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Abstract. We present the logic BLChang, an axiomatic extension of BL (see [23]) whose

corresponding algebras form the smallest variety containing all the ordinal sums of perfect

MV-chains. We will analyze this logic and the corresponding algebraic semantics in the

propositional and in the first-order case. As we will see, moreover, the variety of BLChang-

algebras will be strictly connected to the one generated by Chang’s MV-algebra (that is,

the variety generated by all the perfect MV-algebras): we will also give some new results

concerning these last structures and their logic.
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1. Introduction

MV-algebras were introduced in [11] as the algebraic counterpart of �Lukasie-
wicz (infinite-valued) logic. During the years these structures have been
intensively studied (for a historical overview, see [12]): the book [13] is a
reference monograph on this topic.

Perfect MV-algebras were firstly studied in [6] as a refinement of the
notion of local MV-algebras: this analysis was expanded in [18], where it
was also shown that the class of perfect MV-algebras Perf(MV ) does not
form a variety, and the variety generated by Perf(MV ) is also generated
by Chang’s MV-algebra (see section 2.2 for the definition). Further studies,
about this variety and the associated logic have been done in [4,5].

On the other side, Basic Logic BL and its correspondent variety, BL-
algebras, were introduced in [23]: �Lukasiewicz logic results to be one of the
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axiomatic extensions of BL and MV-algebras can also be defined as a sub-
class of BL-algebras. Moreover, the connection between MV-algebras and
BL-algebras is even stronger: in fact, as shown in [2], every ordinal sum of
MV-chains is a BL-chain.

For these reasons one can ask if there is a variety of BL-algebras whose
chains are (isomorphic to) ordinal sums of perfect MV-chains: even if the
answer to this question is negative, we will present the smallest variety
(whose correspondent logic is called BLChang) containing this class of BL-
chains.

As we have anticipated in the abstract, there is a connection between the
variety of BLChang-algebras and the one generated by Chang’s MV-algebra.
In fact the first-one is axiomatized (over the variety of BL-algebras) with an
equation that, over MV-algebras, is equivalent to the one that axiomatize
the variety generated by Chang MV-algebras: however, the two equations
are not equivalent, over BL.

The paper is structured as follows: in section 2 we introduce the necessary
logical and algebraic background: moreover some basic results about perfect
MV-algebras and other structures will be listed. In section 3 we introduce the
main theme of the article: the variety of BLChang and the associated logic.
The analysis will be done in the propositional case: completeness results,
algebraic and logical properties and also some results about the variety gen-
erated by Chang’s MV-algebra. We conclude with section 4, where we will
analyze the first-order versions of BLChang and �LChang: for the first-one the
completeness results will be much more negative.

To conclude, we list the main results.

• BLChang enjoys the finite strong completeness (but not the strong one)
w.r.t. ωV, where ωV represents the ordinal sum of ω copies of the dis-
connected rotation of the standard cancellative hoop.

• �LChang (the logic associated to the variety generated by Chang’s MV-
algebra) enjoys the finite strong completeness (but not the strong one)
w.r.t. V, V being the disconnected rotation of the standard cancellative
hoop.

• There are two BL-chains A,B that are strongly complete w.r.t., respec-
tively �LChang and BLChang.

• Every �LChang-chain that is strongly complete w.r.t. �LChang is also stron-
gly complete w.r.t �LChang∀.

• There is no BLChang-chain to be complete w.r.t. BLChang∀.
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2. Preliminaries

2.1. Basic Concepts

Basic Logic BL was introduced by P. Hájek in [23]. It is based over the con-
nectives {&,→,⊥} and a denumerable set of variables V AR. The formulas
are defined inductively, as usual (see [23] for details).

Other derived connectives are the following.
negation: ¬ϕ := ϕ → ⊥; verum or top: � := ¬⊥; meet: ϕ∧ψ := ϕ&(ϕ →

ψ); join: ϕ ∨ ψ := ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ).
BL is axiomatized as follows.

