
Edmond W. H. Lee Finite Basis Problem
for Semigroups of Order
Five or Less: Generalization
and Revisitation

Abstract. A system of semigroup identities is hereditarily finitely based if it defines a

variety all semigroups of which are finitely based. Two new types of hereditarily finitely

based identity systems are presented. Two of these systems, together with eight existing

systems, establish the hereditary finite basis property of every semigroup of order five or

less with one possible exception.
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1. Introduction

A semigroup is finitely based if the identities it satisfies are finitely axioma-
tizable. The well-known theorem of Oates and Powell, published in 1964,
states that all finite groups are finitely based [25]. But any hope for the
same result to also hold for all finite semigroups was quickly extinguished
when in 1966, Perkins demonstrated that the Brandt monoid

B1
2 =

〈
a, b, 1

∣
∣ a2 = b2 = 0, aba = a, bab = b

〉

of order six is non-finitely based [26]. The discovery of a non-finitely based
semigroup with only six elements focused much attention upon the finite
basis problem for semigroups of order five or less. This problem was explic-
itly raised by Tarski [36] in 1966 and attracted the interest of Bol’bot [2],
Edmunds [6,7], Karnofsky [12], Tishchenko [37], and Trahtman [38]. A solu-
tion to this problem was eventually completed by Trahtman [39,40] in the
early 1980s and published a few years later [41].

Theorem 1.1. Every semigroup of order five or less is finitely based.
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A more complete historical account of the proof of Theorem 1.1 can be found
in the survey by Shevrin and Volkov [35].

A finitely based semigroup satisfies the stronger property of being hered-
itarily finitely based if it generates a variety all semigroups of which are
finitely based. Examples of hereditarily finitely based semigroups include
idempotent semigroups [1,9,10], commutative semigroups [27], and finite
groups [25]. There exist finitely based semigroups that are not hereditar-
ily finitely based [11,21,24], some of which have as few as six elements [8].
Recently, all semigroups of order four or less have been shown to be hered-
itarily finitely based [14]. In view of Theorem 1.1, it is natural to question
whether or not all semigroups of order five are also hereditarily finitely based.

Two semigroups are distinct if they are neither isomorphic nor anti-
isomorphic. There exist 1160 pairwise distinct semigroups of order five [29],
among which 156 are monoids [4] and 1004 are non-unital. Edmunds et al.
have shown that these 156 monoids, with the possible exception of

P 1
2 =

〈
a, b, 1

∣∣ a2 = ab = a, b2a = b2
〉
,

are hereditarily finitely based [8, Section 5]. They also announced that the
1004 non-unital semigroups are all hereditarily finitely based [8, Section 4].
This announced result will be confirmed in the present article.

An identity system is said to be hereditarily finitely based if it defines
a variety all semigroups of which are finitely based. Pollák [30–32] pio-
neered the study of hereditarily finitely based identities in the 1970s and has
immensely contributed to their classification; see the survey of his work [43].
A few other hereditarily finitely based identity systems have been found in
the study of some specific classes of varieties [13,15–19,22,23]. The main
aim of the present article is to establish two new types of hereditarily
finitely based identity systems. Two of these systems, together with eight
existing systems, are used to verify the aforementioned announced result of
Edmunds et al. [8] and establish an almost complete generalization of
Theorem 1.1.

Theorem 1.2. Every semigroup of order five or less that is distinct from
P 1

2 is hereditarily finitely based.

The main arguments of the proof of Theorem 1.2 are given in Section 3,
while the finer details are deferred to Sections 4 and 5.

Theorem 1.2 can also be viewed as a revisitation of Theorem 1.1. Such a
revisitation is useful since Theorem 1.1 involves numerous individual cases
and its proof by Trahtman [41], published back in 1991, is neither well cir-
culated nor translated into English.
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Remark 1.3. The identities

xhmxtnx ≈ xhmxtn, xhmytnxy ≈ xhmytnyx, m, n ∈ {0, 1},

constitute a basis for the semigroup P 1
2 [20, Corollary 6.6].

Problem 1.4. Is the semigroup P 1
2 hereditarily finitely based?

A solution to Problem 1.4 completes the classification of hereditarily fi-
nitely based semigroups of order five or less.

2. Preliminaries

Denote by X+ and X ∗ respectively the free semigroup and free monoid over
a countably infinite alphabet X . Elements of X are called letters and ele-
ments of X+ and X ∗ are called words. The content of a word w, denoted
by con(w), is the set of letters occurring in w.

Let x be any letter and w be any word. The number of times x occurs in
w is denoted by occ(x,w). If occ(x,w) = 1, then x is said to be simple in w.
Denote by sim(w) the set of all simple letters occurring in w. A word w is
simple if all its letters are simple in it, that is, sim(w) = con(w). The initial
part of w, denoted by ini(w), is the simple word obtained by retaining the
first occurrence of each letter in w.

An identity is written as u ≈ v where u,v ∈ X+. An identity u ≈ v is
trivial if the words u and v are equal. A semigroup S satisfies an identity
u ≈ v if for any substitution ϕ of X into S, the elements uϕ and vϕ of S
are equal. A variety of semigroups satisfies an identity if every semigroup in
the variety satisfies the identity. The deducibility of an identity u ≈ v from

a set Γ of identities is indicated by u
Γ≈ v; in this case, the set Γ is also said

to imply the identity u ≈ v.
Let L1

2 and N1
2 denote the monoids obtained by adjoining an identity

element to the left-zero semigroup L2 = 〈 a, b | ab = a, ba = b 〉 of order
two and the null semigroup N2 = 〈 a | a2 = 0 〉 of order two, respectively.
Let Zn denote the cyclic group of order n. The following characterizations
of identities satisfied by the semigroups L1

2, N1
2 , and Zn are well known and

easily verified.

