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Abstract. In a previous paper [21] all extensions of Johansson’s minimal logic J with

the weak interpolation property WIP were described. It was proved that WIP is decidable

over J. It turned out that the weak interpolation problem in extensions of J is reducible

to the same problem over a logic Gl, which arises from J by adding tertium non datur.

In this paper we consider extensions of the logic Gl. We prove that only finitely

many logics over Gl have the Craig interpolation property CIP, the restricted interpolation

property IPR or the projective Beth property PBP. The full list of Gl-logics with the

mentioned properties is found, and their description is given. We note that IPR and PBP

are equivalent over Gl. It is proved that CIP, IPR and PBP are decidable over the logic Gl.
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Introduction

Consequence relation is one of central notions in the theory of logical sys-
tems. There is a numerous literature devoted to various aspects of this
notion, in particular, [32, 33]. In the present paper we consider interpola-
tion problem for consequence relations associated with Johansson’s minimal
logic [5].

Interpolation theorem proved by W. Craig [2] in 1957 for the classical
first order logic was a source of a lot of investigations devoted to inter-
polation problem in classical and non-classical logical theories [1, 4]. Now
interpolation is considered as a standard property of logics and calculi like
consistency, completeness and so on. For the intuitionistic predicate logic
and for the predicate version of Johansson’s minimal logic, the interpolation
theorem was proved by K. Schütte [29].
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In this paper we consider some variants of the interpolation property in
extensions of the minimal logic. The minimal logic introduced by I. Johans-
son [5] has the same positive fragment as the intuitionistic logic but has no
special axioms for negation. Unlike the classical and intuitionistic logics,
the minimal logic admits non-trivial theories containing some proposition
together with its negation.

The original definition of interpolation admits different analogs which
are equivalent in the classical logic but are not equivalent in other logics. It
is known that in classical theories the interpolation property is equivalent to
the joint consistency RCP, which arises from the joint consistency theorem
proved by A. Robinson [28] for the classical predicate logic. It was proved
by D. Gabbay [3] that in the intuitionistic predicate logic the full version
of RCP does not hold. But some weaker version of RCP is valid, and this
weaker version is equivalent to CIP in all superintuitionistic predicate logics.

A weak version WIP of the interpolation property was introduced in [14].
In [20] it was proved that WIP is equivalent to some weak version WRP of
Robinson consistency property in all extensions of the minimal logic. In [14]
we noted that all propositional superintuitionistic logics have WIP, although
it does not hold for superintuitionistic predicate logics. Since only finitely
many propositional superintuitionistic logics possess CIP [8], WIP and WRP
are not equivalent to CIP and RCP over the intuitionistic logic. It follows
that WIP is not equivalent to CIP in propositional logics over J. In addition,
WIP is non-trivial in propositional extensions of the minimal logic. There are
continua of propositional J-logics with WIP and of J-logics without WIP [20].

In [19] we defined a logic Gl, which is axiomatized over J by tertium
non datur, and proved that the problem of weak interpolation in J-logics is
reducible to the same problem over Gl. A description of J-logics with WIP
was found in [21]; it turned out that the set of J-logics with WIP is divided
into eight pairwise disjoint intervals. It was proved in that paper that the
weak interpolation property WIP is decidable over the logics Gl and J. Note
that there is a continuum of Gl-logics with WIP and a continuum of Gl-logics
without WIP.

In this paper we concentrate on extensions of the logic Gl. In addition to
CIP and WIP, we consider also the restricted interpolation property IPR and
the projective Beth property PBP. All positively axiomatizable J-logics with
the properties CIP and PBP were described in [11]. We use a description of
J-logics with WIP [21] in order to prove that there are only finitely many Gl-
logics with CIP, IPR or PBP and to describe all of these logics. In particular,
IPR and PBP turn out to be equivalent in all Gl-logics. We show that all
the considered properties are decidable over the logic Gl.
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1. Interpolation and definability

If p is a list of non-logical symbols, let A(p) denote a formula whose all
non-logical symbols are in p, and F(p) the set of all such formulas.

Let L be a logic, �L deducibility relation in L. Suppose that p, q, r are
disjoint lists of non-logical symbols, and A(p,q), B(p, r) are formulas. The
Craig interpolation property CIP and the deductive interpolation property
IPD are defined as follows:

CIP. If L � A(p,q) → B(p, r), then there exists a formula C(p) such
that L � A(p,q) → C(p) and L � C(p) → B(p, r).

