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Abstract. Let BRL denote the variety of commutative integral bounded residuated

lattices (bounded residuated lattices for short). A Boolean retraction term for a subvariety

V of BRL is a unary term t in the language of bounded residuated lattices such that for

every A ∈ V, tA, the interpretation of the term on A, defines a retraction from A onto

its Boolean skeleton B(A). It is shown that Boolean retraction terms are equationally

definable, in the sense that there is a variety Vt � BRL such that a variety V � BRL
admits the unary term t as a Boolean retraction term if and only if V ⊆ Vt. Moreover,

the equation s(x) = t(x) holds in Vs ∩ Vt.

The radical of A ∈ BRL, with the structure of an unbounded residuated lattice with

the operations inherited from A expanded with a unary operation corresponding to double

negation and a a binary operation defined in terms of the monoid product and the negation,

is called the radical algebra of A. To each involutive variety V ⊆ Vt is associated a variety

Vr formed by the isomorphic copies of the radical algebras of the directly indecomposable

algebras in V. Each free algebra in such V is representable as a weak Boolean product of

directly indecomposable algebras over the Stone space of the free Boolean algebra with the

same number of free generators, and the radical algebra of each directly indecomposable

factor is a free algebra in the associated variety Vr, also with the same number of free

generators.

A hierarchy of subvarieties of BRL admitting Boolean retraction terms is exhibited.
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Introduction

By a residuated lattice we mean a pointed integral residuated lattice-ordered
commutative monoid, and by a bounded residuated lattice we mean a resid-
uated lattice with a smallest element (see §1 for the definitions). We shall
denote by RL the variety of residuated lattices and by BRL the subvariety
of RL formed by bounded residuated lattices.
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Each algebra in a subvariety V of BRL can be represented as a weak
Boolean product of directly indecomposable algebras in V over the Stone
space of its Boolean skeleton [17]. In particular, free algebras are weak
Boolean products of directly indecomposable algebras. To obtain such rep-
resentation the first step is to characterize the Boolean skeleton of a free
algebra. If the Boolean skeleton is isomorphic to the two-element Boolean
algebra, then the free algebra is directly indecomposable and no further in-
formation we can get from this method. This is the case, for instance, of free
residuated lattices, free involutive residuated lattices, free MV-algebras and
free BL-algebras (see [5] and [9]). If the Boolean skeleton has more than two
elements, then we have to characterize the directly indecomposable factors
of the weak Boolean product representation.

The Boolean skeleton of free algebras in V can be easily characterized if
there is a unary term t in the language of residuated lattices such that the
evaluation of t on each algebra A ∈ V defines a retraction from A onto its
Boolean skeleton. Indeed, in this case the Boolean skeleton of a free algebra
in V is the free Boolean algebra with the same number of free generators.

Hence in the presence of a Boolean retraction term for V, the main
problem to describe the representation of free algebras in V as weak Boolean
products is to obtain a description of the directly indecomposable factors.

This problem was considered in [9, 11] for subvarieties of BL-algebras
and of MTL-algebras, and in [6] for varieties of bounded residuated lattices
admitting the double negation as a Boolean retraction term.

The aim of this paper is to continue this line of research, investigat-
ing subvarieties of bounded residuated lattices admitting a Boolean retrac-
tion term.

We show that Boolean retraction terms are equationally definable, in
the sense that there is a variety Vt � BRL such that a variety V � BRL
admits the unary term t as a Boolean retraction term if and only if V ⊆ Vt

(Corollary 2.5). Moreover, the equation s(x) = t(x) holds in Vs∩Vt (Corol-
lary 2.8). It is also shown that for all A ∈ Vt the radical Rad(A) of A, i.e.,
the intersection of all maximal implicative filters of A, is characterized by
the equation t(x) = � (Theorem 2.7). This allows us to characterize the
directly indecomposable algebras in Vt as those which are the disjoint union
of the radical and the coradical (Lemma 3.5).

The radical of a bounded residuated lattice A, being a proper implica-
tive filter, can be considered as an unbounded residuated lattice with the
operations inherited from A. It is also closed under the double negation of
its elements, and under a binary operation ⊕ defined in terms of the monoid
product and the negation (see (1.5)). The radical, with the structure of
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a residuated lattice expanded with the binary operation ⊕ and a unary op-
eration corresponding to double negation is called the radical algebra of A.
For each variety V of bounded residuated lattices, we denote by Vr the class
of isomorphic copies of the radical algebras of elements of V. We show that
Vr
t is closed under homomorphic images and direct products. In case that

Vt is an involutive variety, i.e., in case that the double negation coincides
with the identity for all algebras in Vt, then Vr

t is also closed under sub-
algebras. Hence it is a variety, the radical variety associated with V. In
proving this result the binary operation ⊕ plays a crucial role (see the proof
of Theorem 3.9).

Radical algebras were introduced in [9, 11] for varieties of MTL-algebras,
and were defined as residuated lattices expanded with just one unary opera-
tion, corresponding to the double negation. As a matter of fact the operation
⊕ was hidden, because it follows from Lemma 3.1 that when the operation
⊕ is applied to elements of the radical of an MTL-algebra, it gives always
the top element.

The techniques developed in [9, 11] allow us to get information for free
algebras in a variety V with a Boolean retraction term t in two cases: when V
is involutive, and when for all A ∈ V, the double negation of all elements on
the radical of A is the top element. It follows from Corollary 2.11 that in this
last case, the term t coincides with the double negation. Since free algebras
in varieties of bounded residuated lattices admitting the double negation
as a Boolean retraction term are described in [6], in the present paper we
focus our attention in involutive subvarieties of bounded residuated lattices
admitting a Boolean retraction term. We show that in the Boolean product
representation of free algebras in such varieties, the radical algebras of the
directly indecomposable factors are free in the associated radical varieties
(Theorem 4.8).

We construct a sequence {∇n}n∈N of unary terms and a hierarchy of
subvarieties of BRL,

WL1 � WL2 � · · · � WLn � WLn+1 � · · ·

such that ∇n is the unique admissible Boolean retraction term for subvari-
eties of WLn, for n > 0. Moreover, for each n > 0 the existence of a Boolean
retraction term for a subvariety V of WLn is guaranteed by the existence
of a homomorphism from each directly indecomposable algebra in V onto
its Boolean skeleton, and the Boolean retraction term is ∇n (Theorem 5.7,
Corollary 5.9). WL1 is the variety of Stonean residuated lattices and ∇1 is
the double negation. Since WL2 contains the variety of MTL-algebras and
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∇2 coincides with the Boolean retraction term defined in [11], these results
generalize those proved for varieties of MTL-algebras ([11, Remark 3.3]).
We also construct an involutive subvariety Vn of each WLn admitting ∇n

as a Boolean retraction term and such that Vr
n is the variety generated by

the n-element totally ordered Wajsberg hoop expanded with a new binary
operation (Lemma 5.15).

Although we assume familiarity with residuated lattices, in §1 we recall
the main definitions and properties that we shall need in the following sec-
tions. We also define and establish properties of the binary operation ⊕, and
introduce the varieties WLn for n > 0. In §2 we establish the main prop-
erties of subvarieties of BRL admitting a Boolean retraction term; radical
algebras and radical varieties are considered in §3. In §4 we study the factors
of the Boolean product representation of free algebras in involutive varieties
of bounded residuated lattices having a Boolean retraction term. Finally in
§5 we introduce the mentioned family ∇n, n > 0 of Boolean retraction terms
and the corresponding varieties.

1. Preliminaries

1.1. Residuated lattices

Following the nomenclature of [13, Chapter 3], we define a pointed inte-
gral residuated lattice-ordered commutative monoid, or residuated lattice for
short, as an algebra A = 〈A; ∗,→,∨,∧,⊥,�〉 of type 〈2, 2, 2, 2, 0, 0〉 such
that 〈A; ∗,�〉 is a commutative monoid, L(A) = 〈A;∨,∧,�〉 is a lattice
with greatest element �, and the following residuation condition holds:

x ∗ y ≤ z, iff x ≤ y → z (1.1)

where x, y, z denote arbitrary elements of A and ≤ is the order given by the
lattice structure, which is called the natural order of A.