(ϕ → ψ) → ((ψ → χ) → (ϕ → χ)) (A1)

(ϕ&ψ) → ϕ (A2)

(ϕ&ψ) → (ψ&ϕ) (A3)

(ϕ&(ϕ → ψ)) → (ψ&(ψ → ϕ)) (A4)

(ϕ → (ψ → χ)) → ((ϕ&ψ) → χ) (A5a)

((ϕ&ψ) → χ) → (ϕ → (ψ → χ)) (A5b)

((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ) (A6)

⊥ → ϕ (A7)

Modus ponens is the only inference rule:

ϕ ϕ → ψ

ψ
. (MP)

Among the extensions of BL (logics obtained from it by adding other axi-
oms) there is the well known �Lukasiewicz (infinitely-valued) logic �L, that is,
BL plus

¬¬ϕ → ϕ. (INV)

On �Lukasiewicz logic we can also define a strong disjunction connective (in
the following sections, we will introduce a strong disjunction connective, for
BL, that will be proved to be equivalent to the following, over �L)

ϕ� ψ := ¬(¬ϕ&¬ψ).

The notations ϕn and nϕ will indicate ϕ& . . .&ϕ
︸ ︷︷ ︸

n times

and ϕ� · · · � ϕ
︸ ︷︷ ︸

n times

.

Given an axiomatic extension L of BL, a formula ϕ and a theory T
(a set of formulas), the notation T �L ϕ indicates that there is a proof of ϕ
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from the axioms of L and the ones of T . The notion of proof is defined like
in classical case (see [23]).

We now move to the semantics: for all the unexplained notions of univer-
sal algebra, we refer to [9,22].

Definition 2.1. A BL-algebra is an algebraic structure of the form A =
〈A, ∗,⇒,�,, 0, 1〉 such that

• 〈A,�,, 0, 1〉 is a bounded lattice, where 0 is the bottom and 1 the top
element.

• 〈A, ∗, 1〉 is a commutative monoid.

• 〈∗,⇒〉 forms a residuated pair, i.e.

z ∗ x ≤ y iff z ≤ x ⇒ y, (res)

it can be shown that the only operation that satisfies res is x ⇒ y =
max{z : z ∗ x ≤ y}.

• A satisfies the following equations

(x ⇒ y)  (y ⇒ x) = 1 (pl)

x � y = x ∗ (x ⇒ y). (div)

Two important types of BL-algebras are the followings.

• A BL-chain is a totally ordered BL-algebra.

• A standard BL-algebra is a BL-algebra whose support is [0, 1].

Notation: in the following, with ∼ x we will indicate x ⇒ 0.

Definition 2.2. An MV-algebra is a BL-algebra satisfying

x =∼∼ x. (inv)

A well known example of MV-algebra is the standard MV-algebra [0, 1]�L =
〈[0, 1], ∗,⇒,min,max, 0, 1〉, where x ∗ y = max(0, x + y − 1) and x ⇒ y =
min(1, 1 − x+ y).

In every MV-algebra we define the algebraic equivalent of �, that is

x⊕ y :=∼ (∼ x∗ ∼ y).

The notations (where x is an element of some BL-algebra) xn and nx will
indicate x ∗ · · · ∗ x

︸ ︷︷ ︸

n times

and x⊕ · · · ⊕ x
︸ ︷︷ ︸

n times

.
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Given a BL-algebra A, the notion of A-evaluation is defined in a truth-
functional way (starting from a map v : V AR → A, and extending it to
formulas), for details see [23].

Consider a BL-algebra A, a theory T and a formula ϕ. With A |= ϕ (A
is a model of ϕ) we indicate that v(ϕ) = 1, for every A-evaluation v; A |= T
denotes that A |= ψ, for every ψ ∈ T . Finally, the notation T |=A ϕ means
that if A |= T , then A |= ϕ.

A BL-algebra A is called L-algebra, where L is an axiomatic extension of
BL, whenever A is a model for all the axioms of L.

Definition 2.3. Let L be an axiomatic extension of BL and K a class of L-
algebras. We say that L is strongly complete (respectively: finitely strongly
complete, complete) with respect to K if for every set T of formulas (respec-
tively, for every finite set T of formulas, for T = ∅) and for every formula ϕ
we have

T �L ϕ iff T |=K ϕ.

