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Abstract. This paper discusses Crawley completions of residuated lattices. While

MacNeille completions have been studied recently in relation to logic, Crawley completions

(i.e. complete ideal completions), which are another kind of regular completions, have not

been discussed much in this relation while many important algebraic works on Crawley

completions had been done until the end of the 70’s.

In this paper, basic algebraic properties of ideal completions and Crawley completions

of residuated lattices are studied first in their conncetion with the join infinite distributivity

and Heyting implication. Then some results on algebraic completeness and conservativity

of Heyting implication in substructural predicate logics are obtained as their consequences.
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1. Preliminaries

Algebraic methods have been applied successfully to nonclassical proposi-
tional logics via universal algebra and algebraic logic. Algebraization is one
of the most important key concepts which ensure what algebraic methods
can do in the study of logics. Many interesting connections between algebra
and logic have been discovered recently. As a continuation of our previ-
ous works [20] and [22] of the study of substructural predicate logics, we
will discuss in this paper to what extent algebraic methods can work well
for substructural predicate logics and where the liminations of these meth-
ods will be, in particular by focusing on Crawley completions of residuated
lattices.

To begin with, we will consider superintuitionistic logics. A superintu-
itionistic propositional logic (SIL) (superintuitionistic predicate logic (QSIL))
is an axiomatic extension of intuitionistic propositional logic (intuitionistic
predicate logic, respectively). Algebraic semantics for superintuitionistic
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propositional logics is given by classes of Heyting algebras. A SIL L is com-
plete with respect to a class C of Heyting algebras, when for each formula ϕ,
ϕ ∈ L iff A |= f(ϕ) = 1 for every A ∈ C and every valuation f on A. By a
standard argument using Lindenbaum algebras, it can be shown that every
SIL is complete with respect to a class of Heyting algebras. In fact, it is
shown that the class of Heyting algebras in which all formulas in a given SIL
L forms a subvariety of the variety H of all Heyting algebras, and moreover
these exists an inverse lattice isomorphism between the lattice of all SILs
and the lattice of all subvarieties of the variety H.

To define an algebraic semantics for superintuitionistic predicate logics,
there will be some alternatives on how to interpret quantifiers. Following
ideas proposed by A. Mostowski, H. Rasiowa and R. Sikorski, we consider
here an algebraic semantics in which universal and existential quantifiers
are interpreted by infinite meets and infinite joins, respectively. (We assume
here that we will consider the pure first-order language, i.e. our language
contains neither individual constant symbols nor function symbols.)

Tentatively we call here a structure 〈A, V 〉, an algebraic frame for a
QSIL, if A is a Heyting algebra and V a non-empty set, called the individ-
ual domain. (A formal definition of algebraic frames is given in the next
section.) Each valuation f is extended to first-order formulas by requiring
the following. (Here, we identify each element in V with its name, just for
the simplicity’s sake.)

1. f(∀xϕ(x)) =
∧{f(ϕ(w)) : w ∈ V }

2. f(∃xϕ(x)) =
∨{f(ϕ(w)) : w ∈ V }

But, this definition may be ambiguous, as it is not always the case that
infinite meets and infinite joins exist in a given Heyting algebra. In such a
case, we cannot define values of a given evaluation.

A possible way out of this is to take an arbitrary Heyting algebra but to
consider only safe valuations. Here, a valuation f is safe for a given set Φ of
closed formulas (or, sentences)1, if for any α ∈ Φ, all infinite joins and infinite
meets appearing in the calculation of f(α) exist always. If we choose this
way, then by using the Lindenbaum algebra, we can show that every QSIL
is complete with respect to a class of algebraic frames restricted only to safe
valuations. But Lindenbaum algebras will not give us much information.
From an algebraic point of view, Lindembaum algebras for a propositional

1More precisely, here by closed formulas we mean closed formulas in the language
augmented by constant symbols corresponding to elements of V .
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logic are free algebras of the corresponding variety, and thus they have the
universal mapping property. On the other hand, Lindembaum algebras for
a predicate logics do not have such a nice property.

Taking a different way, here we will restrict our attention only to complete
Heyting algebras. As every valuation on a complete Heyting algebra becomes
always safe in this case, we can take arbitrary valuations. Now let W be a
class of algebraic frames composed of complete Heyting algebras. Then the
algebraic completeness of a given QSIL L with respect to W means that for
each first-order closed formula ϕ, ϕ is provable in L iff f(ϕ) takes the value
1 for every algebraic frame in W and every valuation f on it. On the other
hand, since Lindenbaum algebras are not complete algebras, we cannot use
them directly to show the algebraic completeness. So it becomes necessary
to find complete Heyting algebras which can act in the place of Lindenbaum
algebras. For this purpose, it is necessary to consider ways of completing
algebras without losing necessary information which original algebras have,
in particular information on infinite joins and meets.

In this paper we assume familiarity with basic notions and results of
residuated lattices and substructural propositional logics (see e.g. [11]). Af-
ter giving a basic framework of the algebraic framework of algebraic com-
pleteness of substructural predicate logics in Section 2, regular completions
of residuated lattices are introduced in Section 3. Ideal and Crawley com-
pletions and Heyting implication are discussed in the succeeding sections.
Their applications to algebraic completeness and conservativity of Heyting
implication in substructural predicate logics are shown in Section 7.

2. Algebraic frames of substructural predicate logics

Hereafter, we will focus mainly on algebraic completeness of substructural
predicate logics and completions of algebras related to these logics. In the
following, we will discuss only substructural logics with exchange rule just for
the simplicity’s sake, though in most cases it is not hard to extend arguments
to the noncommutative case. As for general information on substructural
propositional logics and residuated lattices, see [11]. Let QFLe be the se-
quent system for predicate language, obtained from the sequent system for
the substructural propositional logic FLe by adding the following rules for
quantifiers ∀ and ∃.