It is well known that residuated lattices form a variety, that we shall de-
note RL. Indeed, the residuation condition can be replaced by the following
equations:

x = x ∧ (y → (x ∗ y) ∨ z)), (1.2)

z = (y ∗ (x ∧ (y → z))) ∨ z. (1.3)

Following [18], residuated lattices satisfying the equation x∗y = x∧y will be
called generalized Heyting algebras. They were called Brouwerian algebras
in [12].
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In the next lemma we list, for further reference, some well known conse-
quences of (1.1) that will be used through this paper.

Lemma 1.1. The following properties hold true in any residuated lattice A,
where a, b, c denote arbitrary elements of A:

(i) a ≤ b if and only if a → b = �,

(ii) � → a = a,

(iii) (a → b) → ((b → c) → (a → c)) = �,

(iv) (a ∗ b) → c = a → (b → c),

(v) (a ∨ b) → c = (a → c) ∧ (b → c)).

On a residuated lattice A we consider the unary operation:

¬x =: x → ⊥, for all x ∈ A. (1.4)

Observe that if ⊥ = �, then for any a ∈ A, ¬a = � → � = �. By taking
into account that the {→,�}-reduct of a residuated lattice is a BCK-algebra
we have:

Lemma 1.2. The following identities and quasi-identities hold true in any
residuated lattice A:

a) x ≤ y ⇒ ¬y ≤ ¬x.
b) x ≤ ¬¬x.
c) ¬x = ¬¬¬x.
d) x → ¬y = y → ¬x.
e) x → ¬y = ¬¬x → ¬y.
f) ¬¬(x → ¬y) = x → ¬y.
Proof. Items a), b) and d) follow from Lemma 1.1. c) follows from a)
and b), and e) follows from c) and d). To prove f), let a, b ∈ A. By b),
(a → ¬b) ≤ ¬¬(a → ¬b). On the other hand, taking into account (iv) in
Lemma 1.1 and e) one has:

¬¬(a → ¬b) → (a → ¬b) = a → (¬¬(a → ¬b) → ¬b)
= a → ((a → ¬b) → ¬b)
= (a → ¬b) → (a → ¬b) = �,

hence ¬¬(a → ¬b) ≤ a → ¬b.
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On each residuated lattice A we consider the term

x⊕ y =: ¬(¬x ∗ ¬y) (1.5)

It is easy to see that 〈A,⊕〉 is a commutative semigroup. We define the
terms xn and n.x for any non negative integer n recursively:

• x0 = � and xn+1 = x ∗ xn

• 0.x = ⊥ and (n+ 1).x = x⊕ n.x

Lemma 1.3. Let A ∈ RL. For every a, b ∈ A and for every non negative
integers n,m, the following properties hold:

1) a⊕ b = ¬a → ¬¬b,
2) 1.a = ¬¬a,
3) n.a = ¬(¬a)n,
4) n.a = ¬¬(n.a) = n.(¬¬a),
5) (n+m).a = (n.a)⊕ (m.a),

6) (mn).a = m.(n.a),

7) if n ≤ m then n.a ≤ m.a and am ≤ an,

8) ¬((n.a)m) = m.(¬a)n,
9) if a ≤ b, then n.am ≤ n.bm.

Proof. The proofs of these properties follow from Lemma 1.2. As example
we will prove 8): By 3), ¬((n.a)m) = ¬((¬(¬a)n)m) = m.(¬a)n.

By an implicative filter or i-filter of a residuated lattice A we mean a
subset F ⊆ A satisfying the following conditions:

F1) � ∈ F .

F2) For all a, b ∈ A, if b ∈ F and a ≤ b, then b ∈ F .

F3) If a, b are in F , then a ∗ b ∈ F .

Alternatively, i-filters may be defined as subsets F of A satisfying F1) and

F4) If a, a → b are in F , then b ∈ F .
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Each i-filter F is the universe of a subalgebra of A− = 〈A; ∗,→,∨,∧,⊥−,�〉
(with ⊥− = �), which we shall denote F . It is easy to prove that for each
X ⊆ A

〈X〉 = {a ∈ A : xn1
1 ∗ · · · ∗ xnk

k ≤ a, k, n1, . . . , nk ≥ 0, x1, . . . , xk ∈ X} (1.6)

is the smallest i-filter containing X, i.e., the intersection of all i-filters con-
taining X. For each x ∈ A, we shall write 〈x〉 instead of 〈{x}〉.

Given an i-filter F of a residuated lattice A, the binary relation

θ(F ) := {(x, y) ∈ A×A : x → y ∈ F and y → x ∈ F}

is a congruence on A such that F = �/θ(F ), the equivalence class of �. As
a matter of fact, the correspondence F �→ θ(F ) is an order isomorphism from
the set of filters of A onto the set of congruences of A, both sets ordered by
inclusion, whose inverse is given by the map θ �→ �/θ. We will write simply
A/F instead of A/θ(F ), and a/F instead of a/θ(F ), the equivalence class
determined by a ∈ A.

An i-filter F of A is proper provided F �= A. A maximal i-filter is a
proper i-filter F of A such that for each i-filter G of A, F � G implies
G = A. We recall:

Lemma 1.4. An i-filter F of A ∈ RL is maximal if and only if for any a ∈ A,

• a /∈ F iff for every b ∈ A there is n > 0 such that an → b ∈ F .

It follows that for each A ∈ RL

Rad(A) = {a ∈ A : ∀b ∈ A, ∀n > 0, ∃ kn,b such that (an → b)kn,b → b = �}

is the intersection of all maximal i-filters of A (see, for instance [15, 17]).

By a residuated chain we mean a residuated lattice A whose natural
order is total, i.e., given a, b in A, a ≤ b or b ≤ a.

Given a classK of algebras we represent byKsi, the class of its subdirectly
irreducible members. Recall that every variety is generated by its subdirectly
irreducible members. We also recall that after [17, Proposition 1.4], � is join
irreducible in any member of RLsi.
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1.2. Bounded Residuated lattices

By a bounded residuated lattice we mean a residuated lattice in which the
following equation holds:

⊥ → x = � (1.7)

or equivalently the equation:

¬x → (x → y) = � (1.8)

that is, ⊥ is the smallest element of the lattice L(A). By definition the class
BRL of all bounded residuated lattices is a variety. Notice that bounded
generalized Heyting algebras are precisely the Heyting algebras, i.e., the al-
gebras of intuitionistic logic (see, for instance [18]).

An involutive residuated lattice(or integral, commutative Girard monoid
[15]) is a bounded residuated lattice satisfying the double negation equation:

¬¬x = x. (1.9)

It follows from (iv) of Lemma 1.1 that in an involutive residuated lattice the
operations ∗ and → are related as follows:

x ∗ y = ¬(x → ¬y), (1.10)

x → y = ¬(x ∗ ¬y). (1.11)

When A is a bounded residuated lattice, an i-filter F is proper if and
only if ⊥ �∈ F . Then

Lemma 1.5. An i-filter F of a bounded residuated lattice A is a maximal
i-filter if and only if for any a ∈ A,

• a /∈ F if and only if there is n > 0 such that ¬(an) ∈ F .

Then if A is a bounded residuated lattice we have:

Rad(A) = {a ∈ A : ∀n > 0, ∃kn > 0, such that kn.a
n = �}. (1.12)

Remark 1.6. Let V be a subvariety of BRL. Each A ∈ V is a subdirect prod-
uct of a family {Ai}i∈I of Vsi, and Rad(A) is embedded in

∏
i∈I Rad(Ai).

In what follows we give some examples of subvarieties of BRL, which
shall be used through this paper.

We denote by SRL the variety of stonean residuated lattices, i.e., the
variety of bounded residuated lattices determined by the Stone equation

¬ x ∨ ¬¬ x = �. (1.13)
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Lemma 1.7. For each A ∈ SRL, Rad(A) = {a ∈ A : 1.a = �}.
Proof. Let A ∈ SRL be subdirectly irreducible. Since � is join irreducible,
for all x ∈ A, ¬ x = � or ¬¬ x = �. If there is an integer n ≥ 1 such that
¬ xn = �, then x �∈ Rad(A). Hence Rad(A) = {x ∈ A : 1.x = ¬¬x = �}.
The result follows from Remark 1.6.