Lemma 2.1. Let u ≈ v be any identity. Then

(i) L1
2 satisfies u ≈ v if and only if ini(u) = ini(v);

(ii) N1
2 satisfies u ≈ v if and only if con(u) = con(v) and sim(u) = sim(v);

(iii) Zn satisfies u ≈ v if and only if occ(x,u) ≡ occ(x,v) (mod n).
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Refer to the monograph of Burris and Sankappanavar [3] for more infor-
mation on universal algebra.

3. Proof of Theorem 1.2

Lemma 3.1. The following identity systems are hereditarily finitely based :

(0) x2 ≈ x;

(1) xyx ≈ xy2;

(2) x3y ≈ xy, xyx ≈ x2y3;

(3) xy3 ≈ xy, x3y ≈ xyx2, xyxy ≈ xy2x;

(4) x4 ≈ x2, x3yx ≈ xyx, x2y ≈ yx2, xyxy ≈ x2y2;

(5) xyzy ≈ xy2z;

(6) x3 ≈ x2, xyxyx ≈ xyx, xyxzx ≈ xzxyx;

(7) x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, xyxzx ≈ xyzx;

(8) x4 ≈ x2, x3yx ≈ xyx, x2yx ≈ xyx2, x2yz2 ≈ xyz2x, xyxzx ≈ xzxyx;

(9) x4 ≈x2, xyxyxyx≈xyx, x2y3x2 ≈x2yx2, xyxzx≈xzxyx
(x2y2)3 ≈ (x2y2)2.

The identity systems (2) and (8) are shown to be hereditarily finitely
based in Sections 4 and 5, respectively. References for the other systems
being hereditarily finitely based are as follows:

System Reference
(0) [1] or [9] or [10]
(1) [33, Theorem 1]
(3) [8, Theorem 6.1]
(4) [8, Theorem 7.2]

System Reference
(5) [34, Proposition C]
(6) [16, Theorem 1.3]
(7) [19, Theorem 3.3]
(9) [22, Proposition 3.2]

Using a computer, it is routinely shown that with the exception of the semi-
group P 1

2 , each of the other 1159 pairwise distinct semigroups of order five
satisfies one of the identity systems (0)–(9) or its dual system and so is
hereditarily finitely based by Lemma 3.1.

Remark 3.2. (i) The identity systems (0)–(9) are ordered first by the num-
ber of distinct letters involved, then followed by the total number of
letters involved.

(ii) There is no redundancy with the identity systems (0)–(9) since they are
distinguished by semigroups with the following multiplication tables:
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S0 1 2 3 4 5

1 1 1 1 1 1

2 1 2 1 4 5

3 3 3 3 3 3

4 1 2 5 4 5

5 5 5 5 5 5

S1 1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 1 3

3 3 3 3 3 3

4 1 2 3 4 1

5 5 5 5 5 5

S2 1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 1 1

3 1 2 3 4 5

4 1 2 4 3 5

5 5 5 5 5 5

S3 1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 1 1

3 1 1 3 4 5

4 4 4 4 4 4

5 4 4 5 1 3

S4 1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 2 2

3 1 1 1 3 3

4 1 2 3 4 5

5 1 3 2 5 4

S5 1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 2 1

3 1 1 1 3 1

4 1 1 1 4 1

5 1 1 2 3 2

S6 1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 2 3

3 1 2 3 2 3

4 1 1 1 4 5

5 1 4 5 4 5

S7 1 2 3 4 5

1 1 1 1 1 1

2 1 2 4 4 2

3 1 1 3 1 3

4 1 1 4 1 4

5 1 2 3 4 5

S8 1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 1 2

3 1 1 1 1 3

4 1 1 2 1 1

5 1 2 1 4 5

S9 1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 1 2

3 1 2 3 4 2

4 1 2 4 3 2

5 1 1 1 1 5

Specifically, for any m, n ∈ {0, . . . , 9}, the semigroup Sm satisfies the
identity system (n) if and only if m = n.

4. The Identity System (2)

For each n ≥ 1, let Un denote the variety defined by the identities

xn+1y ≈ xy, xyx ≈ x2yn+1. (4.1)

Theorem 4.1. The variety Un is hereditarily finitely based.

Corollary 4.2. The identity system (2) is hereditarily finitely based.

Remark 4.3. Corollary 4.2 is also deducible from a recent result of Luo and
Zhang [23, Theorem 1.1 and Corollary 4.6].

In this section, a word of the form

xe1
1 · · · xek

k ye

is said to be in canonical form if the letters x1, . . . , xk, y are distinct with
e1, . . . , ek ∈ {1, . . . , n}, e ∈ {1, . . . , n + 1}, and k ≥ 0. (Note that the prefix
xe1

1 · · · xek

k is empty when k = 0.) It is easily shown that the identities (4.1)
can be used to convert any word into one in canonical form.