α(t), Γ ⇒ ϕ

∀xα,Γ ⇒ ϕ
(∀ ⇒)

Γ ⇒ α(y)
Γ ⇒ ∀xα

(⇒ ∀)
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α(y), Γ ⇒ ϕ

∃xα,Γ ⇒ ϕ
(∃ ⇒)

Γ ⇒ α(t)
Γ ⇒ ∃xα

(⇒ ∃)

Here, α(y) and α(t) denote formulas obtained from the formula α by substi-
tuting the variable y and the term t, respectively, for every free occurrence
of the variable x in α . In applying each of these rules, t is an arbitrary term
while y is a variable which does not appear freely in the lower sequent.

As usual, we identify a formal system with the logic determined by it.
The logic QFLe is sometimes called intuitionistic linear predicate logic with-
out exponentials. A substructural predicate logic (QSL) L over QFLe (or,
a commutative QSL) is any axiomatic extension of QFLe. As usual, some-
times a logic L is identified with a set of formulas FL satisfying the following
conditions:

1. FL contains all formulas which are provable in QFLe,

2. FL is closed under modus ponens and rule of adjunction, i.e. α, β ∈ L
implies α ∧ β ∈ L,

3. FL is closed under rule of generalization,

4. FL is closed under substitution.

It is easy to see that for each substructural propositional logic K there exists
the minimum QSL L among QSLs that are extensions of K. In fact, this
L is obtained from QFLe by adding all formulas provable in K as axioms.
We call this L the minimum predicate extension of K. It is clear that QFLe

is the minimum predicate extension of FLe. Similarly, we can introduce
QFLew and QFLec etc. as minimum predicate extensions of FLew and
FLec, respectively.

An algebra A = 〈A,∨,∧, ·,→, 1〉 is a commutative residuated lattice
(CRL), iff it satisfies the following:

1. 〈A,∨,∧〉 is a lattice,

2. 〈A, ·, 1〉 is a commutative monoid,

3. for all x, y, z ∈ A, x · y ≤ z iff y ≤ x → z (law of residuation).

Note that the unit 1 in a residuated lattice is not always the greatest element
of A. An FLe-algebra is a CRL with a fixed element 0. Using 0, we can
define the negation − by −x = x → 0. Complete CRLs (complete FLe-
algebras) are CRLs (FLe-algebras, respectively), in which the join

∧
X and

the meet
∨

X exist for any subset X. By using the law of residuation, we
can show that in any complete CRL, the equality

∨
i ai · b =

∨
i(ai · b) holds
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always. An FLe-algebra is an FLew-algebra if and only if the unit 1 is equal
to the greatest element, or equivalently x ·y ≤ x for all x and y (integrality),
and moreover the element 0 is equal to the least element.

It is known that the class FLe of all FLe-algebras forms a variety and ev-
ery subvariety W of FLe determines uniquely a substructural propositional
logic LW over FLe. Conversely, every substructural propositional logic K
over FLe determines uniquely a subvariety VK of FLe. Moreover, these
two correspondences are mutually inverse, dual lattice isomorphisms. For
details, see [11].

We now give a formal definition of algebraic frames. A structure 〈A, V 〉 is
a pre-algebraic frame (for QSLs) when A is an arbitrary FLe-algebra and V
is a non-empty set. A (first-order) formula ϕ is true in a pre-algebraic frame
〈A, V 〉 under a (safe) valuation f iff f(ϕ∗) ≥ 1, where ϕ∗ is the universal
closure of ϕ. A pre-algebraic frame 〈A, V 〉 is an algebraic frame when A is
a complete FLe-algebra.

A formula ϕ is valid in an algebraic frame 〈A, V 〉 iff ϕ is true under every
valuation f on 〈A, V 〉. A formula ϕ is valid in a complete FLe-algebra A,
if it is valid in any algebraic frame of the form 〈A, V 〉 with some V . Note
that the validity of two algebraic frames 〈A, V 〉 and 〈A, W 〉 is the same as
long as |V | = |W | holds, where |X| denotes the cardinality of a set X. The
following proposition, a Löwenheim-type theorem, shown firstly for QSILs in
[18], can be easily extended to QSLs. Though we assume that our language
is countable, this proposition can be easily generalized for the case where
the language is of an arbitrary infinite cardinality.

Proposition 2.1. Suppose that 〈A, V 〉 is an algebraic frame such that |A| <
|V |. Then there exists a set W with |W | ≤ max{|A|,ℵ0} such that for each
formula ϕ, ϕ is valid in 〈A, V 〉 iff ϕ is valid in 〈A, W 〉.
Corollary 2.2. For each complete FLe-algebra A and for each set V with
the cardinality max{|A|,ℵ0}, a formula ϕ is valid in A iff ϕ is valid in the
algebraic frame 〈A, V 〉.
Proof. Note that the only-if part holds always by the definition. Let us
take an arbitrary set V whose cardinality is equal to max{|A|,ℵ0}. Suppose
that ϕ is not valid in A. Then there is an algebraic frame of the form
〈A, U〉 in which ϕ is not valid, where the individual domain U may be taken
depending on a given ϕ. By Proposition 2.1, we may suppose that |U | ≤ |V |.
Then, by taking an arbitrary surjective map from V to U , we can show that
ϕ is not valid in 〈A, V 〉 either. Note that the set V is chosen independently
of the formula ϕ.
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A predicate logic L is algebraically complete with respect to a class K of
complete FLe-algebras, when for each formula ϕ, ϕ is provable in L iff ϕ is
valid in every algebra in K. Our main goal of the present paper is to see
how far algebraic methods can work well for the problem of algebraic com-
pleteness of substructural predicate logics. As a matter of fact, a substantial
limitation in this completeness problem is already known even in the case of
superintuitionisitic predicate logics, as the following result in [18] shows.