For each k > 0, we denote by WLk the subvariety of BRL determined by
the following equation:

k.x ∨ k.(¬x) = �. (1.14)

It follows from 7) of Lemma 1.3 that for any k > 0, WLk ⊆ WLk+1. Observe
that for k = 1, the equation (1.14) is the Stone equation (1.13); and for k = 2,
(1.14) can be written as the weak prelinearity equation:

(¬x → ¬¬x) ∨ (¬¬x → ¬x) = �, (1.15)

which, by e) in Lemma 1.2, is equivalent to

(¬x → ¬¬x) ∨ (x → ¬x) = �. (1.16)

Lemma 1.8. If k > 0, then for all A ∈ WLk, Rad(A) = {a ∈ A : k.an =
�, for all n > 0}.
Proof. Suppose that A ∈ WLk is subdirectly irreducible. Since � is join
irreducible, we have that for each a ∈ A, k.a = � or k.(¬a) = �. Take
a ∈ Rad(A). For any n ≥ 1, an ∈ Rad(A) and for any r ≥ 0 (¬¬(an))r ∈
Rad(A). If � = k.(¬an) = (¬¬an)k−1 → (¬an), then we would have ¬an ∈
Rad(A), and this would imply that ⊥ ∈ Rad(A), which is impossible. Hence
Rad(A) = {a ∈ A : k.an = � for each n > 0}. Now the result follows from
Remark 1.6.

Corollary 1.9. Let A ∈ WLk. If B is a Boolean algebra and h : A → B
is a homomorphism, then h(a) = � for all a ∈ Rad(A). Moreover, if A is
subdirectly irreducible, then h(a) = ⊥ for all a ∈ A�Rad(A).

Proof. If a ∈ Rad(A) then � = h(�) = h(k.a) = h(a). Suppose now that
A is subdirectly irreducible and let a ∈ A � Rad(A). Then there exists
p > 0 such that k.ap < �, and since � is join irreducible, (1.14) implies that
k.¬(ap) = �. Therefore � = h(k.¬(ap)) = ¬h(a), and h(a) = ⊥.

Let MTL denote the variety of MTL-algebras, i.e., the variety of bounded
residuated lattices characterized by the prelinearity equation

(x → y) ∨ (y → x) = �. (1.17)
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It is easy to see that MTL is the variety generated by the class of all bounded
residuated chains. It is clear that MTL ⊆ WL2. Since the variety MV of
MV-algebras is a subvariety of MTL, we have that MV ⊆ WL2.

A pseudocomplemented residuated lattice is a bounded residuated lattice
that satisfies the equation

x ∧ ¬x = ⊥. (1.18)

Or equivalently the equation:

¬x ∧ ¬¬x = ⊥. (1.19)

We denote by PRL the variety of pseudocomplemented residuated lattices.

Lemma 1.10. For each k > 1, WLk ∩ PRL = WLk−1 ∩ PRL.

Proof. Let A be a subdirectly irreducible in WLk ∩ PRL, and let a ∈ A.
Since � is join irreducible, we have that k.a = � or k.(¬a) = �. Suppose
that k.a = �. By (i) in Lemma 1.1 and 1) in Lemma 1.3, ¬(k− 1).a ≤ ¬¬a.
Moreover, since a ≤ (k−1).a, by a) in Lemma 1.2 we have that ¬(k−1).a ≤
¬¬a∧¬a = ⊥, and by 4) in Lemma 1.3, (k−1).a = �. Analogous arguments
show that k.(¬a) = � implies (k − 1).(¬a) = �. Hence A ∈ WLk−1 ∩ PRL
and this implies that WLk∩PRL ⊇ WLk−1∩PRL. Since the other inclusion
is obvious, we have completed the proof.

Since stonean residuated lattices are pseudocomplemented [7, Lemma
1.5] and WL1 = SRL, from the above lemma we have:

WLk ∩ PRL = SRL, for any k > 0. (1.20)

Since Heyting algebras are pseucomplemented, we have that a Heyting
algebra A satisfies (1.15) if and only if A satisfies the Stone equation (1.13).

GivenA a bounded residuated lattice, an element a of A is called Boolean
if it is complemented in 〈A,∨,∧,⊥,�〉. The set of all Boolean elements of A
is denoted by B(A), it is well known that if a ∈ B(A), then its complement
is ¬a. Moreover, B(A) is universe of a subalgebra B(A) of A, which is
Boolean algebra. In the particular case that A is subdirectly irreducible
B(A) = {⊥,�}. Recall also that for any a, b ∈ B(A),

¬¬a = a, a ∗ b = a ∧ b, and a⊕ b = a ∨ b (1.21)

In general, an algebra A is called directly indecomposable iff A has more
than one element and whenever it is isomorphic to a direct product of two
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algebras A1 and A2, then either A1 or A2 is the trivial algebra with just
one element.

The next result is proved in [17, Proposition 1.5].

Lemma 1.11. A bounded residuated lattice A is directly indecomposable if
and only if B(A) is the two-element Boolean algebra.

Remark 1.12. Notice that all members in BRLsi are directly indecompos-
able. Hence, if a bounded residuated lattice A is a subdirect product of a
family (Ai)i∈I of subdirectly irreducible, then a ∈ B(A) if and only if, for
any i ∈ I a(i) ∈ {�,⊥}.

By a Boolean space we mean a totally disconnected compact Hausdorff
space X. As usual, a subset of X that is simultaneously open and closed
will be called clopen.

We recall that a weak Boolean product of a family (Ax : x ∈ X) of
algebras over a Boolean space X is a subdirect product A of the given
family such that the following conditions hold:

(i) if a, b ∈ A, then [[a = b]] = {x ∈ X : a(x) = b(x)} is open,

(ii) if a, b ∈ A and Z is a clopen in X, then a �Z ∪ b �X�Z∈ A.

An algebra A is representable as weak Boolean product when it is isomor-
phic to a weak Boolean product. As explained in [4], weak Boolean products
are the global sections of (not necessarily Hausdorff) sheaves of algebras over
Boolean spaces.

Since bounded residuated lattices form a congruence distributive vari-
ety, they have the Boolean Factor Congruence property (see [1]). Moreover,
since RL is a congruence permutable variety with the class of directly inde-
composable is closed under subalgebras, it follows from the results given [19]
that each nontrivial bounded residuated lattice can be represented as a weak
Boolean product of directly indecomposable bounded residuated lattices.

An explicit description of this representation is given in [11] and [6]. We
shall recall it later.

2. Varieties of BRL having a Boolean retraction term

Let V be a variety of bounded residuated lattices. A Boolean retraction term
for V is a unary term t in the language of bounded residuated lattices such
that for every A ∈ V, tA, the interpretation of the term on A, defines a
retraction from A onto B(A), i.e., tA : a �→ tA(a) is a homomorphism from
A onto B(A) such that tA(z) = z for all z ∈ B(A).
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We will characterize the varieties of bounded residuated lattices admit-
ting a Boolean retraction term. In what follows V shall represent a variety
of bounded residuated lattices, and t a unary term.

Lemma 2.1. If V admits t as a Boolean retraction term, then V satisfies
following equations and quasiequation:

t(x) ∨ t(¬x) = � (2.22)

¬t(x) = t(¬x) (2.23)

t(x ∗ y) = t(x) ∗ t(y) (2.24)

x → y = � ⇒ t(x) → t(y) = � (2.25)

Proof. It suffices to see the equations hold true in Vsi. Take A ∈ Vsi,
since by assumption tA defines and homomorphism from A onto B(A),
then (2.23), (2.24) and (2.25) hold in A. Moreover, since B(A) = {�,⊥},
using (2.23), we deduce that (2.22) hold in A.

Lemma 2.2. Let A ∈ BRLsi, and let t be a unary term. If (2.22), (2.23),
(2.24) and (2.25) hold in A, then we have:

1) for each a ∈ A, tA(a) ∈ {�,⊥}
2) for each a ∈ A, tA(a) = tA(¬¬a).
3) A = {a ∈ A : tA(a) = �} ∪ {a ∈ A : tA(¬a) = �}

= {a ∈ A : tA(a) = �} ∪ {a ∈ A : tA(a) = ⊥} (disjoint union).