2.2. Perfect MV-Algebras, Hoops and Disconnected Rotations

We recall that Chang’s MV -algebra [11] is a BL-algebra of the form

C = 〈{an : n ∈ N} ∪ {bn : n ∈ N}, ∗,⇒,�,, b0, a0〉 .
Where for each n,m ∈ N, it holds that bn < am, and, if n < m, then
am < an, bn < bm; moreover a0 = 1, b0 = 0 (the top and the bottom
element).

The operation ∗ is defined as follows, for each n,m ∈ N:

bn ∗ bm = b0, bn ∗ am = bmax(0,n−m), an ∗ am = an+m.

Definition 2.4. [6] Let A be an MV-algebra and let x ∈ A: with ord(x)
we mean the least (positive) natural n such that xn = 0. If there is no such
n, then we set ord(x) = ∞.

• An MV-algebra is called local1 if for every element x it holds that
ord(x) < ∞ or ord(∼ x) < ∞.

• An MV-algebra is called perfect if for every element x it holds that
ord(x) < ∞ iff ord(∼ x) = ∞.

1Usually, the local MV-algebras are defined as MV-algebras having a unique (proper)
maximal ideal. In [6], however, it is shown that the two definitions are equivalent. We
have preferred the other definition since it shows in a more transparent way that perfect
MV-algebras are particular cases of local MV-algebras.
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An easy consequence of this definition is that every perfect MV-algebra
cannot have a negation fixpoint.

With Perfect(MV ) and Local(MV ) we will indicate the class of perfect
and local MV-algebras. Moreover, given a BL-algebra A, with V(A) we will
denote the variety generated by A.

Theorem 2.1. [6] Every MV-chain is local.

Clearly there are local MV-algebras that are not perfect: [0, 1]�L is an
example.

Now, in [18] it is shown that

Theorem 2.2.

• V(C) = V(Perfect(MV )),

• Perfect(MV ) = Local(MV ) ∩ V(C).

It follows that the class of chains in V(C) coincides with the one of perfect
MV-chains. Moreover

Theorem 2.3. [18] An MV-algebra is in the variety V(C) iff it satisfies the
equation (2x)2 = 2(x2).

As shown in [4], the logic correspondent to this variety is axiomatized as
�L plus (2ϕ)2 ↔ 2(ϕ2): we will call it �LChang.

We now recall some results about hoops

Definition 2.5. [21,8] A hoop is a structure A = 〈A, ∗,⇒, 1〉 such that
〈A, ∗, 1〉 is a commutative monoid, and ⇒ is a binary operation such that

x ⇒ x = 1, x ⇒ (y ⇒ z) = (x ∗ y) ⇒ z and x ∗ (x ⇒ y) = y ∗ (y ⇒ x).

In any hoop, the operation ⇒ induces a partial order ≤ defined by x ≤ y
iff x ⇒ y = 1. Moreover, hoops are precisely the partially ordered commu-
tative integral residuated monoids (pocrims) in which the meet operation
� is definable by x � y = x ∗ (x ⇒ y). Finally, hoops satisfy the following
divisibility condition:

If x ≤ y, then there is an element z such that z ∗ y = x. (div)

We recall a useful result.

Definition 2.6. Let A and B be two algebras of the same language. Then
we say that

• A is a partial subalgebra of B if A ⊆ B and the operations of A are
the ones of B restricted to A. Note that A could not be closed under
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these operations (in this case these last ones will be undefined over some
elements of A): in this sense A is a partial subalgebra.

• A is partially embeddable into B when every finite partial subalgebra of
A is embeddable into B. Generalizing this notion to classes of algebras,
we say that a class K of algebras is partially embeddable into a class M
if every finite partial subalgebra of a member of K is embeddable into
a member of M .

Definition 2.7. A bounded hoop is a hoop with a minimum element; con-
versely, an unbounded hoop is a hoop without minimum.

Let A be a bounded hoop with minimum a: with A+ we mean the (par-
tial) subalgebra of A defined over the universe A+ = {x ∈ A : x > x ⇒ a}.

A hoop is Wajsberg iff it satisfies the equation (x ⇒ y) ⇒ y = (y ⇒
x) ⇒ x.

A hoop is cancellative iff it satisfies the equation x = y ⇒ (x ∗ y).

