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Abstract. We generalize Priestley duality for distributive lattices to a duality for

distributive meet-semilattices. On the one hand, our generalized Priestley spaces are easier

to work with than Celani’s DS-spaces, and are similar to Hansoul’s Priestley structures. On

the other hand, our generalized Priestley morphisms are similar to Celani’s meet-relations

and are more general than Hansoul’s morphisms. As a result, our duality extends Hansoul’s

duality and is an improvement of Celani’s duality.
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1. Introduction

In the study of algebras related to non-classical logics, semilattices are al-
ways present in the background. Each of residuated lattices, MV-algebras,
Heyting algebras, Boolean algebras, and modal algebras has a semilattice
reduct; often the semilattice reduct is distributive. Our aim is to give a
Priestley style duality for distributive semilattices.

Topological representation of distributive semilattices goes back to
Stone’s pioneering work [13]. For distributive join-semilattices with bottom
it was worked out in detail in Grätzer [7, Sec. II.5, Thm. 8]. A full dual-
ity between meet-semilattices with top (which are dual to join-semilattices
with bottom) and certain ordered spectral-like topological spaces was de-
veloped by Celani [3]. The main novelty of [3] was the characterization of
meet-semilattice homomorphisms preserving top by means of certain binary
relations. But the ordered topological spaces of [3] are not necessarily Haus-
dorff and so are difficult to work with. On the other hand, Hansoul [8, 9]
developed rather nice Priestley style duals of bounded join-semilattices. He
also gave a dual characterization of join-semilattice homomorphisms preserv-
ing all existing finite meets, but had no dual analogue of all join-semilattice
homomorphisms.

In this paper we develop a full Priestley style duality for distributive
meet-semilattices and meet-semilattice homomorphisms. We obtained our
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duality independently from Hansoul, but it turns out that our generalized
Priestley spaces are equal to his Priestley structures. In addition, our gen-
eralized Priestley morphisms are similar to Celani’s meet-relations, and pro-
vide dual description of meet-semilattice homomorphisms. In our setting,
meet-semilattice homomorphisms preserving all existing finite joins are char-
acterized by means of functional generalized Priestley morphisms. Thus, our
duality is an improvement of Celani’s duality and extends Hansoul’s duality.
Since our work is in the dual setting of distributive meet-semilattices and our
approach is different from Hansoul’s, we present our results on generalized
Priestly spaces in full detail. However, we give a detailed comparison with
Hansoul’s and Celani’s work at the end of the paper.

The paper is organized as follows. In Section 2 we recall some basic facts
about distributive meet-semilattices. We also discuss filters and ideals of
distributive meet-semilattices, and recall the basics of Priestley duality for
bounded distributive lattices. In Section 3 we introduce the distributive en-
velope D(L) of a distributive meet-semilattice L, and relate filters and ideals
of L to filters and ideals of D(L). We also introduce sup-homomorphisms,
which are dual to Hansoul’s homomorphisms, and provide an abstract char-
acterization of D(L). In Section 4 we introduce some of the main ingredients
of our duality such as Frink ideals and optimal filters of L, and give a detailed
account of their main properties. The introduction of optimal filters is one
of the crucial points of our development. They correspond to prime filters
of D(L). It is optimal filters and not prime filters that serve as points of the
dual space of L, which allows us to prove tha t the Priestley-like topology
on the dual of L is compact, thus providing an improvement of [7, 3], where
the dual of L was constructed by means of prime filters of L. In Section 5
we introduce generalized Priestley spaces, prove their main properties, and
provide a representation theorem for bounded distributive meet-semilattices
by means of generalized Priestley spaces. In Section 6 we introduce general-
ized Priestley morphisms and show that the category of bounded distributive
meet-semilattices and meet-semilattice homomorphisms is dually equivalent
to the category of generalized Priestley spaces and generalized Priestley mor-
phisms. In Section 7 we show that the subclasses of generalized Priestley
morphisms which dually correspond to sup-homomorphisms can be charac-
terized by means of special functions between generalized Priestley spaces,
which we call strong Priestley morphisms. In Section 8 we show how our
duality works by giving dual descriptions of F rink ideals, ideals, filters,
and 1-1 and onto homomorphisms. In Section 9 we show how to adjust our
technique to handle the non-bounded case. Finally, in Section 10 we briefly
compare our work with that of Grätzer, Celani, and Hansoul.
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The main findings of this paper were reported at the International Work-
shop on Topological Methods in Logic, June 3–5, 2008, Tbilisi, Georgia. The
paper is a condensed version of [1], which incorporates our dualities for dis-
tributive meet-semilattices as well as for implicative semilattices, but is too
long for a journal publication. Our duality for implicative semilattices can
be found in [2]. In order to keep the paper relatively short, we opted to skip
some of the proofs and refer the interested reader to [1].

2. Preliminaries

A meet-semilattice is a commutative idempotent semigroup 〈S, ·〉. As usual,
we denote · by ∧, and consider the partial order ≤ on S given by a ≤ b iff a =
a∧b. Then a∧b is the greatest lower bound of {a, b} and each nonempty finite
subset of S has a greatest lower bound. Below we will be interested in meet-
semilattices with the greatest element �, i.e., in commutative idempotent
monoids 〈M,∧,�〉. Let M denote the category of meet-semilattices with �
and meet-semilattice homomorphisms preserving �.

Meet-semilattices serve as a natural generalization of lattices. Similarly,
distributive meet-semilattices serve as a natural generalization of distributive
lattices. A meet-semilattice L is distributive if for each a, b1, b2 ∈ L with
b1 ∧ b2 ≤ a, there exist c1, c2 ∈ L such that b1 ≤ c1, b2 ≤ c2, and a = c1 ∧ c2.
As follows from [7, Sec. II.5, Lem. 1], a lattice 〈L,∧,∨〉 is distributive iff
the meet-semilattice 〈L,∧〉 is distributive. Let DM denote the category of
distributive meet-semilattices with � and meet-semilattice homomorphisms
preserving �. Obviously DM ⊂ M. However, DM is not a variety and the
variety generated by DM is M. In fact, M is generated by the two element
meet-semilattice 2 = {⊥,�} [10].

For a poset P and A ⊆ P let

↑A = {x ∈ P : ∃a ∈ A with a ≤ x} and ↓A = {x ∈ P : ∃a ∈ A with x ≤ a}.

If A is the singleton {a}, then we write ↑a and ↓a instead of ↑{a} and ↓{a},
respectively. We call A an upset (resp. downset) if A = ↑A (resp. A = ↓A).

Let L be a meet-semilattice. A nonempty subset F of L is a filter if (i)
it is an upset and (ii) a, b ∈ F implies a ∧ b ∈ F . We call a filter F of L
proper if F �= L. Similar to lattices, we have that L is a filter of L, and if
L has a top element, then an arbitrary intersection of filters of L is again a
filter of L. Therefore, for each X ⊆ L, there exists a least filter containing
X, which we call the filter generated by X and denote by [X). It is obvious
that

a ∈ [X) iff there exists a finite Y ⊆ X such that
∧

Y ≤ a.
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In particular, the filter generated by x ∈ L is the upset ↑x. We also point
out that if X = ∅, then

∧
X = �, and so [X) = {�}.

Let F(L) denote the set of filters of L. Obviously the structure
〈F(L),∩,∨〉 forms a lattice, where F1 ∨ F2 = [F1 ∪ F2). In particular,
↑a ∨ ↑b = ↑(a ∧ b). A meet-semilattice L is distributive iff the lattice
〈F(L),∩,∨〉 is distributive (c.f. [7, Sec. II.5, Lem. 1]).

A proper filter F of a meet-semilattice L is meet-prime if it is a prime
element of the lattice F(L); that is, if for any two filters F1, F2 of L with
F1 ∩ F2 ⊆ F , we have F1 ⊆ F or F2 ⊆ F . Meet-prime filters serve as an
obvious generalization of prime filters of a lattice because a filter of a lattice
L is prime iff it is meet-prime. From now on we will call meet-prime filters
of a meet-semilattice simply prime.

Since in a meet-semilattice L the join of two elements of L may not
exist, the notion of an ideal of L needs to be adjusted appropriately. There
are several notions of an ideal of a poset in the literature. We will use the
following one: A nonempty subset I of a meet-semilattice L is an ideal if
it is a downset which is updirected (if a, b ∈ I, then there exists c ∈ I with
a, b ≤ c). An ideal I is proper if I �= L. In lattices, ideals coincide with
lattice ideals.

For a subset A of a meet-semilattice L, let Au denote the set of up-
per bounds of A, and let Al denote the set of lower bounds of A. Then a
nonempty subset I of L is an ideal iff for each a, b ∈ L we have a, b ∈ I
iff {a, b}u ∩ I �= ∅; this last condition is equivalent to saying that for each
a, b ∈ L we have a, b ∈ I iff (↑a∩↑b)∩I �= ∅. We note that if L has top, then
L itself is always an ideal. However, unlike the case with filters, a nonempty
intersection of a family of ideals may not be an ideal as the following example
shows.

Example 2.1. Let L be the meet-semilattice shown in Fig. 1. Then each
↓cn is an ideal of L, but

⋂
n∈ω ↓cn = {⊥, a, b} is not an ideal of L.

Nevertheless, we have the following analogue of the prime filter lemma for
distributive meet-semilattices. For a proof we refer to [7, Sec. II.5, Lem. 2]
or [3, Thm. 8].

Lemma 2.2 (Prime Filter Lemma). Suppose that L is a distributive meet-
semilattice. If F is a filter and I is an ideal of L with F ∩ I = ∅, then there
exists a prime filter P of L such that F ⊆ P and P ∩ I = ∅.

As a corollary, it immediately follows that each proper filter F of a
distributive meet-semilattice L is the intersection of the prime filters of L
containing F .
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We call an ideal I of L prime if it is proper and for each a, b ∈ L with
a ∧ b ∈ I, either a ∈ I or b ∈ I. We have the following analogue of a
well-known theorem for lattices.

Proposition 2.3. A subset F of a meet-semilattice L is a prime filter iff
I = L− F is a prime ideal.