4) Rad(A) = {a : tA(a) = �} is the unique maximal i-filter of A

Proof. 1) Take a ∈ A, if tA(a) �= �, then, since � is join irreducible, by
(2.22) and (2.23), we have ¬tA(a) = tA(¬a) = �, hence tA(a) = ⊥.

2) and 3) are immediate consequences of 1) and (2.23).

To see 4), we denote by F the set {a ∈ A : tA(a) = �}, then � ∈ F . If
a ∈ F and b ∈ A are such that a ≤ b, then, by (2.25) � = tA(a) ≤ tA(b) and
so b ∈ F ; in addition, (2.24) implies that F is closed under ∗. And so, since
⊥ /∈ F , F is a proper i-filter. Moreover, for any a ∈ A a /∈ F iff ¬a ∈ F ,
hence by Lemma 1.5 F is a maximal i-filter. Let M be a maximal i-filter of
A and let a ∈ F �M . By Lemma 1.5, there is n > 0 such that ¬an ∈ M .
Thus, tA/M (¬(an)/M) = �. Now since a ∈ F , by (2.23) and (2.24), we have
tA(¬(an)) = ¬tA(a)n = ⊥, and so ⊥ = tA(¬(an))/M = tA/M (¬(an)/M),
contradiction. Therefore, F ⊆ M , and by maximality F = M . Thus F is
the unique maximal i-filter and hence Rad(A) = F .



Varieties of Commutative Integral Bounded Residuated Lattices. . . 1119

Lemma 2.3. If (2.22), (2.23), (2.24) and (2.25) hold in V, then the following
equations also hold in V:

t(x → y) = t(x) → t(y) (2.26)

t(x ∧ y) = t(x) ∧ t(y) (2.27)

t(x ∨ y) = t(x) ∨ t(y) (2.28)

Proof. It is enough to check that (2.26) ,(2.27) and (2.28) hold in Vsi.
Take then A ∈ Vsi and a, b ∈ A.

To see (2.26) we proceed by cases:

• if tA(b) = �, since b ≤ a → b, then � = tA(a → b) = tA(a) → � =
tA(a) → tA(b)

• if tA(a) = ⊥, then a /∈ Rad(A), by 3) of Lemma 2.2, tA(¬a) = � and
since ¬a ≤ a → b, by (2.25) we have � = tA(¬a) ≤ tA(a → b). Thus
� = tA(a → b) = ⊥ → tA(b) = �

• if tA(a) = � and tA(b) = ⊥, then tA(a) → tA(b) = ⊥. Since a ∈ Rad(A)
and b /∈ Rad(A), by F4), a → b /∈ Rad(A) and so tA(a → b) = ⊥.

Now by taking into account 3) of Lemma 2.2, (2.27) follows from the fact
that a ∧ b ∈ Rad(A) if and only if a, b ∈ Rad(A), and (2.28) follows from
the fact that a ∨ b �∈ Rad(A) if and only if a, b /∈ Rad(A).

From Lemmas 2.1 and 2.3, we obtain the main result of this section:

Theorem 2.4. V admits t as a Boolean retraction term if and only if the
equations and quasi-equation (2.22), (2.23), (2.24) and (2.25) hold in V.

Observe that (2.25) can be replaced by (2.27), and hence the greatest
variety Vt having t as Boolean retraction term is given by the equations
(2.22), (2.23), (2.24) and (2.27). Hence we have:

Corollary 2.5. A subvariety V of BRL admits the unary term t as Boolean
retraction term if and only if V ⊆ Vt.

Remark 2.6. It follows from 4) in Lemma 2.2 that simple algebras in Vt

are isomorphic to the two element Boolean algebra 2.

Theorem 2.7. Let t be a Boolean retraction term for a variety V of bounded
residuated lattices. For each A ∈ V, Rad(A) = {a ∈ A : tA(a) = �}.
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Proof. The inclusion Rad(A) ⊆ {a : tA(a) = �} follows from 4) of
Lemma 2.2 and Remark 1.6. To see the other inclusion, take a ∈ A such
that tA(a) = �. For each maximal i-filter M of A, tA/M (a/M) = �. Hence
a/M ∈ Rad(A/M), and since A/M is simple, Rad(A/M) = {�}. Hence
a/M = �/M and a ∈ M .

It follows from the above theorem that Boolean retraction terms are
essentially unique on varieties of bounded residuated lattices:

Corollary 2.8. If a variety V ⊆ BRL admits s, t as Boolean retraction
terms, then the equation s(x) = t(x) holds in V.

Proof. Let A ∈ Vsi, and let a ∈ A. Then t(a) = � if and only if a ∈
Rad(A) if and only if s(a) = �, and since s, t take only the values �,⊥,
t(a) = s(a) for all a ∈ A. This implies the result.

The next result proved to be useful to characterize varieties admitting a
Boolean retraction term.

Lemma 2.9. Let A be a directly indecomposable bounded residuated lattice
and let t be a unary term. If A satisfies the conditions

(i) The equations (2.22) and (2.23) hold in A, and

(ii) Rad(A) = {a : tA(a) = �}
then A ∈ Vt.

Proof. Since (2.22) and (2.23) holds in A, then for all a ∈ A, tA(a) ∧
¬tA(a) ≤ ¬¬tA(a) ∧ ¬tA(a) = ¬(¬tA(a) ∨ tA(a)) = ⊥; hence tA(a) ∈
B(A) = {�,⊥}. By (ii) A = Rad(A) ∪ {a : ¬a ∈ Rad(A)}. Since Rad(A)
is upward directed and closed under ∗, then (2.24) and (2.25) hold in A.

Let A ∈ Vt. Since for each x ∈ A, t(¬¬x) = t(x), it follows that if a ∈ A
is dense, i.e., ¬¬a = �, then a ∈ Rad(A) = {x ∈ A : t(x) = �}.
Lemma 2.10. Let t be a Boolean retraction term for A ∈ BRL. If all el-
ements in Rad(A) are dense, that is, if for each a ∈ A, t(a) = � implies
¬¬a = �, then there is an automorphism h of the Boolean algebra B(A)
such that t(x) = h(¬¬x) for each x ∈ A, and A ∈ SRL.

Proof. Since t(¬¬a → a) = t(¬¬a) → t(a) = � for each a ∈ A, we have
that A satisfies the Glivenko equation:

¬¬(¬¬x → x) = �. (2.29)
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Therefore by the results of [10], the double negation defines an endomor-
phism of A. Since by hypothesis this endomorphism has the same kernel
as t, there is an automorphism h of the Boolean algebra B(A) such that
t(x) = h(¬¬x) for each x ∈ A. By (2.22) and (2.28) we have that for each
a ∈ A, � = t(¬¬a ∨ ¬a) = h(¬¬(¬¬a ∨ ¬a)) = h(¬¬a ∨ ¬a), and since h is
an automorphism, this implies ¬¬a ∨ ¬a = �. Hence A satisfies the Stone
equation (1.13).

Corollary 2.11. Let V be a subvariety of BRL admitting the Boolean re-
traction term t. If for each A ∈ Vsi and each a ∈ A, t(a) = � implies
¬¬a = �, then the equation t(x) = ¬¬x holds in all algebras in V, and
V ⊆ SRL.

Proof. Since for each A ∈ Vsi, B(A) is the two element Boolean algebra,
it follows from Lemma 2.10 that t(a) = ¬¬a for each a ∈ A. Therefore the
equation t(x) = ¬¬x holds in all algebras in V, and again by Lemma 2.10,
V ⊆ SRL.

3. Radical classes

For each A ∈ BRL, Rad(A) is an i-filter; hence, as noted after the definition
of i-filters, Rad(A) is the universe of a subalgebraRad(A) ofA−. Moreover,
Rad(A) is also closed under ¬¬ and ⊕. Hence we can consider the algebra
of type (2, 2, 2, 2, 2, 1, 0)

r(A) = 〈Rad(A); ∗,→,∨,∧,⊕,¬¬,�〉.

We call it the radical algebra ofA. Observe that ifA is pseudocomplemented,
then ¬¬ and ⊕ are the constant functions given by �; and if A is involutive,
then ¬¬ is the identity and x⊕ y = ¬x → y. Moreover, we have

Lemma 3.1. For each A ∈ WL2, x⊕ y = � for all x, y ∈ Rad(A).