Proposition 2.1. [21,8,1] Every cancellative hoop is Wajsberg. Totally
ordered cancellative hoops coincide with unbounded totally ordered Wajsberg
hoops, whereas bounded Wajsberg hoops coincide with (the 0-free reducts of)
MV-algebras.

We now recall a construction introduced in [25] (and also used in [20,27]),
called disconnected rotation.

Definition 2.8. Let A be a cancellative hoop. We define an algebra, A∗,
called the disconnected rotation of A, as follows. Let A × {0} be a dis-
joint copy of A. For every a ∈ A we write a′ instead of 〈a, 0〉. Consider
〈A′ = {a′ : a ∈ A},≤〉 with the inverse order and let A∗ := A ∪ A′. We
extend these orderings to an order in A∗ by putting a′ < b for every a, b ∈ A.
Finally, we take the following operations in A∗: 1 := 1A, 0 := 1′, �A∗ ,A∗

as the meet and the join with respect to the order over A∗. Moreover,

∼A∗ a :=

{

a′ if a ∈ A

b if a = b′ ∈ A′

a ∗A∗ b :=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

a ∗A b if a, b ∈ A

∼A∗ (a ⇒A∼A∗ b) if a ∈ A, b ∈ A′

∼A∗ (b ⇒A∼A∗ a) if a ∈ A′, b ∈ A

0 if a, b ∈ A′



18 M. Bianchi

a ⇒A∗ b :=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

a ⇒A b if a, b ∈ A

∼A∗ (a∗A∗ ∼A∗ b) if a ∈ A, b ∈ A′

1 if a ∈ A′, b ∈ A

(∼A∗ b) ⇒A (∼A∗ a) if a, b ∈ A′.

Theorem 2.4. [27, theorem 9] Let A be an MV-algebra. The followings are
equivalent:

• A is a perfect MV-algebra.

• A is isomorphic to the disconnected rotation of a cancellative hoop.

To conclude the section, we present the definition of ordinal sum.

Definition 2.9. [2] Let 〈I,≤〉 be a totally ordered set with minimum 0. For
all i ∈ I, let Ai be a hoop such that for i �= j, Ai ∩ Aj = {1}, and assume
that A0 is bounded. Then

⊕

i∈I Ai (the ordinal sum of the family (Ai)i∈I)
is the structure whose base set is

⋃

i∈I Ai, whose bottom is the minimum of
A0, whose top is 1, and whose operations are

x ⇒ y =

⎧

⎪
⎨

⎪
⎩

x ⇒Ai y if x, y ∈ Ai

y if ∃i > j(x ∈ Ai and y ∈ Aj)
1 if ∃i < j(x ∈ Ai \ {1} and y ∈ Aj)

x ∗ y =

⎧

⎪
⎨

⎪
⎩

x ∗Ai y if x, y ∈ Ai

x if ∃i < j(x ∈ Ai \ {1}, y ∈ Aj)
y if ∃i < j(y ∈ Ai \ {1}, x ∈ Aj)

When defining the ordinal sum
⊕

i∈I Ai we will tacitly assume that when-
ever the condition Ai ∩ Aj = {1} is not satisfied for all i, j ∈ I with i �= j,
we will replace the Ai by isomorphic copies satisfying such condition. More-
over if all Ai’s are isomorphic to some A, then we will write IA, instead of
⊕

i∈I Ai. Finally, the ordinal sum of two hoops A and B will be denoted by
A ⊕ B.

Note that, since every bounded Wajsberg hoop is the 0-free reduct of an
MV-algebra, then the previous definition also works with these structures.

Theorem 2.5. [2, theorem 3.7] Every BL-chain is isomorphic to an ordi-
nal sum whose first component is an MV-chain and the others are totally
ordered Wajsberg hoops.

Note that in [10] it is presented an alternative and simpler proof of this
result.
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3. The Variety of BLChang-algebras

Consider the following connective

ϕ � ψ := ((ϕ → (ϕ&ψ)) → ψ) ∧ ((ψ → (ϕ&ψ)) → ϕ)

Call � the algebraic operation, over a BL-algebra, corresponding to �; we
have that

Lemma 3.1. In every MV-algebra the following equation holds

x � y = x⊕ y.

Proof. It is easy to check that x � y = x⊕ y, over [0, 1]�L, for every x, y ∈
[0, 1].