IPD. If A(p,q) �L B(p, r), then there exists a formula C(p) such that
A(p,q) �L C(p) and C(p) �L B(p, r).

The restricted interpolation property was introduced in [12]:
IPR. If A(p,q), B(p, r) �L C(p), then there exists a formula A′(p) such

that A(p,q) �L A′(p) and A′(p), B(p, r) �L C(p).
In [14] the weak interpolation property was introduced:
WIP. If A(p,q), B(p, r) �L ⊥, then there exists a formula A′(p) such

that A(p,q) �L A′(p) and A′(p), B(p, r) �L ⊥.

It is clear that WIP is a special case of IPR.

Suppose that p, q, q′ are disjoint lists of variables that do not contain
x and y, q and q′ are of the same length, and A(p,q, x) is a formula. We
define the projective Beth property:

PBP. If A(p,q, x), A(p,q′, y) �L x ↔ y, then A(p,q, x) �L x ↔ B(p)
for some B(p).

A weaker Beth property BP arises from PBP by omitting q and q′.
It was proved by G. Kreisel [7] that all superintuitionistic logics possess

the Beth property BP. The same proof is valid for all J-logics. In addition,
PBP follows from CIP, and IPR follows from PBP in every J-logic [13]. There
is a continuum of J-logics without WIP [20] although all superintuitionistic
logics have WIP [14]. Thus in all extensions of the minimal logic J we have

CIP ⇐⇒ IPD ⇒ PBP ⇒ IPR ⇒ WIP.

Moreover, PBP does not imply IPD, and WIP does not imply IPR even on
the class of superintuitionistic logics [9]. The problem of equivalence of IPR
and PBP in J-logics still remains open; it is proved in [18, 15] that these
properties are equivalent in superintuitionistic, positive and negative logics.

In [8] a description of all propositional superintuitionistic logics with
the Craig interpolation property was obtained. In [9] all superintuitionistic
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logics with the projective Beth properties were found. There are only finitely
many superintuitionistic logics with these properties. All positive logics with
CIP and PBP were described in [11], where a study of these properties was
initiated for extensions of Johansson’s minimal logic, too.

The language of the logic J contains &,∨,→,⊥,	 as primitive; negation
is defined by ¬A = A → ⊥; (A ↔ B) = (A → B)&(B → A). A formula
is said to be positive if contains no occurrences of ⊥. The logic J can be
given by the calculus, which has the same axiom schemes as the positive
intuitionistic calculus Int+, and the only rule of inference is modus ponens:
A,A → B / B. More exactly, J has the following axiom schemes:

1. A → (B → A)

2. (A → (B → C)) → ((A → B) → (A → C))

3. A&B → A

4. A&B → B

5. A → (B → A&B)

6. A → A ∨ B

7. B → A ∨ B

8. (A → C) → ((B → C) → (A ∨ B → C))

By a J-logic we mean an arbitrary set of formulas containing all the
axioms of J and closed under modus ponens and substitution rules. We
denote

Int = J + (⊥ → A), Cl = Int + (A∨¬A), Neg = J +⊥, Gl = J + (A∨¬A).

A logic is non-trivial if it differs from the set of all formulas. A J-logic is
superintuitionistic if it contains the intuitionistic logic Int, and negative if
contains the logic Neg; L is paraconsistent if contains neither Int nor Neg.
One can prove that a J-logic is negative if and only if it is not contained in Cl.
For any J-logic L we denote by E(L) the family of all J-logics containing L.

The problem of weak interpolation in J-logics is reducible to the same
problem in extensions of the logic Gl.

Theorem 1.1. [20] For any J-logic L, the logic L has WIP if and only if
L + (A ∨ ¬A) has WIP.

The denotation Gl is caused by well known Glivenko’s theorem, which
says that a formula ¬A is valid in the intuitionistic logic if and only if it is
valid in the classical logic Cl = Int + (A∨¬A). The following generalisation
of Glivenko’s theorem holds.
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Proposition 1.2. [26] For any J-logic L and any formula A:

L � ¬A ⇐⇒ L + Gl � ¬A.

2. Algebraic semantics

Relational semantics for the logic J and some of its extensions is presented in
[30, 31, 16]. Algebraic semantics for extensions of the minimal logic is built
with the help of so-called J-algebras, i.e. the algebras A = < A; &,∨,→,
⊥,	 > satisfying the conditions:

< A; &,∨,→,	 > is an implicative lattice, i.e. a lattice w.r.t. & and ∨,
with the greatest element 	, where for any x, y.z ∈ A,

z ≤ x → y ⇐⇒ z&x ≤ y,
and ⊥ is an arbitrary element of A.

