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Thomas F. Icard, III Inclusion and Exclusion in
Natural Language

Abstract. We present a formal system for reasoning about inclusion and exclusion in

natural language, following work by MacCartney and Manning. In particular, we show

that an extension of the Monotonicity Calculus, augmented by six new type markings, is

sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives

rise to an interesting logic of its own. We prove soundness of the resulting calculus and

discuss further logical and linguistic issues, including a new connection to the classes of

weak, strong, and superstrong negative polarity items.
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Introduction and overview

One way of determining whether some sentence of natural language logically
follows from another is to translate the sentences into some formalism, either
in logical symbols or directly in terms of models, and decide whether the
one representation follows from the other in the given logic. At least since
Frege, semanticists have been interested in giving logical interpretations of
natural language expressions so that the meanings, and in particular the
inferential patterns, of sentences could be predicted from the meanings of
the words that compose them. To the extent that semanticists are interested
in closely approximating a full model theoretic interpretation of a given
sentence, we might say that formal semantics has been concerned with deep
aspects of meaning and inference. In contrast, yet quite complementary
to this endeavor, a number of researchers have investigated formalisms for
studying natural language entailment that stay closer to the surface, and in
one way or another derive inferences without full interpretation into a logical
formalism. This tradition, which has gone under the heading of natural
logic, has ranged from proof systems operating directly over restricted, bare
fragments of natural language ([11, 14]), to reasoning systems that operate
over syntactic parse trees ([2, 4, 10, 15]). One of the guiding ideas of this
work, particularly in the latter group, is that logic and grammar are closely
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related, and that many entailment patterns of interest can be extracted from
purely syntactic information.

Perhaps the most influential and well known instantiation of the natural
logic program is the so called Monotonicity Calculus, appearing originally
in [2] and [13]. Starting with a very simple underlying syntax based on
categorial grammar, the idea is to mark different expressions (or better,
expression types) according to their monotonicity features, an idea that can
be traced directly back to C.S. Pierce, and indirectly all the way to the
Middle Ages (see [13], Ch. 2). For example, the quantifier every is antitone
in its first argument and monotone in its second argument. This means that,
holding the second argument constant, we can replace expressions appearing
as first argument with expressions of a smaller extension salva veritate, e.g.
Every country is responsible entails Every large country is responsible; and
likewise, holding the first argument constant, we can replace expressions
appearing as second argument with expressions of a larger extension, e.g.
Every vote is counted entails Every vote is acknowledged. Other quantifiers
have different monotonicity properties, e.g. no is antitone in both arguments,
while some is monotone in both arguments. Indeed, it is possible to study
the monotonicity properties of quantifiers whose symbolization would require
languages stronger than that of first-order logic. For instance, while few and
most are not definable by any formula in first-order logic [1], it is easy to
see that most is monotone in its second argument, while few is antitone.

The main objective of the Monotonicity Calculus is to define algorithms
assigning monotonicity markings to expressions of arbitrary type, at arbi-
trary places in a given expression, so as to facilitate inferences that may
depend on several embeddings of quantifiers or other expressions that in-
teract in complex ways with polarity. For instance, in order to show the
following inference is valid:

Few cyclists see every car �⇒ Few cyclists see every vehicle

we have to know how antitone contexts (the first argument of every) behave
under the scope of another antitone context (the second argument of few).

The Monotonicity Calculus is therefore concerned with the relation of
inclusion between expressions of the same given type. Recent work by Mac-
Cartney and Manning has proposed an extension of the Monotonicity Cal-
culus to deal with relations of exclusion in addition [10, 8]. One of their
basic insights is that quantifiers and other expressions project exclusion re-
lations in a systematic way, very much analogous to projection of inclusion
relations. For example, from the fact that the set of six-foot-tall things is
excluded from the set of four-foot-tall things, we can conclude that Everyone
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is six-feet-tall is also excluded by Everyone is four-feet-tall, while Someone
is six-feet-tall and Someone is four-feet-tall are perfectly compatible. In this
more general setting, inclusion is only a special case of the possible relations
that can obtain between expressions of the same type. Notably, MacCart-
ney and Manning have observed that new instances of inclusion can result,
most interestingly at the sentence level, by considering this wider class of
relations, so that the extra relations could be seen merely as a subsidiary
means of broadening the range of entailments between sentences. A number
of examples will be given in what follows.

The aim of this work has been to improve and supplement natural lan-
guage processing techniques for recognizing textual entailment, and their
NatLog System has been successful in this endeavor. When hybridized with
the Stanford RTE System, the result was a gain of 4% accuracy (see [9] for
discussion). Given these practical interests, some of the formal and logical
foundations are left unspecified. In particular it is unclear exactly how a cal-
culus based on inclusion and exclusion together would relate to, or build on,
the Monotonicity Calculus, not to mention whether the resulting calculus is
sound, confluent, and so on.

