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SergeiN.Artemov TheOntology of Justifications
in the Logical Setting

Dedicated to the memory of Leo Esakia

Abstract. Justification Logic provides an axiomatic description of justifications and

delegates the question of their nature to semantics. In this note, we address the conceptual

issue of the logical type of justifications: we argue that justifications in the logical setting

are naturally interpreted as sets of formulas which leads to a class of epistemic models

that we call modular models. We show that Fitting models for Justification Logic naturally

encode modular models and can be regarded as convenient pre-models of the former.
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1. Introduction

Since Plato, justification has been considered a principal element of epistemic
analysis that was, until recently, conspicuously absent in formal logical mod-
els of knowledge and belief. Justification Logic augments epistemic logic by
assertions t:F that read

t is a justification for F,

hence incorporating the missing justification component.
Historically, the first system of Justification Logic was the Logic of Proofs

LP (cf. [1, 2]), and the first formal semantics was the semantics of mathe-
matical proofs. Extending to a general logical theory of justification required
developing a generic epistemic semantics for justifications: Fitting models
[8] and their modifications (cf. [4] for a comprehensive account) became the
standard epistemic semantics for Justification Logic and played a pivotal
role in its development, cf. [6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18].

However, from a conceptual perspective, Fitting models do not address
the issue of the logical type of justifications, e.g., the truth value of a jus-
tification assertion t:F is defined without introducing an interpretation for
justification t.
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Why would one want an answer to the question of what a justifica-
tion is? When asked “what is a real number?”, we have an answer1 ready:
a Dedekind cut, i.e., essentially, a set of rational numbers with some con-
ditions. We know a reasonable mathematical answer (within Kolmogorov’s
model) to the question “what is probability?”: a function from σ-algebra of
events to [0, 1], again, with some natural conditions. Within an exact math-
ematical theory, there should be a similar kind of answer to the question
“what is a justification?”. In addition to its conceptual value, clarity in this
issue could lead to cleaner mathematical models.

Of course, the logical type of justifications can be easily read from the
format of Fitting models: at each possible world, justifications should be in-
terpreted as sets of formulas with corresponding operations. But the story
does not end there: it turns out that such an interpretation suggests refine-
ment of Fitting models. Though rather minor on the mathematical scale, it
produces a new class of modular models that could be viewed as a concep-
tually clean and potentially useful addition to the existing variety of models
for knowledge, belief, and justification.

We retain a classical interpretation ∗ of the propositions (formulas Fm)
in a model as subsets of the set W of possible worlds,

∗ : Fm �→ 2W .

We will write F ∗ rather than ∗(F ) to denote the set of worlds that corre-
sponds to formula F . The set F ∗ is usually understood as a set of worlds at
which F holds and u�F is a shorthand for u ∈ F ∗.

In addition, we interpret justification terms Tm at each world as sets of
formulas,

∗ : W × Tm �→ 2Fm.

We write t∗u for the interpretation of term t at world u2. Each t∗u is a set of
formulas for which t is a justification at u. According to this reading,

u� t:F iff F ∈ t∗u . (1)

We call these models ‘modular’ because one can specify interpretations of
justifications and atomic propositions and then build interpretations of all
formulas from there in a uniform ‘modular’ way.

Note that whereas propositions in modular models are interpreted seman-
tically, as sets of possible worlds, justifications are interpreted syntactically,

1in fact, several answers
2though notation ∗(u, t) would be formally more appropriate here
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as sets of formulas. This is a principal feature: a modular model may treat
distinct formulas F and G as equal, i.e. F ∗ = G∗, which yields

u�F iff u�G

for each possible world u, but still be able to distinguish justification asser-
tions t:F and t:G, e.g., when F ∈ t∗u, but G �∈ t∗u yielding

u� t:F but u �� t:G.

Modular models don’t offer deep mathematical revelations but neverthe-
less provide a clear picture of what justifications are and how they relate to
the world.

2. Basic Justification Logic

In Justification Logic, there is, in addition to the category of formulas,
a category of justifications with a new sort of proposition t : F stating t
is a justification of F. In the basic setting, justifications are terms with op-
erations application and sum.3

The application operation takes justifications s and t and produces a
justification s·t such that if s:(F →G) and t:F , then [s·t]:G. Symbolically,

s:(F →G)→(t:F → [s·t]:G).

This is a fundamental and widely assumed deductive property of justifica-
tions.

The second basic operation on justifications is sum ‘+.’ If s :F , then
whatever evidence t may be, the combined evidence s + t, as well as t + s,
remains a justification for F . Operation ‘+,’ given s and t, produces s + t,
which is a justification for everything justified by s or by t

s:F → [s + t]:F and s:F → [t + s]:F.