Proof. If F is a prime filter of L, then it is nonempty and proper. Therefore
I = L − F �= ∅, L. Since F is an upset, I is a downset. To show that I is
updirected, suppose that a, b ∈ I. If (↑a ∩ ↑b) ∩ I = ∅, then ↑a ∩ ↑b ⊆ F .
Since F is prime, ↑a ⊆ F or ↑b ⊆ F , so either a /∈ I or b /∈ I, a contradiction.
Thus, (↑a∩↑b)∩I �= ∅, and so I is an ideal. Finally, to show that I is prime,
suppose that a ∧ b ∈ I. Then a ∧ b /∈ F . Since F is a filter, either a /∈ F or
b /∈ F . Thus, a ∈ I or b ∈ I. Conversely, if I = L− F is a prime ideal, then
I �= ∅, L, and so F �= ∅, L. Since I is a downset, F is an upset. Moreover, if
a, b ∈ F , then a, b /∈ I, and since I is prime, a ∧ b /∈ I. Thus, a ∧ b ∈ F , and
so F is a filter. Finally, to show that F is prime, suppose that F1 ∩F2 ⊆ F .
If F1 �⊆ F and F2 �⊆ F , then F1 ∩ I �= ∅ and F2 ∩ I �= ∅. Therefore, there
exist a1 ∈ F1 ∩ I and a2 ∈ F2 ∩ I. Since I is updirected, there is c ∈ I with
a1, a2 ≤ c. It follows that c ∈ F ∩ I, a contradiction. Thus, either F1 ⊆ F
or F2 ⊆ F , and so F is prime.

We conclude this preliminary section by a brief overview of Priestley
duality for bounded distributive lattices. We recall that a Priestley space is
an ordered topological space X = 〈X, τ,≤〉 which is compact and satisfies
the Priestley separation axiom: if x �≤ y, then there is a clopen (closed and
open) upset U of X such that x ∈ U and y �∈ U . It follows from the Priestley
separation axiom that X is in fact Hausdorff and that clopen sets form a
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basis for the topology. Thus, each Priestley space is a Stone space (compact,
Hausdorff, and zero-dimensional).

For two Priestley spaces X and Y , a morphism f : X → Y is a Priestley
morphism if f is continuous and order-preserving. We denote the category
of Priestley spaces and Priestley morphisms by PS. Let also BDL denote
the category of bounded distributive lattices and bounded lattice homomor-
phisms. Then we have that BDL is dually equivalent to PS [11]. We recall
that the functors (−)∗ : DL → PS and (−)∗ : PS → DL establishing the
dual equivalence are constructed as follows. If L is a bounded distribu-
tive lattice, then L∗ = 〈X, τ,≤〉, where X is the set of prime filters of L,
≤ is set-theoretic inclusion, and τ is the topology generated by the subbasis
{ϕ(a) : a ∈ L} ∪ {ϕ(b)c : b ∈ L}, where ϕ(a) = {x ∈ X : a ∈ x} is the Stone
map and (−)c denotes set-theoretic complement. If h ∈ hom(L,K), then
h∗ = h−1. If X is a Priestley space, then X∗ is the lattice of clopen upsets
of X, and if f ∈ hom(X,Y ), then f∗ = f−1. It follows from [11, 12] that
the functors (−)∗ and (−)∗ are well-defined, and that they establish a dual
equivalence of BDL and PS.

3. The Distributive envelope

Let L be a meet-semilattice and let Pr(L) denote the set of prime filters of
L. We define the map σ : L → P(Pr(L)) by σ(a) = {x ∈ Pr(L) : a ∈ x}
for each a ∈ L. When convenient we will write σL. The next theorem goes
back to Stone [13] and we leave the proof to the interested reader (but see
[1, Thm. 4.1]).

Theorem 3.1. If L is a meet-semilattice, then σ : L → P(Pr(L)) is a meet-
semilattice homomorphism. If L has top, then σ preserves top, and if L has
bottom, then σ preserves bottom. In addition, if L is distributive, then σ is
a meet-semilattice embedding.

The map σ has the following important property.

Lemma 3.2. For a distributive meet-semilattice L and a1, . . . , an, b ∈ L we
have:

n⋂

i=1

↑ai ⊆ ↑b iff σ(b) ⊆
n⋃

i=1

σ(ai) iff
n⋂

i=1

↑σ(ai) ⊆ ↑σ(b).

Proof. We only prove the first equivalence because the second one is obvi-
ous. First suppose that

⋂n
i=1 ↑ai ⊆ ↑b and x ∈ σ(b). Then

⋂n
i=1 ↑ai ⊆ x, and

as x is a prime filter of L, there exists 1 ≤ i ≤ n such that ↑ai ⊆ x. There-
fore, x ∈

⋃n
i=1 σ(ai), and so σ(b) ⊆

⋃n
i=1 σ(ai). Conversely, suppose that
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σ(b) ⊆
⋃n

i=1 σ(ai) and c ∈
⋂n

i=1 ↑ai. Then σ(ai) ⊆ σ(c) for each 1 ≤ i ≤ n.
Therefore,

⋃n
i=1 σ(ai) ⊆ σ(c), and so σ(b) ⊆ σ(c). Thus, c ∈ ↑b, and we

conclude that
⋂n

i=1 ↑ai ⊆ ↑b.

Let D(L) denote the sublattice of the lattice Up(Pr(L)) of upsets of
Pr(L) generated by σ[L]. Since σ[L] is closed under finite intersections, for
each A ∈ Up(Pr(L)) we have:

A ∈ D(L) iff A =

n⋃

i=1

σ(ai) for some ai ∈ L.

It follows that the pair (D(L), σ) has the following three properties: (i) D(L)
is a distributive lattice, (ii) σ[L] is join-dense inD(L), and (iii) σ : L → D(L)
is a meet-semilattice embedding with the property stated in Lemma 3.2. We
will see that these three properties give an abstract characterization of D(L).
Whenever convenient we will identify a distributive meet-semilattice L with
σ[L] and consider L as a join-dense ∧-subalgebra of D(L).

Definition 3.3. For a distributive meet-semilattice L, we call D(L) the
distributive envelope of L.

Let L and K be distributive meet-semilattices and let h : L → K be a
meet-semilattice homomorphism. If there exist a, b ∈ L such that a∨b exists
in L and h(a)∨h(b) exists in K, it is not necessary that h(a∨b) = h(a)∨h(b).
Therefore, h may not be extended to a lattice homomorphism from D(L)
to D(K). We introduce a stronger notion of a homomorphism between dis-
tributive meet-semilattices, which we call a sup-homomorphism. We show
that sup-homomorphisms preserve all existing finite joins and can be ex-
tended to lattice homomorphisms between the corresponding distributive
envelopes. We also give an abstract characterization of the distributive en-
velope by means of sup-homomorphisms, and prove that the category of dis-
tributive lattices and lattice homomorphisms is a reflective subcategory of
the category of distributive meet-semilattices and sup-homomorphisms. The
notion of sup-homomorphism is dual to Hansoul’s notion [8, 9] of morphism
for distributive join-semilattices, which is a join-semilattice homomorphism
preserving all existing finite meets.

Definition 3.4. Let L and K be distributive meet-semilattices. A meet-
semilattice homomorphism h : L → K is a sup-homomorphism if for each
a1, . . . , an, b ∈ L we have:

n⋂

i=1

↑ai ⊆ ↑b implies

n⋂

i=1

↑h(ai) ⊆ ↑h(b). (1)
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By Lemma 3.2, σ : L → D(L) is a sup-homomorphism.

Proposition 3.5. Let L and K be distributive meet-semilattices and let
h : L → K be a meet-semilattice homomorphism. Then h is a sup-homo-
morphism iff h preserves all existing finite joins.

Proof. Let h be a sup-homomorphism and let a1, . . . , an ∈ L be such that
a1 ∨ . . . ∨ an exists in L. Then

⋂n
i=1 ↑ai = ↑(a1 ∨ . . . ∨ an). Since h is

order-preserving, by the definition of sup-homomorphisms,
⋂n

i=1 ↑h(ai) =
↑h(a1 ∨ . . . ∨ an). Therefore, h(a1 ∨ . . . ∨ an) is the join of h(a1), . . . , h(an)
in K. Thus, h preserves all existing finite joins. Conversely, suppose that
h preserves all existing finite joins. Let a1, . . . , an, b ∈ L with

⋂n
i=1 ↑ai ⊆

↑b. Then, in the lattice of filters of L, (
⋂n

i=1 ↑ai) ∨ ↑b = ↑b. Since the
lattice of filters of L is distributive,

⋂n
i=1(↑ai ∨ ↑b) = ↑b. From ↑ai ∨ ↑b =

↑(ai ∧ b) it follows that
⋂n

i=1 ↑(ai ∧ b) = ↑b. This implies that b is the join
of a1 ∧ b, . . . , an ∧ b in L. Therefore, since h preserves all existing finite
joins, the join of h(a1 ∧ b), . . . , h(an ∧ b) exists in K and is h(b). Thus,⋂n

i=1 ↑h(ai ∧ b) = ↑h(b), which means that

↑h(b) =
n⋂

i=1

↑(h(ai) ∧ h(b)) =

n⋂

i=1

(↑h(ai) ∨ ↑h(b)).

Using the distributivity of the lattice of filters of K, we obtain

↑h(b) = ↑h(b) ∨
n⋂

i=1

↑h(ai).

Consequently,
⋂n

i=1 ↑h(ai) ⊆ ↑h(b), and so h is a sup-homomorphism.

It is easy to see that the composition of sup-homomorphisms is a sup-
homomorphism, and that the identity map is a sup-homomorphism. Let
DMS denote the category of distributive meet-semilattices and sup-homo-
morphisms. If L and K are distributive lattices and h : L → K is a lattice
homomorphism, then h : L → K is a sup-homomorphism. Therefore, we
have the forgetful functor U : DLat → DMS that forgets ∨. As follows from
the next proposition (whose proof we skip and refer the interested reader
to [1, Prop. 5.6]), the map D(−) sending a distributive meet-semilattice L
to its distributive envelope D(L) extends to a functor D : DMS → DLat,
which is left adjoint to U . Consequently, U(DLat) is a reflective subcategory
of DMS.

Proposition 3.6. Let L and K be distributive meet-semilattices. If h : L →
K is a sup-homomorphism, then there is a unique lattice homomorphism
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D(h) : D(L) → D(K) such that D(h) ◦ σL = σK ◦ h. Moreover, if h is 1-1,
then so is D(h).

Noting that if K is a distributive lattice, then D(K) is (isomorphic to)
K, the following is an immediate consequence of Proposition 3.6.

Corollary 3.7. Let L be a distributive meet-semilattice and D be a dis-
tributive lattice. If h : L → D is a sup-homomorphism, then there is a unique
lattice homomorphism D(h) : D(L) → D such that D(h) ◦σ = h. Moreover,
if h is 1-1, then so is D(h).

Next theorem (whose proof can be found in [1, Thm. 5.8]) provides an
abstract characterization of the distributive envelope of a distributive meet-
semilattice by a universal property. A similar characterization can also be
found in Hansoul [8, 9] for distributive join-semilattices.

Theorem 3.8. Let L be a distributive meet-semilattice. The distributive
envelope D(L) of L is up to isomorphism the unique distributive lattice E
for which there is a 1-1 sup-homomorphism e : L → E such that for each
distributive lattice D and a 1-1 sup-homomorphism h : L → D, there is a
unique 1-1 lattice homomorphism k : E → D with k ◦ e = h.