In this paper we propose a formalization of the main logical ideas from
[8, 10] in the style of the Monotonicity Calculus. The latter is based on two
classes of functions, monotone and antitone, and posits two monotonicity
signatures, for contexts of positive and negative polarity. What we shall
call the Projectivity Calculus, designed to handle the additional relations of
exclusion, requires only four more classes of functions and six additional pro-
jectivity signatures. The logic of these signatures turns out to be of interest
in itself, and allows us to prove results analogous to those for the Monotonic-
ity Calculus and other natural logics (Sections 1 and 2). In particular we can
prove soundness of our marking algorithm with respect to standard denota-
tional semantics. As a consequence, we can define a calculus C of relations
between terms in our formal language (Section 3), which we incidentally
observe does not possess a Church-Rosser property. However, C is sound
and is strong enough to capture a number of interesting inferences, which
in principle go beyond those afforded by monotonicity reasoning alone. Our
main example in Section 3.2 will be to show that the following inference is
a consequence of C, along with assumptions about every and not every :1

1One might object that every should not carry existential import, and that therefore
this inference should be invalid. Importantly, this is not a feature of the logical framework
to be presented, but simply a choice about the meaning of every. In the NatLog system
universal quantifiers (each, every, all) are assumed to carry existential import, and we
follow suit. But this is a free parameter, not forced by the underlying calculus.
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Every job that involves a giant squid is dangerous �⇒
Not every job that involves a cephalopod is safe

Inferences like this one depend on projecting exclusion relations between
terms, as well as joining different exclusion relations together.

The Monotonicity Calculus is generally thought to work at a level close
to syntax, in part because polarity information must already be represented
somehow in order to predict the distribution of so called negative polarity
items (see [5] for a recent overview). As we shall see, an analogous argu-
ment may be made for our Projectivity Calculus. It turns out that the
extra properties of functions that we need to project exclusion relations,
namely anti-additivity and anti-multiplicativity, correspond exactly to those
proposed by Zwarts and others to capture the syntactic distribution of in-
creasingly strong classes of negative polarity items. This connection will be
explained briefly in Section 4.

1. Ordered Domains

In model theoretic semantics, it is customary to think of implication as a
special case of inclusion, most typically of one set of situations or possibilities
in another. To say that P logically implies Q is, roughly, to say that the P
situations are included in the Q situations. This is a special case because it
amounts to inclusion in a particular type domain, namely that of the type
for truth values. But we also have inclusion relations in other types. For
instance, it is natural to think of domains of predicate types as ordered sets,
again by inclusion of one set of individuals in another.

For the purposes of the Monotonicity Calculus, it is enough to assume our
domains are preordered sets (posets). Suppose A = (A,≤) and B = (B,≤) are
posets. Let mon(A,B) denote the set of monotone functions from A to B:
functions such that a ≤ a′ in A implies f(a) ≤ f(a′) in B. The set of antitone
functions from A to B, for which a ≤ a′ implies f(a′) ≤ f(a), coincides
with the set of monotone functions from A to B

op, where B
op = (B,≥), the

result of turning B upside-down. Let ant(A,B) denote this set of monotone
functions. Both mon(A,B) and ant(A,B) admit a canonical preordering,
where f ≤ g just in case for all a ∈ A, f(a) ≤ g(a). Clearly (mon(A,B),≤)
and (ant(A,B),≤) are both preorders, provided A and B are. In this way,
functional domains can inherit the appropriate structure from more basic
domains. With this much foundation, the Monotoncity Calculus can already
be defined and studied (see any of [2, 11, 13]).
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However, type domains usually have much more underlying structure
than mere posets. For example, the domain for truth value types can be
taken as the two element structure = ({0,1},+, ⋅ ,0,1), which also happens
to be the simplest non-trivial Boolean lattice. The domain for predicate
types is usually the set of functions from some unordered domain D to ,
or equivalently the powerset lattice = (P(D),∪,∩,∅,D). This extends to
generalized quantifiers, which take elements of to functions from to ,
and indeed to any set of functions whose range is a Boolean lattice.

Proposition 1.1. If B = (B,∨,∧,0,1) is a Boolean lattice and A is any
set, the set of functions f ∶ A �→ B forms a Boolean lattice, in which
f ∨ g(a) = f(a) ∨ g(a), f ∧ g(a) = f(a) ∧ g(a), and 0 and 1 are the constant
functions sending all a ∈ A to 0 and 1, respectively.

Whereas Monotonicity Calculus deals only with inclusion relations de-
fined in terms of ≤, one can view MacCartney and Manning’s work as capi-
talizing on this extra structure to capture inferences involving a larger col-
lection of relations which now become defined in terms of ∨, ∧, 0, and 1, in
particular exclusion relations:

Definition 1.2 (The Set R of Relations). The following are notations for
relations between elements in a Boolean lattice, slightly modified from [10].

x ⊑ y x ∧ y = x (x ≤ y)

x ⊒ y x ∨ y = x (x ≥ y)

x ∣ y x ∧ y = 0

x ⌣ y x ∨ y = 1

We write x ≡ y if both x ⊑ y and x ⊒ y; write x ⋏ y if both x ∣ y and x ⌣ y;
and write x#y for the universal (uninformative) relation. Thus we define
the set R of relations to be: {≡,⊑,⊒,⋏, ∣,⌣,#}.