Proof. Let a, b ∈ Rad(A). Then a ∗ b ∈ Rad(A), and by Lemma 1.8,
� = 2.(a∗b) = ¬(a∗b) → ¬¬(a∗b). Hence ¬a ≤ ¬(a∗b) ≤ ¬¬(a∗b) ≤ ¬¬b,
and a⊕ b = �.

For a class K of bounded residuated lattices we define the radical class
associated to K as

Kr = I({r(A) : A ∈ K}),
i.e., the class of isomorphic copies of algebras in {r(A) : A ∈ K}.
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We shall show that for any subvariety V of BRL, Vr = (VDI)
r.

For each A ∈ BRL, we define coRad(A) = {a ∈ A : ¬a ∈ Rad(A)}.
Lemma 3.2. If A is a non trivial bounded residuated lattice and a, b are
arbitrary elements of A, then we have

(1) a ∈ Rad(A) if and only if ¬¬a ∈ Rad(A) if and only if ¬a ∈ coRad(A);
a ∈ coRad(A) if and only if ¬¬a ∈ coRad(A).

(2) If a ∈ coRad(A) and b ≤ a, then b ∈ coRad(A).

(3) If a ∈ coRad(A), then a ∗ b ∈ coRad(A), and a → b ∈ Rad(A).

(4) If a ∈ coRad(A) and b ∈ Rad(A), then b → a ∈ coRad(A).

Proof. (1) follows from the (1.12) and the fact that for all n,m ≥ 0,
n((¬¬a)m) = n(am).
(2) If b ≤ a then ¬a ≤ ¬b, and so, since Rad(A) is an i-filter we have
b ∈ coRad(A).
(3) Follows from (2), because a ∗ b ≤ a and ¬a ≤ a → b.
(4) b → a ≤ b → ¬¬a = ¬(b ∗ ¬a), then since b,¬a ∈ Rad(A), we have that
b ∗ ¬a ∈ Rad(A) and so b → a ∈ coRad(A).

The next result generalizes [9, Theorem 3.5].

Theorem 3.3. If A is a bounded residuated lattice then

σ(A) = Rad(A) ∪ coRad(A)

is the universe of a subalgebra σ(A) of A. Moreover, σ(A) is directly inde-
composable.

Proof. The fact that σ(A) is the universe of a subalgebra of A follows at
once from Lemma 3.2. To complete the proof, observe that from (1.21) and
(1.12) we obtain that Rad(A)∩B(A) = {�}, hence B(σ(A)) = {�,⊥}.
Corollary 3.4. For each subvariety V of BRL, Vr = (VDI)

r.

Proof. For each A ∈ V, r(A) = r(σ(A)).

From the above theorem we have that for allA ∈ BRL, if A = σ(A), then
A is directly indecomposable. We are going to show that in the presence of
a Boolean retraction term, the converse is also true.

In what follows, Vt will denote the variety corresponding to a Boolean
retraction term t.
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Lemma 3.5. Given A ∈ Vt, A is directly indecomposable if and only if
A = σ(A).

Proof. We only need to prove the “only if” part. If A is directly indecom-
posable, then B(A) = {�,⊥}. Hence A = t−1({�}) ∪ t−1({⊥}), and the
result follows from Theorem 2.7.

Remark 3.6. If A is directly indecomposable in Vt, then Rad(A) is the
only maximal filter of A. Indeed, Rad(A) is a proper implicative filter,
and by Theorem 2.7 it follows that for each a ∈ A, either a ∈ Rad(A) or
¬a ∈ Rad(A).

Lemma 3.7. The following propositions hold true:

(1) If A is a directly indecomposable in Vt and F is a proper implicative filter
of A, then Rad(A/F ) = Rad(A)/F , and coRad(A/F ) = coRad(A)/F

(2) If (Ai : i ∈ I) is a family of algebras admitting t as Boolean retraction
term, then

∏
i∈I Rad(Ai) = Rad(

∏
i∈I Ai).

Proof. 1) Observe that, by Remark 3.6, F ⊆ Rad(A). By definition of
radical, Rad(A)/F ⊆ Rad(A/F ). Suppose that a/F ∈ Rad(A/F ), then,
by (1.12), for all n ∈ ω, there is kn, such that kn.(a

n)/F = �/F . In
particular, there is k > 0 such that k.a/F = �/F , hence k.a ∈ F ⊆ Rad(A).
If a /∈ Rad(A), then k > 1 and k.a = ¬((k − 1).a) → ¬¬a ∈ Rad(A),
since ¬¬a /∈ Rad(A), we have (¬a)k−1 = ¬((k − 1).a) /∈ Rad(A) and so
¬a /∈ Rad(A). Therefore a /∈ coRad(A) and σ(A) �= A, contradiction.
Thus a ∈ Rad(A). This shows that Rad(A/F ) ⊆ Rad(A)/F .
2) Let a = (ai)i∈I ∈ ∏

i∈I Ai, then since the operations in
∏

i∈I Ai are

defined componentwise, t
∏

Ai(a) = � iff for all i ∈ I tAi(ai) = �i, hence,
by Lemma 2.7, a ∈ Rad(

∏
i∈I Ai) iff ai ∈ Rad(Ai), for all i ∈ I. Thus∏

i∈I Rad(Ai) = Rad(
∏

i∈I Ai).

Thus we have

Theorem 3.8. If V is a subvariety of BRL admitting t as Boolean retraction
term, then Vr is closed under homomorphic images and direct products.

Proof. Since V is a variety, then for all A ∈ V, σ(A) ∈ VDI . Without loss
of generality, we can assume that Vr = {r(A) : A ∈ VDI}. Let A ∈ VDI ,
and let S = (S; ∗,→,∨,∧,�, δ,�S) be an algebra of type (2, 2, 2, 2, 2, 1, 0)
such that the reduct (S; ∗,→,∨,∧,�S ,�S) ∈ RL. Suppose that h is a
residuated lattice homomorphism from r(A) onto S such that h(x ⊕ y) =
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h(x) � h(y) and h(¬¬x) = δ(x) for x, y ∈ Rad(A). Clearly F = h−1(�S)
is an i-filter of Rad(A) and so it is a proper i-filter of A. Thus A/F ∈
V. By (1) of Lemma 3.7 it follows that Rad(A/F ) = Rad(A)/F . Since
(x, y) ∈ θ(F ) implies (¬¬x,¬¬y) ∈ θ(F ), and (x, y), (s, t) ∈ θ(F ) implies
(x⊕ s, y ⊕ t) ∈ θ(F ) for all x, y, s, t ∈ A, θ(F ) is a congruence of r(A), and
the correspondence a/θ(F ) �→ h(a) defines an isomorphism from r(σ(A/F ))
onto S. Therefore Vr is closed under homomorphic images.

Moreover, since in direct product operations are defined componentwise, it
follows from (2) in Lemma 3.7 that Vr is closed under direct products.

The above results can be improved for varieties of involutive bounded
residuated lattices.

Theorem 3.9. If V is a variety of involutive bounded residuated lattices
admitting t as Boolean retraction term, then Vr is a variety.

Proof. In the light of Theorem 3.8, it is enough to see that Vr is closed
under subalgebras; and, arguing as in Theorem 3.8, it suffices to take A ∈
VDI . Let B be a subalgebra of r(A), i.e. B ⊆ Rad(A) and it is closed under
∗,→,∧,∨,⊕,¬¬ and contains �. Clearly ¬B = {¬a : a ∈ B} ⊆ coRad(A).
Taking into account Lemma 3.2 and that for any a, b ∈ A ¬a → b = a ⊕ b,
it follows easily that s(B) = B ∪ ¬B is universe of a subalgebra s(B) of A
such that B = Rad(s(B)). Therefore B = r(s(B)) ∈ Vr.

4. Free algebras

Given a class of algebras K, we represent by FK(X) the |X|-free algebra
over the class K, if it exists. Any class closed under isomorphic images,
subalgebras, and direct products has free algebras of any cardinality, in
particular varieties have free algebras for each cardinal.