Proposition 2.3. There exist uncountably many algebraically incomplete
superintuitionistic predicate logics.

Some attempts have been made from the middle of the 1980s to introduce
various kinds of stronger semantics. For details, see [10]. Though some
are general enough to get the completeness of a wide class of predicate
logics, these semantics are often too complicated to see clearly what are
mathematical consequences of completeness of a given logic, and also to
apply them to a given concrete problem.

3. Completions and nuclei

A completion of a given CRL (FLe-algebra) A is a pair (C, h) of a complete
CRL (FLe-algebra, respectively) C and an embedding h from A to C. Often
we omit h and say simply that C is a completion of an algebra A, whenever
the mapping h is clear from the context. An embedding of an algebra A
into another algebra C is regular when all existing infinite joins and meets
in A are preserved. A completion (C, h) of A is called regular when the
embedding h is regular. Though MacNeille completions which are discussed
below are always regular, canonical extensions which are also well-known
completions are never regular.

Regular completions will be useful in showing the algebraic completeness
of a given predicate logic L. Let KL be the class of all complete FLe-algebras
in which every formula in L is valid. Also, let AL be the Lindenbaum algebra
and f be the canonical mapping. The mapping f can be considered as a
safe valuation on a prealgebraic frame 〈AL, V 〉 for a countable set V . Thus,
for each formula ψ not in L, f(ψ) �≥ 1 in 〈AL, V 〉. Now suppose that (C, h)
is a regular completion of AL. Then, the composition h ◦ f is a valuation
on an algebraic frame 〈C, V 〉 since h is regular, and moreover (h ◦ f)(ψ) �≥ 1
holds in 〈C, V 〉 for each formula ψ not in L. Thus, every formula ψ not in L
is refuted in a complete algebra C in KL. Then the algebraic completeness
of the logic L with respect to the class KL follows if C belongs also to KL.
In particular, we have the following.
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Proposition 3.1. Let K be an axiomatic extension of the substructural
propositional logic FLe, and VK be the corresponding subvariety of the
variety FLe of all FLe-algebras. If VK is closed under regular completion,
then the minimum predicate extension K∗ of K is algebraically complete.

A standard way of constructing complete algebras is to use nuclei on
a given monoid M. Here we give a brief sketch of nuclei (see [11] for the
details). Let M be a monoid. A mapping E on ℘(M) is a closure operator
on ℘(M) iff for all X, Y ∈ ℘(M),

• X ⊆ E(X),

• E(E(X)) ⊆ E(X),

• X ⊆ Y implies E(X) ⊆ E(Y ).

We define two binary operations · and ⇒ on ℘(M) by U · V = {u · v : u ∈ U
and v ∈ V } and U ⇒ V = {z : z · u ∈ V for all u ∈ U} for all subsets U, V
of M . Clearly, the following relation holds for all subsets U, V,W of M :

U · V ⊆ W if and only if U ⊆ V ⇒ W .

A closure operator E on ℘(M) is a nucleus if it satisfies

• E(X) · E(Y ) ⊆ E(X · Y ).

For a given nucleus E on ℘(M) let ℘(M)E be the set of all E-closed subsets
X of M , i.e. subsets X for which E(X) = X holds. Define an algebra
℘(M)E = 〈℘(M)E ,∨E ,∧E , ◦E ,⇒E , E({1})〉, where operations ∨E ,∧E , ◦E

and ⇒E are defined as follows; for all X, Y ∈ ℘(M)E

1. X ∨E Y = E(X ∪ Y ),

2. X ∧E Y = X ∩ Y ,

3. X ◦E Y = E(X · Y ),

4. X ⇒E Y = X ⇒ Y .

It can be shown that X ⇒ Y is E-closed when Y is E-closed. The algebra
℘(M)E is a complete residuated lattice (and a complete FLe-algebra if we
add E({0}) to it), which is called the E-retraction of ℘(M). In particular,
the law of residuation X ◦E Y ⊆ Z ⇔ X ⊆ Y ⇒E Z holds for all E-closed
subsets X, Y and Z. We omit the subscript E of these operations when it
is clear from the context.
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Sometimes, we take for M a partially ordered (p.o.) monoid, a monoid
with a partial order such that the monoid operaton · is monotone. For
instance, we take the p.o.monoid-reduct A† of a given FLe-algebra A. In
such a case, we express the E-retraction of ℘(A†) simply as AE . Though AE

is complete, we cannot expect in general that A can be embedded into AE .

A typical example of regular completions is MacNeille completion, which
is defined as follows. Let M be a p.o. monoid. For each subset X of M , U(X)
(L(X)) denotes the set of all upper bounds (lower bounds, respectively) of
X. Define M(X) = L(U(X)). Then M is shown to be a nucleus, if M is
moreover residuated. Now let us consider the complete FLe-algebra AM of
a given FLe-algebra A. Define the canonical mapping h from A to AM by
h(a) = (a] = {x : x ≤ a}. Then h is shown to be a regular embedding. The
pair (AM , h) is called the MacNeille completion (or the Dedekind-MacNeille
completion) of an algebra A. For general information on MacNeille comple-
tions, see e.g. [30]. We say that a class K of FLe-algebras is closed under
MacNeille completion if the MacNeille completion AM of A belongs to K
whenever A ∈ K Using MacNeille completions of residuated lattices with
regular embeddings, we can show the following algebraic completeness of
substructural predicate logics.

