EpMOND W. H. LEE Finite Basis Problem
for Semigroups of Order
Five or Less: Generalization
and Revisitation

Abstract. A system of semigroup identities is hereditarily finitely based if it defines a
variety all semigroups of which are finitely based. Two new types of hereditarily finitely
based identity systems are presented. Two of these systems, together with eight existing
systems, establish the hereditary finite basis property of every semigroup of order five or
less with one possible exception.
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1. Introduction

A semigroup is finitely based if the identities it satisfies are finitely axioma-
tizable. The well-known theorem of Oates and Powell, published in 1964,
states that all finite groups are finitely based [25]. But any hope for the
same result to also hold for all finite semigroups was quickly extinguished
when in 1966, Perkins demonstrated that the Brandt monoid

B%:<a,b,1‘a2:bzzO, aba = a, bab:b>

of order six is non-finitely based [26]. The discovery of a non-finitely based
semigroup with only six elements focused much attention upon the finite
basis problem for semigroups of order five or less. This problem was explic-
itly raised by Tarski [36] in 1966 and attracted the interest of Bol'bot [2],
Edmunds [6,7], Karnofsky [12], Tishchenko [37], and Trahtman [38]. A solu-
tion to this problem was eventually completed by Trahtman [39,40] in the
early 1980s and published a few years later [41].

THEOREM 1.1. Every semigroup of order five or less is finitely based.
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A more complete historical account of the proof of Theorem 1.1 can be found
in the survey by Shevrin and Volkov [35].

A finitely based semigroup satisfies the stronger property of being hered-
itarily finitely based if it generates a variety all semigroups of which are
finitely based. Examples of hereditarily finitely based semigroups include
idempotent semigroups [1,9,10], commutative semigroups [27], and finite
groups [25]. There exist finitely based semigroups that are not hereditar-
ily finitely based [11,21,24], some of which have as few as six elements [8].
Recently, all semigroups of order four or less have been shown to be hered-
itarily finitely based [14]. In view of Theorem 1.1, it is natural to question
whether or not all semigroups of order five are also hereditarily finitely based.

Two semigroups are distinct if they are neither isomorphic nor anti-
isomorphic. There exist 1160 pairwise distinct semigroups of order five [29],
among which 156 are monoids [4] and 1004 are non-unital. Edmunds et al.
have shown that these 156 monoids, with the possible exception of

P21:<a,b,1’a2:ab:a, bza:b2>,

are hereditarily finitely based [8, Section 5]. They also announced that the
1004 non-unital semigroups are all hereditarily finitely based [8, Section 4].
This announced result will be confirmed in the present article.

An identity system is said to be hereditarily finitely based if it defines
a variety all semigroups of which are finitely based. Pollak [30-32] pio-
neered the study of hereditarily finitely based identities in the 1970s and has
immensely contributed to their classification; see the survey of his work [43].
A few other hereditarily finitely based identity systems have been found in
the study of some specific classes of varieties [13,15-19,22,23]. The main
aim of the present article is to establish two new types of hereditarily
finitely based identity systems. Two of these systems, together with eight
existing systems, are used to verify the aforementioned announced result of
Edmunds et al. [8] and establish an almost complete generalization of
Theorem 1.1.

THEOREM 1.2. FEvery semigroup of order five or less that is distinct from
P} is hereditarily finitely based.

The main arguments of the proof of Theorem 1.2 are given in Section 3,
while the finer details are deferred to Sections 4 and 5.

Theorem 1.2 can also be viewed as a revisitation of Theorem 1.1. Such a
revisitation is useful since Theorem 1.1 involves numerous individual cases
and its proof by Trahtman [41], published back in 1991, is neither well cir-
culated nor translated into English.
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REMARK 1.3. The identities

xh™zt"x ~ ch™xt™, zh™yt"zy ~ xch"yt"yx, m,n € {0,1},
constitute a basis for the semigroup Pj [20, Corollary 6.6].
PROBLEM 1.4. Is the semigroup P, hereditarily finitely based?

A solution to Problem 1.4 completes the classification of hereditarily fi-
nitely based semigroups of order five or less.

2. Preliminaries

Denote by X and X* respectively the free semigroup and free monoid over
a countably infinite alphabet X. Elements of X are called letters and ele-
ments of X and X* are called words. The content of a word w, denoted
by con(w), is the set of letters occurring in w.

Let x be any letter and w be any word. The number of times x occurs in
w is denoted by occ(x, w). If occ(xz, w) = 1, then x is said to be simple in w.
Denote by sim(w) the set of all simple letters occurring in w. A word w is
simple if all its letters are simple in it, that is, sim(w) = con(w). The initial
part of w, denoted by ini(w), is the simple word obtained by retaining the
first occurrence of each letter in w.