Given a subvariety V of Vt, since by Theorem 2.4 the map x �→ tFV(X)(x)
is a retract from FV(X) onto B(FV(X)), taking into account that FV(∅) =
{⊥,�}, we immediately obtain (cf.[9, Theorem 5.1]):

Theorem 4.1. For each subvariety V of Vt, B(FV(X)) is the free Boolean
algebra over the set t(X) = {tFV(X)(x) : x ∈ X}, and the sets X and t(X)
have the same cardinal. That is B(FV(X)) is isomorphic to the |X|-free
Boolean algebra.

We are going to give an explicit description of the representation of a
bounded residuated lattice as Boolean product of directly indecomposable.
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Firstly, note that the following lemma can be obtained in a standard way
(see, for instance, [8]):

Lemma 4.2. Let A be a bounded residuated lattice, and let F be a filter of
the Boolean algebra B(A), then :

∼F= {(x, y) ∈ A2 : x ∧ z = y ∧ z for some z ∈ F}
is a congruence relation on A that coincides with the congruence relation
θ(〈F 〉) given by the i-filter 〈F 〉 generated by F . Moreover, if F is a prime
filter (i.e., an ultrafilter) of B(A), then B(A/∼F ) = {⊥/∼F ,�/∼F }.

We write A/〈F 〉 in place of A/∼F , and so x/〈F 〉 = x/ ∼F for the
equivalence class of x ∈ A. We will represent by SpB(A) the set of all
prime filters (ultrafilters) of the Boolean algebra B(A). Then it is clear
that for any F ∈ SpB(A), A/〈F 〉 is directly indecomposable. With these
notations we have:

Theorem 4.3. Each nontrivial bounded residuated lattice A is representable
as the weak Boolean product of the family (A/〈F 〉 : F ∈ SpB(A)) over the
Boolean space given by the Stone topology on SpB(A).

Given a subvariety V of Vt, by Theorem 4.1, the mapping x �→ tFV(X)(x)
is, up to isomorphism, a retract form FV(X) onto FB(X), where B denotes
the variety of Boolean algebras. Since the Stone space of the free Boolean
algebra over X is the Cantor space 2X , the ultrafilters of FB(X) are in one-
one correspondence with the subsets of X. Hence, as in [9, Corollary 5.2],
we have:

Corollary 4.4. Let V be a subvariety of Vt. If X �= ∅, then the correspon-
dence:

U �→ SU = {x ∈ X : tFV(X)(x) ∈ U}
is a bijection from the set of ultrafilters of B(FV(X)) into the power set of
X. The inverse mapping is given by

S �→ US = ultrafilter generated by t(S) ∪ ¬t(S),
where ¬t(S) = {¬tFV(X)(x) : x ∈ X � S}. �

Observe that by Lemma 4.2, for each S ⊆ X, FV(X)/〈US〉 is directly
indecomposable.

From now on, we write t(u) instead of tFV(X)(u). Setting Y/〈US〉 =
{y/〈US〉 : y ∈ Y }, we have
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Lemma 4.5. Let V be variety of involutive residuated lattices admitting t as
Boolean retraction term. Then for each S ⊆ X, the set (S∪¬(X�S))

/〈US〉
generates the algebra r(FV(X)/〈US〉).
Proof. By the definition of US one has X/〈US〉 ∩ Rad (FV(X)/〈US〉) =
S/〈US〉. Taking into account that t(¬x) = ¬t(x) ∈ 〈US〉 for each x ∈ X�S,
one also has that ¬(X/〈US〉) ∩Rad (FV(X)/〈US〉) = ¬(X � S)

/〈US〉. Since
FV(X)/〈US〉 is involutive and directly indecomposable, the set G = (S ∪
¬(X�S))

/〈US〉 also generates FV(X)/〈US〉. Indeed, letH be the subalgebra
of FV(X)/〈US〉 generated by G. If x/〈US〉 ∈ X/〈US〉 ∩ Rad (FV(X)/〈US〉),
then x/〈US〉 ∈ H. If x/〈US〉 ∈ coRad (FV(X)/〈US〉), then ¬x/〈US〉 ∈ H,
and x/〈US〉 = ¬¬x/〈US〉 ∈ H. Hence, X/〈US〉 ⊆ H, and H = FV(X)/〈US〉.
In particular G generates r (FV(X)/〈US〉).

Each subvariety V of Vt is generated by its subdirectly irreducible mem-
bers. Hence if V �= B, Vsi has to contain an algebra with more than two
elements. Any such algebra C ∈ Vsi will be called a test algebra for V. It
follows from item 3) in Theorem 2.2 that in every test algebra C, we can
find an element a ∈ C such that a ∈ Rad(C)� {�}, and hence

⊥ < a < tC(a) = � and ⊥ = tC(¬a) = ¬tC(a) ≤ ¬a < �.

Such a will be called a test element(cf. [11, p.72]).

With the notations of Corollary 4.4, for each subvariety V of Vt we have:

Lemma 4.6. For each S ⊆ X one has:

(i) For each y ∈ X, y/〈US〉 �= �/〈US〉.
(ii) For each y ∈ S, y/〈US〉 �= ⊥/〈US〉.
(iii) If y, z are in X and y �= z, then y/〈US〉 = z/〈US〉 implies that y, z are

in X � S.

Proof. Observe that for each α in FV(X), α ∈ 〈US〉 if and only if there are
finite sets V ⊆ S and W ⊆ X � S such that V ∪W �= ∅ and∧

t∈V
t(u) ∧

∧
w∈W

¬t(w) ≤ α. (4.30)

Let C be a test algebra in V, and let a ∈ C be a test element. To prove (i)
suppose that y ∈ 〈US〉 (absurdum hypothesis). Let V,W as in (4.30), with
α = y, and let f : X → C be the function defined as follows:

f(x) =

{
a if x ∈ X �W,
⊥ if x ∈ W.

(4.31)
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If there were a homomorphism f̂ : FV(X) → C extending f , then f̂ would as-
sign the value � to the left member of (4.30), while f̂(y) ∈ {a,⊥}. Since this
contradicts the inequality (4.30), f cannot be extended to a homomorphism,
in contradiction with the definition of free algebra. Hence we conclude that
y �∈ 〈US〉, and (i) holds. To prove (ii), suppose that y ∈ S and ¬y ∈ 〈US〉.
Let V,W as in (4.30) with α = ¬y. Since y �∈ W ⊆ X � S, we can show
that the same function f defined by (4.31) cannot be extended to a homo-
morphism f̂ : FV(X) → C, and this proves (ii). To prove (iii), suppose that
y → z ∈ 〈US〉. Let V,W as in (4.30), with α = y → z. If y �∈ W , then the
function g : X → C defined as follows:

g(x) =

⎧⎨
⎩

a if x ∈ X � ({y} ∪W );
� if x = y,
⊥ if x ∈ W.

cannot be extended to a homomorphism ĝ : FV(X) → C. Hence if (y → z)
and (z → y) are in 〈US〉, then y and z are in X � S.

If V is a non-pseudocomplemented subvariety of Vt and C is a non-
pseudocomplemented test algebra for V and a is a test element, then, since
C is directly indecomposable, we have ⊥ < ¬(a ∨ ¬a) and a ∨ ¬a < �.
Hence, without loss of generality, we can take a test element b satisfying
⊥ = tC(¬b) < ¬b and b < tC(b) = �.

Lemma 4.7. Let V be a subvariety of Vt, which is not pseudocomplemented.
Then for each x ∈ X�S, x/〈US〉 �= ⊥/〈US〉, and X and (S∪¬(X�S))/〈US〉
have the same cardinal.

Proof. Suppose that y ∈ X �S and that y/〈US〉 = ⊥/〈US〉. Then there is
a test algebra C ∈ V, and a test element a ∈ C such that ⊥ = tC(¬a) < ¬a
and a < tC(a) = �. Let V,W be as in (4.30) of the proof of Lemma 4.6
with α = ¬y, and define f : X → C by the prescription

f(x) =

{
a if x ∈ X �W,
¬a if x ∈ W.