As motivation, one might think of s and t as two volumes of a two-volume set,
and s + t as the set of those two volumes. Imagine that one of the volumes,
say s, contains a sufficient justification for a proposition F , i.e., s:F is the
case. Then the larger set s + t also contains a sufficient justification for F ,
[s + t]:F .

3More elaborate justification logics allow additional operations on justifications.
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In a more formal setting, justification terms, Tm, are built from jus-
tification variables and constants by means of the operations ‘·’ and ‘+.’
Formulas, Fm, are built from propositional variables Var and truth con-
stants by the usual Boolean connectives and the rule: if t is a term and F a
formula, then t:F is a formula.

Basic Logic of Justifications J0:

Classical propositional axioms and the rule Modus Ponens;

s:(F →G)→(t:F → [s·t]:G);

s:F → [s + t]:F , s:F → [t + s]:F .

J0 is the logic of general (not necessarily factive) justifications for a skep-
tical agent for whom no formula is justified a priori. Justification Logic offers
a flexible additional mechanism of representing justified assumptions. When
we want to assume that an axiom A is justified, we postulate c1:A for some
justification constant c1. Furthermore, if we want to assume that this new
principle c1 :A is also justified, we can postulate c2 :(c1 :A) for a constant
c2, etc. The set of all assumptions of this kind for a given logic is called a
constant specification (cf. [4] for formal definitions).

Let CS be a constant specification. JCS is the logic

J0 + CS;

which axioms are those of J0 with the members of CS, and the only rule of
inference is Modus Ponens. J is defined as the logic with the union of all
constant specifications.

For sample applications of Justification Logic in epistemology, cf. [4].

3. Basic modular models – Mkrtychev models

For sets of formulas X and Y , we define

X ·Y = {F | G→F ∈ X and G ∈ Y for some G}.
Informally, X·Y is the result of applying Modus Ponens once to all members
of X and of Y (in a given order).

Definition 1. A basic modular model is an evaluation ∗ which maps propo-
sitional variables Var to truth values {0, 1} and justification terms Tm to
subsets of the set of formulas

∗ : Var �→ {0, 1} and ∗ : Tm �→ 2Fm
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such that
s∗ ·t∗ ⊆ (s·t)∗ and s∗ ∪ t∗ ⊆ (s + t)∗. (2)

As usual, we will write ‘ � F ’ instead of ‘F ∗ = 1.’ The truth value of
formulas is defined inductively and respects Boolean logic, i.e.,

• �F ∧ G iff �F and �G;

• �¬F iff ��F ;

• � t:F iff F ∈ t∗.

Mathematically, basic modular models are equivalent to the appropriate
adaptation of Mkrtychev models4 for J from [4]. Soundness and completeness
of J with respect to basic modular models follow from [4], Theorem 5.2.
(where basic modular models were referred to as Mkrtychev models), but
we provide a direct proof of them here for the reader’s convenience.

Let CS be a constant specification. A model respects CS if all formulas
from CS hold in this model.

Theorem 1. JCS 
 F iff F holds in any basic modular model respecting CS.

Proof. Soundness is straightforward. Consider a basic modular model ∗
and run an induction on derivations in JCS . Formulas from CS as well as
Boolean axioms are obviously true. Application: suppose � s:(F →G) and
� t:F . Then F →G ∈ s∗ and F ∈ t∗. Therefore, G ∈ s∗ ·t∗ ⊆ (s·t)∗, i.e.,
� [s·t]:G. Sum: suppose �s:F . Then F ∈ s∗ and F ∈ s∗∪t∗ ⊆ (s + t)∗, hence
� [s + t]:F . The rule of JCS is Modus Ponens, respected by the semantics.

Completeness is established by a maximal consistent set construction.
Once JCS �
 F , the set {¬F} is consistent, and let Γ be its maximal consistent
extension. Define interpretation ∗ such that for an atomic formula p and
justification term t,

p∗ = 1 iff p ∈ Γ; t∗ = {F | t:F ∈ Γ}.
Conditions (2) follow immediately from the ‘application’ and ‘sum’ axioms.

By induction on formulas, we now establish the ‘truth lemma’: For each
formula X,

�X iff X ∈ Γ.

The case of atomic X is covered by the definition of ∗; the Boolean cases
are standard. Let X be t:Y for some t and Y . By the definition of a basic
modular model, � t :Y iff Y ∈ t∗. Further, Y ∈ t∗ iff t :Y ∈ Γ by the
definition of this particular model. Hence � t:Y iff t:Y ∈ Γ.