An identity is written as u &~ v where u,v € X*. An identity u ~ v is
trivial if the words u and v are equal. A semigroup S satisfies an identity
u ~ v if for any substitution ¢ of X into S, the elements up and vy of S
are equal. A variety of semigroups satisfies an identity if every semigroup in
the variety satisfies the identity. The deducibility of an identity u ~ v from

a set I' of identities is indicated by u ~ v; in this case, the set I' is also said
to imply the identity u =~ v.

Let LY and N} denote the monoids obtained by adjoining an identity
element to the left-zero semigroup Lo = (a,b | ab = a, ba = b) of order
two and the null semigroup Ny = (a | a® = 0) of order two, respectively.
Let Z,, denote the cyclic group of order n. The following characterizations
of identities satisfied by the semigroups L}, N3, and Z,, are well known and
easily verified.

LEMMA 2.1. Let u = v be any identity. Then
(i) L satisfies u ~ v if and only if ini(u) = ini(v);
(i) Nj satisfies u ~ v if and only if con(u) = con(v) and sim(u) = sim(v);

(iil) Z,, satisfies u ~ v if and only if occ(z,u) = occ(x,v) (mod n).
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Refer to the monograph of Burris and Sankappanavar [3] for more infor-
mation on universal algebra.

3. Proof of Theorem 1.2

LEMMA 3.1. The following identity systems are hereditarily finitely based:

%~ x;
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3, ~ ~ 2,3
Py = xy, wvyr~r’y’;

3 ~ 3, ~ 2 ~ 2,.
Ty =2y, T°Y=IYTr", ITYTY ~ TY"T,

.’E4 ~ .’L'z, .’Egyl' ~ Ty, .’E2y ~ y[L’z, TYTY ~ [L'2y2;
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6) 2 ~ x2%, Tyryr = TYT, TYTLT N TLTYL;

7 2% =22, 2?yr ~ xyr, ryr’~ ayr, ryrir N~ xyLT

8) zt ~ 22, 2Pyxr ~ zyx, r2yxr ~ vyx?, 2y? = wyLle, ryrze ~ oy
9) ztaa?, TYTYTYT N TYT, 22322 ~ 2?ya?, TYTZT R T2XYT

—~
8
N
<
[\
~—

3 ~ (x2y2)2.

The identity systems (2) and (8) are shown to be hereditarily finitely
based in Sections 4 and 5, respectively. References for the other systems
being hereditarily finitely based are as follows:

System Reference System Reference
(0) [1] or [9] or [10] (5) [34, Proposition C]
(1) [33, Theorem 1] (6) [16, Theorem 1.3]
(3) [8, Theorem 6.1] (7) [19, Theorem 3.3]
(4) [8, Theorem 7.2] 9) [22, Proposition 3.2]

Using a computer, it is routinely shown that with the exception of the semi-
group P}, each of the other 1159 pairwise distinct semigroups of order five
satisfies one of the identity systems (0)—(9) or its dual system and so is
hereditarily finitely based by Lemma 3.1.

REMARK 3.2. (i) The identity systems (0)—(9) are ordered first by the num-
ber of distinct letters involved, then followed by the total number of
letters involved.

(ii) There is no redundancy with the identity systems (0)—(9) since they are
distinguished by semigroups with the following multiplication tables:
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So[12345 51112345 S2(12345 S3112345 5412345
1111111 1111111 17111111 1111111 1711111
2112145 2711113 211111 2111111 2{11122
3133333 3(33333 3|12345 311345 3|11133
4112545 412341 4|12435 444444 4|12345
5155555 5|55555 5|55555 544513 5|13254
S5[12345 S6/12345 S7(12345 Sg[12345 S9|12345
1111111 1111111 17111111 1111111 1711111
2111121 2111123 2(12442 211112 211112
3111131 3112323 3|11313 311113 3|12342
4111141 4|11145 4|11414 411211 4|12432
5111232 514545 5(12345 5|12145 511115

Specifically, for any m,n € {0,...,9}, the semigroup S,, satisfies the
identity system (n) if and only if m = n.

4. The Identity System (2)

For each n > 1, let U,, denote the variety defined by the identities

"y ~zy,  ayr 2%yt (4.1)
THEOREM 4.1. The variety U,, is hereditarily finitely based.
COROLLARY 4.2. The identity system (2) is hereditarily finitely based.

REMARK 4.3. Corollary 4.2 is also deducible from a recent result of Luo and
Zhang [23, Theorem 1.1 and Corollary 4.6].

In this section, a word of the form

el €L e
1'1 xky

is said to be in canonical form if the letters x1,...,z,y are distinct with
e1,...,ex € {1,...,n},ec{l,...,n+ 1}, and k > 0. (Note that the prefix
a7t - x" is empty when k = 0.) It is easily shown that the identities (4.1)
can be used to convert any word into one in canonical form.