Next theorem gives yet another abstract characterization of distributive
envelopes.

Theorem 3.9. Let L be a distributive meet-semilattice. The distributive
envelope D(L) of L is up to isomorphism the unique distributive lattice E
for which there is a 1-1 sup-homomorphism e : L → E such that e[L] is
join-dense in E.

Proof. Let E be a distributive lattice and e : L → E be a 1-1 sup-
homomorphism such that e[L] is join-dense in E. For a distributive lat-
tice D and a 1-1 sup-homomorphism h : L → D, we prove that there
is a unique 1-1 lattice homomorphism k : E → D with k ◦ e = h. Let
a1, . . . , an, b1 . . . , bm ∈ L be such that e(a1)∨ . . .∨e(an) = e(b1)∨ . . .∨e(bm).
Then e(ai) ≤ e(b1)∨. . .∨e(bm) for each i. Therefore,

⋂m
i=1 ↑e(bj) ⊆ ↑e(ai) for

each i. Since e is a 1-1 sup-homomorphism,
⋂m

j=1 ↑bj ⊆ ↑ai. As h is a sup-
homomorphism,

⋂m
j=1 ↑h(bj) ⊆ ↑h(ai) for each i. Thus, h(a1)∨ . . .∨h(an) ≤

h(b1) ∨ . . . ∨ h(bm). By a similar argument we obtain the other inequality.
Define k : E → D by

k(c) = h(a1) ∨ . . . ∨ h(an),

where a1, . . . , an ∈ L are such that c = e(a1) ∨ . . . e(an); they exist because
e[L] is join-dense in E. Then it is obvious that k : E → D is a unique lattice
homomorphism such that k ◦ e = h.
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Next lemma establishes basic relations between filters and ideals of L
and D(L).

Lemma 3.10. Let L be a distributive meet-semilattice and let D(L) be the
distributive envelope of L. Then:

1. If F is a filter of L, then ↑D(L)σ[F ] is a filter of D(L).

2. If P is a prime filter of L, then ↑D(L)σ[F ] is a prime filter of D(L).

3. If I is an ideal of L, then ↓D(L)σ[I] is an ideal of D(L).

4. If I is a prime ideal of L, then ↓D(L)σ[I] is a prime ideal of D(L).

5. If L has top and F is a filter of D(L), then σ−1(F ) is a filter of L.

Proof. (1) Let F be a filter of L. Since ↑D(L)σ[F ] is an upset of D(L),
it is enough to show that ↑D(L)σ[F ] is closed under binary intersections.
Let A,B ∈ ↑D(L)σ[F ]. Then there exist a, b ∈ F such that σ(a) ⊆ A and
σ(b) ⊆ B. Therefore, σ(a ∧ b) = σ(a) ∩ σ(b) ⊆ A ∩ B. Since F is a filter of
L, we have a ∧ b ∈ F . Thus, A ∩B ∈ ↑D(L)σ[F ].

(2) Let P be a prime filter of L and let A ∪ B ∈ ↑D(L)σ[P ]. Let
a1, . . . , an, b1, . . . , bm ∈ L be such that A = σ(a1) ∪ . . . ∪ σ(an) and B =
σ(b1)∪ . . .∪σ(bm). Then σ(a1)∪ . . .∪σ(an)∪σ(b1)∪ . . .∪σ(am) ∈ ↑D(L)σ[P ].
Therefore, there exists c ∈ P such that σ(c) ⊆ σ(a1) ∪ . . . ∪ σ(an) ∪ σ(b1) ∪
. . . ∪ σ(am). Thus,

⋂n
i=1 ↑ai ∩

⋂m
j=1 ↑bj ⊆ ↑c ⊆ P . As P is prime, ↑ai ⊆ P

for some i or ↑bj ⊆ P for some j. Since by assumption σ(ai) ⊆ A and
σ(bj) ⊆ B, it follows that A ∈ ↑D(L)σ[P ] or B ∈ ↑D(L)σ[P ].

(3) Let I be an ideal of L. Since ↓D(L)σ[I] is a downset of D(L), we need
to show that ↓D(L)σ[I] is closed under binary unions. Let A,B ∈ ↓D(L)σ[I].
Then there exist a, b ∈ I such that A ⊆ σ(a) and B ⊆ σ(b). Since I is an
ideal of L, there exists e ∈ {a, b}u ∩ I. Thus, A,B ⊆ σ(e), implying that
A ∪B ∈ ↓D(L)σ[I].

(4) Let I be a prime ideal of L. By (3), ↓D(L)σ[I] is an ideal of D(L).
To show that it is prime, let A =

⋃n
i=1 σ(ai), B =

⋃m
j=1 σ(bj), and A ∩B ∈

↓D(L)σ[I]. Then σ(ai) ∩ σ(bj) ∈ ↓D(L)σ[I], and so ai ∧ bj ∈ I for each i, j.
Since I is prime, either ai ∈ I or bj ∈ I. We look at a1 ∧ b1, . . . , a1 ∧ bm. If
a1 /∈ I, then b1, . . . , bm ∈ I, and so there exists c ∈

⋂m
j=1 ↑bj ∩ I. Therefore,

B =
⋃m

j=1 σ(bj) ⊆ σ(c) ∈ σ[I], so B ∈ ↓D(L)σ[I], and so without loss of
generality we may assume that a1 ∈ I. Now we look at a2 ∧ b1, . . . , a2 ∧ bm.
If a2 /∈ I, then b1, . . . , bm ∈ I, so again B ∈ ↓Dσ[I]. Thus, without loss of
generality we may assume that a1, a2 ∈ I. Going through all a1, . . . , an we
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obtain that either B ∈ ↓D(L)σ[I] or A ∈ ↓D(L)σ[I]. It follows that ↓D(L)σ[I]
is a prime ideal of D(L).

(5) Let F be a filter of D(L). Since � ∈ L, we have Pr(L) = σ(�) ∈
D(L), so σ(�) = Pr(L) ∈ F , and so� ∈ σ−1(F ). Thus, σ−1(F ) is nonempty.
Suppose that a ∈ σ−1(F ) and a ≤ b. Then σ(a) ∈ F and σ(a) ⊆ σ(b). Since
F is an upset of D(L), it follows that σ(b) ∈ F . Therefore, b ∈ σ−1(F ). For
a, b ∈ σ−1(F ) we have σ(a), σ(b) ∈ F . Since F is a filter of D(L), we have
σ(a ∧ b) = σ(a) ∩ σ(b) ∈ F . Thus, a ∧ b ∈ σ−1(F ), and so σ−1(F ) is a filter
of L.

Next example shows that there exist ideals I of D(L) such that σ−1(I)
is not an ideal of L.

Example 3.11. Consider the distributive meet-semilattice L shown in Fig. 1.
The ordered set 〈Pr(L),⊆〉 of prime filters of L together with the distributive
envelope D(L) of L is shown in Fig. 2. We have that I = {∅, σ(a), σ(b), σ(a)∪
σ(b)} is an ideal of D(L), but that σ−1(I) = {⊥, a, b} is not an ideal of L.

Lemma 3.12. Let L be a distributive meet-semilattice and I an ideal of D(L).
Then I is the ideal of D(L) generated by σ[σ−1(I)] = I ∩ σ[L].

Proof. Let J be the ideal of D(L) generated by σ[σ−1(I)] = I ∩ σ[L].
Obviously J ⊆ I. On the other hand, if A ∈ I, then as A =

⋃n
i=1 σ(bi) for

some bi ∈ L, we have σ(bi) ∈ I ∩ σ[L] for each i ≤ n. Thus, A ∈ J .

⊥

a b

...

c2

c1

�

{�}

↑c1

↑c2

...

↑a ↑b

∅

σ(a) σ(b)

σ(a) ∪ σ(b)

...

σ(c2)

σ(c1)

Pr(L)

L Pr(L) D(L)

Fig. 2
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As a consequence, we obtain that for a distributive meet-semilattice
L and ideals I, J of D(L), the following three conditions are equivalent:
(i) I = J , (ii) σ−1(I) = σ−1(J), and (iii) I ∩ σ[L] = J ∩ σ[L].

The situation with filters is different because there exist filters F of D(L)
such that F is not generated by σ[σ−1(F )] = F ∩ σ[L], as the next example
shows.

Example 3.13. Consider the distributive meet-semilattice L and its dis-
tributive envelope D(L) shown in Fig. 2. Then F = {σ(a) ∪ σ(b), σ(cn),
Pr(L) : n ∈ ω} is a filter of D(L) which is not generated by σ[σ−1(F )] =
F ∩ σ[L] = {σ(cn),Pr(L) : n ∈ ω}.

4. Frink ideals and optimal filters

Let L be a distributive meet-semilattice. If σ−1(I) were an ideal of L
for each ideal I of D(L), then Lemma 3.12 would imply that there is a
1-1 correspondence between ideals of L and D(L). However, σ−1(I) is not
necessarily an ideal of L as we saw in Example 3.11. This forces us to intro-
duce a weaker notion of an ideal of L, first considered by Frink [5, p. 227]
for posets.

Definition 4.1. Let L be a meet-semilattice. We call a nonempty subset I
of L a Frink ideal (F-ideal for short) if for each finite subset A of I, we have
Aul ⊆ I. Equivalently, I is a Frink ideal if for each a1, . . . , an ∈ I and c ∈ L,
whenever

⋂n
i=1 ↑ai ⊆ ↑c, we have c ∈ I. We call an F-ideal I of L proper if

I �= L, and prime if it is proper and a ∧ b ∈ I implies a ∈ I or b ∈ I.

It is easy to verify that ↓a is an F-ideal for each a ∈ L. Moreover, unlike
the case with ideals, a nonempty intersection of a family of F-ideals is again
an F-ideal. Therefore, for each nonempty X ⊆ L, there exists a least F-ideal
containing X. We call it the F-ideal generated by X, and denote it by (X].
It is easy to see that

(X] = {a ∈ L : ∃ finite A ⊆ X with a ∈ Aul}
= {a ∈ L : ∃a1, . . . , an ∈ X with

⋂n
i=1 ↑ai ⊆ ↑a}.

Next lemma is easy to prove (see [1, Lem. 4.11]).

Lemma 4.2. Let L be a meet-semilattice. Then each ideal of L is an F-ideal
and each F-ideal of L is a downset. Moreover, if L is a lattice, then the two
notions coincide with the usual notion of an ideal of a lattice.