In [24] Rasiowa proved the algebraic completeness of intuitionistic pred-
icate logic QIL by using MacNeille completion of Boolean algebras with S4-
modality (see also [25]). Algebraic completeness of substructural predicate
logics QFLew, QFLec and QFLe are shown by using MacNeille completion
(see e.g. [19]).

4. Infinite distributivity

In this section we will discuss algebras satisfying the distributive law and its
infinite forms, in particular the join infinite distributivity (JID) (or, (∧,

∨
)-

Dis) and the meet infinite distributivity (MID) (or, (∨,
∧

)-Dis).

(JID) :
∨

i ai ∧ b =
∨

i(ai ∧ b),

(MID) :
∧

i ai ∨ b =
∧

i(ai ∨ b).

Precisely speaking, the (JID) and the (MID) respectively mean as follows,
as a given algebra may not be complete.

• (JID) : when the join
∨

i ai exists then the join
∨

i(ai ∧ b) exists and∨
i ai ∧ b =

∨
i(ai ∧ b) holds,
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• (MID) : when the meet
∧

i ai exists then the meet
∧

i(ai ∨ b) exists and∧
i ai ∨ b =

∧
i(ai ∨ b).

From a logical point of view, the (JID) and the (MID) correspond to the
following axiom schemes:

(∧,∃) : (∃xα(x) ∧ β) → ∃x(α(x) ∧ β),
(∨,∀) : ∀x(α(x) ∨ β) → (∀xα(x) ∨ β),

respectively. Here the variable x does not have any free occurrences in β.
The axiom scheme (∨,∀) is known as the axiom scheme of constant domain
(CD). In fact, we can show that the (JID) (the (MID)) holds in a given
FLe-algebra if and only if (∧,∃) ((∨,∀), respectively) is valid in it.

It is well-known that while usual distributivity is self-dual, each of the
(JID) and the (MID) does not imply always the other. For instance, the
(JID) holds in any Heyting algebra but there exists a complete Heyting
algebra in which the (MID) does not hold. We note that

∨
i ai · b =

∨
i(ai · b)

holds in every FLe-algebra and moreover that a · b = a∧ b in every Heyting
algebra. (See also an example in p.104 of [7].)

Sufficient conditions for FLe-algebras to satisfy the (JID) are given in
the following two lemmas. The following equality is known to be the divisi-
bility (div):

(div) : a ∧ b = a · (a → b).

It is obvious that the (div) holds always in every Heyting algebra since the
fusion · is equal to the meet ∧ and b ≤ a → b holds in it. We note that the
following weak divisibility (wdiv) follows immediately from the integrality
and in fact they are equivalent (in FLe-algebras). For, taking 1 for a in
(wdiv), we have 1 ≥ 1 ∧ b ≥ 1 · (1 → b) = b, which means the integrality.

(wdiv) : a ∧ b ≥ a · (a → b).

Lemma 4.1. The (JID) holds in every FLe-algebra which validates the (div).

Proof. Suppose that
∨

i∈I ai exists. We show that the supremum of the set
{ai∧b : i ∈ I} exists and is equal to

∨
i∈I ai∧b. It is clear that

∨
i∈I ai∧b is an

upperbound of {ai ∧ b : i ∈ I}. Let c be any upperbound of {ai ∧ b : i ∈ I}.
Since ak ≤ ∨

i ai,
∨

i∈I ai → b ≤ ak → b. Hence, ak · (
∨

i∈I ai → b) ≤
ak · (ak → b) = ak ∧ b ≤ c for each k, by using the assumptions that c is
an upperbound of {ai ∧ b : i ∈ I} and that the (div) holds. Thus by the
law of residuation, ak ≤ (

∨
i∈I ai → b) → c for each k. Since

∨
i∈I ai exists,∨

i∈I ai ≤ (
∨

i∈I ai → b) → c. Hence
∨

i∈I ai∧b =
∨

i∈I ai ·(
∨

i∈I ai → b) ≤ c.
Hence,

∨
i∈I ai ∧ b is the least upperbound of {ai ∧ b : i ∈ I}.
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The (JID) holds in another important class of FLe-algebras. The fol-
lowing result was suggested by P. Cintula and then was improved by C.
Tsinakis. Here the (prelin) means the following equality, which is known to
be the prelinearity :

(prelin) : ((a → b) ∧ 1) ∨ ((b → a) ∧ 1) ≥ 1.

Lemma 4.2. The (JID) holds in every FLe-algebra if it satisfies both the
(prelin) and the (MID).

Proof. Again, it is enough to show that
∨

i∈I ai∧b is the least upperbound
of {ai ∧ b : i ∈ I}, assuming the existence of

∨
i∈I ai. It is shown in Theorem

3.4 of [15] that for all a, b, c, (a ∧ b) → c = (a → c) ∨ (b → c) holds in
any FLe-algebra satisfying the (prelin). Also, it can be easily verified that
for all c,

∧
i∈I(ai → c) exists and is equal to

∨
i∈I ai → c, by using the

commutativity and the law of residuation. Now, let d be any upperbound
of {ai ∧ b : i ∈ I}. Then by using the (MID)

(
∨

i∈I ai∧b) → d = (
∨

i∈I ai → d)∨(b → d) =
∧

i∈I(ai → d)∨(b → d)
=

∧
i∈I((ai → d) ∨ (b → d)) =

∧
i∈I((ai ∧ b) → d) ≥ 1.

Thus,
∨

i∈I ai ∧ b ≤ d. Therefore,
∨

i∈I ai ∧ b is the least upperbound of
{ai ∧ b : i ∈ I}.