LEMMA 4.4. Let S be any semigroup that satisfies the identities (4.1) but
does not satisfy the identity

"yt a2y (4.2)

(i) Suppose that the semigroups L and Z,, are isomorphic to subsemigroups
of S. Then the variety U,, is generated by S.
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(ii) The variety U, is generated by the group Z,, and the semigroup U with
the following multiplication table:

= ow o |
»&HHH?
I N e L V)
N e Y
NGNS N

PROOF. (i) To show that the variety U,, is generated by the semigroup S,
it suffices to show that any identity u ~ v satisfied by .S is implied by the
identities (4.1). Since the semigroup S satisfies the identities (4.1), it follows
from the observation preceding this lemma that the words u and v can be
chosen to be in canonical form, say u = (' ---z7*y° and v = 2" -- -zg"'tf.
Since the semigroups L3 and Z, are isomorphic to subsemigroups of S, it
follows from Lemma 2.1 that 7' - - zify = z{' -- -z{"t and e = f (mod n).
Suppose that e # f, that is, {e, f} = {1,n + 1}. Then the identity u ~ v is

aft -yt R af e athy. (4.3)

If the semigroup S satisfies the identity (4.3), then it also satisfies the iden-
tity (4.2), contradicting the assumption. Therefore e = f, whence the iden-
tity u ~ v is trivial and is implied by the identities (4.1).

(ii) It is easily checked that the semigroup U satisfies the identities (4.1)
so that by Lemma 2.1(iii), the semigroup U x Z,, also satisfies (4.1). Now the
semigroup U does not satisfy the identity (4.2) because 3.2+ =£ 37.2 and
the semigroup L3 is isomorphic to the subsemigroup {1, 3,4} of U. Therefore
by part (i), the variety U, is generated by the semigroup U X Z,. [ |

LEMMA 4.5. Let A and B be any hereditarily finitely based varieties and
let V.= AV B be their varietal join. Suppose that the variety V is finitely
based and that the lattice L(V) of subvarieties of V is modular. Then V is
hereditarily finitely based.

PROOF. A finitely based variety is hereditarily finitely based if and only if
its lattice of subvarieties satisfies the descending chain condition. Therefore
by assumption, the lattices £(A) and £(B) are modular and satisfy the
descending chain condition. It follows that the lattice £(V) = L(A V B)
also satisfies the descending chain condition [28]. Consequently, the variety

V is hereditarily finitely based. [ |
PROOF OF THEOREM 4.1. Any semigroup that satisfies the identities
"My =y, (xy)" T oy, xyaat ~ xyst (4.4)
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generates a variety with modular lattice of subvarieties [42]. Let U and Z,
denote the varieties generated by the semigroups U and Z,, respectively.
Since U,, = UV Z,, by Lemma 4.4(ii) and it is routinely verified that U and
Z,, satisfy the identities (4.4), the lattice £(U,,) is modular. The semigroup
U satisfies the identity (1) and so is hereditarily finitely based by Lemma 3.1.
As mentioned in Section 1, all finite groups are hereditarily finitely based
[25] and so also is Z,,. Since the join UV Z,, = U, is finitely based, it is also
hereditarily finitely based by Lemma 4.5. [ |

5. The Identity System (8)

Let Q denote the variety defined by the identities

rtra?, PByr ~ zyx, Pyc~cyd®, (5.1a)
2?y2? ~ xyie, (5.1b)
TYTZT X TZTYT. (5.1c)

THEOREM 5.1. The variety Q is hereditarily finitely based. Equivalently, the
identity system (8) is hereditarily finitely based.

The proof of this theorem is given in Subsection 5.6.

LEMMA 5.2. (i) The identities (5.1a)—(5.1c) imply the identity
hxyt ~ hyxt (5.1d)
for all h,x,y € X and t € X* such that h, x, and y end with non-
simple letters of hxyt.
(ii) The identities (5.1a)—(5.1c) imply the identity
hzkzt ~ ha’kt (5.1e)

for allh,t € X* and k € X+ such that k ends with a non-simple letter
of hxkzt.

PROOF.

(i) If the words h, x, and y end with the non-simple letters h, x, and y of
hxyt respectively, then

5.1a 5.1b
hxyt ( ~ ) hhtxz?yy*t ( ~ : hh? (x2?)h(yy?)ht

5.1 5.1b 5.1
( ;:sc) hh?(yy?)h(xz?)ht ( ~2 ) hhtyy?xz?t ( %a) hyxt.
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(ii) If the word k ends with the non-simple letter y of hzkzt, then

1a) ) (5;\%3)

5 5.1b

hzkzt ( ~ hzky’zt ( ~  hz’ky*t hz?kt. [
It is convenient to refer to the identities (5.1a)—(5.1e) collectively as (5.1).
By Lemma 5.2, the identity system (5.1) also constitutes a basis for the vari-
ety Q. For any set I' of identities, let QI' denote the subvariety of Q defined

by I'.