In particular, if a meet-semilattice L is finite and has a top element,
then L is a lattice, and so each F-ideal of L is an ideal. On the other
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hand, there exist meet-semilattices for which not every F-ideal is an ideal.
For example, if L is the lattice shown in Fig. 1, then I = {⊥, a, b} is an
F-ideal which is not an ideal. The next lemma is useful in obtaining a 1-1
correspondence between F-ideals of a distributive meet-semilattice L and
ideals of its distributive envelope D(L).

Theorem 4.3. Let L be a distributive meet-semilattice and let D(L) be its
distributive envelope. Then I ⊆ L is a (prime) F-ideal of L iff there is a
(prime) ideal J of D(L) such that I = σ−1(J).

Proof. Let I be an F-ideal of L and J be the ideal of D(L) generated by
σ[I] = {σ(a) : a ∈ I}. It is clear that I ⊆ σ−1(J). To prove the other
inclusion, let b ∈ σ−1(J). Then σ(b) ∈ J , so σ(b) ⊆

⋃n
i=1 σ(ai) for some

a1, . . . , an ∈ I. By Lemma 3.2,
⋂n

i=1 ↑ai ⊆ ↑b, and since I is an F-ideal,
b ∈ I. Conversely, let I = σ−1(J) for J an ideal of D(L). Then I �= ∅ and if
a1, . . . , an ∈ I and c ∈ L are such that

⋂n
i=1 ↑ai ⊆ ↑c, then, by Lemma 3.2,

we have σ(c) ⊆
⋃n

i=1 σ(ai). Therefore, σ(c) ∈ J , and so c ∈ I. Thus, I is an
F-ideal of L.

Let I be a prime F-ideal of L and J be the ideal ofD(L) generated by σ[I].
Then I = σ−1(J). To show that J is prime, suppose that A ∩B ∈ J . Then
A =

⋃n
i=1 σ(ai) and B =

⋃m
j=1 σ(bj) for some a1, . . . , an, b1, . . . , bm ∈ L.

Therefore,
⋃

i,j(σ(ai) ∩ σ(bj)) ∈ J , and so σ(ai) ∩ σ(bj) ∈ σ[I] for all i, j.
Since I is prime, ai ∈ I or bj ∈ I. We look at a1 ∧ b1, . . . , a1 ∧ bm. If a1 /∈ I,
then b1, . . . , bm ∈ I, so B =

⋃m
j=1 σ(bj) ∈ J . Therefore, without loss of

generality we may assume that a1 ∈ I. Now we look at a2 ∧ b1, . . . , a2 ∧ bm.
If a2 /∈ I, then b1, . . . , bm ∈ I, so again B =

⋃m
j=1 σ(bj) ∈ J . Thus, without

loss of generality we may assume that a1, a2 ∈ I. Going through all a1, . . . , an
we obtain that either B =

⋃m
j=1 σ(bj) ∈ J or A =

⋃n
i=1 σ(ai) ∈ J . It follows

that J is a prime ideal ofD(L). The converse implication is easy to prove.

Corollary 4.4. Let L be a distributive meet-semilattice. The ordered set
of F-ideals of L is isomorphic to the ordered set of ideals of D(L), and the
ordered set of prime F-ideals of L is isomorphic to the ordered set of prime
ideals of D(L).

Definition 4.5. Let L be a distributive meet-semilattice. A filter F of
L is said to be optimal if there exists a prime filter P of D(L) such that
F = σ−1[P ]. We denote the set of optimal filters of L by Opt(L). Clearly
each optimal filter is proper.

Remark 4.6. Optimal filters of L correspond to weakly prime ideals of the
dual Ld of L, which are the key ingredients of the duality developed in [8, 9].
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Moreover, as was pointed out in [2, Rem. 3.2], the optimal filters of L are
the pseudoprime elements [6, Def. I-3.24] of the lattice of filters of L.

Lemma 4.7 (Optimal Filter Lemma). Let L be a distributive meet-semilat-
tice. If F is a filter and I is an F-ideal of L with F ∩I = ∅, then there exists
an optimal filter G of L such that F ⊆ G and G ∩ I = ∅.

Proof. Let F be a filter and I be an F-ideal of L with F ∩ I = ∅. Let
also ∇ be the filter and Δ be the ideal of D(L) generated by σ[F ] and
σ[I], respectively. Suppose that there exists A ∈ ∇ ∩ Δ. Then there are
a1, . . . , an ∈ I and b ∈ F such that A =

⋃n
i=1 σ(ai) and σ(b) ⊆ A. Therefore,

σ(b) ⊆
⋃n

i=1 σ(ai). By Lemma 3.2,
⋂n

i=1 ↑ai ⊆ ↑b. Since I is an F-ideal, we
obtain b ∈ I, a contradiction. Thus, ∇∩Δ = ∅, and so there is a prime filter
P of D(L) such that ∇ ⊆ P and P ∩ Δ = ∅. It follows that F ⊆ σ−1[P ]
and σ−1[P ] ∩ I = ∅. If we set G = σ−1[P ], then G is the desired optimal
filter.

It immediately follows that each proper filter F of a distributive meet-
semilattice is the intersection of the optimal filters containing F .

Proposition 4.8. Let L be a distributive meet-semilattice and let F be a
filter of L. Then the following conditions are equivalent:

1. F is an optimal filter.

2. L− F is an F-ideal.

3. There is an F-ideal I of L such that F ∩ I = ∅ and F is maximal among
the filters of L with this property.

Proof. To prove the implication (1)⇒(2), let F be an optimal filter of L,
P be a prime filter of D(L) such that F = σ−1[P ], and I = L− F . Then F
is a proper filter of L, and so I is nonempty. For a1, . . . , an ∈ I and c ∈ L
with

⋂n
i=1 ↑ai ⊆ ↑c, Lemma 3.2 implies that σ(c) ⊆

⋃n
i=1 σ(ai). If c �∈ I,

then c ∈ F , and so σ(c) ∈ P . Therefore,
⋃n

i=1 σ(ai) ∈ P . Since P is prime,
σ(ai) ∈ P for some ai ∈ I. Thus, ai ∈ F ∩ I, which is a contradiction.
It follows that c ∈ I, and so I is an F-ideal. The implication (2)⇒(3) is
obvious. Finally, to prove the implication (3)⇒(1), suppose that F is a filter
and I is an F-ideal of L such that F ∩ I = ∅ and F is maximal among
the filters of L with this property. By the optimal filter lemma, there is an
optimal filter G of L such that F ⊆ G and G∩ I = ∅. Since F is a maximal
filter with this property, F = G. Thus, F is optimal.

In particular, if L is a finite distributive meet-semilattice with top, then
L is a finite distributive lattice, and so each optimal filter of L is prime. On
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the other hand, there exist distributive meet-semilattices in which not every
optimal filter is prime. For example, in the distributive meet-semilattice L
shown in Fig. 1 one can easily check that F = L − {⊥, a, b} is an optimal
filter of L, but that it is not prime.

It follows from Corollary 4.4 and Proposition 4.8 that optimal filters of
a distributive meet-semilattice L are in a 1-1 correspondence with prime
filters of the distributive envelope D(L) of L. In fact, we have the following
relations between optimal filters of L and prime filters of D(L) (for a proof
we refer to [1, Prop. 4.21]).

Proposition 4.9. Let L be a distributive meet-semilattice.

1. If P ∈ Pr(D(L)), then σ−1(P ) ∈ Opt(L) and ↑D(L)(P ∩ σ[L]) = P .

2. If F ∈ Opt(L), then ↑D(L)σ[F ] ∈ Pr(D(L)).

3. For a filter F of D(L), F ∈ Pr(D(L)) iff there is G ∈ Opt(L) such that
F = ↑D(L)σ[G].

4. If P,Q ∈ Pr(D(L)), then the following conditions are equivalent:

(a) P ⊆ Q.

(b) σ−1(P ) ⊆ σ−1(Q).

(c) ↑D(L)(P ∩ σ[L]) ⊆ ↑D(L)(Q ∩ σ[L]).

Thus, for a distributive meet-semilattice L, we have that F-ideals of L
correspond to ideals of D(L), that prime F-ideals of L correspond to prime
ideals of D(L), and that optimal filters of L correspond to prime filters
of D(L).

Let L be a distributive meet-semilattice. It is easy to see that the map
ϕ : L → Up(Opt(L)) defined by

ϕ(a) = {x ∈ Opt(L) : a ∈ x}

is a meet-semilattice homomorphism, that it preserves top whenever L has a
top, and that it preserves bottom whenever L has a bottom. It also follows
from the optimal filter lemma that ϕ is 1-1. Thus, we obtain:

Proposition 4.10. Let L be a distributive meet-semilattice. Then L is
isomorphic to the meet-semilattice 〈{ϕ(a) : a ∈ L},∩〉, and so the meet-
semilattices 〈{σ(a) : a ∈ L},∩〉 and 〈{ϕ(a) : a ∈ L},∩〉 are isomorphic.

Lemma 4.11. Let L be a distributive meet-semilattice and let a, b1, . . . bn ∈ L.
Then

n⋂

i=1

↑bi ⊆ ↑a iff ϕ(a) ⊆
n⋃

i=1

ϕ(bi) iff
n⋂

i=1

↑ϕ(bi) ⊆ ↑ϕ(a).
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Proof. We only prove the first equivalence. First suppose that ϕ(a) ⊆⋃n
i=1 ϕ(bi). If c ∈

⋂n
i=1 ↑bi and c /∈ ↑a, then bi ≤ c for each i ≤ n and

a �≤ c. By the optimal filter lemma, there exists an optimal filter x of L
such that a ∈ x and c �∈ x. But then bi �∈ x for each i ≤ n. Therefore,
x ∈ ϕ(a) but x �∈

⋃n
i=1 ϕ(bi), a contradiction. Thus, a ≤ c, so c ∈ ↑a,

and so
⋂n

i=1 ↑bi ⊆ ↑a. Now suppose that
⋂n

i=1 ↑bi ⊆ ↑a. If x ∈ ϕ(a) and
x /∈

⋃n
i=1 ϕ(bi), then a ∈ x and bi �∈ x for each i ≤ n. Since x is an optimal

filter, by Proposition 4.8, L− x is an F-ideal, and bi ∈ L− x for each i ≤ n
and

⋂n
i=1 ↑bi ⊆ ↑a imply a ∈ L− x, a contradiction. Thus, x ∈

⋃n
i=1 ϕ(bi),

and so ϕ(a) ⊆
⋃n

i=1 ϕ(bi).

It follows that closing ϕ[L] under nonempty finite unions is isomorphic
to D(L), thus providing one more concrete realization of D(L).