Lemma 4.4. Let S be any semigroup that satisfies the identities (4.1) but
does not satisfy the identity

xnyn+1 ≈ xny. (4.2)

(i) Suppose that the semigroups L1
2 and Zn are isomorphic to subsemigroups

of S. Then the variety Un is generated by S.
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(ii) The variety Un is generated by the group Zn and the semigroup U with
the following multiplication table:

U 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 2 3 4

4 4 4 4 4

Proof. (i) To show that the variety Un is generated by the semigroup S,
it suffices to show that any identity u ≈ v satisfied by S is implied by the
identities (4.1). Since the semigroup S satisfies the identities (4.1), it follows
from the observation preceding this lemma that the words u and v can be
chosen to be in canonical form, say u = xe1

1 · · ·xek

k ye and v = zf1
1 · · · zf�

� tf .
Since the semigroups L1

2 and Zn are isomorphic to subsemigroups of S, it
follows from Lemma 2.1 that xe1

1 · · · xek

k y = zf1
1 · · · zf�

� t and e ≡ f (mod n).
Suppose that e �= f , that is, {e, f} = {1, n + 1}. Then the identity u ≈ v is

xe1
1 · · ·xek

k yn+1 ≈ xe1
1 · · ·xek

k y. (4.3)

If the semigroup S satisfies the identity (4.3), then it also satisfies the iden-
tity (4.2), contradicting the assumption. Therefore e = f , whence the iden-
tity u ≈ v is trivial and is implied by the identities (4.1).

(ii) It is easily checked that the semigroup U satisfies the identities (4.1)
so that by Lemma 2.1(iii), the semigroup U ×Zn also satisfies (4.1). Now the
semigroup U does not satisfy the identity (4.2) because 3n ·2n+1 �= 3n ·2 and
the semigroup L1

2 is isomorphic to the subsemigroup {1, 3, 4} of U . Therefore
by part (i), the variety Un is generated by the semigroup U × Zn.

Lemma 4.5. Let A and B be any hereditarily finitely based varieties and
let V = A ∨ B be their varietal join. Suppose that the variety V is finitely
based and that the lattice L(V) of subvarieties of V is modular. Then V is
hereditarily finitely based.

Proof. A finitely based variety is hereditarily finitely based if and only if
its lattice of subvarieties satisfies the descending chain condition. Therefore
by assumption, the lattices L(A) and L(B) are modular and satisfy the
descending chain condition. It follows that the lattice L(V) = L(A ∨ B)
also satisfies the descending chain condition [28]. Consequently, the variety
V is hereditarily finitely based.

Proof of Theorem 4.1. Any semigroup that satisfies the identities

xn+1y ≈ xy, (xy)n+1 ≈ xyn+1, xyxnzt ≈ xyzt (4.4)
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generates a variety with modular lattice of subvarieties [42]. Let U and Zn

denote the varieties generated by the semigroups U and Zn, respectively.
Since Un = U∨Zn by Lemma 4.4(ii) and it is routinely verified that U and
Zn satisfy the identities (4.4), the lattice L(Un) is modular. The semigroup
U satisfies the identity (1) and so is hereditarily finitely based by Lemma 3.1.
As mentioned in Section 1, all finite groups are hereditarily finitely based
[25] and so also is Zn. Since the join U∨Zn = Un is finitely based, it is also
hereditarily finitely based by Lemma 4.5.

5. The Identity System (8)

Let Q denote the variety defined by the identities

x4 ≈x2, x3yx ≈ xyx, x2yx ≈xyx2, (5.1a)

x2yz2 ≈ xyz2x, (5.1b)

xyxzx ≈ xzxyx. (5.1c)

Theorem 5.1. The variety Q is hereditarily finitely based. Equivalently, the
identity system (8) is hereditarily finitely based.

The proof of this theorem is given in Subsection 5.6.

Lemma 5.2. (i) The identities (5.1a)–(5.1c) imply the identity

hxyt ≈ hyxt (5.1d)

for all h,x,y ∈ X+ and t ∈ X ∗ such that h, x, and y end with non-
simple letters of hxyt.

(ii) The identities (5.1a)–(5.1c) imply the identity

hxkxt ≈ hx2kt (5.1e)

for all h, t ∈ X ∗ and k ∈ X+ such that k ends with a non-simple letter
of hxkxt.

Proof.

(i) If the words h, x, and y end with the non-simple letters h, x, and y of
hxyt respectively, then

hxyt
(5.1a)≈ hh4xx2yy2t

(5.1b)≈ hh2(xx2)h(yy2)ht
(5.1c)≈ hh2(yy2)h(xx2)ht

(5.1b)≈ hh4yy2xx2t
(5.1a)≈ hyxt.
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(ii) If the word k ends with the non-simple letter y of hxkxt, then

hxkxt
(5.1a)≈ hxky2xt

(5.1b)≈ hx2ky2t
(5.1a)≈ hx2kt.

It is convenient to refer to the identities (5.1a)–(5.1e) collectively as (5.1).
By Lemma 5.2, the identity system (5.1) also constitutes a basis for the vari-
ety Q. For any set Γ of identities, let QΓ denote the subvariety of Q defined
by Γ.

5.1. Canonical Form

A word w with distinct non-simple letters y1, . . . , ym is said to be in canon-
ical form if it can be written as

w = w0x0 · w1x1 · · ·wpxp · ye1
1 · · · yem

m · w∗, (5.2)

where w0,w∗ ∈ X ∗, w1, . . . ,wp ∈ X+, x0, . . . , xp ∈ {y1, . . . , ym}, and
e1, . . . , em ∈ {0, 1, 2, 3} are such that

(C1) the letters in w0, . . . ,wp,w∗ are precisely all the simple letters of w;

(C2) the letters y1, . . . , ym are in strict alphabetical order;

(C3) if occ(yi, x0 · · · xp) = 0, then ei ∈ {2, 3};

(C4) if occ(yi, x0 · · · xp) = 1, then ei ∈ {1, 2};

(C5) if occ(yi, x0 · · · xp) ≥ 2, then ei ∈ {0, 1}.