5.1. Canonical Form

A word w with distinct non-simple letters y1, ..., ¥y, is said to be in canon-
ical form if it can be written as

W = WoZo - WiT1 - WpTp - Yyl - Yo - Wy, (5.2)
where wo,w, € X* wy,...,w, € X", x0,...,2, € {y1,...,Ym}, and
e1,...,em € {0,1,2,3} are such that

(C1) the letters in wy, ..., w,, W, are precisely all the simple letters of w;
(C2) the letters yi,...,yn are in strict alphabetical order;

(C3) if occ(ys, xo - - xp) = 0, then e; € {2,3};

(C4) if occ(ys, xo - - xp) = 1, then e; € {1,2};

(C5) if occ(y;, xo -+ - xp) > 2, then e; € {0,1}.

REMARK 5.3. (i) If the word w in (5.2) is simple, then it reduces to wy

and is vacuously in canonical form.

(ii) Note that the letters zy,...,z, need not be distinct, but by (C1), the
words Woxg, WiZ1,. .., Wy, are distinct.

LEMMA 5.4. The identities (5.1) can be used to convert any word into one
i canonical form.

PROOF. Let w be any word. As observed in Remark 5.3(i), if the word w is
simple, then it is already in canonical form. Therefore it suffices to assume
that the word w is non-simple. Consider a factorization of w that displays
all of its non-simple letters individually, that is,

W = WqTo * WL WpLy - Wy (5.3)

where the letters zq,...,z, are non-simple in w and the letters in the
factors woq,...,w,,w, € X* are simple in w. Each letter in the list
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xg, ..., T, is non-simple in w and thus appears at least twice in the list,
whence r > 1. Now the words wyzg, wixq,...,w,z,, end with non-sim-
ple letters of w so that by applying the identities (5.1d), the factors
wW1Z1,...,W,Z, of w can be permuted in any manner. In particular, the
factors from wizy,...,w,x, with w; # () can be gathered to the left,
while the factors from wiz1,...,w,z, with w; = () can be gathered to
the right in alphabetical order. The resulting word is of the form (5.2),
with e, ..., e, > 0, that satisfies (C1) and (C2). By applying the iden-
tities (5.1a), each exponent e; can be reduced to a number in {0,1,2,3}.
If occ(yi,zo---xp) = 0, then since the letter y; is non-simple in w, it
must occur at least twice in w so that e; € {2,3}. Hence (C3) is satis-
fied.

Assume that occ(y;, o ---x,) = 1. Since the letter y; is non-simple in
w, it must occur at least twice in w so that e¢; € {1,2,3}. If ¢; = 3,
then apply the identities (5.1a) to reduce e; to 1. Hence (C4) is satis-
fied.

It remains to assume that occ(y;,zo---x,) > 2 and e; € {2,3}. Then
y; = xj = xy, for some j and k with j < k < m, and e¢; = 2 + s for some
s € {0,1}. Note that

_ el €i—1 2+s
W f— ...iji . .'Wk,’yZ . Wk_+1xk+1 .. .'wpxp .yl . ..yi_l .yl .« ..
u

where the factor u, if nonempty, ends with a non-simple letter of w.
Hence

(5.1d) 9 s

% .. ijz .. kal . yZ . u . Z/Z ..
(5.1a) s

=~ DY ij'L .. 'kaluy’[/ e )

that is, the exponent e; = 2 + s is reduced to s € {0,1}. Therefore (C5) is
satisfied. |

REMARK 5.5. In the proof of Lemma 5.4, when the non-simple word w in
(5.3) is converted into the word w in (5.2) in canonical form, the follow-
ing remained unchanged: the prefix wg, the non-simple letter xg, and the
suffix w,. Therefore it is unambiguous to refer to wq as the 0-prefiz of w,
to xo as the leading non-simple letter of w, and to w, as the x-suffiz of
w, regardless of whether or not w is in canonical form. It is convenient to
write 0(w) = wyg, {(w) = z¢, and *(w) = w,. In general, the identities (5.1)
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preserve the O-prefix, the leading non-simple letter, and the *-suffix of any
non-simple word.

5.2. Standard Identities

An identity u ~ v is said to be a standard identity if u and v are
words in canonical form such that con(u) = con(v) and sim(u) = sim(v).
Since the words u and v that constitute a standard identity u ~ v are
simultaneously simple, it is unambiguous to refer to the identity u =~ v
as a simple or non-simple identity depending on the simplicity of u
and v.

LEMMA 5.6. Suppose that 'V is any subvariety of Q that satisfies an identity
u ~ v with con(u) # con(v) or sim(u) # sim(v). Then V is finitely based.

PROOF. There are two cases to consider.

CASE 1. con(u) = con(v) and sim(u) # sim(v), say with y € sim(u)\sim(v).
Then occ(y,u) = 1 and occ(y,v) = p+ 1 for some p > 1. Let ¢ denote the
substitution

2 .
pe {0 if t € X\{y},
oy ift=uy.