4The original Mkrtychev models were introduced in [14] for the Logic of Proofs LP.
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To complete the proof of Theorem 1, note that F �∈ Γ, hence, by the
truth lemma, ��F .

It is unavoidable that evaluation sets for compound justifications are
allowed to contain more formulas than required by the evaluation sets of the
components, i.e., the inclusions ‘⊆’ in (2) cannot be replaced by equalities.
Consider the formula

F = [x + y]:P →(x:P ∨ y:P ).

We observe that J0 �
 F . Indeed, a basic modular countermodel is provided
by an evaluation ∗ such that x∗ = y∗ = ∅ and t∗ = Fm for all other justifi-
cation terms t.5 All necessary properties of ∗ obviously hold, so ∗ specifies
a basic modular model. In this model, � [x + y]:P , but neither �x:P nor
� y :P , hence �� F and J0 �
 F . We show that F cannot be false in any
modular model with [x + y]∗ = x∗∪y∗. Indeed, in such a model, � [x+y]:P ,
��x:P , and ��y:P . By the definition of a basic modular model, P ∈ [x + y]∗,
but P �∈ x∗ and P �∈ y∗. Therefore, P �∈ x∗ ∪ y∗, hence [x + y]∗ �= x∗ ∪ y∗.

4. Introducing possible worlds

The main idea of introducing possible world semantics is, of course, to con-
nect justification logic to mainstream epistemic logic which relies heavily on
possible worlds models. The standard semantics of

F is believed at world u

is
F holds at all worlds considered possible at u.

How do justifications fit into this picture?
Take a Kripke frame (W,R), where W is a non-empty set of possible

worlds, R is a binary ‘accessibility’ relation on W , and consider an interpre-
tation ∗, which is a mapping of the format

∗ : Var �→ 2W , ∗ : W × Tm �→ 2Fm, (3)

such that for each world u, it specifies a basic modular model ∗u. To be
precise,

p∗u = 1 iff u ∈ p∗, t∗u = ∗(u, t),

and closure conditions (2) hold for each ∗u.

5Evaluations of propositional variables are irrelevant.
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By Definition 1 and (3), such ∗ determines the truth value of each formula
at each world. Technically,

M = (W,R, ∗)
is already a possible worlds model for J0: both soundness and completeness
hold for these structures. However, such a model misses the goal of connect-
ing justifications to the knowledge/belief semantics since evaluation ∗ may
have nothing to do with the epistemic structure of the model represented
by R. What we need here is a conceptually clean mathematical connection
of ∗ and R reflecting the epistemic nature of justifications. A reasonable
candidate for such a connection is a principle that

having a specific reason for F yields believing that F .

This principle has been the cornerstone of the Fitting semantics of justi-
fications (cf. [8]); it has also been widely adopted in logical systems with
explicit and implicit knowledge, cf. [3, 5].

Let us formulate a semantical condition that represents this principle in
the modular model format. Given M = (W,R, ∗), let �u denote a set of
formulas

{F | v�F for all v such that uRv}.
Conceptually, at a given world u, t∗u reflects ‘believing for a reason t,’ whereas
�u represents believing without providing a specific reason.

We say that justification yields belief in M = (W,R, ∗), if

t∗u ⊆ �u

for each justification term t and each u ∈ W . In other words, if t is a
justification for F at u, then F is believed in u.

We now define modular models in the possible worlds setting.

Definition 2. A modular model is M = (W,R, ∗) in which
i) W is a non-empty set of worlds, and R is a binary relation of W ;
ii) interpretation ∗ has the format

∗ : Var �→ 2W ; ∗ : W × Tm �→ 2Fm

and is a basic modular model at each world u ∈ W ;
iii) justification yields belief, i.e., t∗u ⊆ �u for each t ∈ Tm and u ∈ W .

The truth values of formulas are determined by the basic modular model
structure at each world, according to Definition 1.
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The soundness and completeness theorem holds for modular models.6

Theorem 2. JCS 
 F iff F holds in any modular model respecting CS.

Proof. Soundness follows from Theorem 1 since each of the worlds is a
basic modular model. Completeness is established by a maximal consistent
set construction. Let W be the set of maximal consistent sets over JCS and

ΓRΔ iff Γ� ⊆ Δ,

where Γ� = {F | t:F ∈ Γ for some t}. Propositional variables and justifica-
tions are evaluated as usual for canonical models, namely,

Γ ∈ p∗ iff p ∈ Γ, t∗Γ = {F | t:F ∈ Γ},

which defines an interpretation ∗. Inclusions s∗Γ · t∗Γ ⊆ (s · t)∗Γ and s∗Γ ∪ t∗Γ ⊆
(s + t)∗Γ are immediate. Therefore, each world Γ is a basic modular model
from the proof of Theorem 1, hence Γ�X iff X ∈ Γ and there is no need to
re-prove the truth lemma.

