domain {x, y, z, v} where we encode both of the boolean variables
Aj ∈ Ei and the truth values of the variables which satisfy the clause Ei.
The clause Ei : (Ai1 ∨ Ai2) will be satisfied if one of the boolean variables
Ai1 or Ai2 will be assigned value 1.

Thus, variable x ranges over the set boolean variables in θ(p0, . . . , pm−1),
variable y ranges over the truth values {0, 1}. The variable z denotes the
clause Ei. Thus z ranges over the indices i ∈ I. Variable v ranges over values
{0, 1}. Variables z and v together make sure we have to choose at least one of
the assignments form each XEi into the subset of X , that eventually encodes
the assignment that satisfies θ.
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x y z v
pk 1 i 1
pj 1 i 2

Table 2. Team for (pk ∨ pj).

Each boolean variable Aij in Ei, i ∈ I, gives rise to one assignment. For
example, the team XEi for a clause (pk ∨ pj) is the one in Table 2.

The team for the whole instance of 2-SAT,
∧

i∈I(Ai1 ∨Ai2), is the one in
Table 3, where t(Ai) = 1 if Ai is a unnegated variable and t(Ai) = 0, if Ai

is a negated variable. Now X is the union
⋃

i∈I XEi.

x y z v
A01 t(A01) 0 1
A02 t(A02) 0 2
A11 t(A11) 1 1
A12 t(A12) 1 2
A21 t(A21) 2 1
A22 t(A22) 2 2
. . . .
. . . .
. . . .

AI1 t(AI1) n 1
AI2 t(AI2) n 2

Table 3. Team
⋃

i∈I XEi .

Suppose θ(p0, . . . , pm−1) is satisfiable. Then there exists an assignment
F : {p0, . . . , pm−1} → {0, 1}, that satisfies θ(p0, . . . , pm−1). We define the
partition of the team X into two sets in the following way:

X1 = {s ∈ X | F (s(x)) = s(y)},
X2 = X \ X1.

The assignments in X that agree with the assignment F are chosen to
X1. Since F evaluates

∧
i∈I Ei true, it satisfies every conjunct Ei. Thus X1

contains at least one assignment from each XEi . Thus there will be at most
one tuple from each XEi left to X2. Thus X2 trivially satisfies =(z, v) since
all tuples in X2 disagree on z.
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Next we will show that X1 satisfies =(x, y): Let s, s′ ∈ X1, such that
s(x) = s′(x) = pi. Then by the definition of X1 it holds that s(y) = F (pi) =
s′(y) holds. Thus X1 |= =(x, y).

The other direction: Suppose X |= =(x, y)∨ =(z, v). Then there is a
partition of X into X1 and X2, such that X1 |= =(x, y) and X2 |= =(z, v).
We will define the assignment F : {p0, . . . , pm} → {0, 1} in the following way:

• If ∃s ∈ X1, such that s(x) = pi, then F (pi) = s(y).

• If ∀s ∈ X1 it holds s(x) �= pi, then F (pi) = 1.2

Let us show that F : {p0, . . . , pm−1} → {0, 1} is a function, which satisfies
θ(p0, . . . , pm−1):

1. Clearly, Dom(F ) = {p0, . . . , pm−1} and Range(F ) = {0, 1}.
2. F is a function: Let pi ∈ {p0, . . . , pm}. Suppose there exists s, s′ ∈ X1,

such that s(x) = s′(x) = pi holds. Since X1 |= =(x, y) holds, it follows
that s(y) = s′(y) holds. Suppose there are no s ∈ X1, such that s(x) = pi.
Then by definition of F it holds that F (pi) = 1.

3. F satisfies θ(p0, . . . , pm−1): Note that z is constant and v is assigned
different value by each tuple in each XEi . Thus X1 contains at least one
of the tuples from each XEi . Let s ∈ XEi , such that s ∈ X1. Recall, that
in every assignment the value s(y) encoded the truth value for s(x) such
that Ei is satisfied. Since s agrees with F , it holds that F (Aij ) = s(y),
which implies that F (Ei) = 1.

Each conjunct Ei, i ∈ I, of θ gives rise to a constant size team of two
assignments with domain {x, y, z, v}. Thus the team X can be constructed
in LOGSPACE for each θ.

The problem 2−SAT is known to be complete for NL [5]. Now we have
the following corollary:

Corollary 4.15. MC(=(x, y)∨ =(z, v) is complete for NL.

Next we will show that when we consider formulas with two disjunctions,
the model checking becomes NP-complete for certain formulas.

2If for all the assignments s ∈ X1 holds s(x) �= pi, then the value of pi is not relevant
to the satisfiability of Θ. Thus the value of pi can be chosen 0 or 1.
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4.3. Non-deterministic polynomial time

We will reduce 3-SAT to MC(=(x, y)∨ =(z, v)∨ =(z, v)).
Recall that an instance θ ∈ 3-SAT is a first-order formula in conjunctive

normal form, where each conjunct has at most three variables:
∧

i∈I Ei,
where I is finite. Each Ei is of form (Ai0 ∨ Ai2 ∨ Ai3), where Ai is either
a positive or a negated boolean variable. Formula θ is accepted if there is
an assignment, that satisfies θ. The reduction is analogous to the reduction
given in Theorem 4.14.

Theorem 4.16. 3-SAT ≤LOGSPACE MC(=(x, y)∨ =(z, v)∨ =(z, v)).