Remark 5.3. (i) If the word w in (5.2) is simple, then it reduces to w0

and is vacuously in canonical form.

(ii) Note that the letters x0, . . . , xp need not be distinct, but by (C1), the
words w0x0,w1x1, . . . ,wpxp are distinct.

Lemma 5.4. The identities (5.1) can be used to convert any word into one
in canonical form.

Proof. Let w be any word. As observed in Remark 5.3(i), if the word w is
simple, then it is already in canonical form. Therefore it suffices to assume
that the word w is non-simple. Consider a factorization of w that displays
all of its non-simple letters individually, that is,

w = w0x0 · w1x1 · · ·wrxr · w∗ (5.3)

where the letters x0, . . . , xr are non-simple in w and the letters in the
factors w0, . . . ,wr,w∗ ∈ X ∗ are simple in w. Each letter in the list
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x0, . . . , xr is non-simple in w and thus appears at least twice in the list,
whence r ≥ 1. Now the words w0x0,w1x1, . . . ,wrxr end with non-sim-
ple letters of w so that by applying the identities (5.1d), the factors
w1x1, . . . ,wrxr of w can be permuted in any manner. In particular, the
factors from w1x1, . . . ,wrxr with wi �= ∅ can be gathered to the left,
while the factors from w1x1, . . . ,wrxr with wi = ∅ can be gathered to
the right in alphabetical order. The resulting word is of the form (5.2),
with e1, . . . , em ≥ 0, that satisfies (C1) and (C2). By applying the iden-
tities (5.1a), each exponent ei can be reduced to a number in {0, 1, 2, 3}.
If occ(yi, x0 · · ·xp) = 0, then since the letter yi is non-simple in w, it
must occur at least twice in w so that ei ∈ {2, 3}. Hence (C3) is satis-
fied.

Assume that occ(yi, x0 · · ·xp) = 1. Since the letter yi is non-simple in
w, it must occur at least twice in w so that ei ∈ {1, 2, 3}. If ei = 3,
then apply the identities (5.1a) to reduce ei to 1. Hence (C4) is satis-
fied.

It remains to assume that occ(yi, x0 · · · xp) ≥ 2 and ei ∈ {2, 3}. Then
yi = xj = xk for some j and k with j < k ≤ m, and ei = 2 + s for some
s ∈ {0, 1}. Note that

w = · · ·wjyi · · ·wkyi · wk+1xk+1 · · ·wpxp · ye1
1 · · · yei−1

i−1︸ ︷︷ ︸
u

· y2+s
i · · ·

where the factor u, if nonempty, ends with a non-simple letter of w.
Hence

w = · · · wjyi · · ·wkyi · u · y2
i · ys

i · · ·
(5.1d)≈ · · · wjyi · · ·wkyi · y2

i · u · ys
i · · ·

(5.1a)≈ · · · wjyi · · ·wkyiuys
i · · · ,

that is, the exponent ei = 2 + s is reduced to s ∈ {0, 1}. Therefore (C5) is
satisfied.

Remark 5.5. In the proof of Lemma 5.4, when the non-simple word w in
(5.3) is converted into the word w in (5.2) in canonical form, the follow-
ing remained unchanged: the prefix w0, the non-simple letter x0, and the
suffix w∗. Therefore it is unambiguous to refer to w0 as the 0-prefix of w,
to x0 as the leading non-simple letter of w, and to w∗ as the ∗-suffix of
w, regardless of whether or not w is in canonical form. It is convenient to
write 0(w) = w0, �(w) = x0, and ∗(w) = w∗. In general, the identities (5.1)
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preserve the 0-prefix, the leading non-simple letter, and the ∗-suffix of any
non-simple word.

5.2. Standard Identities

An identity u ≈ v is said to be a standard identity if u and v are
words in canonical form such that con(u) = con(v) and sim(u) = sim(v).
Since the words u and v that constitute a standard identity u ≈ v are
simultaneously simple, it is unambiguous to refer to the identity u ≈ v
as a simple or non-simple identity depending on the simplicity of u
and v.

Lemma 5.6. Suppose that V is any subvariety of Q that satisfies an identity
u ≈ v with con(u) �= con(v) or sim(u) �= sim(v). Then V is finitely based.

Proof. There are two cases to consider.
Case 1. con(u) = con(v) and sim(u) �= sim(v), say with y ∈ sim(u)\sim(v).
Then occ(y,u) = 1 and occ(y,v) = p + 1 for some p ≥ 1. Let ϕ denote the
substitution

t 
→
{

x2 if t ∈ X\{y},
x2y if t = y.

Then x2(uϕ)x2
(5.1a)≈ x2yx2 and x2(vϕ)x2

(5.1a)≈ (x2y)p+1x2 so that the vari-
ety V satisfies the identity α : x2yx2 ≈ (x2y)p+1x2. The variety V then
satisfies the identity β : xy3x ≈ xyx because

xyx
(5.1a)≈ x2yx2 α≈ (x2y)2p+1x2

(5.1a)≈ (x2y)3x2
(5.1e)≈ x6y3x2

(5.1a)≈ xy3x.