Let us check the ‘justification yields belief’ condition t∗Γ ⊆ �Γ. Suppose
F ∈ t∗Γ. By definitions, t:F ∈ Γ and F ∈ Γ�. By the definition of R, if ΓRΔ,
then F ∈ Δ. By the truth lemma, Δ�F , hence F ∈ �Γ.

To complete the proof of Theorem 2, consider F which is not derivable
in JCS . Then {¬F} is a consistent set, and let Γ be its maximal consistent
extension, hence Γ ∈ W . Since Γ is consistent, F �∈ Γ, hence Γ ��F .

Note that basic modular models correspond to modular models with a
single possible world and empty accessibility relation: W = {w}, R = ∅.

5. Modular models for justifications and beliefs

Modular semantics7 allows us to model justification and beliefs simultane-
ously. Consider a logic of justifications and beliefs, KJ0, in the joint language
of J and K, containing

1. modal logic K with principles

�(F →G)→(�F →�G),

if 
 F then 
 �F ;

6Technically, Theorem 2 follows easily from Theorem 3, Section 5, though the proofs
of these theorems may produce different canonical models.

7as well as Fitting semantics
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2. axioms and rules for J0;

3. the connection axiom
t:F →�F

(stating syntactically that justification yields belief).

As before, CS denotes a constant specification and KJCS a logic

KJ0 + CS.

Modular semantics seamlessly extends to this case. Formally, given a modu-
lar model M = (W,R, ∗), in addition to Definition 2, we assume the standard
Kripkean clause:

u��F iff v�F for all v such that uRv.

The following soundness and completeness theorem with respect to modular
models is now an easy exercise.

Theorem 3. KJCS 
 F iff F holds in any modular model respecting CS.

Proof. Soundness of J-axioms follows from Theorem 2, soundness of K-
axioms is straightforward, soundness of connection axiom 3. is secured by
the ‘justification yields belief’ condition in modular models.

Completeness is established by a maximal consistent set construction.
Let W be the set of maximal consistent sets over KJCS and

ΓRΔ iff Γ� ⊆ Δ,

where Γ� = {F | �F ∈ Γ}. Propositional variables and justifications are
evaluated as usual:

Γ ∈ p∗ iff p ∈ Γ; t∗Γ = {F | t:F ∈ Γ}.
Inclusions s∗Γ · t∗Γ ⊆ (s · t)∗Γ and s∗Γ ∪ t∗Γ ⊆ (s + t)∗Γ are immediate.

The usual ‘truth lemma’ holds: X ∈ Γ iff Γ � X. This is proved by
induction on X. The propositional and Boolean cases are straightforward;
the case X = t :Y does not use R and is similar to that in the proof of
Theorem 1. The case X = �Y is similar to the standard modal proof since
the accessibility relation R is defined in a canonical way.

To check the ‘justification yields belief’ condition t∗Γ ⊆ �Γ, suppose F ∈
t∗Γ. By definition, t :F ∈ Γ. Since Γ is maximal consistent and contains
connection axiom 3, �F ∈ Γ as well. By the definition of R, for any Δ such
that ΓRΔ, F ∈ Δ. By the truth lemma, Δ�F , hence F ∈ �Γ.

The claim of Theorem 3 now follows in the standard way.



26 S. N. Artemov

6. Connections to Fitting models

A Fitting model for J0 (cf. [4]) is a Kripke model (W,R, �) for K enriched
with an admissible evidence function E : informally, E(t, F ) specifies the set
of possible worlds from W where t is considered an ‘admissible,’ but not
necessarily actual, evidence for F . Formally, E(t, F ) ⊆ W and E must satisfy
the closure conditions with respect to operations ‘·’ and ‘+’:

• E(s, F →G) ∩ E(t, F ) ⊆ E(s·t, G);

• E(s, F ) ∪ E(t, F ) ⊆ E(s+t, F ).

A justification assertion t:F is true at u if and only if two conditions hold:

1. v�F for all v such that uRv;

2. u ∈ E(t, F ).

First, we note that each modular model M = (W,R, ∗) is a legitimate
Fitting model in which there are no ‘fake’ justifications. Indeed, ‘�’ can be
defined as usual

u�p iff u ∈ p∗,

and E(t, F ) as the set of worlds

{u ∈ W | F ∈ t∗u}.