5. Generalized Priestley spaces

In this section we introduce the first main concept of the paper, that of gen-
eralized Priestley space. We show how to construct the generalized Priestley
space L∗ from a bounded distributive meet-semilattice L, and conversely,
how a generalized Priestley space X gives rise to the bounded distributive
meet-semilattice X∗. We further prove that a bounded distributive meet-
semilattice L is isomorphic to L∗

∗, thus providing a representation theorem
for bounded distributive meet-semilattices. Furthermore, we show that a
generalized Priestley space X is order-homeomorphic to X∗

∗.
Let L be a bounded distributive meet-semilattice and let D(L) be its

distributive envelope. Then D(L) is a bounded distributive lattice. We let

L∗ = Opt(L) and L+ = Pr(L).

As we have already seen, L+ ⊆ L∗ and 〈L∗ ⊆〉 ∼= 〈Pr(D(L)),⊆〉. Define
ϕD : D(L) → Up(Pr(D(L))) by ϕD(A) = {x ∈ D(L)∗ : A ∈ x}. It is easy to
see that the map ϕ : L → Up(L∗) satisfies

ϕ(a) = {σ−1(x) : x ∈ ϕD(σ(a))}.

Let BL = ϕ[L]. Then the map h : BL → {ϕD(σ(a)) : a ∈ L} given by

h(ϕ(a)) = ϕD(σ(a))

is a bounded meet-semilattice isomorphism. Consequently, the meet-semi-
lattices L, BL, and {ϕD(σ(a)) : a ∈ L} are isomorphic to each other.

We recall that {ϕD(A)−ϕD(B) : A,B ∈ D(L)} is a basis for the Priestley
topology τP on Pr(D(L)). This easily implies that the Priestley topology
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on Pr(D(L)) has {ϕD(σ(a)) : a ∈ L} ∪ {ϕD(σ(b))
c : b ∈ L} as a subbasis,

because every A ∈ D(L) is of the form
⋃n

i=1 σ(ai) for some a1, . . . , an ∈ L.
This fact motivates defining a topology τ on L∗ by letting {ϕ(a) : a ∈
L}∪{ϕ(b)c : b ∈ L} be a subbasis for τ . Since 〈Opt(L),⊆〉 and 〈Pr(D(L)),⊆〉
are order-isomorphic, we obtain that 〈L∗, τ,⊆〉 is a Priestley space order-
homeomorphic to the Priestley dual 〈Pr(D(L)), τP ,⊆〉 of D(L).

Lemma 5.1. Let L be a bounded distributive meet-semilattice. Then L+ is
dense in 〈L∗, τ〉 and for each x ∈ L∗, there is y ∈ L+ such that x ⊆ y.

Proof. Since S = {ϕ(a) : a ∈ L} ∪ {ϕ(b)c : b ∈ L} is a subbasis for τ and
{ϕ(a) : a ∈ L} is closed under finite intersections, an element of the basis
for τ that S generates has the form ϕ(a) ∩ ϕ(b1)

c ∩ . . . ∩ ϕ(bn)
c for some

a, b1, . . . , bn ∈ L. If ϕ(a) ∩ ϕ(b1)
c ∩ . . . ∩ ϕ(bn)

c �= ∅, then ϕ(a) �⊆
⋃n

i=1 ϕ(b).
Therefore, by Lemma 4.11,

⋂n
i=1 ↑bi �⊆ ↑a. Thus, by Lemma 3.2, σ(a) �⊆⋃n

i=1 σ(bi). Hence, there is y ∈ L+ such that a ∈ y and b1, . . . , bn �∈ y.
It follows that ϕ(a)∩ϕ(b1)

c ∩ . . . ϕ(bn)
c ∩L+ �= ∅, and so L+ is dense in L∗.

To conclude the proof, let x ∈ L∗ = Opt(L). Then L−x �= ∅. Let a ∈ L−x.
Then x ∩ ↓a = ∅, and by the prime filter lemma, there is y ∈ Pr(L) such
that x ⊆ y and a /∈ y.

Lemma 5.2. Each open upset of L∗ is a union of elements of BL.

Proof. Let U be an open upset of L∗ and let x ∈ U . It is sufficient to find
a ∈ L such that x ∈ ϕ(a) ⊆ U . For each y /∈ U we have x �⊆ y. Therefore,

there is ay ∈ L such that ay ∈ x and ay /∈ y. Thus,
⋂

{ϕ(ay) : y /∈ U}∩U c =

∅. This by compactness of L∗ implies that there exist a1, . . . , an ∈ L such
that ϕ(a1) ∩ · · · ∩ ϕ(an) ∩ U c = ∅. Moreover, x ∈ ϕ(ai) for each i ≤ n.
Therefore, x ∈ ϕ(a1 ∧ · · · ∧ an) ⊆ U , and so there exists a = a1 ∧ · · · ∧ an in
L with x ∈ ϕ(a) ⊆ U .

Let D(BL) denote the distributive lattice generated (in Up(L∗)) by BL.
Then A ∈ D(BL) iff A is a finite union of elements of BL. It follows easily
that D(BL) is isomorphic to D(L). Let CU(L∗) denote the lattice of clopen
upsets of L∗. This lattice is isomorphic to the lattice of clopen upsets of the
Priestley space of D(L). Moreover, by Lemma 5.2, each element of CU(L∗)
is a union of elements of BL, and since each element of CU(L∗) is compact,
it is a finite union of elements of BL. Thus, D(BL) = CU(L∗), and so the
lattice of clopen upsets of L∗ is also isomorphic to D(L).

Let 〈X, τ,≤〉 be a Priestley space and let X0 be a dense subset of X. For
a clopen subset U of X, we say that X0 is cofinal in U if max(U) ⊆ X0. We
call a clopen upset U of X X0-admissible if X0 is cofinal in U c. We note
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that a clopen upset U is X0-admissible iff max(U c) ⊆ X0, which happens
iff U c = ↓(X0 − U). We denote by X∗ the set of all X0-admissible clopen
upsets of X and for x ∈ X we let

Ix = {U : x /∈ U and U is an X0-admissible clopen upset of X}.

Proposition 5.3. Let L be a bounded distributive meet-semilattice and let
U be a clopen upset of L∗. Then U is L+-admissible iff there exists a ∈ L
such that U = ϕ(a).

Proof. Suppose that U = ϕ(a) with a ∈ L. Since L+ ⊆ L∗ and ϕ(a) is an
upset, L∗ − ϕ(a) is a downset, so ↓(L+ − ϕ(a)) ⊆ L∗ − ϕ(a). Conversely,
if x ∈ L∗ − ϕ(a), then x /∈ ϕ(a). Therefore, a /∈ x. So x ∩ ↓a = ∅,
and by the prime filter lemma, there is y ∈ Pr(L) such that x ⊆ y and
a �∈ y. Thus, x ⊆ y and y ∈ L+ − ϕ(a), implying that x ∈ ↓(L+ − ϕ(a)).
It follows that L∗ − ϕ(a) = ↓(L+ − ϕ(a)). Now if x ∈ max(L∗ − ϕ(a)).
Then x ∈ ↓(L+ − ϕ(a)), and as x is a maximal point of L∗ − ϕ(a), we
have x ∈ L+ − ϕ(a) ⊆ L+. Thus, U is L+-admissible. Conversely, let
U be a L+-admissible clopen upset of L∗. Then max(L∗ − U) ⊆ L+ and
there exist a1, . . . an ∈ L such that U = ϕ(a1) ∪ . . . ∪ ϕ(an). Let F be
the filter

⋂n
i=1 ↑ai and let I be the Frink ideal generated by a1, . . . , an. If

F ∩ I = ∅, then, by the optimal filter lemma, there exists an optimal filter
x of L such that F ⊆ x and x ∩ I = ∅. Since ai ∈ I, we have ai /∈ x for
each i ≤ n, so x /∈ ϕ(a1) ∪ . . . ∪ ϕ(an) = U . Therefore, x ∈ L∗ − U . Since
〈L∗, τ,⊆〉 is a Priestley space and L∗−U is a closed subset of L∗, there exists
y ∈ max(L∗ − U) such that x ⊆ y. But then y ∈ L+ and y /∈ U . Moreover,⋂n

i=1 ↑ai ⊆ x ⊆ y and as y is prime, there is i ≤ n such that ↑ai ⊆ y. Hence,
y ∈ ϕ(ai) ⊆ U , which is a contradiction. Therefore, there is a ∈ F ∩I. Thus,
a ∈

⋂n
i=1 ↑ai and

⋂n
i=1 ↑ai ⊆ ↑a. So

⋂n
i=1 ↑ai = ↑a, a = a1 ∨ . . . ∨ an, and so

ϕ(a) = ϕ(a1) ∪ . . . ∪ ϕ(an) = U .

It follows from Proposition 5.3 that for each clopen downset V of L∗, the
following three conditions are equivalent: (a) V = ϕ(a)c for some a ∈ L, (b)
V = ↓(L+ ∩ V ), and (c) max(V ) ⊆ L+. We also have that

BL = {U ∈ CU(L∗) : U is L+-admissible}.

Proposition 5.4. Let L be a bounded distributive meet-semilattice. Then
x ∈ L+ iff 〈Ix,⊆〉 is updirected.

Proof. Let x ∈ L+ and let ϕ(a), ϕ(b) ∈ Ix. Then x /∈ ϕ(a), ϕ(b). There-
fore, a, b /∈ x. Since x is a prime filter of L, it follows that ↑a∩↑b �⊆ x. Thus,
there exists c ∈ ↑a ∩ ↑b such that c /∈ x. Consequently, ϕ(a) ∪ ϕ(b) ⊆ ϕ(c)
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and x /∈ ϕ(c). So ϕ(c) ∈ Ix, and so Ix is updirected. Conversely, suppose
that Ix is updirected. We show that x ∈ L+. If not, then there exist filters
F1 and F2 of L such that F1∩F2 ⊆ x but F1 �⊆ x and F2 �⊆ x. Let a1 ∈ F1−x
and a2 ∈ F2 − x. Then x /∈ ϕ(a1), ϕ(a2), and so ϕ(a1), ϕ(a2) ∈ Ix. Since Ix
is updirected, there exists ϕ(a) ∈ Ix such that ϕ(a1) ∪ ϕ(a2) ⊆ ϕ(a). From
ϕ(a) ∈ Ix it follows that a /∈ x, and from ϕ(a1) ∪ ϕ(a2) ⊆ ϕ(a) it follows
that a ∈ ↑a1 ∩ ↑a2 ⊆ F1 ∩ F2 ⊆ x. The obtained contradiction proves that
x ∈ L+.

The results we have established about the dual space of a bounded dis-
tributive meet-semilattice L justify the following definition of a generalized
Priestley space. Let 〈X, τ,≤〉 be a Priestley space and X0 be a dense subset
of X. We let X∗ denote the set of X0-admissible clopen upsets of X.

Definition 5.5. A quadruple X = 〈X, τ,≤,X0〉 is a generalized Priestley
space if:

1. 〈X, τ,≤〉 is a Priestley space.