These relations can also be defined in wider classes of domains, which
shall become important in what follows. Let us call a structure (A,∨,1) a
∨-1-semilattice if (A,∨) is a join-semilattice with top element 1; and likewise
call (A,∧,0) a ∧-0-semilattice. Any structure (A,∨,∧,0,1) that is both a
∨-1-semilattice and a ∧-0-semilattice is a bounded lattice, provided that ∧
and ∨ satisfy the absorption laws. It is a Boolean lattice if moreover ∧ and
∨ satisfy the distributive laws and each element has a complement. Notice
that the relations ⊑, ⊒, and ≡ can be defined on any poset. The relation ∣ is
only defined in ∧-0-semilattices, while ⌣ is defined in ∨-1-semilattices. The
complementary relation ⋏ is only defined in bounded lattices.
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In Boolean lattices, the set R of relations is rather well behaved. A first
observation is that there is a natural ordering ≪ among the relations in R.
We say that R≪ R′, if xRy implies xR′y.2 Then (R,≪) is given as follows:

≡ ⋏
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Lemma 1.3. In any Boolean lattice, if x and y are distinct from 0 and 1,
there is some R ∈ R such that, if xR′y then R′ ≪ R.

This fails when x or y is 1 or 0. For example, for any x we have both
x ⌣ 1 and x ⊑ 1, but these are incomparable in terms of ≪. Nonetheless, for
elements other than 0 and 1, Lemma 1.3 guarantees the existence of some
maximally informative relation between them.

Building on top of (R,≪), we can introduce another important operation
on R, which turns out to play a central role in the NatLog system.

Definition 1.4. The join of R and R′, denoted R �R′, is the ≪-maximal
relation R∗ ∈ R such that, if xRy and yR′z then xR∗z.

It is a rather involved task to ensure that � is well defined on R. By
exhaustive check, which we do not repeat here, one can verify that the join
of any two relations corresponds to that given in [8, 10].

Lemma 1.5. The join R �R′ of relations R,R′ ∈ R is given by this table.

� ⊑ ⊒ ⋏ ∣ ⌣

⊑ ⊑ # ∣ ∣ #
⊒ # ⊒ ⌣ # ⌣
⋏ ⌣ ∣ ≡ ⊒ ⊑
∣ # ∣ ⊑ # ⊑
⌣ ⌣ # ⊒ ⊒ #

Furthermore, ≡ � R = R = R � ≡, and # �R =# = R �#, for all R ∈ R.

Lemma 1.6 is a direct consequence of Definition 1.4, which will justify
one of our two main rules of inference:

Lemma 1.6. In any Boolean lattice, if xRy and yR′z then x(R �R′)z.

2That is to say, in any Boolean lattice, if xRy holds then xR′y also holds; or equivalently,
xR′y can be derived from xRy using the laws of Boolean algebra.
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1.1. Functions on Domains

Monotonicity calculi focus on the polarity properties of functions on domains
with respect to the basic two relations ⊑ and ⊒. Monotone functions f
preserve these relations:

a ⊑ a′ implies f(a) ⊑ f(a′),

whereas antitone functions g reverse them:

a ⊑ a′ implies g(a′) ⊑ g(a).

With three new relations (two new primitive relations, and one new defined
relation), many new sorts of functions become relevant. The number of
mappings from R to R is, after all, 77. Of course, not all of these are consis-
tent with the meanings of these relations, and even fewer are likely to occur
in natural language. In what follows, we shall only consider six additional
classes of functions, which encompass all the expressions of English we have
encountered so far, including all examples considered in [10]. Each of these
classes refines either the monotone functions or the antitone functions.

Definition 1.7. Let f ∶ L�→ L
′ be a function on Boolean lattices.3

1. f is additive if f(x ∨ y) = f(x) ∨ f(y), and completely additive if in
addition f(1) = 1.

2. f is multiplicative if f(x ∧ y) = f(x)∧f(y), and completely multiplicative
if in addition f(0) = 0.

3. f is anti-additive if f(x ∨ y) = f(x) ∧ f(y), and completely anti-additive
if in addition f(1) = 0.

4. f is anti-multiplicative if f(x ∧ y) = f(x) ∨ f(y), and completely anti-
multiplicative if in addition f(0) = 1.

Note that each does in fact refine either monotonicity or antitonicity.

Lemma 1.8. Let f ∶ L�→ L
′ be a function. The following are equivalent:

(i) f is monotone;

(ii) f(x) ∨ f(y) ≤ f(x ∨ y);

(iii) f(x ∧ y) ≤ f(x) ∧ f(y).

3The notions of additive and anti-additive functions seem to have been first used in the
study of language by Hoeksema [6]. See Zwarts [16] for discussion of anti-multiplicative
functions. We shall revisit this connection in Section 4.
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Proof. (i) ⇒ (ii): Suppose f is monotone. Then since x ≤ x ∨ y and
y ≤ x ∧ y, we have f(x) ≤ f(x ∨ y) and f(y) ≤ f(x ∨ y). But seeing as
f(x)∨f(y) is the join of f(x) and f(y), we conclude f(x)∨f(y) ≤ f(x∨y).

(ii) ⇒ (i): Assume x ≤ y, and so y = x ∨ y. Then f(y) = f(x ∨ y) ≥
f(x) ∨ f(y), which means f(x) ≤ f(y).

The equivalence of (ii) and (iii) follows by duality.

Lemma 1.9. Let f ∶ L�→ L
′ be a function. The following are equivalent:

(i) f is antitone;

(ii) f(x ∨ y) ≤ f(x) ∧ f(y);

(iii) f(x) ∨ f(y) ≤ f(x ∧ y).

Proof. Analogous to the proof of Lemma 1.8.