Now since

xyxyxyx
(5.1e)≈ x3y3x

(5.1a)≈ xy3x
β≈ xyx,

the variety V satisfies the identity system (9) and so is finitely based by
Lemma 3.1.
Case 2. con(u) �= con(v), say

con(u)\con(v) = {x1, . . . , xr} and con(v)\con(u) = {y1, . . . , ys}
for some r, s ≥ 0 with (r, s) �= (0, 0). Then the variety V satisfies the iden-
tity u′ ≈ v′, where u′ = ux1 · · ·xry1 · · · ys and v′ = vx1 · · · xry1 · · · ys are
such that con(u′) = con(v′) and sim(u′) �= sim(v′). Hence the variety V is
finitely based by Case 1.
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5.3. FSS-consistent and FSN-consistent Identities

For any word w, let FSS(w) denote the set of factors of w of length two that
consist of two simple letters, and let FSN(w) denote the set of factors of w of
length two that begin with a simple letter and end with a non-simple letter:

FSS(w) = {xy | w ∈ X ∗xyX ∗, x, y ∈ sim(w)},

FSN(w) = {xy | w ∈ X ∗xyX ∗, x ∈ sim(w), y /∈ sim(w)}.

For any ♦ ∈ {FSS, FSN}, a standard identity u ≈ v is said to be ♦-consistent
if ♦(u) = ♦(v).

Lemma 5.7. Suppose that V is any subvariety of Q that satisfies some iden-
tity u ≈ v with con(u) = con(v), sim(u) = sim(v), and FSS(u) �= FSS(v).
Then V satisfies the identity

xyxzx ≈ x2yzx (5.4)

and is finitely based.

Proof. By symmetry, it suffices to assume that yz ∈ FSS(u)\FSS(v). Let ϕ
denote the substitution

t 
→
{

x2 if t ∈ X\{y, z},
x2y if t = y.

Then x2(uϕ)x
(5.1a)≈ x2yzx and x2(vϕ)x

(5.1a)≈ w with w ∈ {xyxzx, xzxyx}.
In view of the identity (5.1c), the variety V satisfies the identity (5.4).

Since any variety that satisfies the identities (5.1) and (5.4) is fi-
nitely based [23, Theorem 1.1 and Corollary 4.6], the variety V is finitely
based.

Remark 5.8. Let u ≈ v be any standard identity so that con(u) = con(v)
and sim(u) = sim(v).

(i) If the identity u ≈ v is simple, then it is FSS-consistent if and only if it
is trivial.

(ii) If the identity u ≈ v is non-simple, then the words u and v share the
same set of non-simple letters so that when written in canonical form,

u = u0x0 · u1x1 · · ·upxp · ye1
1 · · · yem

m · u∗
and v = v0z0 · v1z1 · · ·vqzq · yf1

1 · · · yfm
m · v∗.

It is then easily seen that the identity u ≈ v is FSS-consistent if and
only if {u0, . . . ,up,u∗} = {v0, . . . ,vq,v∗} with p = q.
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Lemma 5.9. Suppose that V is any subvariety of Q that satisfies some iden-
tity u ≈ v with con(u) = con(v), sim(u) = sim(v), and FSN(u) �= FSN(v).
Then V satisfies the identity

x2yz2 ≈ xyxz2. (5.5)

Proof. By symmetry, it suffices to assume that yz ∈ FSN(u)\FSN(v). Let
ϕ denote the substitution

t 
→
⎧
⎨

⎩

x2 if t ∈ X\{y, z},
x2y if t = y,
z2x2 if t = z.

Since

x2(uϕ)
(5.1a)≈ x2

(
z2x2

)i
x2yz2x2

(
z2x2

)j
for some i, j ≥ 0 with i + j ≥ 1

(5.1c)≈ x2yz2x2
(
z2x2

)i
x2

(
z2x2

)j (5.1e)≈ x6+2i+2jyz2+2i+2j
(5.1a)≈ x2yz2,

x2 (vϕ)
(5.1a)≈ x2

(
z2x2

)i
x2yx2

(
z2x2

)j
for some i, j ≥ 0 with i + j ≥ 2

(5.1c)≈ x2yx2(z2x2)ix2
(
z2x2

)j (5.1e)≈ x4+2i+2jyx2z2i+2j
(5.1a)≈ xyxz2,

the variety V satisfies the identity (5.5).

Corollary 5.10. Suppose that u ≈ v is any identity that is implied by the
identity system (5.1). Then FSS(u) = FSS(v) and FSN(u) = FSN(v).

Proof. Let V be the variety generated by the semigroup V with the fol-
lowing multiplication table:

V 1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 3
3 1 1 1 3 3
4 1 2 3 4 4
5 1 2 3 5 5

It is routinely verified that the semigroup V satisfies the identities (5.1) and
so also the identity u ≈ v. In particular, V is a subvariety of Q. Since the
subsemigroup {1, 3, 4} of V is isomorphic to the semigroup N1

2 , it follows
from Lemma 2.1(ii) that con(u) = con(v) and sim(u) = sim(v).

Now the variety V does not satisfy the identities (5.4) and (5.5) because
4 · 2 · 4 · 5 · 4 �= 42 · 2 · 5 · 4 and 42 · 2 · 52 �= 4 · 2 · 4 · 52 in V . It then follows
from Lemmas 5.7 and 5.9 that FSS(u) = FSS(v) and FSN(u) = FSN(v).
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5.4. 0-Consistent, �-Consistent, and ∗-Consistent Identities

For any ♦ ∈ {0, �, ∗}, a non-simple, standard identity u ≈ v is said to be
♦-consistent if ♦(u) = ♦(v).