2. X0 is a dense subset of X.

3. For each x ∈ X there is y ∈ X0 such that x ≤ y.

4. x ∈ X0 iff Ix is updirected.

5. For all x, y ∈ X, we have x ≤ y iff (∀U ∈ X∗)(x ∈ U ⇒ y ∈ U).

Remark 5.6. Condition (3) of Definition 5.5 is equivalent to maxX ⊆ X0,
which means that ∅ is X0-admissible. Also, when in a generalized Priestley
space X we have X0 = X, then X∗ = CU(X), so conditions (2)–(5) of Defini-
tion 5.5 become redundant, and so X becomes a Priestley space. Thus, the
notion of a generalized Priestley space generalizes that of a Priestley space.

Proposition 5.7. Let L be a bounded distributive meet-semilattice L. Then
the quadruple L∗ = 〈L∗, τ,⊆, L+〉 is a generalized Priestley space.

Proof. For optimal filters x and y we clearly have that x ⊆ y iff x ∈ ϕ(a)
implies y ∈ ϕ(a) for each a ∈ L. Now apply Lemma 5.1 and Proposition 5.4.

Since for each bounded distributive meet-semilattice L we have L∗
∗ =

ϕ[L], we immediately obtain:

Theorem 5.8 (Representation Theorem). For each bounded distributive
meet-semilattice L, there exists a generalized Priestley space X such that
L is isomorphic to X∗.
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Proposition 5.9. Let X be a generalized Priestley space. Then X∗ =
〈X∗,∩,X, ∅〉 is a bounded distributive meet-semilattice.

Proof. First we show that X∗ is closed under ∩. If U, V ∈ X∗, then
max((U ∩V )c) = max(U c∪V c) ⊆ max(U c)∪max(V c) ⊆ X0. Thus, U ∩V ∈
X∗. Next max(Xc) = max(∅) = ∅ ⊆ X0, so X ∈ X∗. Also, by condition
(3) of Definition 5.5, max(∅c) = max(X) ⊆ X0, and so ∅ ∈ X∗. Lastly
we show that 〈X∗,∩〉 is distributive. Let U, V,W ∈ X∗ with U ∩ V ⊆ W .
Then W c ⊆ U c ∪ V c. For each x ∈ max(W c) we have that x ∈ U c or
x ∈ V c. Therefore, W ∈ Ix and either U ∈ Ix or V ∈ Ix. Since x ∈ X0,
by condition (4) of Definition 5.5, from W,U ∈ Ix it follows that there
exists Ux ∈ Ix such that W ∪ U ⊆ Ux; and from W,V ∈ Ix it follows th

at there exists Vx ∈ Ix such that W ∪ V ⊆ Vx. Thus, W c =
⋃

{Kx :

x ∈ max(W c)}, where Kx = Ux
c or Kx = Vx

c. Since W c is compact
and each Kx is open, there exist finite subsets A,B of max(W c) such that

W c =
⋃

{Ux
c : x ∈ A} ∪

⋃
{Vx

c : x ∈ B}. Let U ′ =
⋂

{Ux : x ∈ A} and

V ′ =
⋂

{Vx : x ∈ B}. Clearly U ⊆ U ′, V ⊆ V ′, and U, V ∈ X∗. Moreover,

W c =
⋃

{Ux
c : x ∈ A} ∪

⋃
{Vx

c : x ∈ B} implies W = U ′ ∩ V ′. Thus,

〈X∗,∩〉 is distributive. Consequently, 〈X∗,∩,X, ∅〉 is a bounded distributive
meet-semilattice.

The proof of the next proposition can be found in [1, Prop. 6.15, Lem.
6.17, and Cor. 6.16 and 6.18].

Proposition 5.10. Let X be a generalized Priestley space. Then:

1. The closure of X∗ under finite unions is CU(X).

2. The family X∗ ∪ {U c : U ∈ X∗} is a subbasis for the topology on X.

3. Let U,U1, . . . , Un ∈ X∗. Then
⋂n

i=1 ↑Ui ⊆ ↑U iff U ⊆
⋃n

i=1 Ui.

4. CU(X) is isomorphic to D(X∗).

Let X be a generalized Priestley space. We define ε : X → X∗
∗ by

ε(x) = {U ∈ X∗ : x ∈ U}.

First we show that ε is well-defined.

Proposition 5.11. Let X be a generalized Priestley space. For each x ∈ X,
we have ε(x) is an optimal filter of X∗. Moreover, if x ∈ X0, then ε(x) is a
prime filter of X∗.
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Proof. Let X be a generalized Priestley space. By Proposition 5.9, 〈X∗,∩,
X, ∅〉 is a bounded distributive meet-semilattice. Clearly ε(x) is a filter of
X∗ and X∗ − ε(x) is nonempty. We show that X∗ − ε(x) is an F-ideal of
X∗. Suppose that U1, . . . , Un ∈ X∗ − ε(x), U ∈ X∗, and

⋂n
i=1 ↑Ui ⊆ ↑U . By

Proposition 5.10, U ⊆
⋃n

i=1 Ui. Since x /∈
⋃n

i=1 Ui, it follows that x /∈ U .
Therefore, U ∈ X∗− ε(x), so X∗− ε(x) is an F-ideal, and so, by Proposition
4.8, ε(x) is an optimal filter. Now suppose that x ∈ X0 and that ε(x) is
not a prime filter of X∗. Then there exist filters F1 and F2 of X∗ such
that F1 ∩ F2 ⊆ ε(x), but F1 �⊆ ε(x) and F2 �⊆ ε(x). Let U1 ∈ F1 − ε(x)
and U2 ∈ F2 − ε(x). Then x /∈ U1, U2, and so U1, U2 ∈ Ix. By condition
(4) of Definition 5.5, there exists V ∈ Ix such that U1 ∪ U2 ⊆ V . Hence,
V ∈ ↑U1∩↑U2 ⊆ F1∩F2 ⊆ ε(x). Thus, x ∈ V , a contradiction. We conclude
that ε(x) is a prime filter of X∗.

Proposition 5.12. The map ε : X → X∗
∗ is 1-1 and onto. Moreover, if P

is a prime filter of X∗, then ε−1(P ) ∈ X0.

Proof. It follows from condition (5) of Definition 5.5 that ε is 1-1. We show
that ε is onto. Suppose that P is an optimal filter of X∗. Let I = X∗−P . By
Proposition 4.8, I is an F-ideal of X∗. Let G be the filter of CU(X) generated
by P and J be the ideal of CU(X) generated by I. We claim that G∩J = ∅.
If not, then there exist V ∈ CU(X), U ∈ P , and U1, . . . , Un ∈ I such that
U ⊆ V and V ⊆ U1 ∪ . . . ∪ Uk. By Proposition 5.10,

⋂n
i=1 ↑Ui ⊆ ↑V ⊆ ↑U .

Since I is an F-ideal, we have U ∈ I, so U �∈ P , a contradiction. Thus, by
the prime filter lemma, there is a prime filter F of CU(X) such that G ⊆ F
and F ∩J = ∅. By Priestley duality, there exists x ∈ X such that F = {U ∈
CU(X) : x ∈ U}. We show that P = F ∩X∗. It is clear that P ⊆ F ∩X∗.
Conversely, if U ∈ F ∩X∗ and U �∈ P , then U ∈ I, which is a contradiction
since F is disjoint from I. Thus, P = F ∩ X∗ = {U ∈ X∗ : x ∈ U}.
Consequently ε(x) = P , and so ε is onto.

Now suppose that P is a prime filter of X∗. Since ε is onto, there exists
x ∈ X such that ε(x) = P . If x /∈ X0, then by condition (4) of Definition 5.5,
Ix is not updirected, so there exist U, V ∈ Ix such that for no W ∈ Ix we
have U ∪V ⊆ W . Therefore, for each W ∈ X∗, from W ∈ ↑U ∩↑V it follows
that x ∈ W , and so W ∈ ε(x). Thus, ↑U ∩↑V ⊆ ε(x), and as ε(x) is a prime
filter of X∗, ↑U ⊆ ε(x) or ↑V ⊆ ε(x). Consequently, U ∈ ε(x) or V ∈ ε(x),
and so x ∈ U or x ∈ V , a contradiction. Thus, x ∈ X0.

Theorem 5.13. For a generalized Priestley space X, the map ε : X → X∗
∗

is an order-homeomorphism. Moreover, ε[X0] = X∗
+.

Proof. It follows from Propositions 5.11 and 5.12 that ε is a bijection
and that ε[X0] = X∗

+. Condition (5) of Definition 5.5 implies that for each
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x, y ∈ X, we have x ≤ y iff ε(x) ⊆ ε(y). Thus, ε is an order-isomorphism. We
show that ε is a homeomorphism. By Proposition 5.10, X∗∪{U c : U ∈ X∗} is
a subbasis for the topology on X, and {ϕ(U) : U ∈ X∗}∪ {ϕ(U)c : U ∈ X∗}
is a subbasis for the topology on X∗

∗. For U ∈ X∗ we have:

x ∈ ε−1(ϕ(U)) iff ε(x) ∈ ϕ(U) iff U ∈ ε(x) iff x ∈ U.

Thus, ε−1(ϕ(U)) = U and ε−1(ϕ(U)c) = U c. It follows that ε is continuous.
Now since ε is a continuous map between compact Hausdorff spaces, ε is a
homeomorphism.

6. Categorical equivalences

In this section we introduce the second main concept of the paper, that
of generalized Priestley morphism, and extend our representation theorem
of the previous section to a full duality between the categories of bounded
distributive meet-semilattices and generalized Priestley spaces.

Let X and Y be nonempty sets. Given a relation R ⊆ X × Y , for each
A ⊆ Y we define

�RA = {x ∈ X : (∀y ∈ Y )(xRy ⇒ y ∈ A)} = {x ∈ X : R[x] ⊆ A}.

It is easy to verify that �R(Y ) = X and that �R(A∩B) = �RA∩�RB for
each A,B ⊆ Y .

Let L and K be bounded distributive meet-semilattices and let h : L →
K be a meet-semilattice homomorphism preserving top. We define Rh ⊆
K∗ × L∗ by

xRhy iff h−1(x) ⊆ y

for each x ∈ K∗ and y ∈ L∗. We call Rh the dual of h.

Proposition 6.1. Let L and K be bounded distributive meet-semilattices
and let h : L → K be a meet-semilattice homomorphism preserving top.
Then:

1. If xR�hy, then there is a ∈ L such that y /∈ ϕ(a) and Rh[x] ⊆ ϕ(a).

2. ϕ(h(a)) = �Rh
ϕ(a).