We now analyze this connective in the context of Wajsberg hoops.

Proposition 3.1. Let A be a linearly ordered Wajsberg hoop. Then

• If A is unbounded (i.e. a cancellative hoop), then x � y = 1, for every
x, y ∈ A.

• If A is bounded, let a be its minimum. Then, by defining ∼ x := x ⇒ a
and x⊕ y =∼ (∼ x∗ ∼ y) we have that x⊕ y = x� y, for every x, y ∈ A

Proof. An easy check.

Now, since the variety of cancellative hoops is generated by its linearly
ordered members (see [20]), then we have that

Corollary 3.1. The equation x � y = 1 holds in every cancellative hoop.

We now characterize the behavior of � for the case of BL-chains.

Proposition 3.2. Let A =
⊕

i∈I Ai be a BL-chain. Then

x � y =

⎧

⎪
⎨

⎪
⎩

x⊕ y, if x, y ∈ Ai and Ai is bounded
1, if x, y ∈ Ai and Ai is unbounded
max(x, y), otherwise.

for every x, y ∈ A.

Proof. If x, y belong to the same component of A, then the result follows
from Lemma 3.1 and Proposition 3.1. For the case in which x and y belong
to different components of A, this is a direct computation.
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Remark 3.1. From the previous proposition we can argue that � is a good
approximation, for BL, of what that ⊕ represents for MV-algebras. Note that
a similar operation was introduced in [3]: the main difference with respect
to � is that, when x and y belong to different components of a BL-chain,
then the operation introduced in [3] holds 1.

In the following, for every element x of a BL-algebra, with the notation
nx we will denote x � · · · � x

︸ ︷︷ ︸

n times

; analogously nϕ means ϕ � · · · � ϕ
︸ ︷︷ ︸

n times

.

Definition 3.1. We define BLChang as the axiomatic extension of BL,
obtained by adding

(2ϕ)2 ↔ 2(ϕ2). (cha)

That is, writing it in extended form

(ϕ2 → (ϕ2&ϕ2) → ϕ2) ↔ ((ϕ → ϕ2) → ϕ)2.

Clearly the variety corresponding to BLChang is given by the class of
BL-algebras satisfying the equation (2x)2 = 2(x2).

Moreover,

Definition 3.2. We will call pseudo-perfect Wajsberg hoops those Wajs-
berg hoops satisfying the equation (2x)2 = 2(x2).

Remark 3.2. Thanks to Lemma 3.1 we have that

��L ((2ϕ)2 ↔ 2(ϕ2)) ↔ ((2ϕ)2 ↔ 2(ϕ2)),

that is, if we add (2ϕ)2 ↔ 2(ϕ2) or (2ϕ)2 ↔ 2(ϕ2) to �L, then we obtain the
same logic �LChang.

These formulas, however are not equivalent over BL: see Remark 3.3 for
details.

Theorem 3.1. Every totally ordered pseudo-perfect Wajsberg hoop is a
totally ordered cancellative hoop or (the 0-free reduct of) a perfect MV-chain.

More in general, the variety of pseudo-perfect Wajsberg hoops coincides
with the class of the 0-free subreducts of members of V(C).

Proof. In [20] it is shown that the variety of Wajsberg hoops coincides
with the class of the 0-free subreducts of MV-algebras. The results easily
follow from this fact and from Proposition 2.1, Theorem 2.3 and Definition
3.2.

As a consequence, we have
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Theorem 3.2. Let WH,CH, psWH be, respectively, the varieties of Wajs-
berg hoops, cancellative hoops, pseudo-perfect Wajsberg hoops. Then we have
that

CH ⊂ psWH ⊂ WH

Proof. An easy consequence of Theorem 3.1.
The first inclusion follows from the fact that psWH contains all the totally

ordered cancellative hoops and hence the variety generated by them. For the
second inclusion note that, for example, the 0-free reduct of [0, 1]�L belongs
to WH \ psWH.

We now describe the structure of BLChang-chains, with an analogous of
the Theorem 2.5 for BL-chains.

Theorem 3.3. Every BLChang-chain is isomorphic to an ordinal sum whose
first component is a perfect MV-chain and the others are totally ordered
pseudo-perfect Wajsberg hoops.