2 o 01a) 5 o 2 o (512) o i1 o :
Then z*(up)z® ~ z°yz® and z°(vp)z® =~ (z°y)P'x* so that the vari-
ety V satisfies the identity a : 2?yz? ~ (22y)P*'z2. The variety V then
satisfies the identity 3 : zy*z ~ xyx because

(5.1a) 9

«a (5.1a) (5.1e) (5.1a)
ryr ~ r’yr? ~ (2%y)PH?  x (2%y)3a? ~ 2%yP2? = 3

Yzt = xycw.

Now since
(5.1e) 5 5 (5.1a) 3 B
ryzyryr ~ x°y'r = zy’r =~ zyr,
the variety V satisfies the identity system (9) and so is finitely based by
Lemma 3.1.
CASE 2. con(u) # con(v), say

con(u)\con(v) = {z1,...,z.} and con(v)\con(u) ={y1,...,ys}

for some r, s > 0 with (r,s) # (0,0). Then the variety V satisfies the iden-
tity u’ ~ v/, where v = uxy - 2,y1---ys and v = vy 1,y - - ys are
such that con(u’) = con(v’) and sim(u’) # sim(v’). Hence the variety V is
finitely based by Case 1. [
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5.3. Fgs-consistent and Fgy-consistent Identities

For any word w, let Fss(w) denote the set of factors of w of length two that
consist of two simple letters, and let Fsy(w) denote the set of factors of w of
length two that begin with a simple letter and end with a non-simple letter:

Fss(w) ={zy | w € X xyX™, x,y € sim(w)},
Fon(w) ={zy | w € X zyX™, x € sim(w), y ¢ sim(w)}.

For any { € {Fss, Fsn}, a standard identity u & v is said to be {-consistent

if O(u) = O(v).

LEMMA 5.7. Suppose that V is any subvariety of Q that satisfies some iden-
tity u ~ v with con(u) = con(v), sim(u) = sim(v), and Fss(u) # Fss(v).
Then V satisfies the identity

ryxzr ~ rlyzx (5.4)
and is finitely based.

PROOF. By symmetry, it suffices to assume that yz € Fss(u)\Fss(v). Let ¢
denote the substitution
2 .
. if t € X\{y, 2},
xry ift=uy.

9 (5.1a) 9 9 (5.1a) .
Then z(up)r =~ x°yzx and z°(vyp)r ~ w with w € {zyzzz, xzzyc}.

In view of the identity (5.1c), the variety V satisfies the identity (5.4).
Since any variety that satisfies the identities (5.1) and (5.4) is fi-

nitely based [23, Theorem 1.1 and Corollary 4.6], the variety V is finitely

based. [

REMARK 5.8. Let u & v be any standard identity so that con(u) = con(v)

and sim(u) = sim(v).

(i) If the identity u ~ v is simple, then it is Fss-consistent if and only if it
is trivial.

(ii) If the identity u ~ v is non-simple, then the words u and v share the
same set of non-simple letters so that when written in canonical form,

e e
u:uoxo.ulxl...upxp.yll...ymm.u*

_ f1 ,
and vV =vVpzo-Viz1-VeZe Ui ---yfr;”-v*.

It is then easily seen that the identity u ~ v is Fsg-consistent if and
only if {up,...,up,u.} ={vo,...,vg vi} with p=gq.



106 E. W. H. Lee

LEMMA 5.9. Suppose that 'V is any subvariety of Q that satisfies some iden-
tity u ~ v with con(u) = con(v), sim(u) = sim(v), and Fsy(u) # Fsn(V).
Then V satisfies the identity

2?y2? ~ xyx®. (5.5)

PROOF. By symmetry, it suffices to assume that yz € Fsy(u)\Fsn(v). Let
© denote the substitution

2 ifte X\{y,z},
t— ¢ 22y ift=y,
222? ift =z,
Since
2 (5 1a) ) 2 9\J .. -
x(up ( ):ryz:z:( ) for some 4,7 > 0 withi+ 5> 1
(5%10) 22y 2% (szz) 2(;2 2)J (5%1'3) 0220 242042 (5§‘) 22y,
5.1
(vo) CL ( )z 2yx? (221'2)] for some 4,5 > 0 with ¢ + j > 2
(5;.:) 22y (%) z? (z2x2)J (5ée) A2 2 2042 (53”) ryas?,
the variety V satisfies the identity (5.5). n

COROLLARY 5.10. Suppose that u = v is any identity that is implied by the
identity system (5.1). Then Fss(u) = Fss(v) and Fsy(u) = Fsn(v).

PROOF. Let V be the variety generated by the semigroup V with the fol-
lowing multiplication table:

Vil 2 3 45
1111111
2111113
31111 3 3
411 2 3 4 4
511 2 3 5 5

It is routinely verified that the semigroup V satisfies the identities (5.1) and
so also the identity u &~ v. In particular, V is a subvariety of Q. Since the
subsemigroup {1,3,4} of V is isomorphic to the semigroup N3, it follows
from Lemma 2.1(ii) that con(u) = con(v) and sim(u) = sim(v).