Proof. To prove (1) suppose that xR�hy. Then h−1(x) �⊆ y, so there is
a ∈ L such that a ∈ h−1(x) and a /∈ y. Therefore, y /∈ ϕ(a), and if xRhz,
then a ∈ z. Thus, Rh[x] ⊆ ϕ(a). To prove (2) let x ∈ ϕ(h(a)), then
a ∈ h−1(x). Therefore, for each z ∈ L∗ with xRhz, we have a ∈ z. Thus,
Rh[x] ⊆ ϕ(a), and so ϕ(h(a)) ⊆ �Rh

ϕ(a). Conversely, if x ∈ �Rh
ϕ(a), then
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Rh[x] ⊆ ϕ(a). If x �∈ ϕ(h(a)), then a /∈ h−1(x). So h−1(x) ∩ ↓a = ∅, and
by the prime filter lemma, there exists y ∈ L+ ⊆ L∗ such that h−1(x) ⊆ y
and a /∈ y. But h−1(x) ⊆ y implies y ∈ Rh[x], so a ∈ y, which is a
contradiction. We conclude that x ∈ ϕ(h(a)). Thus, �Rh

ϕ(a) ⊆ ϕ(h(a)),
and so ϕ(h(a)) = �Rh

ϕ(a).

Definition 6.2. Let X and Y be generalized Priestley spaces. A relation
R ⊆ X × Y is called a generalized Priestley morphism if the following two
conditions are satisfied:

1. If xR�y, then there is U ∈ Y ∗ such that y /∈ U and R[x] ⊆ U .

2. If U ∈ Y ∗, then �RU ∈ X∗.

The proof of the next lemma can be found in [1, Lem. 8.3].

Lemma 6.3. Let X and Y be generalized Priestley spaces and R ⊆ X×Y be
a generalized Priestley morphism. Then (≤X ◦R) ⊆ R and (R ◦ ≤Y ) ⊆ R.

Remark 6.4. It is easy to verify that the first condition of Lemma 6.3 is
equivalent to saying that for each B ⊆ Y we have R−1[B] is a downset of X,
that the second one is equivalent to saying that for each A ⊆ X we have R[A]
is an upset of Y , and that together they are equivalent to (≤X ◦R◦≤Y ) ⊆ R.

Given a generalized Priestley morphism R ⊆ X × Y , we define the map
hR : Y ∗ → X∗ by

hR(U) = �RU

for each U ∈ Y ∗.

Lemma 6.5. If R ⊆ X × Y is a generalized Priestley morphism, then hR :
Y ∗ → X∗ is a meet-semilattice homomorphism preserving top.

Proof. Let U, V ∈ Y ∗. Then hR(U ∩ V ) = �R(U ∩ V ) = �RU ∩ �RV =
hR(U) ∩ hR(V ). Moreover, hR(Y ) = �RY = X.

Proposition 6.6. Let L and K be bounded distributive meet-semilattices
and let h : L → K be a meet-semilattice homomorphism preserving top.
Then for each a ∈ L we have ϕ(h(a)) = hRh

(ϕ(a)).

Proof. We have x ∈ ϕ(h(a)) iff h(a) ∈ x iff a ∈ h−1(x), and x ∈ hRh
ϕ(a)

iff x ∈ �Rh
ϕ(a) iff (∀y ∈ L∗)(xRhy ⇒ a ∈ y) iff (∀y ∈ L∗)(h

−1(x) ⊆
y ⇒ a ∈ y). Now either h−1(x) = L or h−1(x) is a proper filter of L. If
h−1(x) = L, then for all y ∈ L∗ we have h−1(x) �⊆ y. Therefore, both
a ∈ h−1(x) and (∀y ∈ L∗)(h

−1(x) ⊆ y ⇒ a ∈ y) are trivially true, and
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so a ∈ h−1(x) iff (∀y ∈ L∗)(h
−1(x) ⊆ y ⇒ a ∈ y). On the other hand,

if h−1(x) is a proper filter of L, then by the optimal filter lemma, h−1(x)
is the intersection of all the optimal filters of L containing h−1(x). Hence,
a ∈ h−1(x) iff (∀y ∈ L∗)(h

−1(x) ⊆ y ⇒ a ∈ y). Thus, in either case we have
ϕ(h(a)) = hRh

(ϕ(a)).

Proposition 6.7. Let R ⊆ X × Y be a generalized Priestley morphism.
Then for each x ∈ X and y ∈ Y we have xRy iff ε(x)RhR

ε(y).

Proof. Let xRy. We show ε(x)RhR
ε(y). If U ∈ h−1

R (ε(x)), then hR(U) ∈
ε(x), so x ∈ hR(U), and so R[x] ⊆ U . Therefore, y ∈ U , so U ∈ ε(y), and so
h−1
R (ε(x)) ⊆ ε(y). Thus, ε(x)RhR

ε(y). Now let xR�y. Then, by condition (1)
of Definition 6.2, there is U ∈ Y ∗ such that y /∈ U and R[x] ⊆ U . Therefore,
y /∈ U and x ∈ hR(U). Thus, we have U /∈ ε(y) and hR(U) ∈ ε(x). It follows
that h−1

R (ε(x)) �⊆ ε(y). Consequently, xRy iff ε(x)RhR
ε(y).

Unfortunately, the usual set-theoretic composition of two generalized
Priestley morphisms may not be a generalized Priestley morphism. There-
fore, we introduce the composition of two generalized Priestley morphisms
as follows. Let X,Y, and Z be generalized Priestley spaces, and R ⊆ X × Y
and S ⊆ Y × Z be generalized Priestley morphisms. Define S∗R ⊆ X × Z
by

x(S∗R)z iff (∀U ∈ Z∗)((S ◦R)[x] ⊆ U ⇒ z ∈ U),

where S ◦ R is the usual set-theoretic composition of R and S. Note that
S ◦R ⊆ S∗R, and if S ◦R is already a generalized Priestley morphism, then
S∗R = S ◦R. We also have that

x(S∗R)z iff (∀U ∈ Z∗)(x ∈ �R�SU ⇒ z ∈ U)

and that
x(S∗R)z iff ε(x)R(hR◦hS)ε(z).

Moreover,
�R�SU = (hR ◦ hS)(U) = �(S∗R)U.

To see this suppose that x ∈ (hR ◦ hS)(U). Then (hR ◦ hS)(U) ∈ ε(x) and
so U ∈ (hR ◦ hS)

−1[ε(x)], which means that (∀z ∈ Z)(ε(x)R(hR◦hS)ε(z) ⇒
z ∈ U). Therefore, (∀z ∈ Z)(x(S∗R)z ⇒ z ∈ U). Thus, (S∗R)[x] ⊆ U and
x ∈ �(S∗R)U . Reasoning backwards we also obtain that if x ∈ �(S∗R)U ,
then x ∈ (hR ◦ hS)(U).

Lemma 6.8. If X,Y, and Z are generalized Priestley spaces and R ⊆ X×Y ,
S ⊆ Y × Z are generalized Priestley morphisms, then S∗R ⊆ X × Z is a
generalized Priestley morphism.
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Proof. To prove that condition (1) of Definition 6.2 holds, let (x, y) /∈ S∗R.
Then there is U ∈ Z∗ such that x ∈ �R�SU and z �∈ U . By the above
observation, we have (S∗R)[x] ⊆ U and z /∈ U . To see that condition (2)
of Definition 6.2 is also satisfied, let U ∈ Z∗. Then (hR ◦ hS)(U) ∈ X∗,
which, by the above observation, means that �(S∗R)U ∈ X∗. Thus, S∗R is
a generalized Priestley morphism.

It is not difficult to see that the composition operation ∗ is associative
and that for each generalized Priestley space X, the relation ≤X⊆ X×X is a
generalized Priestley morphism such that for each generalized Priestley space
Y and each generalized Priestley morphisms R ⊆ X × Y and S ⊆ Y ×X,
we have R ◦ ≤X = R and ≤X ◦ S = S.

As an immediate consequence of these facts and Lemma 6.8 we obtain
that generalized Priestley spaces and generalized Priestley morphisms form
a category, in which ∗ is the composition of two morphisms and ≤X is the
identity morphism for each object X. We denote this category by GPS. Let
also BDM denote the category of bounded distributive meet-semilattices and
meet-semilattice homomorphisms preserving top.

We are ready to prove one of the main theorems of the paper, that BDM
is dually equivalent to GPS.

Theorem 6.9. The category BDM is dually equivalent to the category GPS.

Proof. Define the functors (−)∗ : BDM → GPS and (−)∗ : GPS → BDM as
follows. For a bounded distributive meet-semilattice L, set L∗ = 〈L∗, τ,
⊆, L+〉, and for a meet-semilattice homomorphism h preserving top, set
h∗ = Rh; also for a generalized Priestley space X, let X∗ be the bounded
distributive meet-semilattice of X0-admissible clopen upsets of X, and for a
generalized Priestley morphism R, let R∗ = hR.

In order to prove that the functors (−)∗ and (−)∗ establish a dual equiv-
alence of BDM and GPS, we define the natural transformations from the
identity functor idBDM : BDM → BDM to the functor (−)∗

∗ : BDM → BDM

and from the identity functor idGPS : GPS → GPS to the functor (−)∗
∗
:

GPS → GPS.

The first natural transformation associates with each object L of BDM
the isomorphism ϕL : L → L∗

∗; and the second natural transformation
associates with each object X of GPS the generalized Priestley morphism
RεX ⊆ X ×X∗

∗ given by

xRεXε(y) iff εX(x) ⊆ εX(y)

for each x, y ∈ X. The result follows.
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Now we turn our attention to meet-semilattice homomorphisms preserv-
ing bottom and to sup-homomorphisms.

Lemma 6.10. Let L and K be bounded distributive meet-semilattices and let
h : L → K be a meet-semilattice homomorphism preserving top. Then:

1. h preserves bottom iff Rh
−1[L∗] = K∗.

2. h is a sup-homomorphism iff Rh[x] has a least element for each x ∈ K∗.

Proof. (1) First note that h(⊥) = ⊥ iff ϕ(h(⊥)) = ϕ(⊥), and by Propo-
sition 6.6, the last condition holds iff hRh

(ϕ(⊥)) = ϕ(⊥), which holds iff
hRh

(∅) = ∅. This last condition is equivalent to R−1
h [L∗] = K∗.

(2) For each x ∈ K∗, we show that Rh[x] has a least element iff h−1[x] ∈
L∗. If h

−1[x] ∈ L∗, then it is clear that h−1[x] is the least element of Rh[x].
Conversely, let y be the least element of Rh[x]. By the optimal filter lemma,
h−1[x] =

⋂
{z ∈ L∗ : h−1[x] ⊆ z} =

⋂
Rh[x] = y. Therefore, h−1[x] ∈ L∗.