Furthermore, the duality between monotone and antitone functions ex-
tends naturally to these classes of functions. In the case of bounded lattices
L = (L,∨,∧,0,1), the dual (L,∧,∨,1,0) is denoted by L

op. So, just as in the
case of preordered sets, x ≤ y in L if and only if x ≥ y in L

op. This extends
to semilattices in the obvious way, so that L = (L,∨,1) is a ∨-1-semilattice
if and only if Lop = (L,∧,0) is a ∧-0-semilattice.

Lemma 1.10. 1. The set of anti-additive functions from L
′ to L is equal to

the set of additive functions from L
′ to L

op.

2. The set of anti-multiplicative functions from L
′ to L is equal to the set

of multiplicative functions from L
′ to L

op.

There are numerous examples of all consistent combinations of these
properties from Definition 1.7. In the cases of typical quantifiers in English,
the step from property P to property completely P amounts to assuming
non-trivial domains, an assumption we shall adopt in what follows. For
example, some is additive in its second argument, yet some astronaut who
is not an astronaut is the constant function sending everything to 0, and so
it is not, strictly speaking, completely additive. Henceforth, by P we mean
completely P . The following are some examples (c.f. [10, 16]).

* Few fails all of these properties in its first argument.

* At least two is (only) monotone in both arguments.

* If is (only) antitone in its first argument.

* Some is additive in both arguments.
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* No is anti-additive in both arguments.

* Most is multiplicative in its second argument.

* Not every is anti-multiplicative in its second argument.

* Is is additive and multiplicative.

* Not is anti-additive and anti-multiplicative.

These considerations suggest the need for nine separate projectivity signa-
tures, which we shall eventually use to label functional types.

Definition 1.11 (Projectivity Signatures). The set Σ of projectivity signa-
tures is defined to be {●,+,−,�,�,⊞,⊟,⊕,⊖}.

Intuitively, ● is associated with the class of all functions, + with the
monotone functions, − with antitone, � with additive, � with anti-additive,
⊞ with multiplicative, ⊟ with anti-multiplicative, ⊕ with additive and mul-
tiplicative, and ⊖ with anti-additive and anti-multiplicative. This will be
made more precise in the next section.

To end this section, we present some basic facts that will become useful
in what follows. Below, L and L

′ are assumed to be ∨-1-semilattices or
∧-0-semilattices, as appropriate.

Lemma 1.12. Suppose we are given two semilattices L and L
′.

1. The additive functions f ∶ L�→ L
′ form a ∨-1-semilattice.

2. The multiplicative functions form a ∧-0-semilattice.

3. The anti-additive functions form a ∨-1-semilattice.

4. The anti-multiplicative functions form a ∧-0-semilattice.

Proof. We show only parts 1 and 3, as 2 and 4 are analogous.
Suppose f and g are additive functions. We must show f ∨ g, defined so

that f ∨ g(a) = f(a) ∨ g(a) for all a, is also additive. But this is clear, since
f ∨g(a∨b) = f(a∨b)∨g(a∨b) = (f(a)∨f(b))∨(g(a)∨g(b)) = (f(a)∨g(a))∨
(f(b)∨g(b)) = f ∨g(a)∨f ∨g(b). Moreover f ∨g(1) = f(1)∨g(1) = 1∨1 = 1.
The top element 1 in the ∨-semilattice of additive functions is the constant
function sending all a to 1.

Suppose next that f and g are anti-additive. It follows that f ∨g(a∨b) =
f(a∨b)∧g(a∨b) = (f(a)∧f(b))∧(g(a)∧g(b)) = (f(a)∧g(a))∧(f(b)∧g(b)) =
f ∨ g(a) ∧ f ∨ g(b). Likewise, f ∨ g(1) = f(1) ∧ g(1) = 0 ∧ 0 = 0. And the top
element is the constant function sending all a to 0. Since the anti-additive
functions are identified with the additive functions from L to L

′op, this is
indeed the top element in the ordered set.
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2. Projectivity Marking

2.1. Types

Our set of types is generated from three basic types: p, v, and t, which
correspond to predicates, intransitive verbs, and truth values, respectively.4

Definition 2.1. The set T of types consists of all symbols generated by the
following grammar:5

τb ∶∶= p ∣ v ∣ t ∣ τb �→ τb ∣ τb
+
�→ τb ∣ τb

−
�→ τb ∣ τb

⊕
�→ τb ∣ τb

⊖
�→ τb

τu ∶∶= τb ∣ τu
�
�→ τu ∣ τu

�
�→ τw

τw ∶∶= τb ∣ τw
⊞
�→ τw ∣ τw

⊟
�→ τu

As will become evident in the next definition, the domains of types gen-
erated as τb are bounded lattices, those of τu are ∧-0-semilattices, and those
of τw are ∨-1-semilattices (see Lemma 1.12).

Definition 2.2. We define (ordered) domains Aτ = (Aτ ,≤) by induction.

1. Ap = Av = (P(D),⊆), for some given set D.

2. At is the ordered two-element set = ({0,1},≤).

3. In the following, we assume the canonical ordering on sets of functions.
Aτ
→σ is the set of all functions f ∶ Aτ �→ Aσ.
A
τ
+

→σ

is the set of monotone functions f ∶ Aτ �→ Aσ.
A
τ
−

→σ

is the set of antitone functions f ∶ Aτ �→ Aσ.
A
τ
�

→σ

is the set of additive functions f ∶ Aτ �→ Aσ.

A
τ
�

→σ

is the set of anti-additive functions f ∶ Aτ �→ Aσ.