It follows that every ordinal sum of perfect MV-chains is a BLChang-chain.

Proof. Thanks to Theorems 2.2, 2.3, Remark 3.2 and Definition 3.2, we
have that every MV-chain (Wajsberg hoop) satisfying the equation (2x)2 =
2(x2) is perfect (pseudo-perfect): using these facts and Proposition 3.2 we
have that a BL-chain satisfies the equation (2x)2 = 2(x2) iff it holds true
in all the components of its ordinal sum. From these facts and Theorem 2.5
we get the result.

As a consequence, we obtain the following corollaries.

Corollary 3.2. The variety of BLChang-algebras contains the ones of
product-algebras and Gödel-algebras: however it does not contains the variety
of MV-algebras.

Proof. From the previous theorem it is easy to see that the variety of
BLChang-algebras contains [0, 1]Π and [0, 1]G, but not [0, 1]�L.

Corollary 3.3. Every finite BLChang-chain is an ordinal sum of a finite
number of copies of the two elements boolean algebra. Hence the class of
finite BLChang-chains coincides with the one of finite Gödel chains.

For this reason it is immediate to see that the finite model property does
not hold for BLChang.

We conclude with the following remark.



22 M. Bianchi

Remark 3.3.

• One can ask if it is possible to axiomatize the class BLperf

of BL-algebras, whose chains are the BL-algebras that are ordinal
sum of perfect MV-chains: the answer, however, is negative. In fact,
the class of bounded Wajsberg hoops does not form a variety: for exam-
ple, it is easy to check that for every bounded pseudo-perfect Wajsberg
hoop A, its subalgebra A+ (see definition 2.7 ) forms a cancellative hoop.
Hence BLperf cannot be a variety.

However, as we will see in section 3.2, the variety of BLChang-algebras is
the “best approximation” of BLperf, in the sense that it is the smallest
variety to contain BLperf.

• In [19] (see also [14]) it is studied the variety, called P0, generated by all
the perfect BL-algebras (a BL-algebra A is perfect if, by calling MV (A)
the biggest subalgebra of A to be an MV-algebra, then MV (A) is a
perfect MV-algebra). P0 is axiomatized with the equation

∼ ((∼ (x2))2) = (∼ ((∼ x)2))2. (p0)

One can ask which is the relation between P0 and the variety of BLChang-
algebras. The answer is that the variety of BLChang-algebras is strictly
contained in P0. In fact, an easy check shows that a BL-chain is perfect if
and only if the first component of its ordinal sum is a perfect MV-chain.
Hence we have:

– Every BLChang-chain is a perfect BL-chain.
– There are perfect BL-chains that are not BLChang-chains: an exam-

ple is given by C ⊕ [0, 1]�L.

Now, since the variety of BLChang-algebras is generated by its chains
(like any variety of BL-algebras, see [23]), then we get the result.

Finally note that (p0) is equivalent to 2(x2) = (2x)2: hence, differently
to what happens over �L (see Remark 3.2), the equations 2(x2) = (2x)2

and 2(x2) = (2x)2 are not equivalent, over BL.

3.1. Subdirectly Irreducible and Simple Algebras

We begin with a general result about Wajsberg hoops.

Theorem 3.4. [21, Corollary 3.11] Every subdirectly irreducible Wajsberg
hoop is totally ordered.

As a consequence, we have:
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Corollary 3.4. Every subdirectly irreducible pseudo-perfect Wajsberg hoop
is totally ordered.

We now move to simple algebras.
It is shown in [28, Theorem 1] that the simple BL-algebras coincide with

the simple MV-algebras, that is, with the subalgebras of [0, 1]�L (see [13,
Theorem 3.5.1]). Therefore we have:

Theorem 3.5. The only simple BLChang-algebra is the two elements boolean
algebra 2.

An easy consequence of this fact is that the only simple �LChang-algebra
is 2.

3.2. Completeness

We begin with a result about pseudo-perfect Wajsberg hoops.

Theorem 3.6. The class pMV of 0-free reducts of perfect MV-chains gen-
erates psWH.