A J-algebra is said to be a Heyting algebra, or a pseudoboolean algebra [27], if
⊥ is the least element of the set A, and a negative algebra if ⊥ is the greatest
element of A. The one-element J-algebra E is said to be degenerate; it is a
unique J-algebra, which is a negative algebra and a Heyting algebra at the
same time.

A J-algebra A is non-degenerate if it contains at least two elements; A is
well-connected, or strongly compact, if it satisfies the condition x∨ y = 	 ⇔
(x = 	 or y = 	) for all x, y ∈ A. An element Ω of an algebra A is said to
be an opremum of A if it is the greatest among the elements of A different
from 	. By B0 we denote the two-element boolean algebra.

Recall that a non-degenerate algebra A is subdirectly irreducible if it can
not be represented as a subdirect product of factors different from A. An
algebra is finitely indecomposable if it can not be represented as a subdirect
product of finitely many factors different from it.

The following lemma known for Heyting algebras (see, for example, [8])
can easily be extended to J-algebras.

Lemma 2.1. For any J-algebra A:

a) A is finitely indecomposable if and only if the one-element filter ∇ =
{	} is prime, i.e. A is well-connected;

b) A is subdirectly irreducible if and only if A has an opremum.

The proof of the following lemma is analogous to the proof of a similar
lemma for Heyting algebras given in [9].

Lemma 2.2. For any J-algebra A, if a �≤ b in A, then there exist a subdirectly
irreducible B with an opremum Ω and a homomorphism f : A → B such
that f(a) = 	 and f(b) = Ω.
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For a negative algebra A we denote by AΛ a new J-algebra arising from
A by adding a new greatest element 	 = 	AΛ . Thus ⊥AΛ = ⊥A = 	A

becomes an opremum of the algebra AΛ, and the algebra AΛ itself is subdi-
rectly irreducible.

It is clear that A is a sublattice of AΛ. Moreover, for all x, y ∈ AΛ:

x →AΛ y =

⎧
⎨

⎩

	AΛ , if x ≤ y,
x →A y, if x, y ∈ A, x�≤y,

y, if x = 	AΛ , y ∈ A.

It follows easily from the definition

Lemma 2.3. Any algebra A is a homomorphic image of AΛ under a homo-
morphism

f(z) = z&⊥.

The following lemma immediately follows from [13, Proposition 2.5].

Lemma 2.4. Let A and B be negative algebras, C a J-algebra.

(1) A mapping α : AΛ → BΛ is a monomorphism if and only if its
restriction αl onto A is a monomorphism of A to B.

(2) For any homomorphism h : AΛ → C exactly one of the following
conditions is satisfied:

(a) h(⊥AΛ) = 	C and the restriction hl of h onto A is a homomorphism
of A to C;

(b) h(⊥AΛ) �= 	C and h is a monomorphism of AΛ into C.
(3) Let h1 : A → C be a homomorphism. Then C is a negative algebra

and the following mapping is a homomorphism of AΛ to C :

h(x) =
{ 	C, if x = 	AΛ ,

h1(x), if x ∈ A.

It is well known that the family of all J-algebras forms a variety and
there exists a one-to-one correspondence between J-logics and varieties of
J-algebras. If A is a formula and B is an algebra, we say that A is valid in
B and write B |= A if the identity A = 	 is satisfied in B. We write B |= L
instead of (∀A ∈ L)(B |= A).

To any logic L ∈ E(J) there corresponds a variety

V (L) = {A|A |= L}.
Every logic L is characterized by the variety V (L). We say that a logic L is
generated by some class of algebras if the variety V (L) is generated by this
class. If V (L) is generated by an algebra A, we sometimes write L = LA.
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If L ∈ E(Int), then V (L) is a variety of Heyting algebras, and if L ∈
E(Neg), then V (L) is a variety of negative algebras.

It is clear that any intersection of two J-logics is also a J-logic. An ax-
iomatization of the intersection can easily be found from the axiomatization
of the initial logics. For formulas A and B, let us denote by A ∨′ B a dis-
junction A ∨ B′, where B′ is obtained from B by replacing all variables by
new variables not contained in A.

Lemma 2.5. Let L be an intersection of two J-logics L1 and L2. Then

1. L is axiomatizable by all formulas A∨′ B, where A is an axiom of L1 and
B is an axiom of L2;

2. a finitely indecomposable algebra A belongs to V (L) if and only if A ∈
(V (L1) ∪ V (L2)).