A
τ
⊞

→σ

is the set of multiplicative functions f ∶ Aτ �→ Aσ.
A
τ
⊟

→σ

is the set of anti-multiplicative functions f ∶ Aτ �→ Aσ.
A
τ
⊕

→σ

= A
τ
�

→σ

∩ A
τ
⊞

→σ

. A
τ
⊖

→σ

= A
τ
�

→σ

∩ A
τ
⊟

→σ

.

Lemma 1.12 and Definition 2.1 together guarantee that all of these or-
dered domains are well defined. This correspondence henceforth justifies our
calling a function that has the property corresponding to a given projectivity
marking ϕ a ϕ-function. For example, a �-function is an additive function.

As discussed above, monotone functions project ⊑ as ⊑, and antitone
functions project ⊑ as ⊒. We are now in a position to study the projectivity
behavior of all of these classes of functions for all the relations in R.

4We diverge from using the standard primitive types e and t. (C.f. [11], [13]).
5The plain functional type symbol τ �→ σ is used in place of τ

●
�→ σ, for convenience.
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Definition 2.3. [Projection] If R ∈ R and ϕ ∈ Σ, the projection of R under
ϕ is the ≪-maximal R∗ ∈ R for which the following holds:

Whenever xRy and f is a ϕ-function, it follows that f(x)R∗f(y).

We write [R]ϕ for the projection of R under ϕ.

Lemma 2.4. The operation [R]ϕ is well defined, and is given by this table:

[ ] ⊑ ⊒ ⋏ ∣ ⌣

+ ⊑ ⊒ # # #
� ⊑ ⊒ ⌣ # ⌣
⊞ ⊑ ⊒ ∣ ∣ #
⊕ ⊑ ⊒ ⋏ ∣ ⌣

[ ] ⊑ ⊒ ⋏ ∣ ⌣

− ⊒ ⊑ # # #
� ⊒ ⊑ ∣ # ∣
⊟ ⊒ ⊑ ⌣ ⌣ #
⊖ ⊒ ⊑ ⋏ ⌣ ∣

Moreover, note that [R]● = # for all R ∈ R.

Lemma 2.5 follows directly from Definition 2.3 and Lemma 2.4.

Lemma 2.5. For any ϕ-function f ∶ A�→ B, if xRy then f(x)[R]ϕf(y).

2.2. Function Composition

Like the set R of relations, the set Σ of signatures also comes with its own
structure. First of all, it has a natural ordering ⪕, defined so that ϕ ⪕ ψ
just in case any ϕ-function is also a ψ-function. Then (Σ,⪕) is given by the
following graph (with transitive arrows left implicit):

⊕ ⊖

⊞

����������
�

��

�

��

⊟



								

+

����								
−

�� ����������

●

��









����������

Using this ordering we can also define a sort of composition operator on Σ:

Definition 2.6. [Composition] If ϕ,ψ ∈ Σ, then ϕ ○ ψ is defined to be the
⪕-maximal signature χ ∈ Σ, such that the following holds:

If f is a ϕ-function and g is a ψ-function, then f ○ g is a χ-function.
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Abusing terminology, ϕ ○ ψ ∈ Σ is called the composition of ϕ and ψ.

The composition can be shown well-defined, and in fact we have:

Lemma 2.7. (Σ, ○,⊕) is a monoid.

The full table is reproduced here, noting also that ϕ ○ ● = ● = ● ○ ϕ, and
⊕ ○ ϕ = ϕ = ϕ ○ ⊕, for all ϕ ∈ Σ.

○ + − � � ⊞ ⊟ ⊖

+ + − + − + − −
− − + − + − + +
� + − � − + ⊟ ⊟
� − + � − − ⊞ ⊞
⊞ + − + � ⊞ − �
⊟ − + − � − + �
⊖ − + � � ⊟ � ⊕

Notably, ○ is not commutative, e.g. ⊟○� = � ≠ ⊞ = �○⊟. Nor does (Σ, ○,⊕)
form a group, as only ⊕ and ⊖ have inverses, namely themselves.

Lemma 2.7, together with Lemma 2.5, will be crucial for the projectivity
marking algorithm in the next section. It is the analogue in this more general
setting to the fact that + and − alone are well-behaved with respect to
composition (the upper left quadrant of the figure), which allows propagating
polarity information up (or down) a parse tree in the Monotonicity Calculus.

2.3. Typed Language

Every term t of our language L, defined below in Definition 2.8, has a type
τ , for which we write t ∶ τ . In addition, we can associate with every term
(or type) an unmarked type, which is simply the result of erasing all of the
markings on τ , notated τ ○ (following [15]). Note that by Proposition 1.1 the
domain for every unmarked type is a Boolean lattice.

The set T of types also has a natural ordering, according to the restric-
tions they put on their domain. The ordering ⩽ ∈ T × T is defined to be the
least ordering such that, for all σ, τ, σ′, τ ′ ∈ T :

1. τ ⩽ τ .

2. If σ′ ⩽ σ, τ ⩽ τ ′, and ϕ ⪕ ψ, then σ
ϕ
�→ τ ⩽ σ′

ψ
�→ τ ′.