Now the variety V does not satisfy the identities (5.4) and (5.5) because
4-2-4-5-4#4%.2.5-4and 4?-2-52#£4.2-4-5%in V. It then follows
from Lemmas 5.7 and 5.9 that Fss(u) = Fss(v) and Fsy(u) = Fsny(v). =
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5.4. 0-Consistent, £-Consistent, and *-Consistent Identities

For any ¢ € {0,¢, %}, a non-simple, standard identity u ~ v is said to be
O-consistent if O(u) = O(v).

LEMMA 5.11. Suppose that 'V is any subvariety of Q that satisfies some
non-simple, standard identity u ~ v that is Fss-consistent but either non-0-
consistent or non-+-consistent. Then V is finitely based.

PROOF. As observed in Remark 5.8(ii), when written in canonical form,
U= Ugzo - WyTy Uz, Yyl e,
and Vv = vz -vlzl---vpzp-yfl ceylm v,
with {ug,...,up, u.} = {vo,...,vp, vi}. Suppose that uy # vo. By symme-

try, it suffices to assume that ug # (). Then ug = v; for some 7 > 1. Let ¢

denote the substitution that maps the first letter of ug to z and any other

. (5.1a) (5.1a) .
letter to y2. Since (up)y?z ~ zy?x and (vo)y’x ~ yzyx, the variety

V satisfies the identity zy?z ~ yzyx, which is dual to (5), and so is finitely
based by Lemma 3.1.
If u, # v,, then V is finitely based by a symmetrical argument. [ |

5.5. Special Identities

A non-simple, standard identity is said to be special if it is ¢-consistent for
all ¢ € {Fss,0,¢,x}. For each k > 0, define the identity
2,2

O : 1 - Tpy?2® ~ xy - a2y

Note that the identity 6y is y22? ~ z%y>.

LEMMA 5.12. Suppose that u =~ v is any non-simple, standard identity that
1s Fss-consistent, 0-consistent, x-consistent, but non-€-consistent. Then the
equation Q{u = v} = Q{(5.5), 0,0} holds for some k > 0 and some special
identity o.

PROOF. By assumption and Remark 5.8(ii), when written in canonical form,

u:uoxo .ulxl...up'rp.yfl yfnm .11),<

_ f1
and v =1u920- V121 VpZp - Yi --'yglm-u*

with {uy,...,u,} = {v1,...,v,} and z¢ # zp. If ug # 0, say with h being
the last letter of ug, then hzy € Fsy(u)\Fsn(v) so that by Lemma 5.9,

(a) Q{ur v} =Q{u=v,(55)}.
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If up = 0, then picking any letter ¢ ¢ con(uv), the word txq is a prefix of tu
that is not a factor of tv so that txg € Fsn(tu)\Fsn(fv), whence (a) holds
by Lemma 5.9. Thus (a) holds regardless of whether or not ug is empty.

By assumption, the letters g and 2z are non-simple in both u and v with
xo, 20 ¢ con(ug). Let k = |ug| and let ¢ denote the substitution

‘e { 22 ift € X\con(ugxy),

Then the deductions up ~ upzjz; and v =~ ugzjzg hold so that

(b) Q{u=v,(5.5)} = Qf{u=v,(5.5),0k}.

Note that the word u can be written as u = ugzrghzoku, for some h,k € xA'*
with zg, zo € con(hk). Define w = ugzphzoku,. By Lemma 5.4, there exists

a word w’ in canonical form such that the deduction w (2) w’ holds. Since
0(w) = ug, ¢(w) = 20, and *(w) = u,, it follows from Remark 5.5 that
0O(w') = ug, (W) = 20, and *(w') = u,. Hence the identity o : w’ ~ v is
0-consistent, ¢-consistent, and #-consistent. The equation Fss(u) = Fsg(w)
also holds since w is obtained from u by interchanging one occurrence of
the non-simple letter xy with one occurrence of the non-simple letter zj.
Therefore Fss(v) = Fss(u) = Fss(w) = Fss(w’), where the first equation
holds by assumption and the last equation holds by Corollary 5.10. Hence
the identity o is Fss-consistent and thus also special. Since

(5.1a) 5.5)

~ ug(zjhz)ku, % G

up (m% ~hxg - 25 - ku,) =~ (uoxgzg)hxoku*

05 (5.1d) (5.1a)  (5.1)
~ uo(zg 2520 -hro-ku,) &~ upzjhrjku, ~ w ~ W,

the equation Q{u ~ v, (5.5),0,} = Q{o, (5.5),0;} holds. Hence by (a) and
(b), the equation Q{u ~ v} = Q{(5.5), 0,0} also holds. ]

LEMMA 5.13. Suppose that u = v is any special identity that is satisfied by
the group Zs. Then either Qu~v} =Q or Q{u=xv} = Q{(5.5)}.