Proof. (1) By analogy with Miura’s theorem [24].
(2) Follows from (1) and Lemma 2.1.

For L1 ∈ E(Neg), we denote by L1 ↑ Cl a logic characterized by all
algebras of the form AΛ, where A |= L1. By L1 ⇑ Cl we denote a logic
characterized by the class of algebras of the form AΛ, where A is a finitely
indecomposable algebra in V (L1). In particular, if L1 is the trivial logic For,
then L1 ↑ Cl and L1 ⇑ Cl are equal to Cl.

Note that the definition of L1 ↑ Cl and L1 ⇑ Cl is slightly different from
the definition introduced in [13]. One can easily prove that the definitions
are equivalent.

As an example, we consider the logic Gl = J + (p ∨ ¬p).

Proposition 2.6. [21] The logic Gl coincides with Neg ↑ Cl and is generated
by the class {AΛ| A is a negative algebra}.

In [13] an axiomatization was found for logics of the form L1 ↑ Cl and
L1 ⇑ Cl, where L1 is a negative logic.

Proposition 2.7. [13] For any negative logic L1:

L1 ↑ Cl = Gl + {⊥ → A| A ∈ L1},
L1 ⇑ Cl = (L1 ↑ Cl) + ((⊥ → A ∨ B) → (⊥ → A) ∨ (⊥ → B)).

If L1 = Neg + Ax, then L1 ↑ Cl = Gl + {⊥ → A| A ∈ Ax}.
Proof. The first and the second identities are proved in [13, Corollary
3.5(2) and Theorem 3.4(2)]. The last line follows from the results by S.Odint-
sov [25].
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3. Interpolation, projective Beth property, and amalgama-
tion

Recall [11] that a J-logic has the Craig interpolation property if and only
if the variety V (L) has the amalgamation property AP. In the case of J-
algebras AP is equivalent to the super-amalgamation property SAP. We
recall necessary definitions.

Let V be a class of algebras invariant under isomorphisms. The class V
is said to be amalgamable if it satisfies the following condition AP for any
algebras A,B,C in V :

AP. If A is a common subalgebra of B and C, then there exist D in V
and monomorphisms δ : B → D, ε : C → D such that δ(x) = ε(x) for all
x ∈ A.

The triple (D, δ, ε) is called an amalgam for A,B,C.
Say that a class V has a property SAP (the super-amalgamation prop-

erty) if for any algebras A,B,C in V the condition AP is satisfied and,
moreover, in D the following holds :

δ(x) ≤ ε(y) ⇐⇒ (∃z ∈ A)(x ≤ z and z ≤ y),

δ(x) ≥ ε(y) ⇐⇒ (∃z ∈ A)(x ≥ z and z ≥ y).

A class V has the restricted amalgamation property RAP [12] if the
following is satisfied:

RAP. For any A,B,C ∈ V such that A is a common subalgebra of
algebras B and C, there exist D in V and homomorphisms δ : B → D,
ε : C → D such that δ(x) = ε(x) for all x ∈ A and the restriction δ′ of δ
onto A is a monomorphism.

In another way the notion of restricted amalgamation was defined in
[9, 11]: we say that a class V has the property RAP∗ if AP is satisfied for
any subdirectly irreducible algebras A,B,C having the same opremum.

A class V of algebras possesses strong epimorphisms surjectivity SES if
the following condition is satisfied:

SES. For any A,B in V such that A is a subalgebra of B, and for any
b ∈ B − A there exist C ∈ V and homomorphisms g : B → C, h : B → C
such that g(x) = h(x) for all x ∈ A and g(b) �= h(b).

An algebraic equivalent of the weak interpolation property is found in
[20]. We define the weak amalgamation property for a class V of J-algebras.

WAPJ. For any A,B,C ∈ V and monomorphisms β : A → B, γ : A →
C there exist an algebra D in V and homomorphisms δ : B → D, ε : C → D
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such that δβ(x) = εγ(x) for all x ∈ A, where ⊥ �= 	 in D whenever ⊥ �= 	
in A.

A variety of J-algebras is said to be weakly amalgamable if it has the
property WAPJ.

Note that the definition introduced above differs from the definition of a
weak amalgamation property WAP considered in [17]. The property WAP
is a particular case of WAPJ.

Note that if a class V is closed under isomorphisms then WAPJ is equiv-
alent to the following condition:

For any B,C ∈ V with a common subalgebra A, there exist an algebra
D in V and homomorphisms δ : B → D, ε : C → D such that δ(x) = ε(x)
for all x ∈ A, where ⊥ �= 	 in D whenever ⊥ �= 	 in A.