Replacing algebraic arguments in proofs of the above two lemmas on
algebras by syntactic ones, we can get the following theorem. We denote
here (γ → δ)∧(δ → γ) as γ ↔ δ. We define axiom schemes of the divisibility
(Div) and the prelinearity (Prelin), respectively, as follows.

(Div) : (α ∧ β) ↔ (α · (α → β)).
(Prelin) : ((α → β) ∧ 1) ∨ ((β → α) ∧ 1).

Uninorm logic UL is obtained from FLe by adding the axiom scheme (Pre-
lin), and the predicate logic UL∀ is obtained from the minimum predicate
extension of UL by adding the axiom scheme (∨,∀). The logic obtained
from UL∀ by adding weakening rules is known to be MTL∀, whose alge-
braic completeness is shown in [17].

Theorem 4.3. 1. Every instance of both (∧,∃) and the distributive law is
provable in the substructural predicate logic QFLe with the additional axiom
scheme (Div).
2. Every instance of (∧,∃) and the distributive law is provable in the sub-
structural predicate logic UL∀.
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5. Ideal completions and Crawley completions

In this section, we will discuss another type of completions called ideal com-
pletions and Crawley completions. The distributive law is preserved under
the former and even the infinite distributive law (JID) is preserved under the
latter. This is a special feature of these two completions, while MacNeille
completions lack this. From algebraic point of view, many works have been
already done not only on ideal completions and Crawley completions but
also join-completions of lattices e.g. in [1, 8, 6, 5, 27] and [28]. Here we
concentrate our attention mainly on algebraic properties of these two com-
pletions of residuated lattices which will be relevant to their applications
to substructural logics. Since they can be obtained similarly to the case of
lattices, we omit proofs of them. Note that join-completions of residuated
lattices are discussed in [32].

In the following, we will introduce the notion of ideals of a given FLe-
algebra A. A mapping J on ℘(A) is defined so that J(X) denotes the
smallest ideal containing X for each subset X of A. Then it is shown that the
mapping J is a nucleus on ℘(A) and that A is embedded into the complete
algebra AJ by the canonical mapping h which is defined by h(a) = (a] for
each a ∈ A.

Here we take notice of the following. Suppose that E is an arbitrary
nucleus on a p.o. monoid M, and moreover that (a] is E-closed for all a.
When M has the smallest element ⊥, it is desirable that h is moreover ⊥-
preserving, i.e. h(⊥) = (⊥] = E(∅). Note here that E(∅) is the smallest
E-closed subset of M . Hence, ⊥ ∈ U for every E-closed set U . On the other
hand, we can show that if M does not have the smallest element then E(∅)
must be empty. This means that the empty set is E-closed. To see this,
suppose that an element c belongs to E(∅). Then c ≤ x since E(∅) ⊆ (x] for
each x. Thus c is the smallest element in M . But this is a contradiction.

These considerations lead us to the following definition of ideals. Let
M be a join semilattice. A subset X is an ideal of M if and only if X is
downward closed and is closed under join, i.e. a, b ∈ X implies a∨ b ∈ X for
all a, b. Different from the standard definition of ideals, we do not assume
that X is nonempty as long as M does not have the smallest element. On the
other hand, when it has the smallest ⊥, we assume moreover that ⊥ ∈ X, or
equivalently that X is nonempty. In the rest of the paper, we always follow
this convention of the definition of ideals. See also the footnote 6 in [27] for
some discussions on the definition of ideals.

Now let A be an FLe-algebra and A‡ be its {∨, ·, 1}-reduct. Note that
A‡ forms a join semilattice-ordered monoid. We consider the set of all ideals
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of A‡. For each subset X of A‡, J(X) denotes the smallest ideal containing
X, which exists always and is called the ideal generated by X. In fact,
J(X) is expressed as {c ∈ M : c ≤ (b1 ∨ . . . ∨ bm) for some m and some
b1, . . . , bm ∈ X}. We can show that J is a closure operator, and moreover a
nucleus on ℘(A‡), by using the distributivity of the join ∨ over the monoid
operation · on A. We express the complete FLe-algebra ℘(A‡)J as AJ , and
call it the ideal completion of the algebra A. Clearly, J({a}) = (a] for each
element a.

Theorem 5.1. The canonical mapping h defined by h(a) = (a] for each
a ∈ A is an embedding (of residuated lattices) from A to AJ which preserves
moreover the smallest element and all infinite meets if they exist.

For more information, see e.g. [21]. Note that the mapping h is not
always regular. The distributive law is always preserved by ideal completions
(see e.g. [3] p.114 and [26] Theorem 9.32). We can show in fact the following.

Theorem 5.2. If an FLe-algebra A is distributive then its ideal completion
AJ is join infinite distributive.

It is easy to see that for the operator M of MacNeille completions, every
M -closed subset is an ideal. Therefore, M -closed subsets are sometimes
called normal ideals. Next, we will introduce another type of ideals. A subset
X of an FLe-algebra A is a complete ideal2 iff

1. I is downward closed,
2. If aj ∈ I for each j ∈ S and moreover

∨
j∈S aj exists, then∨

j∈S aj ∈ I.

Obviously, every complete ideal is an ideal and every normal ideal is a com-
plete ideal. The set A itself is a complete ideal and that the set of all
complete ideals of A is closed under arbitrary intersection, i.e., if Ik is a
complete ideal for all k then

⋂
k Ik is also a complete ideal. Now define a

mapping K on ℘(A) by the condition that K(X) is the smallest complete
ideal containing X for each subset X of A. Then K is a closure operator.
The ideal K(X) is called the complete ideal generated by X. (For more
information on complete ideals, see [8, 6] and [5].)