PROOF. By assumption and Remark 5.8(ii), when written in canonical form,
u:uol‘o .ull'l...upl'p.ylel yf;]m .u*

and V:uoxo-V1z1--~vpzp-y{1---y£lm-u*

with {uy,...,up} = {vy,...,v,}. There are three cases to consider.
Case 1. p > 1 and {wz1,...,upzp} = {vi21,...,Vp2p}. Then there exists
some permutation 7 on {1,...,p} such that v,;z;; = w;z; for all 7. Since

the factors viz1,...,vp2, end with non-simple letters of v, the identities
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(5.1d) can be used to order them in any manner. Specifically,

®.1d) f1 fm
V. = UoZo - Vigllr " Vprlpr "Y1 YUm - Ux

= f1
= Ug%p U1x1- - UpTp - Y] "‘yfrl"'ll*.

V/

Hence

(a) Q{ur v} =Qf{uv'}.

Since the group Zs satisfies the identity u ~ v, it follows from Lemma 2.1(iii)
that e; = f; (mod 2) for all i. Suppose that e; < f; for some i. Then as u
and v are in canonical form, (e;, f;) € {(0,2), (1,3)}. Further, it follows from
(C3)—(C5) that

22 ifei:(),
>1 ife; =1,
occlyss o= Tp) ¢ < ff — 2
=0 if fi = 3.

But this implies the contradiction (e;, f;) ¢ {(0,2), (1,3)}. Therefore e; = f;
for all ¢, whence the identity u ~ v’ is trivial so that Q{u~ v} = Q by (a).

CASE 2. p=0. Then u = upzo-y;* ---ySr-u, and v = uogzco‘y{1 coyfmou,,
By an argument that is similar to (and simpler than) Case 1, the equation
Q{u ~ v} = Q is obtained.

Case 3. p>land {uizy,...,upxp} # {Viz1,...,Vp2,}. Theidentity u = v
is Fsn-consistent so that {uy,...,u,} = {vi,...,v,}. Hence there exists
some permutation 7 on {1,...,p} such that u;,; = v; for all i. By the

assumption of this case, u;rx;» # v,z; for some j; specifically, uj. = v;
and xr # z;. Let ¢ be the last letter of u;, and v;, which is simple in both
u and v. Then tz;, € Fsy(u)\Fsn(V) so that by Lemma 5.9,

(b) Q{uxv}=Q{u=v,(55)}.

Further,

(5.1a) 2
~ p 3 3 3 e
~ uoxo.xo .ulxl.uQx2...up‘rL-p,yll...y;;n.u*

(5.5)
~ ugzg - xh - (uzo) 23 (ugmg) - 2l - (upzo) - a:;; RN |

(5.1d)
~ p..3,.3 3 el em
~ UgZo - - U1xxo - U27TQ """ upﬂ-flf() . .%'0.%'11'2 tee CL'p . yl Yy Uk
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_ p,..3,..3 3 e e
= uoxo . Vlajo . VQIO . 'Vpx(] . x0x1x2 . .xp . yll . ym'm . u*
(5.1a)
o P e em
R UgTo V1To - Valg - VpTy © ToL1T2 - Tp - Y'Y - Uy (5.6)
h u’
and
(5.1a) 2
~ D 3 3 3 . f )
R UoTo Tyt VIZY C V2zy tttVpZ, Y ---yfnm-u*
(5.5)
~ D 3 3 3 . f1 s
~ ugro - wh - (Vimo) - 27 - (Vawo) - 25 - (VpTo) - 2, - Yyt cylm o,
(5.1d)
~ .33 3 . f1 m
~ Upxo " V1Zo * V2T - VpTo * TRy 29 "'Zp-yl yf; © Uy
(5.1a)
~ p f1 m
R UgTg - Vo - VaZo - - VpXy - L2122 Zp - Yi y,f; ‘u, (5.7)
h v/
imply that

(c) Q{urv,(55)}=Qf{u~v,(55)},

where u = hu'u, and v = hv’u, are the words in (5.6) and (5.7), respec-
tively. The group Z, satisfies the identities (5.1) and (5.5) by Lemma 2.1(iii),
and it satisfies the identity u ~ v by assumption. Therefore by (c), the group
74 also satisfies the identity u ~ v, whence

(d) occ(z,u) = occ(x, V) (mod 2) for all x € X
by Lemma 2.1(iii). Observe also that

(e) the letters in u’ are precisely all the non-simple letters of u counting
multiplicity, while the letters in v’ are precisely all the non-simple let-
ters of v counting multiplicity.