Theorem 3.1. [20] Let L be a J-logic. Then L has WIP if and only if V (L)
has WAPJ.

The following theorems were proved in [11].

Theorem 3.2. For any logic L in E(J) the following are equivalent:

1. L possesses the Craig interpolation property;

2. V (L) is amalgamable;

3. V (L) has SAP;

4. the condition AP is satisfied for all finitely indecomposable A,B,C in
V (L).

Theorem 3.3. For any logic L in E(J) the following are equivalent:

1. L has the projective Beth property;

2. V (L) has SES;

3. V (L) has RAP∗ and the class FI(V (L)) of finitely indecomposable alge-
bras of V (L) has SES.

We add that from the description of all superintuitionistic and negative
logics with the interpolation property found in [8] and in [11], it follows

Theorem 3.4. For any logic L in E(Int) or E(Neg) the following are equiv-
alent:

1. the variety V (L) is amalgamable;

2. the class of finitely indecomposable algebras of V (L) is amalgamable.
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We do not know if this statement holds for all extensions of the mini-
mal logic.

As for the restricted interpolation property, it holds

Theorem 3.5. For any logic L in E(J) the following are equivalent:

1. L has IPR;

2. V (L) has RAP;

3. V (L) has RAP∗;

4. for any subdirectly irreducible J-algebras A,B,C in V (L) having a com-
mon opremum Ω, if A is a common subalgebra of B and C, then there
exist a subdirectly irreducible algebra D in V (L) and monomorphisms
δ : B → D, ε : C → D such that δ(x) = ε(x) for all x ∈ A and δ(Ω) is
an opremum of D.

We see that for all varieties of J-algebras, RAP∗ follows from PBP, so
it holds

Proposition 3.6. For all extensions of the minimal logic, CIP implies PBP
and PBP implies IPR.

We recall some known facts on interpolation properties in J-logics.

Lemma 3.7. If a J-logic L has CIP, PBP or IPR, then Lneg = L + ⊥ also
has the same property.

Proof. For CIP and PBP the statement is proved in [11]. The proof for
IPR is by analogy.

Proposition 3.8. [9] There exist exactly 16 superintuitionistic logics with
the projective Beth property PBP; among them exactly 8 logics have CIP.

The list of superintuitionistic logics with CIP includes the logics Int,
LC, LS, Cl and also the trivial logic For. The logic Cl is the greatest
among consistent superintuitionistic logics, and the logic LS is the great-
est among consistent superintuitionistic logics different from Cl. The logic
Cl is characterized by a two-element boolean algebra B0, the logic LS =
Int+(A ∨ (A → (B ∨ ¬B))) + (¬A ∨ ¬¬A) by a three-element linearly or-
dered Heyting algebra C1, and the logic LC = Int+((A → B)∨ (B → A)) by
all linearly ordered Heyting algebras. An axiomatization and more detailed
description of all the sixteen logics with PBP is given in [9].
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Proposition 3.9. [11] There are exactly seven negative logics with PBP,
namely:

(1) Neg,
(2) NC = Neg + ((A → B) ∨ (B → A)),
(3) NE = Neg + (A ∨ (A → B)),
(4) For = Neg + A,
(5) Δ(NC) = Neg + (C ∨ (C → (A → B) ∨ (B → A))),
(6) Δ(NE) = Neg + (C ∨ (C → A ∨ (A → B))),
(7) Neg + (A ∨ (A → B) ∨ (B → C)).

The logics (1) – (4) have CIP and the others do not possess CIP.

The logic NC is characterized by all linearly ordered negative algebras,
and the logic NE by a two-element negative algebra. The logic (7) is charac-
terized by a three-element negative algebra. One can find more detail in [11].

Proposition 3.10. For all superintuitionistic and negative logics, the prop-
erties IPR and PBP are equivalent.

Proof. For superintuitionistic logics this statement is the main result of
[18]. For negative logics, the result immediately follows from the equivalence
of these properties in positive logics, which was proved in [15].

All superintuitionistic and negative logics have the weak interpolation
property WIP. But it can not be extended to all J-logics [21].

Say that a property P is decidable over a logic L if there is an algorithm
which, for any finite set Ax of axiom schemes, decides if the logic L + Ax
has the property P.

Proposition 3.11. The properties CIP, PBP and IPR are decidable over
the logics Int and Neg. The property WIP is decidable over J.