Intuitively, τ ⩽ σ means, anything of type τ could also be considered of type
σ, with possible loss of information. Notice, whenever τ ⩽ σ we have τ ○ = σ○.
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Definition 2.8. In the language L we allow countably many variables (and
assume at least one) of each type, and we allow countably many constants
of any given type. In addition, we have the following complex terms:

If t ∶ σ
ϕ
�→ τ and s ∶ ρ ⩽ σ, then t(s) ∶ τ .

A model M = (D, � �, ν) of L consists of a domain D of entities, an
interpretation function � �, and a typed map ν. The interpretation function
� � is defined, so that if t ∶ τ is a constant then �t� ∈ Aτ ; and if t is a functional
term s(u), �s(u)� = �s�(�u�). The variable assignment ν sends variables to
elements of the appropriate type domain.

We can say M is a model of a relational statement tRt′ in the obvious
way: this holds if t and t′ are of the same unmarked type τ ○ and �t� bears
the relation R to �t′� in Aτ○ . These relations are always well defined, since
Aτ○ is a Boolean lattice (Proposition 1.1). This allows us to say, e.g. that
every should stand in the relation ∣ to no in the unmarked type domain of
generalized quantifiers Ap
→(v
→t). We write Γ ⊧ tRt′ if any model of all the
assumptions in Γ is also a model of tRt′.

2.4. Projectivity of Contexts

Terms with a single variable can be understood as functions. This allows
marking the projectivity of a given occurrence of a subterm in a given closed
term.6 If t contains no variables, it is called a ground term. We define the
topmost projectivity of a term t, denoted by top(t), to be ⊕ if t is of basic

type, and ϕ if t ∶ σ
ϕ
�→ τ for ϕ ∈ Σ. A context t is a term with exactly one

variable, x, and the projectivity of context t is defined as follows:

Definition 2.9. The projectivity of a context t with variable x, written
pro(t), is defined by induction on t:

1. If t = x, then pro(t) = ⊕;

2. If t = s(u) and x is a subterm of s, then pro(s(u)) = pro(s);

3. If t = s(u) and x is a subterm of u, then pro(s(u)) = top(s) ○ pro(u).

If t ∶ τ has a single variable x ∶ σ, we can associate with the context t a
function ft ∶ Aσ �→ Aτ , which is defined so that:

1. If t = x, then ft ∶ Aτ �→ Aτ is the identity function;

2. If t = s(u) and x is a subterm of s, then for a ∈ Aσ, fs(u)(a) = fs(a)(�u�);

6What follows derives in large part from the presentation in [12]. See also [11].
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3. If t = s(u) and x is a subterm of u, then fs(u) = �s� ○ fu.

Proposition 2.10 (Soundness of Projectivity Marking). Given a context t,
if pro(t) = ϕ then ft is a ϕ-function.

Proof. We proceed by induction on t. If t just is the variable x, then since
ft is simply the identity on Aτ , certainly ft is additive and multiplicative.

Next, suppose t = s(u) and x is a subterm of s. In this case pro(s(u)) =
pro(s), say it is ϕ. We give the result only for the case where ϕ = �, as the
other seven cases are either easier or analogous. We must show fs(u) is anti-
additive. By the induction hypothesis fs is anti-additive, so fs(u)(g ∨ h) =
fs(g ∨ h)(�u�) = (fs(g) ∧ fs(h))(�u�) = fs(g)(�u�) ∧ fs(h)(�u�) = fs(u)(g) ∧
fs(u)(h). Likewise, fs(u)(1) = fs(1)(�u�) = 0(�u�) = 0.

In the last case, if f = s(u) and x is a subterm of u, then fs(u) = �s� ○ fu.
By Definition 2.9, pro(s(u)) = top(s) ○pro(u). Suppose that u ∶ ρ, and so s ∶

ρ
ϕ
�→ τ for some ϕ ∈ Σ, which means �s� is a ϕ-function. If pro(u) = ψ, then

by induction hypothesis fu is a ψ-function. We can conclude fs(u) = �s� ○ fu
is a ϕ ○ ψ-function, which by Lemma 2.7 is well defined and in Σ.

Finally, we can define the projectivity of an occurrence of a subterm in
a ground term in a straightforward way. If t is a term and s is a subterm
occurence of t, let ts

′←s denote the term that results from replacing the single
occurrence of s by s′ in t.

Definition 2.11. If s is any subterm occurrence of ground term t, there is
a unique context t′ = tx←s with the single variable x. We say the projectivity
of occurrence s in t is pro(t′) ∈ Σ. We abbreviate this signature by o(s, t).

Corollary 2.12. If o(s, t) = ϕ and t′ = ts
′←s with sRs′, then t[R]ϕt′.

This corollary will form the basis of the calculus defined in the next
section, justifying the main inference rule for substitution.

3. A Projectivity Calculus

Based on the projectivity marking algorithm we have defined, a number
of reasoning calculi are now conceivable. In this section we present one
concrete example, which captures rather closely the logic underlying the
NatLog system [10]. NatLog uses the notion of an edit distance between
two expressions, familiar from computational linguistics, which incorporates
substitutions of terms, in addition to insertions and deletions. We do not
explicitly include insertion and deletion rules; however, our Substitution
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Rule, working at the level of types rather than terms, is sufficiently general
to capture much of what is accomplished with those operations. For instance,
instead of a not-insertion rule, we could allow x to be substituted by not x.