Proof. From Theorems 2.4 and 3.1 it is easy to check that the variety
generated by pMV contains all the totally ordered pseudo-perfect Wajsberg
hoops.

From these facts and Corollary 3.4, we have that pMV must be generic
for psWH.

Theorem 3.7. [15] Let L be an axiomatic extension of BL, then L enjoys the
finite strong completeness w.r.t a class K of L-algebras iff every countable
L-chain is partially embeddable into K.

As shown in [23] product logic enjoys the finite strong completeness w.r.t
[0, 1]Π and hence every countable product chain is partially embeddable into
[0, 1]Π � 2 ⊕ (0, 1]C , with (0, 1]C being the standard cancellative hoop (i.e.
the 0-free reduct of [0, 1]Π \ {0}). Since every totally ordered product chain
is of the form 2 ⊕ A, where A is a cancellative hoop (see [20]), it follows
that:

Proposition 3.3. Every countable totally ordered cancellative hoop partially
embeds into (0, 1]C .

Theorem 3.8. Every countable perfect MV-chain partially embeds into V =
(0, 1]∗C (i.e. the disconnected rotation of (0, 1]C).

Proof. Immediate from Proposition 3.3 and Theorem 2.4.
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Corollary 3.5. The logic �LChang is finitely strongly complete w.r.t. V.

Theorem 3.9. BLChang enjoys the finite strong completeness w.r.t. ωV. As
a consequence, the variety of BLChang-algebras is generated by the class of
all ordinal sums of perfect MV-chains and hence is the smallest variety to
contain this class of algebras.

Proof. Thanks to Theorem 3.7 it is enough to show that every countable
BLChang-chain partially embeds into ωV (i.e. the ordinal sum of “ω cop-
ies” of V). This fact, however, follows immediately from Proposition 3.3 and
Theorems 3.3, 3.8.

But we cannot obtain a stronger result: in fact

Theorem 3.10. BLChang is not strongly complete w.r.t. ωV.

Proof. Suppose not: from the results of [15, Theorem 3.5] this is equiva-
lent to claim that every countable BLChang-chain embeds into ωV. But, this
would imply that every countable totally ordered cancellative hoop embeds
into (0, 1]C : this means that every countable product-chain embeds into
[0, 1]Π, that is product logic is strongly complete w.r.t [0, 1]Π. As it is well
known (see [23, Corollary 4.1.18]), this is false.

With an analogous proof we obtain.

Theorem 3.11. �LChang is not strongly complete w.r.t. V.

However, thanks to [26, Theorem 3] we can claim

Theorem 3.12. There exist a �LChang-chain A and a BLChang-chain B such
that �LChang is strongly complete w.r.t. A and BLChang is strongly complete
w.r.t. B.

Problem 3.1. Which can be some concrete examples of such A and B ?

4. First-Order Logics

We assume that the reader is acquainted with the formalization of first-order
logics, as developed in [23,17].

Briefly, we work with (first-order) languages without equality, containing
only predicate and constant symbols: as quantifiers we have ∀ and ∃. The
notions of terms and formulas are defined inductively like in classical case.

As regards to semantics, given an axiomatic extension L of BL we restrict
to L-chains: the first-order version of L is called L∀ (see [23,17] for an
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axiomatization). A first-order A-interpretation (A being an L-chain) is a
structure M = 〈M, {rP }p∈P, {mc}c∈C〉, where M is a non-empty set, every
rP is a fuzzy ariety(P )-ary relation, over M , in which we interpretate
the predicate P , and every mc is an element of M , in which we map the
constant c.

Given a map v : V AR → M , the interpretation of ‖ϕ‖A
M,v in this seman-

tics is defined in a Tarskian way: in particular the universally quantified
formulas are defined as the infimum (over A) of truth values, whereas those
existentially quantified are evaluated as the supremum. Note that these inf
and sup could not exist in A: an A-model M is called safe if ‖ϕ‖A

M,v is
defined for every ϕ and v.

A model is called witnessed if the universally (existentially) quantified
formulas are evaluated by taking the minimum (maximum) of truth values
in place of the infimum (supremum): see [24,16,17] for details.

The notions of soundness and completeness are defined by restricting to
safe models (even if in some cases it is possible to enlarge the class of models:
see [7]): see [23,17,16] for details.