Proof. Decidability of CIP and PBP on the classes of superintuitionistic,
positive and negative calculi was proved in [10, 11]. From Proposition 3.10,
it follows that IPR is also decidable in these classes. Decidability of WIP in
extensions of the logic J is proved in [21].

4. Description of J-logics with WIP

In this section we give more detailed description of J-logics with WIP. The-
orem 1.1 reduces consideration of WIP in J-logics to studying extensions of
the logic Gl.
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Recall denotations of Section 2. For any negative algebra A, we denote
by AΛ a new J-algebra, in which ⊥ is an opremum and for any x ∈ AΛ the
condition

x ∈ A ⇐⇒ x ≤ ⊥
is satisfied. For any J-logic L we define a class

Λ(L) = {AΛ| A is a negative algebra and AΛ ∈ V (L)}.
It is easily seen that the following holds:

Lemma 4.1. A class Λ(L) is empty if and only if L is a negative logic.

In [20] we have proved that J-logic L has WIP if and only if the class
Λ(L) is amalgamable. The following proposition shows that classes Λ(L)
divide the family of Gl-logics into intervals. It gives a useful classification of
logics over Gl, which supplies a classification of J-logics given in [25].

Proposition 4.2. [20] Let a J-logic L0 be generated by the class Λ(L0).
Then L0 contains Gl and for any L ∈ E(Gl) the equivalence holds:

Λ(L) = Λ(L0) ⇐⇒ Neg ∩ L0 ⊆ L ⊆ L0.

Now we consider some special extensions of Gl. An axiomatization of
these logics of the forms L ↑ Cl and L ⇑ Cl, where L is a negative logic, is
presented in Proposition 2.7. The logic Gl = Neg ↑ Cl is characterized by all
algebras of the form AΛ, where A is a negative algebra (see Proposition 2.6).

The key role in description of J-logics with WIP [21] belongs to the
following list SL consisting of eight Gl-logics:

For, Cl, (NE ↑ Cl), (NC ↑ Cl), (Neg ↑ Cl), (NE ⇑ Cl), (NC ⇑ Cl), (Neg ⇑ Cl).

Each of these logics L is generated by the class Λ(L).

Proposition 4.3. [21] Let L be any Gl-logic of the list SL. Then L has CIP,
and the classes V (L) and Λ(L) are amalgamable.

Further results of this section are proved in [21]. In that paper all log-
ics over Gl with WIP are described, and an effective criterion is found for
verifying WIP in J-logics.

Theorem 4.4. For any logic L in E(J) the following are equivalent:

1. L has WIP;

2. the class Λ(L) is amalgamable;
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3. Λ(L) = Λ(L0) for some logic L0 in the list SL.

Proof. Equivalence of (1) and (2) is proved in [20, Theorem 6.2], and
equivalence of (1) and (3) in [21].

The property WIP is non-trivial in propositional extensions of the logic
Gl. Both the sets of J-logics with WIP and of J-logics without WIP have
the cardinality of the continuum. The former set contains all negative logics,
i.e. a continual family. The latter one has at least the same cardinality as
the set of negative logics different from Neg, NC,NE, For. Nevertheless, we
have

Theorem 4.5. [21] The property WIP is decidable over J, i.e. there is an
algorithm which, for any finite set Ax of axiom schemes, decides if the logic
J + Ax has WIP.

5. CIP, IPR and PBP over Gl

The logics of the list SL play a key role in description of Gl-logics possessing
WIP. The following theorem is proved in [21, Theorem 8.4].

Theorem 5.1. [21] A logic L over Gl has WIP if and only if it is repre-
sentable in a form L = Lneg ∩ L0, where Lneg = L + ⊥ is a negative logic
and L0 ∈ SL.

In this section we find a representation for Gl-logics with CIP, IPR and
PBP which is similar to Theorem 5.1.

Proposition 5.2. Let L1 be a negative logic, L2 any extension of J. If L1

and L2 have CIP, then L1 ∩ L2 also has CIP.

Proof. Due to Theorem 3.2 it is sufficient to prove amalgamability of the
variety V (L1 ∩ L2), and it is equivalent to existence of an amalgam for any
finitely indecomposable algebras of this variety.

Let us take some finitely indecomposable algebras A,B,C ∈ V (L1∩L2),
where A is a common subalgebra of B and C. If none of these algebras is
negative, then all of them belong to V (L2) and there is an amalgam in
V (L2), and so in V (L1 ∩ L2).