3.1. Calculus C of Relations

Suppose L is our typed language, and the relations in R are defined for some
given primitive constants. The Projectivity Calculus C provides a method
for extending relations in R to arbitrary terms. We have a few basic rules,
which are clearly sound:

Reflexivity:
t ⊑ t

t ⊑ t′Symmetry:
t′ ⊒ t

t ⊒ t′

t′ ⊑ t

t ∣ t′

t′ ∣ t
t ⌣ t′

t′ ⌣ t

t ∣ t
Absurdity:

sRs′

The main interest in C stems from the next two rules. The first allows us to
compose relations, according to the join operation (see Lemma 1.5).

tRu uR′vComposition:
t(R �R′)v

The second is the Substitution Rule, which justifies calling C a projectivity
calculus. The soundness of this rule follows from Corollary 2.12. We allow
any substitutions of terms with the same unmarked type, provided that the
resulting expression is still well formed according to Definition 2.8.

sRs′
Substitution: o(s, t) = ϕ

t[R]ϕts
′←s

If we have a set of relational assumptions Γ, we write Γ ⊢C tRt′ just
in case tRt′ follows from Γ by applying Reflexivity, Symmetry, Absurdity,
Composition, or Substitution some finite number of times.

Theorem 3.1 (Soundness of C). If Γ ⊢C tRt′, then Γ ⊧ tRt′.

Proof. This follows by induction on length of proofs in C, citing Corollary
2.12 for the Substitution Rule and Lemma 1.6 for the Composition Rule.

C will not in general be complete. For example, for any two terms t and

t′ of types σ
�
�→ τ and σ

�
�→ τ , respectively, it will always hold that �t� ∣ �t′�

since no function is both additive and anti-additive. But it is easy to see
that t ∣ t′ is not derivable from the empty set of assumptions. The question,
how to turn C into a complete system, we leave for future work.
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3.2. A Worked Example

In this section we define a simple grammar for a small fragment of English,
using marked types of different projectivity signatures.

Constant Type

every p
�
�→ (v

⊞
�→ t)

some, a p
�
�→ (v

�
�→ t)

no p
�
�→ (v

�
�→ t)

not every p
�
�→ (v

⊟
�→ t)

job, giant squid, cephalopod p

safe, dangerous p
⊕
�→ p

is (p
⊕
�→ p)

⊕
�→ v

involves (v �→ t)
⊕
�→ v

that v
⊕
�→ (p

⊕
�→ p)

Define the set Γ to consist of the following relational assumptions (obviously
not complete, but sufficient for the purpose of our examples).

every ⋏ not every
no ∣ every

some ⋏ no
safe ∣ dangerous

squid ⊑ cephalopod

From this we can derive typical monotonicity inferences:

giant squid ⊑ cephalopod

every cephalopod ⊑ every giant squid

But we can also capture inferences and relations that apparently require
going beyond monotonicity. For instance, we do not need an extra postulate
to tell us that no ⊑ not every, since it is already derivable from Γ.

no ∣ every every ⋏ not every

no (∣ � ⋏) not every

no ⊑ not every

The main example in this section is intended to demonstrate that gen-
uinely new entailment relations among sentences can be captured in C. We
show that the following holds in C using Γ as premises:

t = Every job that involves a giant squid is dangerous ⊑
t′ = Not every job that involves a giant squid is safe
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Instead of writing out the entire derivation at once, we go through it in
steps. First of all, notice that there are three substitutions leading from t to
t′, which use the following axioms from Γ:

every ⋏ not every giant squid ⊑ cephalopod dangerous ∣ safe

Below is a partial tree depicting the crucial function types that will determine
the projectivity of the relevant contexts (the verb argument is left off):

v
⊞
�→ t

p
�
�→ ...

Every

p

p

job

p
⊕
�→ p

v
⊕
�→ ...

that

v

(v �→ t)
⊕
�→ v

involves

v
�
�→ t

p
�
�→ ...

a

p

giant squid

Six different substitution orders are possible, but the reader may check
that each leads to the same conclusion. Arbitrarily, we begin by substituting
safe for dangerous. By Definition 2.9, the projectivity of this occurrence of
dangerous is given by top(every(job...)) ○ top(is) = ⊞ ○ ⊕ = ⊞. Since [∣]⊞ =∣,
we first have an inference of the following form.

safe ∣ dangerous
o(dangerous, t) = ⊞

t ∣ tsafe←dangerous

Next we can substitute cephalopod for giant squid in the resulting term
u = tsafe←dangerous. The projectivity of its occurrence is,

top(every) ○ top(that) ○ top(involves) ○ top(a) = � ○ ⊕ ○ ⊕ ○� = �

which results in the following inference:
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giant squid ⊑ cephalopod
o(giant squid, u) = �

u ⊒ ucephalopod←giant squid

Finally, we can substitute not every for every in v = ucephalopod←giant squid,
in which case this occurrence is not under the scope of any function, so its
projectivity marking is simply ⊕.

every ⋏ not every
o(every, v) = ⊕

v ⋏ vnot every←every

Where t′ = vnot every←every, the Composition Rule gives us the following.

t ∣ u u ⊒ v
t ∣ v v ⋏ t′

t ⊑ t′

It is clear that such an inference is not derivable in a system that uses only
polarity markings, as it crucially relies on exclusion relations ∣ and ⋏ .