Theorem 5.3. The closure operator K is a nucleus. Thus, AK , i.e. ℘(A‡)K ,
forms a complete FLe-algebra. Moreover, the canonical mapping h defined
by h(a) = (a] for each a ∈ A is a regular embedding from A to AK .

2Again, we assume moreover that ⊥ ∈ X in the definition when A has the smallest ⊥.
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Proof. To show that K(X) · K(Y ) ⊆ K(X · Y ) for subsets X and Y of
A, it is enough to prove that X ⇒ Y is K-closed whenever Y is K-closed
(see e.g. Lemma 3.33 in [11]). It is easy to verify that X ⇒ Y is downward
closed when Y is so. Suppose that

∨
i zi exists where zi ∈ X ⇒ Y for each

i ∈ S. Take an arbitrary element x ∈ X. Then zi · x ∈ Y . The least upper
bound

∨
i(zi · x) of {zi · x : i ∈ S} is given by (

∨
i zi) · x, and belongs to Y

since Y is K-closed. It means that (
∨

i zi) · x ∈ Y for every x ∈ X. Thus,∨
i zi ∈ X ⇒ Y . Hence, X ⇒ Y is K-closed. The remaining statements can

be verified easily. Note that the above argument tells us that K on ℘(A) is
a nucleus whenever A is a p.o. monoid satisfying

∨
i(y · zi ·x) = y · (∨i zi) ·x

for every y, x and every existing
∨

i zi.

See also §2 of [21]. Clearly, AK is isomorphic to A when A is already
complete. The complete FLe-algebra AK is said to be the Crawley comple-
tion (or complete ideal completion) of A. Crawley completions of lattices are
discussed in e.g. [6] and [5]. When A satisfies the (JID), we can give a sim-
ple explicit representation of the complete ideal K(X) for a given non-empty
subset X of A, which is essentially due to W.H. Cornish (see [5] Lemma 2.1).
Let

K◦(X) = {y : y =
∨

i xi for existing
∨

i xi such that xi ∈ (X] for each i}.
where (X] is the downward closure of a set X.

Theorem 5.4. If an FLe-algebra A is join infinite distributive then K(X) =
K◦(X) for each subset X of A.

A corresponding result is shown in [5] under a weaker assumption called
the conditional upper continuity which is the (JID):

∨
i ai∧b =

∨
i(ai∧b), but

only for directed subsets {ai} such that
∨

i ai exists. The following theorem
is closely related to results in [6], [16] Lemma 3.2 and [5] Theorem 2.2.

Theorem 5.5. For an FLe-algebra A, the following are equivalent.
1. A is join infinite distributive.
2. For all subsets U and V of A, K(U) ∩ K(V ) = K(U ∩ V ).
3. The Crawley completion AK is join infinite distributive.
4. There exists a nucleus E on ℘(A) such that the algebra AE is join infinite
distributive, which satisfies (i) E({a}) = (a] for any element a and (ii) every
E-closed subset X of M is a complete ideal.

Since every normal ideal is a complete ideal, the following result is an
immediate consequence of Theorem 5.5

Corollary 5.6. If the MacNeille completion AM of an FLe-algebra A is
join infinite distributive then A is join infinite distributive.
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6. Heyting implication

It is well-known that the (JID) holds in any Heyting algebra. An operation
� is called a Heyting implication of a meet-semilattice A, if the following
law of residuation holds between the meet ∧ and �:

a ∧ c ≤ b iff c ≤ a � b.

If a Heyting implication exists, it is uniquely determined. It is easy to see
that the (JID) holds in any algebra in which Heyting implication exists.
Conversely, if the (JID) holds in a complete algebra, then we can introduce
an operation � by defining

a � b =
∨{c : a ∧ c ≤ b},

which is shown to be the Heyting implication (see e.g. [4] p.69). A lattice
with a Heyting implication is sometimes called Brouwerian.

We consider now in particular the Heyting implication in the E-retraction
AE of an algebra A where E is a nucleus. We define binary operations �
and � by

X � Y = {w ∈ A : x ∧ w ∈ Y for every x ∈ X}
X�Y = {x ∧ y : x ∈ X and y ∈ Y }

for all subsets X and Y of A. Clearly, X�Z ⊆ Y if and only if Z ⊆ X � Y
for all subsets X,Y and Z of A. By using the standard argument (see e.g.
the proof of Lemma 3.33 of [11]), we can show the following.

Lemma 6.1. Let E be a closure operator on ℘(A). Then E(X)�E(Y ) ⊆
E(X�Y ) holds for all X and Y if and only if X � Y is E-closed whenever
Y is E-closed.

When both X and Y are downward closed sets, X�Y = X ∩ Y . There-
fore, for all downward closed subsets X, Y and Z the following holds between
∩ and �: X ∩ Z ⊆ Y if and only if Z ⊆ X � Y . In particular, when E is
a downward nucleus, i.e. when every E-closed subset is downward closed,
this relation holds for all E-closed subsets X,Y and Z though X � Y is
not necessarily E-closed. The following theorem can be regarded as a natu-
ral generalization of Lemma 2.3 in [2] on MacNeille completions of Heyting
algebras.

Theorem 6.2. Suppose that A is an FLe-algebra and E is a downward nu-
cleus on ℘(A). Then, the following three conditions are mutually equivalent:
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1. X � Y is E-closed for all E-closed X and Y ,
2. AE satisfies the join infinite distributivity,
3. X � Y is the Heyting implication in AE, i.e. X � Y = X �E Y where
X �E Y =

∨
E{Z : Z is E-closed and X ∩ Z ⊆ Y }.