If one of these algebras is negative, then the others are negative too. Note
that in this case each of these algebras belongs to V (L1)∪V (L2 +⊥). Each
of these two varieties is amalgamble because the logic L2 + ⊥ also has CIP.
Recall that there are only four amalgamable varieties of negative algebras,
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and they are comparable with respect to set-theoretic inclusion. Therefore,
V (L1) ∪ V (L2 + ⊥) is equal either to V (L1) or to V (L2 + ⊥), and so there
exists an amalgam of the algebras A,B,C in V (L1∩L2). Thence the variety
V (L1 ∩ L2) is amalgamable.

Theorem 5.1 gives a convenient representation for Gl-logics with WIP. A
similar representation is also useful for other J-logics. We have an easy

Lemma 5.3. Any J-logic L is representable in the form L = Lneg ∩ L1 for
a suitable J-logic L1. If L = Lneg ∩ L1, then any negative algebra in V (L1)
belongs to the variety V (Lneg).

Proof. Evidently, one can take L as L1. Let L = Lneg∩L1, A be a negative
algebra in V (L1). Then A ∈ V (L) and hence A ∈ V (Lneg).

Proposition 5.4. Let L and L1 be J-logics, and L = Lneg ∩ L1.

(1) If Lneg and L1 have IPR, then L has IPR.
(2) If Lneg and L1 have PBP, then L has PBP.

Proof. (1) Let Lneg and L1 have IPR. We apply Theorem 3.5 and prove
that V (L) possesses the property RAP∗. Let A,B,C be subdirectly irre-
ducible algebras in V (L) having a common opremum, and A be a common
subalgebra of B and C. If one of the three algebras is negative, then the
others are also negative, and so all the three algebras belong to the variety
V (Lneg), and thus have an amalgam in V (Lneg) and in V (L).

Let the algebras are not negative. Then they belong to the variety V (L1),
which possesses the property RAP∗. Therefore, there is an amalgam in
V (L1) and in V (L).

(2) Let Lneg and L1 have PBP. We apply Theorem 3.3. Then V (Lneg)
and V (L1) have the property RAP∗; by the item (1) V (L) has the same
property. Now we show that the class of finite indecomposable algebras
in V (L) possesses the property SES. Let A,B be finitely indecomposable
algebras in V (L), A be a subalgebra of B and b ∈ B − A.

If B is a negative algebra, then A,B ∈ V (Lneg), and the required algebra
and monomorphisms exist in V (Lneg), and so in V (L). If B is not a negative
algebra, then A,B ∈ V (L1), and the required algebra and monomorphisms
exist in V (L1), and so in V (L).

Theorem 5.5. Let L be an extension of Gl, and SL = {For, Cl} ∪ {(L1 ↑
Cl), (L1 ⇑ Cl) | L1 ∈ {Neg, NC, NE}}.
1. L has CIP if and only if L = Lneg ∩ L0, where Lneg has CIP, L0 ∈ SL.
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2. L has IPR if and only if L = Lneg ∩ L0, where Lneg is a logic with IPR,
L0 ∈ SL.

3. L has PBP if and only if L = Lneg ∩L0, where Lneg is a logic with PBP,
L0 ∈ SL.

Proof. Let L have CIP, IPR or PBP. Then Lneg has the same property by
Lemma 3.7. In addition, L has WIP, and by Theorem 5.1 L = Lneg ∩ L0,
where L0 is some logic in SL.

Conversely, all the logics of the list SL have CIP by Proposition 4.3, and
thus they possess also the properties IPR and PBP. Let us take L0 ∈ SL.

If L = Lneg ∩ L0 and Lneg is a logic with CIP, then L has CIP by
Proposition 5.2. If Lneg possesses the property IPR or PBP, then L has the
same property by Proposition 5.4.

Corollary 5.6. 1. IPR and PBP are equivalent over Gl.

2. There are only finitely many logics with IPR over Gl.

Proof. (1) In [15] the equivalence of the properties IPR and PBP was
proved for positive logics containing the positive fragment Int+ of the intu-
itionistic logic.

There is a one-to-one correspondence between the families of positive
and of negative logics. For any positive formula A, with the positive logic
Int+ +A a negative logic Neg +A is associated. Conversely, for any formula
A one can build a positive formula A′ by replacing all occurrences of ⊥ in
A by 	. Then Neg � A ↔ A′. Therefore the logics Neg + A and Neg + A′

coincide, and the positive fragment of Neg + A is equal to Int+ + A′. It is
easy to see that a logic Neg + A has CIP, IPR or PBP if and only if its
positive fragment has the same property. Thence the equivalence of IPR
and PBP in negative logics follows from the equivalence of these properties
in positive logics, which was – as we have mentioned – proved in [15].