Lemma 5.11. Suppose that V is any subvariety of Q that satisfies some
non-simple, standard identity u ≈ v that is FSS-consistent but either non-0-
consistent or non-∗-consistent. Then V is finitely based.

Proof. As observed in Remark 5.8(ii), when written in canonical form,

u = u0x0 · u1x1 · · ·upxp · ye1
1 · · · yem

m · u∗
and v = v0z0 · v1z1 · · ·vpzp · yf1

1 · · · yfm
m · v∗

with {u0, . . . ,up,u∗} = {v0, . . . ,vp,v∗}. Suppose that u0 �= v0. By symme-
try, it suffices to assume that u0 �= ∅. Then u0 = vi for some i ≥ 1. Let ϕ
denote the substitution that maps the first letter of u0 to z and any other

letter to y2. Since (uϕ)y2x
(5.1a)≈ zy2x and (vϕ)y2x

(5.1a)≈ yzyx, the variety
V satisfies the identity zy2x ≈ yzyx, which is dual to (5), and so is finitely
based by Lemma 3.1.

If u∗ �= v∗, then V is finitely based by a symmetrical argument.

5.5. Special Identities

A non-simple, standard identity is said to be special if it is ♦-consistent for
all ♦ ∈ {FSS, 0, �, ∗}. For each k ≥ 0, define the identity

θk : x1 · · · xky2z2 ≈ x1 · · · xkz2y2.

Note that the identity θ0 is y2z2 ≈ z2y2.

Lemma 5.12. Suppose that u ≈ v is any non-simple, standard identity that
is FSS-consistent, 0-consistent, ∗-consistent, but non-�-consistent. Then the
equation Q{u ≈ v} = Q{(5.5), θk, σ} holds for some k ≥ 0 and some special
identity σ.

Proof. By assumption and Remark 5.8(ii), when written in canonical form,

u = u0x0 · u1x1 · · ·upxp · ye1
1 · · · yem

m · u∗
and v = u0z0 · v1z1 · · ·vpzp · yf1

1 · · · yfm
m · u∗

with {u1, . . . ,up} = {v1, . . . ,vp} and x0 �= z0. If u0 �= ∅, say with h being
the last letter of u0, then hx0 ∈ FSN(u)\FSN(v) so that by Lemma 5.9,

(a) Q{u ≈ v} = Q{u ≈ v, (5.5)}.
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If u0 = ∅, then picking any letter t /∈ con(uv), the word tx0 is a prefix of tu
that is not a factor of tv so that tx0 ∈ FSN(tu)\FSN(tv), whence (a) holds
by Lemma 5.9. Thus (a) holds regardless of whether or not u0 is empty.

By assumption, the letters x0 and z0 are non-simple in both u and v with
x0, z0 /∈ con(u0). Let k = |u0| and let ϕ denote the substitution

t 
→
{

z2
0 if t ∈ X\con(u0x0),

x2
0 if t = x0.

Then the deductions uϕ
(5.1)≈ u0x

2
0z

2
0 and vϕ

(5.1)≈ u0z
2
0x2

0 hold so that

(b) Q{u ≈ v, (5.5)} = Q{u ≈ v, (5.5), θk}.

Note that the word u can be written as u = u0x0hz0ku∗ for some h,k ∈ X ∗

with x0, z0 ∈ con(hk). Define w = u0z0hx0ku∗. By Lemma 5.4, there exists

a word w′ in canonical form such that the deduction w
(5.1)≈ w′ holds. Since

0(w) = u0, �(w) = z0, and ∗(w) = u∗, it follows from Remark 5.5 that
0(w′) = u0, �(w′) = z0, and ∗(w′) = u∗. Hence the identity σ : w′ ≈ v is
0-consistent, �-consistent, and ∗-consistent. The equation FSS(u) = FSS(w)
also holds since w is obtained from u by interchanging one occurrence of
the non-simple letter x0 with one occurrence of the non-simple letter z0.
Therefore FSS(v) = FSS(u) = FSS(w) = FSS(w′), where the first equation
holds by assumption and the last equation holds by Corollary 5.10. Hence
the identity σ is FSS-consistent and thus also special. Since

u
(5.1a)≈ u0

(
x3

0hz3
0

)
ku∗

(5.5)≈ u0

(
x2

0 · hx0 · z3
0 · ku∗

) (5.1d)≈ (
u0x

2
0z

3
0

)
hx0ku∗

θk≈ u0

(
z2
0 · x2

0 · z0 · hx0 · ku∗
) (5.1d)≈ u0z

3
0hx3

0ku∗
(5.1a)≈ w

(5.1)≈ w′,

the equation Q{u ≈ v, (5.5), θk} = Q{σ, (5.5), θk} holds. Hence by (a) and
(b), the equation Q{u ≈ v} = Q{(5.5), θk, σ} also holds.

Lemma 5.13. Suppose that u ≈ v is any special identity that is satisfied by
the group Z2. Then either Q{u ≈ v} = Q or Q{u ≈ v} = Q{(5.5)}.