Since the letters of u’ are non-simple in u, the identities (5.1d) can be
used to order them within u’ in any manner. Hence it follows from (e) that

R (5.1d) e’ e’
u=hu'u., = hy' -yu

where e} = occ(y;, u) > 2 for all 4. Similarly,

5.1d / /
v =hv'u, OV hyl' -y u,
where f! = occ(y;,v) > 2 for all 7. It follows from (d) that e, = f/ (mod 2)

for all 7. Therefore
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__(5.1d) ’ / (5.1a) ’ ’ (5.1d) __
u = hyil"'yfﬁ”u* ~ hy{lyTJ:lmu* ~ Vv,

whence Q{(5.5)} = Q{i~v,(5.5)} L Qu~v,5.5) Y Qu~v}). =

5.6. Proof of Theorem 5.1
Theorem 5.1 is a consequence of the two results in this subsection.

PROPOSITION 5.14. Any proper subvariety of Q that contains the group Zo
is finitely based.

PROOF. Let V be any proper subvariety of Q with Zs € V. Then it follows
from Lemma 2.1(iii) that V = QI for some set I' of nontrivial identities
that are satisfied by the group Zs. By Lemma 5.4, the words that form the
identities in I" can be chosen to be in canonical form. Consider the following
possibilities:

(a) every identity in I' is standard;
(b) every identity in I' is Fss-consistent.

If (a) does not hold, then the variety V is finitely based by Lemma 5.6.
If (a) holds and (b) does not hold, then the variety V is finitely based by
Lemma 5.7. Hence assume that both (a) and (b) hold. In particular, since
the identities in I are nontrivial, it follows from Remark 5.8(i) that they are
all non-simple. Further, by Lemma 5.11, the variety V is finitely based if
some identity in I' is either non-0O-consistent or non--consistent. Therefore
assume that

(c) every identity in I' is both O-consistent and -consistent.

Let I' = T'y, U F;p where I'y, consists of all special identities from I'. By
Lemma 5.13, the variety QI is either Q or Q{(5.5)} and so is finitely based.
It follows from (a), (b), (c), and Lemma 5.12 that QT'{, = Q({(5.5)}UOUY)
for some © C {6,0;,...} and some set X of special identities. The variety
QO is easily seen to be finitely based. By Lemma 5.13, the variety QX is
either Q or Q{(5.5)} and so is finitely based. Hence the variety QI'y, is
finitely based. Consequently, the variety V. = QI's, N Qng is also finitely
based. ]

PROPOSITION 5.15. Any proper subvariety of Q that does not contain the
group Zso is finitely based.

PROOF. Let V be any proper subvariety of Q with Zs ¢ V. Then V = QI’
for some set I' of nontrivial identities such that
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(a) some identity in I' is not satisfied by the group Zs.

By Lemma 5.4, the words that form the identities in I" can be chosen to be
in canonical form. If some identity in I' is nonstandard, then the variety V
is finitely based by Lemma 5.6. Therefore assume that every identity in I"
is standard. Let I' = I'g U Fg be a disjoint union, where I'y consists of all
identities from I' that are satisfied by the group Zs. Note that Fé # () by
(a). The variety QI'y is a subvariety of Q that contains the group Zs and
so is finitely based by Proposition 5.14.

Let «v: u =~ v be any identity from F’g. Since the group Z, does not sat-
isfy the identity =, it follows from Lemma 2.1(iii) that occ(x,u) # occ(z, v)
(mod 2) for some z € X. It is then routinely shown that the identities (5.1)
and ~ imply the identities

3~ .2

2~ a?, 2yr ~ ayr® ~ ayx (5.8)

so that

(b) Q{~} = Q{(5.8),7}.

Let z1,...,x., be all the letters such that occ(z;,u) # occ(x;, v) (mod 2).
The identity ~ is standard so that sim(u) = sim(v). Now if occ(z;,u) = 1,
then x; € sim(u) = sim(v) and occ(x;, v) = 1, contradicting the choice of z;.
Therefore occ(z;,u),occ(xz;,v) > 2 for all i. Let ¢ denote the substitution

x; — x? for all 4. Then the deductions uyp (iiz) u and vy (53) v hold so
that Q{(5.8),v} = Q{(5.8),7}, where 7 is the identity uy ~ vy. Therefore
Q{~} = Q{(5.8),7} by (b). Now occ(z,up) = occ(x,vp) (mod 2) for all
x € X. Hence by Lemma 2.1(iii), the identity 7 is satisfied by the group Z,.

Since the identity v was arbitrarily chosen from I'y, the construction of ¥
from ~ in the preceding paragraph can be repeated on every identity in Fé to

obtain the set 'y, = {7 | v € 'y }. Therefore QI', = Q{(5.8)} N QI', where

the group Zo satisfies the identities in fé Now the variety Qf’g contains
Zs and so is finitely base§ by Proposition 5.14. Consequently, the variety
V =QI'y N Q{(5.8)} N QLY is also finitely based. |
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