Proof. Suppose θ(p0, . . . , pm−1) is an instance of 3-SAT with conjuncts Ei,
i ∈ I. We will construct a team X , such that the following are equivalent:

• X |= =(x, y)∨ =(z, v)∨ =(z, v).

• θ(p0, . . . , pm−1) is satisfiable.

For each conjunct Ei, i ∈ I, we create a team XEi of three assignments with
domain {x, y, z, v}, which encodes all boolean variables of Ei as well as the
truth value for the variable such that Ei is satisfied. Thus, the variable x
ranges over the boolean variables in θ(p0, . . . , pm−1), variable y ranges over
the truth values {0, 1}. The variable z denotes the clause Ei. Thus z ranges
over the indices i ∈ I. Variable v ranges over values {0, 1, 2}.

For example, a clause Ei = (pl ∨ ¬pj ∨ ¬pk) will be satisfied if pl = 1 or
pj = 0 or pk = 0. The team for (pl ∨ ¬pj ∨ ¬pk) is the one in Table 4.

x y z v
pl 1 1 0
pj 0 1 1
pk 0 1 2

Table 4. A team for (pl ∨ ¬pj ∨ ¬pk).

The team X for the whole instance θ(p0, . . . , pm−1) is then X =
⋃

i∈I XEi .
Suppose θ(p0, . . . , pm−1) is satisfiable. Then there exists an assignment

F : {p0, . . . , pm−1} → {0, 1}, such that F satisfies θ(p0, . . . , pm−1). We define
X1 ⊂ X in the following way:

X1 = {s ∈ X | F (s(x)) = s(y)},
Since F satisfies

∧
i∈nEi, it satisfies every conjunct Ei. Then by the defini-

tion of XEi one of the tuples s ∈ XEi agrees with F , which means s(x) = pij ,
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j ≤ 3, and F (pij ) = s(y). Thus. by the definition of X1 it holds that s ∈ X1.
Thus the two “leftover”-assignment form each XEi can be easily divided into
X2 and X3 in such a way that =(z, v) holds in both of them. We just place
one of the assignments into X2 and one into X3.

Let us show that X1 |= =(x, y). Suppose s, s′ ∈ X1, such that s(x) =
s′(x) = pi. Then, by definition of X1, it follows that s(y) = s′(y) = F (pi).
Thus X1 |= =(x, y).

The other direction: Suppose X |= =(x, y)∨ =(z, v)∨ =(z, v) holds. Then
by the truth definition of the disjunction, it follows that X can be partitioned
into three sets X1, X2 and X3, such that X1 |= =(x, y), X2 |= =(z, v) and
X3 |= =(z, v) hold. Let F be defined in the following way for each variable pi.

• If ∃s ∈ X1, such that s(x) = pi, then F (pi) = s(y).

• If ∀s ∈ X1 it holds s(x) �= pi, then F (pi) = 1.

Let us show that F : {p0, . . . , pm} → {0, 1} is a function, which satisfies
θ(p0, . . . , pm−1).

1. Clearly, F is well defined and the domain of F is {p0, . . . , pm−1} and the
range is {0, 1}.

2. F is a function: Let pi ∈ {p0, . . . , pm}. Suppose there exists s, s′ ∈ X1,
such that s(x) = s′(x) = pi holds. Since X1 |= =(x, y) holds, it follows
that s(y) = s′(y) = F (pi) holds. If there exists no s ∈ X1, such that
s(x) = pi, then it holds by the definition of F , that F (pi) = 1.

3. F satisfies θ(p0, . . . , pm−1): Note that z is constant and v is assigned
different value by each tuple in each XEi . Thus X1 contains at least one
of the tuples from each XEi . Let s ∈ XEi , such that s ∈ X1. Recall, that
in every assignment the value s(y) encoded the truth value for s(x) such
that Ei is satisfied. Since s agrees with F , it holds that F (Aij ) = s(y),
which implies that F (Ei) = 1.

Each conjunct Ei, i ∈ I, in θ gives rise to a constant size team of three
assignments with domain {x, y, z, v}. Thus team X can be constructed in
LOGSPACE for each θ.

3-SAT is complete for NP [3]. We have the following corollary:

Corollary 4.17. MC(=(x, y)∨ =(z, v)∨ =(z, v)) is complete for NP.

Notice that = (x, y) is 2-coherent and = (z, v)∨ =(z, v) is 3-coherent.
Thus in the light of Theorem 4.12, this is the best possible result.
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5. Directions for future work and open problems

As we have shown the quantifier-free fragment of dependence logic is compu-
tationally as hard as the whole logic. The model checking problem becomes
NP-complete already for relatively simple quantifier-free formulas. The co-
herent fragment contains the essential building blocks of dependence logic,
that is the dependence atoms, and it is relatively low in complexity, thus it
gives us a good starting point to look for more expressive, but yet tractable
fragments or extensions of dependence logic. The notion of coherence also
gives us a mean to evaluate the complexity of connectives in the Team-
semantics.

1. Is there is some natural extension of coherent fragment of D that coin-
cides with LOGSPACE?
In Theorem 3.11 we generalized the notion of coherence. We say that φ
is f(n)-coherent, if for all teams X , such that |X | = n holds
X |= φ ⇔ for all Y ⊆ X , (if |Y| = f(n), then Y |= φ).

2. Are there φ ∈ D, such that the coherence-level of φ is not a constant-
function, e.g. f(n) =

√
n?
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