Proof. By assumption and Remark 5.8(ii), when written in canonical form,

u = u0x0 · u1x1 · · ·upxp · ye1
1 · · · yem

m · u∗
and v = u0x0 · v1z1 · · ·vpzp · yf1

1 · · · yfm
m · u∗

with {u1, . . . ,up} = {v1, . . . ,vp}. There are three cases to consider.
Case 1. p ≥ 1 and {u1x1, . . . ,upxp} = {v1z1, . . . ,vpzp}. Then there exists
some permutation π on {1, . . . , p} such that viπziπ = uixi for all i. Since
the factors v1z1, . . . ,vpzp end with non-simple letters of v, the identities
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(5.1d) can be used to order them in any manner. Specifically,

v
(5.1d)≈ u0x0 · v1πz1π · · ·vpπzpπ · yf1

1 · · · yfm
m · u∗

= u0x0 · u1x1 · · ·upxp · yf1
1 · · · yfm

m · u∗︸ ︷︷ ︸
v′

.

Hence

(a) Q{u ≈ v} = Q{u ≈ v′}.

Since the group Z2 satisfies the identity u ≈ v, it follows from Lemma 2.1(iii)
that ei ≡ fi (mod 2) for all i. Suppose that ei < fi for some i. Then as u
and v are in canonical form, (ei, fi) ∈ {(0, 2), (1, 3)}. Further, it follows from
(C3)–(C5) that

occ(yi, x0 · · ·xp)

⎧
⎪⎪⎨

⎪⎪⎩

≥ 2 if ei = 0,
≥ 1 if ei = 1,
≤ 1 if fi = 2,
= 0 if fi = 3.

But this implies the contradiction (ei, fi) /∈ {(0, 2), (1, 3)}. Therefore ei = fi

for all i, whence the identity u ≈ v′ is trivial so that Q{u ≈ v} = Q by (a).

Case 2. p = 0. Then u = u0x0 ·ye1
1 · · · yem

m ·u∗ and v = u0x0 ·yf1
1 · · · yfm

m ·u∗.
By an argument that is similar to (and simpler than) Case 1, the equation
Q{u ≈ v} = Q is obtained.

Case 3. p ≥ 1 and {u1x1, . . . ,upxp} �= {v1z1, . . . ,vpzp}. The identity u ≈ v
is FSN-consistent so that {u1, . . . ,up} = {v1, . . . ,vp}. Hence there exists
some permutation π on {1, . . . , p} such that uiπ = vi for all i. By the
assumption of this case, ujπxjπ �= vjzj for some j; specifically, ujπ = vj

and xjπ �= zj . Let t be the last letter of ujπ and vj , which is simple in both
u and v. Then txjπ ∈ FSN(u)\FSN(v) so that by Lemma 5.9,

(b) Q{u ≈ v} = Q{u ≈ v, (5.5)}.

Further,

u
(5.1a)≈ u0x0 · x2p

0 · u1x
3
1 · u2x

3
2 · · ·upx

3
p · ye1

1 · · · yem
m · u∗

(5.5)≈ u0x0 · xp
0 · (u1x0) · x3

1 · (u2x0) · x3
2 · · · (upx0) · x3

p · ye1
1 · · · yem

m · u∗

(5.1d)≈ u0x0 · u1πx0 · u2πx0 · · ·upπx0 · xp
0x

3
1x

3
2 · · · x3

p · ye1
1 · · · yem

m · u∗
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= u0x0 · v1x0 · v2x0 · · ·vpx0 · xp
0x

3
1x

3
2 · · · x3

p · ye1
1 · · · yem

m · u∗

(5.1a)≈ u0x0 · v1x0 · v2x0 · · ·vpx
p
0︸ ︷︷ ︸

h

· x0x1x2 · · ·xp · ye1
1 · · · yem

m︸ ︷︷ ︸
u′

·u∗ (5.6)

and

v
(5.1a)≈ u0x0 · x2p

0 · v1z
3
1 · v2z

3
2 · · ·vpz

3
p · yf1

1 · · · yfm
m · u∗

(5.5)≈ u0x0 · xp
0 · (v1x0) · z3

1 · (v2x0) · z3
2 · · · (vpx0) · z3

p · yf1
1 · · · yfm

m · u∗

(5.1d)≈ u0x0 · v1x0 · v2x0 · · ·vpx0 · xp
0z

3
1z3

2 · · · z3
p · yf1

1 · · · yfm
m · u∗

(5.1a)≈ u0x0 · v1x0 · v2x0 · · ·vpx
p
0︸ ︷︷ ︸

h

· x0z1z2 · · · zp · yf1
1 · · · yfm

m︸ ︷︷ ︸
v′

·u∗ (5.7)

imply that

(c) Q{u ≈ v, (5.5)} = Q{û ≈ v̂, (5.5)},

where û = hu′u∗ and v̂ = hv′u∗ are the words in (5.6) and (5.7), respec-
tively. The group Z2 satisfies the identities (5.1) and (5.5) by Lemma 2.1(iii),
and it satisfies the identity u ≈ v by assumption. Therefore by (c), the group
Z2 also satisfies the identity û ≈ v̂, whence

(d) occ(x, û) ≡ occ(x, v̂) (mod 2) for all x ∈ X

by Lemma 2.1(iii). Observe also that

(e) the letters in u′ are precisely all the non-simple letters of u counting
multiplicity, while the letters in v′ are precisely all the non-simple let-
ters of v counting multiplicity.