(2) In Proposition 3.9 all extensions of the logic Neg with the property
PBP were listed. By the item (1) we obtain that the logic Neg has exactly
seven extensions with the property IPR. By Theorem 5.5 the number of
logics with IPR over Gl is finite.

Theorem 5.7. 1. A logic L over Gl has CIP, PBP or IPR if and only if L
has WIP and Lneg = L + ⊥ has CIP, PBP or IPR, respectively.

2. The properties CIP, IPR and PBP are decidable over Gl.

Proof. (1) Let L have CIP, PBP or IPR. Then Lneg has the same property
by Lemma 3.7. In addition, L has WIP.
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Conversely, let L have WIP. By Theorem 5.1 it is representable in the
form

L = Lneg ∩ L0

for some logic L0 in the list SL. If Lneg = L+⊥ has CIP, PBP or IPR, then
L has the same property by Theorem 5.5.

(2) Let a logic L be obtained by adding finitely many axiom schemes Ax
to Gl. Denote their conjunction by A. By Theorem 4.5 one can check if the
logic L = Gl + A has the property WIP. If it does not possess WIP, then it
has neither CIP, nor IPR, nor PBP.

Assume that this logic has WIP. Due to the item (1), it remains to find
out if the logic Lneg = Neg + (A ∨ ¬A) + A = Neg + A has the required
property CIP, IPR or PBP. Decidability of CIP, PBP and IPR in negative
logics is stated in Proposition 3.11.

Now we list all the logics with CIP over Gl.

Theorem 5.8. A logic L over Gl has CIP if and only if it is in the list
ISL consisting of the following twenty logics: For, NE, NC,Neg, Cl, NE ∩ Cl,
NC ∩ Cl, Neg ∩ Cl, (NE ⇑ Cl),NC ∩ (NE ⇑ Cl), Neg ∩ (NE ⇑ Cl), (NE ↑ Cl),
NC ∩ (NE ↑ Cl),Neg ∩ (NE ↑ Cl), (NC ⇑ Cl), Neg ∩ (NC ⇑ Cl), (NC ↑ Cl),
Neg ∩ (NC ↑ Cl), (Neg ⇑ Cl), Gl = (Neg ↑ Cl).

Proof. We apply Theorem 5.5. Recall that there are only four negative
logics with CIP, namely, For, NE, NC, Neg. Further, if L = Lneg ∩ L0, then
Lneg ⊆ L0(neg). Therefore, Lneg ⊇ L0(neg) implies Lneg = L0(neg) and Lneg ∩
L0 = L0.

Due to Theorem 5.5 we also can find a list of all Gl-logics with IPR
and PBP. An axiomatization of all these logics can be obtained from the
axiomatization of negative logics with PBP given in Theorem 3.9 and of
logics of the list SL (see Proposition 2.7) by Lemma 2.5(1) on axiomatization
of the intersection of two J-logics.

It follows from Theorem 2.1 that the property WIP is preserved by adding
the axiom (A ∨ ¬A) to any J-logic with WIP. We prove that the properties
CIP, PBP and IPR are also preserved.

Proposition 5.9. Let a J-logic L have CIP, PBP or IPR. Then the logic
L + (A ∨ ¬A) also has the same property.

Proof. Denote L′ = L + (A ∨ ¬A).
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Let L have CIP, PBP or IPR. Then L has WIP and by Theorem 1.1 L′

also has WIP. By Theorem 5.1 L′ = L′
neg ∩L0, where L0 is some logic in SL.

Further,
L′

neg = L + (A ∨ ¬A) + ⊥ = L + ⊥ = Lneg.

By Lemma 3.7 the logic Lneg also has CIP, PBP or IPR, respectively. Then
L′ has the same property by Theorem 5.5.

6. Conclusions

In the previous section we described all the extensions of the logic Gl with
the properties CIP, IPR or PBP. It turned out that there are only finitely
many Gl-logics with these properties. Moreover, the properties CIP, IPR
and PBP are decidable over Gl. In addition, IPR and PBP are equivalent
in all Gl-logics.

As for the whole family of J-logics, we know that the weak interpolation
property WIP is decidable, and there is a continuum of J-logics with WIP
and a continuum of J-logics without WIP. But the problem of interpolation
is not yet solved, and the following problems are still open:

1. How many J-logics have CIP, IPR or PBP?
2. Are these properties decidable over J?
3. Are IPR and PBP equivalent in the family of all J-logics?
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