Obviously, every normal ideal of a given FLe-algebra A is a complete
ideal. We show that the converse holds when the MacNeille completion AM

of A is join infinite distributive. That is, whenever AM satisfies the (JID),
AK is equal to AM . The corresponding result on lattices is already shown
in e.g. [5]. Here we give a direct proof of it.

Theorem 6.3. The following are equivalent for each FLe-algebra A:
1. The MacNeille completion AM is join infinite distributive.
2. The algebra A is join infinite distributive, and moreover every complete
ideal of A is normal (and hence AM = AK).

Proof. The statement (1) follows from (2) immediately by using Theo-
rem 5.5. So let us show the converse direction. Suppose that the MacNeille
completion AM satisfies the (JID). Then, A satisfies the (JID) by Corol-
lary 5.6. We show that each complete ideal X of A is normal. Let us
suppose that a ∈ M(X) = L(U(X)) for an arbitrary element a. Our goal
is to show that a ∈ X. Define Xa = X ∩ (a]. Obviously, Xa is a com-
plete ideal, and a is an upper bound of it. Take any upper bound b of
Xa. Then X ∩ (a] = Xa ⊆ (b] and hence X ⊆ (a] � (b]. By taking M
for E in Theorem 6.2 and using the assumption that AM is join infinite
distributive, (a] � (b] is M -closed as both (a] and (b] are M -closed. Hence,
M(X) ⊆ (a] � (b]. Therefore a ∧ x ∈ (b] for any x ∈ M(X). As a ∈ M(X),
by taking a for x in particular we have a = a ∧ a ≤ b. Thus, a is the least
upper bound of Xa. In other words,

∨
Xa exists and is equal to a. Since

X is a complete ideal and Xa ⊆ X, a =
∨

Xa ∈ X. Hence M(X) ⊆ X.
Therefore X is a normal ideal for each complete ideal X.

MacNeille completions of algebras with Heyting implication are discussed
e.g. in [24, 29, 28] and [20]. The first claim of the following proposition is
shown in them. A proof of the second consequence is given in [5] for lattices
and also in [2] for Heyting algebras.

Proposition 6.4. Suppose that Heyting implication exists in an algebra A.
Then Heyting implication exists also in the MacNeille completion AM which
is equal to �. Therefore, AM = AK .
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7. Discussions on logical consequences

We discuss logical consequences of completions of algebras developed in the
previous sections for algebraic completeness of substructural predicate logics.
From an algebraic point of view, Crawley completions have some unique
features which are distinct from MacNeille completions. On the other hand,
our results on logical consequences of Crawley completions remain partial at
this moment.

(1) Algebraic completeness using Crawley completions From Propo-
sition 3.1 algebraic completeness of some substructural predicate logics fol-
lows. For instance, using Theorem 5.3 we can give an alternative proof of
algebraic completeness of QFLe. The argument can be modified easily to
some other cases, including noncommutative residuated lattices. Thus, using
Crawley completions, we can show algebraic completeness of QFL, QFLe,
QFLew, QFLec and QIL. (A proof of the algebraic completeness of QIL
using Crawley completion is show in Chapter 13 of [31].)

(2) Substructural logics with (∧,∃) The original goal of our present
study was to show algebraic completeness of substructural predicate logics
satisfying both the axiom scheme of distributivity (Dis) : α ∧ (β ∨ γ) →
(α ∧ β) ∨ (α ∧ γ) and the axiom scheme (∧,∃). Let L be a substructural
predicate logic satisfying them, and A be the Lindenbaum algebra of L.
Though the distributivity of the FLe-algebra A follows from the axiom
scheme (Dis), it is uncertain for us whether the (JID) follows from (∧,∃).3

So an interesting question is:

does the Lindenbaum algebra of a QSL L satisfy the (JID) whenever
(∧,∃) is provable in L?

If the answer is positive, the (JID) holds also in the Crawley completion
AK of A and thus (∧,∃) is valid in it. In this way, we will be able to show
algebraic completeness of L, as long as other axioms of L are preserved under
Crawley completions. Note that when the axiom scheme (Div) is provable
in L, (Div) is valid in the Lindenbaum algebra A of L and hence the (JID)
holds in it by Lemma 4.1.

3For a given formula φ let [φ] be the equivalence class of formulas to which the formula
φ belongs (and thus an element of Lindenbaum algebra A). For a given existing infinite
disjunction

∨
[ϕi] in A,

∨
i∈I [ϕi] is not necessarily of the form [∃xη(x)] for some formula

∃xη(x). For example, this happens when [ϕk] is the greatest among {[ϕi] : i ∈ I} and is not
an existential formula. But in this case

∨
i∈I [ϕi]∧ [ψ] = [ϕk]∧ [ψ] =

∨
i∈I([ϕi]∧ [ψ]) holds.
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(3) Conservativity of Heyting implication Suppose that a QSL L is
given. We expand our language by adding a new binary connective � and
consider the following two rules for Heyting implication �, which are called
∧-residuation.

(� 1) : From (α ∧ β) → γ infer α → (β � γ).
(� 2) : From α → (β � γ) infer (α ∧ β) → γ.

Define a logic LH of the expanded language to be a QSL obtained from L
by adding these rules for �. We say that LH is conservative over L if and
only if for every formula ϕ of the original language, if ϕ is provable in LH

then it is provable in L. In this case, we say also that Heyting implication
is conservative over L. See [13].

Consider again any QSL in which both (Dis) and (∧,∃) are provable, and
suppose that Heyting implication is conservative over such a logic L. Let
A∗ be the Lindembaum algebra of the logic LH with Heyting implication.
Then the (JID) holds in A∗, which is preserved by Crawley completion, and
hence (∧,∃) is valid in the Crawley completion (A∗)K. In this way, we will
be able to show the algebraic completeness of L. In particular, we have the
following, where K∗∃ denotes the logic K∗ with (∧,∃).