Obviously, closure conditions on E follow from (2). Truth condition 1. is
vacuously subsumed by condition 2. since justification yields belief in M.

So modular models can be identified with a subclass of Fitting models
without ‘fake’ justifications: in such models, truth condition 1. becomes
redundant.

However, the connection between Fitting models and modular models is
more direct: each Fitting model encodes a modular model over the same
frame and with the same truth evaluation of formulas at each node which
we will now explain.

A Fitting model M = (W,R, E ,�) can be converted into a modular model
M′ = (W,R, ∗) by defining the evaluation of justifications as

t∗u := {F | u ∈ E(t, F )} ∩ �u

and leaving it as-is for propositional variables:

u ∈ p∗ iff u�p.
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Let ‘�′’ be the forcing relation in M′, i.e., u � ′p is u ∈ p∗, and u � ′t:F is
F ∈ t∗u.

We first note that ‘� ’ and ‘� ′ ’ coincide at each node:

u� ′X iff u�X

for each node u ∈ W and formula X. Induction on X. The base case holds
since both u�p and u� ′p are equivalent to u ∈ p∗. Let us check justification
assertions: X = t:Y . By definitions, u� t:Y iff ‘u ∈ E(t, Y ) and Y ∈ �u’ iff
Y ∈ t∗u iff u� ′t:Y . Boolean steps are trivial.

We now check that M′ is a legitimate modular model, namely justifica-
tion yields belief in M′, i.e., t∗u ⊆ �u. Let F ∈ t∗u, then u� ′t:F , hence u� t:F
as well. By 1., v�F for all v such that uRv and hence v� ′F for all v such
that uRv, hence F ∈ �u in M′.

This observation shows that each Fitting model conceals an induced mod-
ular model that we call an ‘induced modular model.’ A Fitting model’s in-
duced modular model has the same truth values of formulas at each node.
In this respect, each Fitting model may be regarded as a pre-model for its
induced modular model.

In addition to the basic categories of propositions and justifications, Fit-
ting models rely on a conceptually new category – admissible justifications
– and a two-stage truth definition 1.–2. that also requires explanation.

Modular models do not introduce auxiliary notions. They extend evalu-
ation from the usual ‘formulas are interpreted as sets of possible worlds’ to
include ‘and justifications are interpreted as sets of formulas.’ Once this is
assumed, the semantics (1) for justification assertions suggests itself.

There is another rather subtle foundational reason for considering mod-
ular models: they treat justifications independently of beliefs. In Fitting
models, for a final verdict of whether a justification assertion t:F holds at a
given world, one has to check that justification t obeys the given belief con-
dition for F defined via the accessibility relation R. This makes the belief
structure, i.e., relation R, appear to be the principal element of the model
and justifications look like derivatives. This does not mesh well with Justi-
fication Logic’s aim to provide a new, evidence-based semantics for beliefs
(cf. [4]): in this light, justifications should precede beliefs, not vice versa. It
appears modular models achieve this: one does not need a belief structure
R to find truth values of justification assertions.

Fitting models have their advantages. For example, in a given structure,
the ‘justification yields belief’ principle might not be easy to verify. Instead,
it can be more practical to consider an appropriate Fitting model with truth
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conditions 1.–2. However, it may be good to know that this amounts to
working in an induced modular model.

We conclude with two examples of Fitting models and their induced
modular models.

Example 1. Consider Fitting model M1 with

• W = {a, b};
• R = {(a, b)};
• a, b ��p and a, b�q for all other q’s;
• E(x, p) = {a} and E(t, F ) = ∅ for all other t, F .

Obviously, in M1 all justification assertions are false. In particular, x is a
‘fake’ justification for p at a since p is not believed at a. The corresponding
induced modular model M′

1 eliminates such justifications by maintaining
t∗u = ∅ for each t and u ∈ W .

In Example 1, moving from a Fitting model M1 to its induced modular
model M′

1 simplifies matters and eliminates some redundancies.

Example 2. Consider Fitting model M2 with

• W = {a, b};
• R = {(a, b)};
• a, b ��p and a, b�q for all other q’s;
• E(t, F ) = {a, b} for all t, F , i.e., each term is an admissible justification

for each formula.

In the induced modular model M′
2, for each justification term t, t∗b is the

set of all formulas, and t∗a is the set of all formulas that are true at node b
of model M2. In particular, p �∈ t∗a, but q ∈ t∗a for each q distinct from p.

In Example 2, the original Fitting model M2 appears simpler than its
induced modular model M′

2. Moreover, the easiest way to define the latter
is to first invoke the former.
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