3.3. The Church-Rosser Property

We know that C is sound, in the sense that it never derives from sound
assumptions a relational statement that does not hold. But is it also con-
fluent? In the example just given we noted the order of substitution did
not matter. But is this true in general? The answer is negative, for a very
simple reason. The problem is that it is very easy to derive the uninforma-
tive relation #, and once this happens it is impossible to derive any other
relation since the composition of any relation with # is again #. So in one
sense, we have a kind of confluence since we can always reach the # relation
given a rich enough language. However, the system lacks the kind of conflu-
ence one might hope for. That is, one must be clever with one’s choice of
substitutions. We illustrate with an example.

In one step we can derive that some squid ⊑ some cephalopod, simply by
substituting in cephalopod for squid. However, once we make a wrong sub-
stitution, this conclusion is unreachable. For instance, given the assumption
that squid ∣ octopus, by one substitution we derive some squid # some
octopus. Then, even though we also have octopus ⊑ cephalopod and thus
some octopus ⊑ some cephalopod, our result is # ○ ⊑ = #. It is not actually
false that some squid # some cephalopod, but by a smarter choice of rule
applications we can derive something stronger.

4. Negative Polarity Items

In the introduction, we said that the goal of a natural logic is to facilitate
inferences using only shallow, syntactic features. On the face of it, the
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projectivity signatures we use to mark types are paradigmatically semantic,
even though they stop short of full semantic interpretation. However, a
surprising discovery is that this much information in fact seems to be needed
to predict distribution patterns of certain classes of expressions across a
number of languages. These are the so called negativity polarity items.

It is well known since the work of Ladusaw [7] that negative polarity
items like any or ever generally appear only in antitone contexts. In other
words, there seem to be independent reasons to keep track of monotonicity
information in a formal grammar, simply to account for the well formed
expressions. Subsequent work by Zwarts on English, Dutch, and German
argued that there are at least three distinct subclasses of negative polarity
items that exhibit different distributional behavior: weak, strong, and su-
perstrong [16]. The weak negative polarity items like yet can appear in any
antitone context, as illustrated by the fact that 1 and 2 are grammatical:

1. Not everyone is here yet.

2. Few students are here yet.

The strong negative polarity items, Zwarts noticed, seem to require anti-
additive contexts. An example of the strong type is the expression in years.
Thus, while 3 is ungrammatical, 4 is grammatical since no is anti-additive
in its second argument.

3. # Few scholars have written about it in years.

4. No scholar has written about it in years.

Finally, the superstrong negative polarity items, like a tad bit, seem to re-
quire contexts that are both anti-additive and anti-multiplicative. Thus, 5
seems ungrammatical, while 6 is perfectly grammatical since not is anti-
additive and anti-multiplicative.

5. # No customer was a tad bit happy.

6. The manager was not a tad bit happy.

Zwarts provides a rather comprehensive classification of quantifiers and other
contexts in terms of these function types. As our results show, such a classi-
fication is already sufficient to account for the projectivity behavior of these
expressions. In some sense, then, the notions we use to capture significant
reasoning patterns based on inclusion and exclusion are independently mo-
tivated by grammatical concerns that at first may have seemed unrelated.
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5. Conclusion

We have shown how a projectivity calculus can be defined on top of the
Monotonicity Calculus with only minimal additions. In effect, as soon as
one is able to assign marked types to expressions in a given fragment of
language and specify some axioms about what relations hold among basic
lexical items, it is possible to apply the Projectivity Calculus to derive new
relations among complex terms. We close by discussing where the Projec-
tivity Calculus might lie in the space of familiar logical systems.

One question is whether the Projectivity Calculus is a genuine extension
of the Monotonicity Calculus. In fact, as observed in [4], an exclusion relation
between x and y can equivalently be seen as a containment relation between
x and −y, the complement of y. Note that x ∣ y is equivalent to x ⊑ −y, x ⌣ y
is equivalent to x ⊒ −y, and hence x⋏y is equivalent to x ≡ −y. Each of these
is a special case of containment. Indeed, we could have set things up this way.
But this should not blur the fact that we still would need to define the same
additional projectivity signatures to deal with these effectively different kinds
of containment relations. After all, we have seen that different quantifiers
with the same monotonicity markings must be assigned different projectivity
markings (e.g. some and at least two). In some sense, it is the new signatures
based on enriched domains that constitute an extension of the Monotonicity
Calculus, not just the exclusion relations by themselves. We could just as
well have considered the single relation ⊑ and unary negation operation −.

From the other side, an outstanding question is how close C is to the
expressive and inferential power of first-order, or higher-order logic. As we
remarked at the beginning, one of the interests in natural logic and surface
reasoning is that we are not restricted to fragments for which we already
have approximate first-order translations. Still, the question does arise: If
we consider a fragment of English including only every, some, and not, with
their appropriately marked types, plus a number of individual constants,
predicates and relations (i.e. proper nouns, common nouns, adjectives, verbs,
etc.), what fragment of first-order logic do we obtain? We know, for example,
the De Morgan laws are not in general derivable. For example, entailments
like Every job is safe �⇒ No job is dangerous require more information
than is represented in our projectivity markings. That is, the inference from
Q job is safe to Q’ job is dangerous is not sound for just any quantifiers

Q ∶ p
�
�→ (v

⊞
�→ t) and Q′ ∶ p

�
�→ (v

�
�→ t). What sort of fragment of

first-order, or higher-order, logic this is, and just how far this type marking
could take us, we leave as questions for future work.
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