We begin with a positive result about �LChang∀.

Definition 4.1. Let L be an axiomatic extension of BL. With L∀w we define
the extension of L∀ with the following axioms

(∃y)(ϕ(y) → (∀x)ϕ(x)) (C∀)

(∃y)((∃x)ϕ(x) → ϕ(y)). (C∃)

Theorem 4.1. [16, Proposition 6] �L∀ coincides with �L∀w, that is
�L∀ �(C∀,C∃).

An immediate consequence is:

Corollary 4.1. Let L be an axiomatic extension of �L. Then L∀ coincides
with L∀w.

Theorem 4.2. [16, Theorem 8] Let L be an axiomatic extension of BL.
Then L∀w enjoys the strong witnessed completeness with respect to the class
K of L-chains, i.e.

T �L∀w ϕ iff ‖ϕ‖A
M = 1,

for every theory T , formula ϕ, algebra A ∈ K and witnessed A-model M
such that ‖ψ‖A

M = 1 for every ψ ∈ T .
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Lemma 4.1. [26, Lemma 1] Let L be an axiomatic extension of BL, let A
be an L-chain, let B be an L-chain such that A ⊆ B and let M be a wit-
nessed A-structure. Then for every formula ϕ and evaluation v, we have
‖ϕ‖A

M,v = ‖ϕ‖B
M,v.

Theorem 4.3. There is a �LChang-chain such that �LChang∀ is strongly com-
plete w.r.t. it. More in general, every �LChang-chain that is strongly complete
w.r.t �LChang is also strongly complete w.r.t. �LChang∀.

Proof. An adaptation of the proof for the analogous result, given in [26,
Theorem 16], for �L∀.

From Theorem 3.12 we know that there is a �LChang-chain A strongly
complete w.r.t. �LChang: from [15, Theorem 3.5] this is equivalent to claim
that every countable �LChang-chain embeds into A. We show that A is also
strongly complete w.r.t. �LChang∀.

Suppose that T ���LChang∀ ϕ. Thanks to Corollary 4.1 and Theorem 4.2
there is a countable �LChang-chain C and a witnessed C-model M such that
‖ψ‖C

M = 1, for every ψ ∈ T , but ‖ϕ‖C
M < 1. Finally, from Lemma 4.1 we have

that ‖ψ‖A
M = 1, for every ψ ∈ T and ‖ϕ‖A

M = ‖ϕ‖C
M < 1: this completes the

proof.

For BLChang∀, however, the situation is not so good.

Theorem 4.4. BLChang∀ cannot enjoy the completeness w.r.t. a single
BLChang-chain.

Proof. The proof is an adaptation of the analogous result given in [26,
Theorem 17] for BL∀.

Let A be a BLChang-chain: call A0 its first component. We have three
cases

• A0 is finite: from Theorem 3.3 we have that A0 = 2 and hence A |=
(¬¬x) → (¬¬x)2. However V �|= (¬¬x) → (¬¬x)2, where V is the
chain introduced in section 3.2, and hence A cannot be complete
w.r.t. BLChang∀.

• A0 is infinite and dense. As shown in [26, Theorem 17] the formula
(∀x)¬¬P (x) → ¬¬(∀x)P (x) is a tautology in every BL-chain whose
first component is infinite and densely ordered: hence we have that
A |= (∀x)¬¬P (x) → ¬¬(∀x)P (x). However it is easy to check that
this formula fails in [0, 1]G: take a [0, 1]G-model M with M = (0, 1]
and such that rP (m) = m. Hence, from Corollary 3.2, it follows that
BLChang∀ �� (∀x)¬¬P (x) → ¬¬(∀x)P (x).
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• A0 is infinite and not dense. As shown in [26, Theorem 17] the
formula (∀x)¬¬P (x) → ¬¬(∀x)P (x) ∨ ¬(∀x)P (x) → ((∀x)P (x))2

is a tautology in every BL-chain whose first component is infinite
and not densely ordered: hence we have that A |= (∀x)¬¬P (x) →
¬¬(∀x)P (x) ∨ ¬(∀x)P (x) → ((∀x)P (x))2. Also in this case, however,
this formula fails in [0, 1]G, using the same model M of the previous
case.
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