Since the letters of u′ are non-simple in û, the identities (5.1d) can be
used to order them within u′ in any manner. Hence it follows from (e) that

û = hu′u∗
(5.1d)≈ hy

e′
1

1 · · · ye′
m

m u∗

where e′
i = occ(yi,u) ≥ 2 for all i. Similarly,

v̂ = hv′u∗
(5.1d)≈ hy

f ′
1

1 · · · yf ′
m

m u∗

where f ′
i = occ(yi,v) ≥ 2 for all i. It follows from (d) that e′

i ≡ f ′
i (mod 2)

for all i. Therefore
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û
(5.1d)≈ hy

e′
1

1 · · · ye′
m

m u∗
(5.1a)≈ hy

f ′
1

1 · · · yf ′
m

m u∗
(5.1d)≈ v̂,

whence Q{(5.5)} = Q{û ≈ v̂, (5.5)} (c)
= Q{u ≈ v, (5.5)} (b)

= Q{u ≈ v}.

5.6. Proof of Theorem 5.1

Theorem 5.1 is a consequence of the two results in this subsection.

Proposition 5.14. Any proper subvariety of Q that contains the group Z2

is finitely based.

Proof. Let V be any proper subvariety of Q with Z2 ∈ V. Then it follows
from Lemma 2.1(iii) that V = QΓ for some set Γ of nontrivial identities
that are satisfied by the group Z2. By Lemma 5.4, the words that form the
identities in Γ can be chosen to be in canonical form. Consider the following
possibilities:

(a) every identity in Γ is standard;

(b) every identity in Γ is FSS-consistent.

If (a) does not hold, then the variety V is finitely based by Lemma 5.6.
If (a) holds and (b) does not hold, then the variety V is finitely based by
Lemma 5.7. Hence assume that both (a) and (b) hold. In particular, since
the identities in Γ are nontrivial, it follows from Remark 5.8(i) that they are
all non-simple. Further, by Lemma 5.11, the variety V is finitely based if
some identity in Γ is either non-0-consistent or non-∗-consistent. Therefore
assume that

(c) every identity in Γ is both 0-consistent and ∗-consistent.

Let Γ = Γsp ∪ Γ′
sp where Γsp consists of all special identities from Γ. By

Lemma 5.13, the variety QΓsp is either Q or Q{(5.5)} and so is finitely based.
It follows from (a), (b), (c), and Lemma 5.12 that QΓ′

sp = Q({(5.5)}∪Θ∪Σ)
for some Θ ⊆ {θ0, θ1, . . .} and some set Σ of special identities. The variety
QΘ is easily seen to be finitely based. By Lemma 5.13, the variety QΣ is
either Q or Q{(5.5)} and so is finitely based. Hence the variety QΓ′

sp is
finitely based. Consequently, the variety V = QΓsp ∩ QΓ′

sp is also finitely
based.

Proposition 5.15. Any proper subvariety of Q that does not contain the
group Z2 is finitely based.

Proof. Let V be any proper subvariety of Q with Z2 /∈ V. Then V = QΓ
for some set Γ of nontrivial identities such that
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(a) some identity in Γ is not satisfied by the group Z2.

By Lemma 5.4, the words that form the identities in Γ can be chosen to be
in canonical form. If some identity in Γ is nonstandard, then the variety V
is finitely based by Lemma 5.6. Therefore assume that every identity in Γ
is standard. Let Γ = Γg ∪ Γ′

g be a disjoint union, where Γg consists of all
identities from Γ that are satisfied by the group Z2. Note that Γ′

g �= ∅ by
(a). The variety QΓg is a subvariety of Q that contains the group Z2 and
so is finitely based by Proposition 5.14.

Let γ : u ≈ v be any identity from Γ′
g. Since the group Z2 does not sat-

isfy the identity γ, it follows from Lemma 2.1(iii) that occ(x,u) �≡ occ(x,v)
(mod 2) for some x ∈ X . It is then routinely shown that the identities (5.1)
and γ imply the identities

x3 ≈ x2, x2yx ≈ xyx2 ≈ xyx (5.8)

so that

(b) Q{γ} = Q{(5.8), γ}.

Let x1, . . . , xm be all the letters such that occ(xi,u) �≡ occ(xi,v) (mod 2).
The identity γ is standard so that sim(u) = sim(v). Now if occ(xi,u) = 1,
then xi ∈ sim(u) = sim(v) and occ(xi,v) = 1, contradicting the choice of xi.
Therefore occ(xi,u), occ(xi,v) ≥ 2 for all i. Let ϕ denote the substitution

xi 
→ x2
i for all i. Then the deductions uϕ

(5.8)≈ u and vϕ
(5.8)≈ v hold so

that Q{(5.8), γ} = Q{(5.8), γ̂}, where γ̂ is the identity uϕ ≈ vϕ. Therefore
Q{γ} = Q{(5.8), γ̂} by (b). Now occ(x,uϕ) ≡ occ(x,vϕ) (mod 2) for all
x ∈ X . Hence by Lemma 2.1(iii), the identity γ̂ is satisfied by the group Z2.

Since the identity γ was arbitrarily chosen from Γ′
g, the construction of γ̂

from γ in the preceding paragraph can be repeated on every identity in Γ′
g to

obtain the set Γ̂′
g = {γ̂ | γ ∈ Γ′

g}. Therefore QΓ′
g = Q{(5.8)} ∩ QΓ̂′

g, where
the group Z2 satisfies the identities in Γ̂′

g. Now the variety QΓ̂′
g contains

Z2 and so is finitely based by Proposition 5.14. Consequently, the variety
V = QΓg ∩ Q{(5.8)} ∩ QΓ̂′

g is also finitely based.
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