Lemma 7.1. Let K be an axiomatic extension of the substructural proposi-
tional logic FLe with the axiom scheme (Dis), and VK is the corresponding
variety of FLe-algebras. If Heyting implication is conservative over K∗∃ and
VK is closed under Crawley completion, then K∗∃ is algebraically complete.

To get algebraic completeness results using the above lemma, it is still
necessary to prove the conservativity of Heyting implication in some way.
For instance, this is proved for a QSL QDFLe∃, which is obtained from
QFLe by adding both axiom scheme of distributivity (Dis) and the axiom
scheme (∧,∃), by using cut elimination of a sequent system for (QDFLe∃)H

(see [20]). Thus we have the following.

Proposition 7.2. The substructural logic QDFLe∃ is algebraically com-
plete.

(4) Ideal completions and ∃-free fragments of logics Though ideal
completions are not necessarily regular, the canonical mappings preserve at
least all existing infinite meets, as mentioned in Theorem 5.1. Moreover, as
shown in Theorem 5.2, the ideal completion AJ is join infinite distributive
when a given FLe-algebra A is distributive. These facts suggest us that
ideal completions will be useful as long as we restrict our attention to ∃-free
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fragments of substructural predicate logics. We owe the idea also to §7 of the
paper [13] by Goldblatt. In the following, L�∃ denotes the ∃-free fragment
of a substructural predicate logic L. We have the following.

Theorem 7.3. Let K be an axiomatic extension of the substructural propo-
sitional logic FLe, and VK is the corresponding variety of FLe-algebras. If
VK is closed under ideal completion, then K∗�∃ is algebraically complete,
where K∗ is the minimum predicate extension of K. Moreover, Heyting im-
plication is conservative over K∗�∃ when the axiom of distributivity (Dis) is
provable in K.

It will be interesting to know which propositional formulas can be pre-
served under ideal completions of residuated lattices. The following result
is shown in [12] by using the monotonicity of connectives ∨,∧ and · (see
also [14]).

Proposition 7.4. Every inequality s ≤ t with terms s, t that contain only
connectives and constants in {∨,∧, ·, 0, 1} is preserved under ideal comple-
tions.

Corollary 7.5. Let α and β be propositional formulas that contain only
connectives and constants in {∨,∧, ·, 0, 1}. Then the formula α → β is
preserved under ideal completions. That is, for every FLe-algebra A, if the
formula α → β is valid in A then it is also valid in its ideal completion AJ .

At first sight, the above proposition and the corollary look rather limited.
But these results in fact can cover much wider results than what one might
expect. To give an informative example, we consider noncommutative case.
Let us recall that the left division (i.e. left implication) \ satisfies that
x · y ≤ z if and only if y ≤ x\z. Now consider the following inequality

(a) z · (y · x) ≤ (z · y) · (z · x).

Clearly, this inequality can be preserved under ideal completions by Propo-
sition 7.4. Using this fact, we can prove that the formula

(b) (α\(β\γ))\((α\β)\(α\γ))

is preserved under ideal completions. This is obtained by showing that for
every FLe-algebra A the inequality (a) holds in A if and only if the following
inequality (c) holds in A, which is the algebraic counterpart of (b):

(c) a\(b\c) ≤ (a\b)\(a\c)
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To show that the inequality (a) implies (c), it is enough to substitute x, y and
z in (a) for a\(b\c), a\b and a, respectively. For the converse, we substitute
a, b and c in (c) for z, z · y and (z · y) · (z · x), respectively. Then, from the
fact that both inequalities x ≤ z\((z · y)\((z · y) · (z · x))) and y ≤ z\(z · y)
hold, we can derive (a). Thus, (b) is preserved under ideal completions.

This example looks ad hoc. But the above example shows that the
preservation of a given formula ϕ is obtained as long as we can find a term
equivalent to ϕ which fits for applying Proposition 7.4. Such connections
were studied already, but implicitly, as correspondence results on Kripke
completeness (in the sense of [23]) of substructural propositional logics. For,
Kripke completeness is essentially the same as completeness with respect to
a class of ideal completions, as pointed out in [21]. Though we can not go
into the details here, correspondences between inequalities and the validity
of axiom schemes given in [9] (in particular, the table in p. 59) tell us how
the above argument works in general.
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Institut d’Investigació en Intel·ligència Artificial, Consell Superior d’Investigacions

Cient́ıfiques, 2008.

[13] Goldblatt, R., ‘Conservativity of Heyting implication over relevant quantification’,

Review of Symbolic Logic 2:310–341, 2009.

[14] Harding, J., ‘Completions of ordered algebraic structures: a survey’, Interval/Prob-

abilistic Uncertainty and Non-classical Logics, Advances in Soft Computing 46:231–

244, 2008.

[15] Hart, J., L. Rafter, and C. Tsinakis, ‘The structure of commutative residuated

lattices’, International Journal of Algebra and Computation 12:509–524, 2002.

[16] Janowitz, M. F., ‘Section semicomplemented lattices’, Mathematische Zeitschrift

108:63–76, 1968.

[17] Montagna, F., and H. Ono, ‘Kripke semantics, undecidability and standard com-

pleteness for Esteva and Godo’s logic MTL∀’, Studia Logica 71:227–245, 2002.

[18] Ono, H., ‘A study of intermediate predicate logics’, Publications of the Research

Institute for Mathematical Sciences, Kyoto University 8:619–649, 1973.

[19] Ono, H., ‘Semantics for substructural logics’, in K. Došen and P. Schroeder-Heister
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