If there were a homomorphism f̂ : FV(X) → C extending f , then f̂ would
assign the value � to the left member of (4.30), while f̂(¬y) ∈ {a,¬a},
contradicting the inequality (4.30). Hence f cannot be extended to a ho-
momorphism, in contradiction with the definition of free algebra. Therefore
y/〈US〉 �= ⊥/〈US〉. In the proof of (iii) in Lemma 4.6 we have shown that
for y, z in X, y �= z, if y → z ∈ 〈US〉, then y ∈ X � S. Let us see now that
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z ∈ S. Indeed, let V,W be as in (4.30), with α = y → z, and let a be the
same test element as before. If z �∈ V , then the function g : X → C defined
as follows

g(x) =

⎧⎨
⎩

a if x ∈ V ,
⊥ if x = z,
¬a if x ∈ X � (V ∪ {z}).

cannot be extended to a homomorphism ĝ : FV(X) → C. Hence y → z ∈
〈US〉 implies that z ∈ V ⊆ S. Consequently, y/〈US〉 = z/〈US〉 would imply
that y, z are simultaneously in S and X � S, absurdum. Similar arguments
show that y, z in S and y �= z imply that ¬y/〈US〉 �= ¬z/〈US〉 and y/〈US〉 �=
¬z/〈US〉. Hence |X| = |(S ∪ ¬S̃)/〈US〉|.
Theorem 4.8. If V is a variety of involutive residuated lattices admitting
t as Boolean retraction term, then for any S ⊆ X, r(FV(X)/〈US〉) is, up
isomorphism, the |X|-free algebra in Vr.

Proof. Let B ∈ Vr. Without loss of generality, we can assume that B =
r(A) for some A ∈ VDI . Given a map f : (S ∪ ¬(X � S))/〈US〉 → Rad(A),
we can define a function f̄ : X → A by the prescription:

f̄(x) =

{
f(x/〈US〉) if x ∈ S,
¬f(¬x/〈US〉) if x ∈ X � S.

Then there is a unique homomorphism ḡ : FV(X) → A which extends f̄ .
Since {t(x) : x ∈ S} ∪ {¬t(x) : x ∈ X � S} ⊆ ker ḡ = ḡ−1({�}), it fol-
lows that 〈US〉 ⊆ ker(ḡ). Therefore the correspondence α/〈US〉 �→ ḡ(α)
gives a homomorphism h : FV(X)/〈US〉 → A, and the restriction of h to
Rad(FV(X)/〈US〉) gives a homomorphism from r(FV(X)/〈US〉) into r(A) =
B that extends f . Since by Lemma 4.5 the set (S ∪ ¬(X � S))/〈US〉 gener-
ates r(FV(X)/〈US〉), and, by Lemma 4.7, it has the same cardinal than |X|;
we have that r(FV(X)/〈US〉) is |X|-free algebra in Vr.

5. A sequence of Boolean retraction terms

In this section we exhibit examples of varieties with a Boolean retraction
term. For each positive integer 0 < n, we consider the term

∇n(x) := n.xn

Let Vn the subvariety of BRL given by the equation

∇n(x) ∨∇n(¬x) = � (2.22)n
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Our next aim is to show that ∇n is a Boolean retraction term for each Vn,
that Vn = V∇n , and that for any n > 0, V∇n � V∇n+1 .

Theorem 5.1. Each A ∈ Vn
si satisfies:

1) ¬∇n(x) = ∇n(¬x), (2.23)n

2) ∇n(x) ∈ {�,⊥},
3) ∇n(x) = (n.x)n,

4) Rad(A) = {x : ∇n(x) = �}.
Proof. Through this proof, a, b will denote arbitrary elements of A. To
see 1), suppose that ∇n(a) = �, since ∇n(a) = n.an ≤ n.a, we have n.a =
�, hence (n.a)n = �, and so, by 8 of Lemma 1.3, ∇n(¬a) = n.(¬a)n =
¬(n.a)n = ⊥. If ∇n(a) �= �, then ∇n(¬a) = �, hence ∇n(¬¬a) = ⊥, and
by 4) of Lemma 1.3, we have ∇n(a) = ⊥. Hence ∇n(¬a) = ¬∇n(a). This
proves (2.23).

To prove 2), note that by (2.22)n and 1), � = ∇n(a) ∨ ¬∇n(a). Hence
∇n(a) ∈ B(A) = {⊥,�} for each a ∈ A.

3) follows from 1), 2) and item 8) in Lemma 1.3.
To prove 4), take first c ∈ Rad(A). By (1.12), there exists kn such that
kn.c

n = �. If kn ≤ n, then ∇n(c) = �. If kn > n, then there are k > 0
and 0 < r < n such that kn = kn + r, and by 5) and 6) of Lemma 1.3,
kn.c

n = (k.(n.cn)) ⊕ (r.cn) = �. Now, if ∇n(c) = n.cn = ⊥, then, since
r < n, by 8) of Lemma 1.3, (r.cn) = ⊥; and so kn.c

n = ⊥, a contradiction.
Therefore ∇n(c) = �. Conversely, suppose that ∇n(a) = n.an = �. If
m = min{r > n : n.ar = ⊥}, then, � = (n.am−1)n, and by 3), � =
n.an(m−1) ≤ n.am a contradiction. Hence such m does not exists and so
n.am = �. Therefore a ∈ Rad(A).

Corollary 5.2. For each positive integer n, ∇n is a Boolean retraction
term for Vn, and V∇n = Vn.

Proof. By (2.22)n, and items 1) and 4) of Theorem 5.1, each A ∈ Vn
si

satisfies conditions (i) and (ii) of Proposition 2.9, and since subdirectly irre-
ducible algebras are directly indecomposable, we have that Vn

si ⊆ V∇n . To
complete the proof, observe that (2.22) and (2.23) imply (2.22)n. Hence we
also have V∇n ⊆ Vn.

Moreover we have:

Lemma 5.3. For all positive integer n, and any 0 < r ≤ n, V∇r ⊆ V∇n .
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Proof. By 5) in Theorem 5.1, for each A ∈ V∇r and every a ∈ A, r.(an)r =
(r.an)r ≤ r.an ≤ n.an. The assertion follows from these inequalities.

In the next section we shall show that the inclusions in the above lemma
are proper.

Remark 5.4. For any 0 < r ≤ n the variety V∇n satisfies the equation
n.xr ∨ n.(¬x)r = �.

Since ∇1(x) = ¬¬x, we have that (2.22)1 coincides with (1.13). Conse-
quently, V∇1 = SRL. Thus (cf [11, 6]):

Corollary 5.5. For each A ∈ SRL, the double negation ¬¬ defines a
retract from A onto B(A). �

We say that a variety V of bounded residuated lattices has the Boolean
retraction property provided that for each A ∈ Vsi there is a homomorphism
h : A → B(A).

We are going to show that V∇k
is the greatest subvariety of WLk having

the Boolean retraction property.

Theorem 5.6. For each k > 0, V∇k
is the subvariety of WLk given by the

equation

(dk) k.xk = (k.x)k.

Proof. Since by Remark 5.4 V∇k
⊆ WLk, and by 3) of Theorem 5.1, V∇k

satisfies (dk), then it suffices to see that whenever the equation k.xk = (k.x)k

holds in A ∈ WLksi, then A ∈ V∇k
. Take then A ∈ WLksi satisfying (dk).

Since � is join irreducible in A, for each a ∈ A, k.a = � or k(¬a) = �. If
k.a = �, then k.ak = (k.a)k = �. If k.(¬a) = �, then k.(¬a)k = (k.(¬a))k =
�. Therefore A ∈ V∇k

.

Theorem 5.7. The following are equivalent conditions for each subvariety
V of WLk:

(i) V has the Boolean retraction property.

(ii) V satisfies (2.22)k.

(iii) ∇k is a Boolean retraction term for V.

Proof. Let A ∈ Vsi and let h : A → B(A) = {⊥,�} be a homomorphism.
By Corollary 1.9, Rad(A) = h−1(�). Hence by Lemma 1.8, if h(a) = �, then
k.an = � for all n, in particular k.(ak) = �. If h(a) = ⊥, then h(¬a) = �,
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and so ¬a ∈ Rad(A), hence, as above, k.(¬a)k = �. Since V is generated by
its subdirectly irreducibles members, (2.22)k holds in all algebras in V. This
shows that (i) implies (ii). That (ii) implies (iii) follows from Corollary 5.2,
and (iii) trivially implies (i).

Now from Theorems 5.6 and 5.7 and Corollary 2.8 we have:

Corollary 5.8. A subvariety V of WLk has the Boolean retraction property
if and only if (dk) holds in V. In this case ∇k is a Boolean retraction term
for V, and a unary term t is a Boolean retraction term for V if and only if
the equation t(x) = ∇n(x) holds in V.

Since MTL ⊆ WL2, we have:

Corollary 5.9. A subvariety V of MTL has the Boolean retraction property
if and only if (d2) holds in V. In this case ∇2 is a Boolean retraction term
for V, and a unary term t is a Boolean retraction term for V if and only if
the equation t(x) = 2.x2 holds in V.

Note that the above corollary improves [11, Theorem 3.2], because the
Glivenko equation (2.29) is not required and the essential uniqueness of the
Boolean retraction term ∇2 is established.

5.1. An example of an involutive variety contained in V∇n.

For n > 0, let Ln+1 = 〈Ln+1 = {0, 1, 2, . . . , n}; ∗,→,∨,∧, 0, n〉 be the resi-
duated lattice characterized by the following properties:

• Its lattice order is given by 0 < 1 < 2 < · · · < n− 1 < n,

• r ∗ s = max{0, r + s− n},
• r → s = min{n, n− r + s}.

in others words Ln+1 is a copy of the totally ordered Wajsberg hoop with
n+ 1 elements (see [2]).

Consider L̂n+1 = 〈L̂n+1 = {0, 1} × Ln+1;�,÷,∨,∧, (1, n), (0, n)〉 where

• 〈L̂n+1;∧,∨, (1, n), (0, n)〉 is the (distributive1) bounded lattice given by
the diagram depicted in Figure 1.

Moreover, if 0 ≤ x, y ≤ n,

1Distributive because it neither contains the pentagon nor the diamond
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(1, s)
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(0, n+ 1− s)

(1, n− 2)

⊥ = (0, n)

Figure 1. The lattice reduct of L̂n+1

• (i, x)� (j, y) = (i, y)� (j, x) is given by:

– (1, x)� (1, y) = (1, x ∗ y),
– (0, x)� (0, y) = (0,min{x+ y + 1, n}),
– (1, x)� (0, y) = (0, y)� (1, x) = (0, x → y).

• It is straightforward to show that 〈L̂n+1;�,� = (1, n)〉 is a commutative
monoid, and that the following distributive law holds:

x� (y ∨ z) = (x� y) ∨ (x� z).

Therefore, since it is finite, it is a bounded integral commutative residu-
ated lattice, with residual:

(i, x)÷ (j, y) = max{(k, z) : (i, x)� (k, z) ≤ (j, y)}.
Now if ∼ (i, x) = (i, x)÷⊥ = (i, x)÷ (0, n), then we have:

∼ (1, x) = (0, x), and ∼ (0, x) = (1, x).

Hence it is involutive, and then:

(i, x)÷ (j, y) =∼ ((i, x)� ∼ (j, y)).

Remark 5.10. L̂2 coincides with the minimum nilpotent algebra A4 consid-
ered in [14] (see also [11]).
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Theorem 5.11. For each n > 0, L̂n+1 ∈ V∇n+1.

Proof. Observe first that if 0 ≤ x ≤ n− 1, then

(1, x)n+1 = (1, x)n = (1, 0),

and moreover,

(0, 0)n = (0, n− 1) �= ⊥, and (0, 0)n+1 = (0, n) = ⊥.

To see that every α ∈ 2× Ln+1 satisfies (2.22)n+1, we are going to consider
all possible cases.

• if α = (1, x) with 0 ≤ x ≤ n− 1, then we have that

(n+ 1).(αn+1) = (n+ 1).(1, 0) =∼ ((∼ (1, 0))n+1)

= ∼ ((0, 0)n+1) =∼ (0, n) = (1, n) = �
Since (n+1).�n+1 = �, we have that (n+1).(αn+1) = � for α ≥ (1, 0).

• Trivially (n+ 1).(∼ ⊥)n+1 = �.
If ⊥ < α ≤ (0, 0), then α = (0, x) for some 0 ≤ x ≤ n − 1. Thus
∼ α = (1, x), and then (n+ 1).(∼ α)n+1 = �.

We have verified that all α ∈ 2× Ln+1 satisfies the equation (2.22)n+1.

Corollary 5.12. For each n ≥ 1 the variety generated by L̂n+1 is an
n+ 1-potent involutive subvariety of V∇n+1.

Theorem 5.13. For each 0 < r < n+ 1, L̂n+1 /∈ V∇r .

Proof. Observe that in L̂n+1,

n.((1, 1)n) = n.(1, 0) =∼ ((∼ (1, 0))n) =∼ ((0, 0)n)

= ∼ (0, n− 1) = (1, n− 1) �= �.

n.(∼ (1, 1))n = n.(0, 1)n = n.(0, n) = n.⊥ = ⊥

Hence (n.(1, 1)n) ∨ (n.(∼ (1, 1)n)) �= �. This shows that L̂n+1 /∈ V∇n . In
the light of Lemma 5.3, the proof is completed.

Since Rad(L̂n+1) = {(1, x) : 0 ≤ x ≤ n}, it is easy to see that r(L̂n+1)
is isomorphic to Ln+1, enriched with the operation:

• x⊕ y = min{x+ y + 1, n}.
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Remark 5.14. For each n > 1, {0, n} is the universe of a subalgebra of
Ln+1 which is not closed under ⊕. This shows that ⊕ does not belong to the
clone of operations of Ln+1. On the other hand, L2 satisfies the equation
x⊕ y = � (cf. Lemma 3.1).

Since Ln+1 is a simple Wajsberg hoop (see [2, Example 2.4]), it follows

that r(L̂n+1) is also simple.
Trough this subsection for n > 1, Vn+1 will denote the subvariety of

V∇n+1 generated by L̂n+1, and WH⊕
n+1 will denote the variety of enriched

Wajsberg hoops generated by r(L̂n+1). Notice that by Remark 5.14, WH⊕
2

coincides with the variety of Wajsberg hoops generated by L2.

Lemma 5.15. For each n > 0, (Vn+1)
r = WH⊕

n+1.

Proof. The inclusion WH⊕
n+1 ⊆ (Vn+1)

r follows from r(L̂n+1) ∈ (Vn+1)
r.

We shall see the other inclusion. Since L̂n+1 is a finite subdirectly irreducible
algebra and Vn+1 is a congruence distributive variety, by a well known re-
sult of Jónsson in [16, Corollary 3.4], see also [3, Corollary IV-6.10], the
subdirectly irreducibles in Vn+1 are the homomorphic images of subalgebras

of L̂n+1. Clearly, each subalgebra S of L̂n+1 is directly indecomposable,
and by Lemma 3.5, S = Rad(S) ∪ coRad(S). By Remark 3.6 the i-filters

of S are all contained in Rad(S) = S ∩ Rad(L̂n+1). Then it follows that

r(S) is isomorphic to a subalgebra of r(L̂n+1). This implies that the only
i-filter properly contained in Rad(S) is {(1, n)}, and consequently the only
non trivial homomorphic image of S has {(0, n), (1, n)} as a universe, and
so it is a subalgebra of S. Hence the subdirectly irreducibles in Vn+1 are

the subalgebras of L̂n+1. Therefore for each A ∈ Vn+1 there is a family

{Si : i ∈ I} of subalgebras of L̂n+1 and an embedding h : A → ∏
i∈I Si.

Since ⊕ is in the clone of operations of algebras in Vn+1, it follows from
(2) in Lemma 3.7 that the restriction of h to Rad(A) is an embedding into∏

i∈I Rad(Si) that preserves ⊕. Therefore r(A) is isomorphic to a subalge-
bra of a direct product of algebras in WH⊕

n+1.

With the notations of Section 4, from above lemma and Theorem 4.8 we
deduce:

Theorem 5.16. For any integer n > 0, each set X �= ∅ and each S ⊆ X,
r(FVn+1(X)/〈US〉) is, up to isomorphism, the |X|-free algebra in WH⊕

n+1. �

A description of free algebras in the variety generated by L̂2, considered
as a minimum nilpotent algebra (see Remark 5.10), was given in [11].
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