By Proposition 3.5 (see also [1, Prop. 5.2]), h is a sup-homomorphism iff
h−1[x] ∈ L∗ for each x ∈ K∗. Thus, h is a sup-homomorphism iff Rh[x] has
a least element for each x ∈ K∗.

Definition 6.11. Let X and Y be generalized Priestley spaces and let R ⊆
X × Y be a generalized Priestley morphism.

1. We call R total if R−1[Y ] = X.

2. We call R functional if for each x ∈ X there is y ∈ Y such that R[x] = ↑y.

Obviously R is functional iff R[x] has a least element. It is also clear that
each functional generalized Priestley morphism is total. As an immediate
consequence of Theorem 6.9 and Lemma 6.10, we obtain:

Corollary 6.12. Let X and Y be generalized Priestley spaces and R ⊆
X × Y be a generalized Priestley morphism. Then:

1. hR preserves bottom iff R is total.

2. hR is a sup-homomorphism iff R is functional.

In particular, it follows that each sup-homomorphism preserves bottom.
It is not difficult to show that if X,Y, and Z are generalized Priestley spaces,
and R ⊆ X ×Y , S ⊆ Y ×Z are total generalized Priestley morphisms, then
so is S∗R; and if R, S are functional, then so is S∗R. In this last case, the
set-theoretic composition S ◦R is already a functional generalized Priestley
morphism, and so S ∗R = S ◦R.
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Let GPST denote the category of generalized Priestley spaces and total
generalized Priestley morphisms. This category is obviously a proper sub-
category of GPS. Let also GPSF denote the category of generalized Priestley
spaces and functional generalized Priestley morphisms, which is clearly a
proper subcategory of GPST.

We let BDMB denote the category of bounded distributive meet-semilat-
tices and bounded meet-semilattice homomorphisms, and BDMS denote the
category of bounded distributive meet-semilattices and sup-homomorphisms.
Similarly, we have that BDMS is a proper subcategory of BDMB, and that
BDMB is a proper subcategory of BDM.

By restricting the functors (−)∗ and (−)∗ to the appropriate categories,
from the results obtained above it immediately follows that BDMB is dually
equivalent to GPST and BDMS is dually equivalent to GPSF.

7. Functional morphisms

In this section we show that functional generalized Priestley morphisms can
be characterized by means of special functions between generalized Priestley
spaces, which we call strong Priestley morphisms. Let X and Y be Priestley
spaces. We recall that a map f : X → Y is a Priestley morphism if f is
continuous and order-preserving.

Definition 7.1. Let X and Y be generalized Priestley spaces. We call a
map f : X → Y a strong Priestley morphism if f is order-preserving and
U ∈ Y ∗ implies f−1(U) ∈ X∗.

Since X∗∪{U c : U ∈ X∗} and Y ∗∪{V c : V ∈ Y ∗} form subbases for the
Priestley topologies on X and Y , respectively, and f−1(V c) = f−1(V )c for
each V ⊆ Y , it follows that each strong Priestley morphism is a continuous
function, hence a Priestley morphism. We note that the composition of
strong Priestley morphisms is again a strong Priestley morphism, and that
the identity map idX : X → X is a strong Priestley morphism. Therefore,
generalized Priestley spaces and strong Priestley morphisms form a category
in which composition is the usual set-theoretic composition of functions and
the identity morphism is the usual identity function. We denote this category
by GPS

S.
Let X and Y be generalized Priestley spaces and R ⊆ X × Y be a

functional generalized Priestley morphism. We define fR : X → Y by

fR(x) = the least element of R[x].

It is not difficult to check that ifX and Y are generalized Priestley spaces and
R ⊆ X×Y is a functional generalized Priestley morphism, then fR : X → Y
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is a strong Priestley morphism, and that if X,Y, and Z are generalized
Priestley spaces and R ⊆ X × Y and S ⊆ Y × Z are functional generalized
Priestley morphisms, then fS∗R = fS ◦ fR (see [1, Lem. 9.2]).

Now let X and Y be generalized Priestley spaces and f : X → Y be a
strong Priestley morphism. Define Rf ⊆ X × Y by

xRfy iff f(x) ≤ y.

It is also not difficult to check that ifX and Y are generalized Priestley spaces
and f : X → Y is a strong Priestley morphism, then Rf is a functional
generalized Priestley morphism, and that if X,Y, and Z are generalized
Priestley spaces and f : X → Y and g : Y → Z are strong Priestley
morphisms, then Rg◦f = Rg ∗Rf (see [1, Lem. 9.3]).

Moreover, it is also easy to see that if X and Y are generalized Priestley
spaces, R ⊆ X × Y is a functional generalized Priestley morphism, and
f : X → Y is a strong Priestley morphism, then RfR

= R and fRf
= f (see

[1, Lem. 9.4]). Therefore we obtain:

Proposition 7.2. The categories GPS
F and GPS

S are isomorphic.

This together with the duality between BDM
S and GPS

F immediately im-
plies that the categories BDMS and GPSS are dually equivalent, thus provid-
ing us with the distributive meet-semilattice version of Hansoul’s duality for
distributive join-semilattices and join-semilattice homomorphisms preserv-
ing all existing finite meets [8, 9]. An explicit construction of the functors
from BDMS to GPSS and vice versa can be obtained based on the following
observation (see [1, Lem. 9.7]).

Lemma 7.3.

1. Let X and Y be generalized Priestley spaces and f : X → Y be a strong
Priestley morphism. Then for each U ∈ Y ∗ we have hRf (U) = f−1(U).

2. Let L and K be bounded distributive meet-semilattices and h : L → K be
a sup-homomorphism. Then fRh(y) = h−1(y) for each y ∈ K∗.

We can define the functors (−)� : BDMS → GPSS and (−)� : GPSS →
BDMS explicitly as follows: If L is a bounded distributive meet-semilattice,
then L� = L∗ and if h : L → K is a sup-homomorphism, then h� = h−1;
also, if X is a generalized Priestley space, then X� = X∗, and if f : X → Y
is a strong Priestley morphism, then f� = f−1. Therefore, the functors
(−)� : BDMS → GPSS and (−)� : GPSS → BDMS behave exactly like the
Priestley functors (−)∗ : BDL → PS and (−)∗ : PS → BDL.

Priestley duality between BDL and PS follows from the duality between
BDMS and GPSS. Indeed, if L is a bounded distributive lattice, then L∗ =
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L+, and so 〈L∗, τ,⊆, L+〉 = 〈L+, τ,⊆〉 is a Priestley space. Conversely, if
X = 〈X, τ,≤〉 is a Priestley space, then X∗ = CU(X). Moreover, given two
Priestley spaces X and Y , a map f : X → Y is a strong Priestley morphism
iff f is order-preserving and V ∈ CU(Y ) implies f−1(V ) ∈ CU(X). Because
CU(X) ∪ {U c : U ∈ CU(X)} and CU(Y ) ∪ {V c : V ∈ CU(Y )} are subbases
for the Priestley topologies on X and Y , respectively, the last condition is
equivalent to f being continuous. Thus, the notions of a strong Priestley
morphism and of a Priestley morphism coincide. If L and K are bounded
distributive lattices and h : L → K is a bounded meet-semilattice homo-
morphism, then h preserves ∨ iff h is a sup-homomorphism. Thus, lattice
homomorphisms and sup-homomorphisms coincide. Priestley duality is now
an immediate consequence of these observations and the duality between
BDMS and GPSS.

We conclude this section by generalizing Priestley duality to cover homo-
morphisms which do not necessarily preserve ∨. These results are easy conse-
quences of our dualities established in the previous section. Let BDL∧,� and
BDL

∧,�,⊥ denote the categories of bounded distributive lattices and meet-
semilattice homomorphisms preserving top and of bounded distributive lat-
tices and bounded meet-semilattice homomorphisms, respectively. Clearly
BDL is a proper subcategory of BDL∧,�,⊥ and BDL

∧,�,⊥ is a proper subcat-
egory of BDL∧,�. Let PSR, PST, and PSF denote the categories of Priest-
ley spaces as objects and generalized Priestley morphisms, total generalized
Priestley morphisms, and functional generalized Priestley morphisms as mor-
phisms, respectively. Clearly PSF is a proper subcategory of PST and PST

is a proper subcategory of PS. Moreover, BDL
∧,� is dually equivalent to

PSR, BDL∧,�,⊥ is dually equivalent to PST, and BDL is dually equivalent to
PSF, which is isomorphic to PS. Thus, we obtain the following table of dual

equivalences we have established. For two categories C and D, C
d
∼ D means

that C is dually equivalent to D, and C ∼= D means that C is isomorphic
to D.

BDM
d
∼ GPS BDL∧,�

d
∼ PSR

BDMB d
∼ GPST BDL∧,�,⊥ d

∼ PST

BDMS d
∼ GPSF ∼= GPSS BDL

d
∼ PSF ∼= PS

8. Duality at work

In this section we show how the duality developed in the previous sections
works by establishing dual descriptions of a number of algebraic concepts
that play an important role in the theory of distributive meet-semilattices.
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8.1. Dual description of Frink ideals, ideals, and filters

We start by recalling that for a bounded distributive lattice L and its Priest-
ley space X, there is a lattice isomorphism between the lattice of ideals of
L and the lattice of open upsets of X given by

I �→ U(I) =
⋃

{ϕ(a) : a ∈ I}.

The inverse of this isomorphism is given by

U �→ I(U) = {a ∈ L : ϕ(a) ⊆ U}.

Moreover, there is a lattice isomorphism between the lattice of filters of L
(ordered by ⊇) and the lattice of closed upsets of X which is given by

F �→ C(F ) =
⋂

{ϕ(a) : a ∈ F}

and its inverse isomorphism by

C �→ F (C) = {a ∈ L : C ⊆ ϕ(a)}.

Then we have I ⊆ J iff U(I) ⊆ U(J), I = I(U(I)), and U(I(U)) = U ;
and F ⊇ G iff C(F ) ⊆ C(G), F = F (C(F )), and C(F (C)) = C. Now we
show how these correspondences work for Frink ideals, ideals, and filters of
bounded distributive meet-semilattices.

Let L be a bounded distributive meet-semilattice and let D(L) be its
distributive envelope. Let alsoX = 〈X, τ,≤,X0〉 be the generalized Priestley
space of L. We know that 〈X, τ,≤〉 is order-homeomorphic to the Priestley
space of D(L). Since the lattice of Frink ideals of L is isomorphic to the
lattice of ideals of D(L), we immediately obtain from the above:

Proposition 8.1. Let L be a bounded distributive meet-semilattice and let X
be its generalized Priestley space. Then the maps I �→ U(I) and U �→ I(U)
defined as above set an isomorphism of the lattice of Frink ideals of L with
the lattice of open upsets of X.

In particular, prime F-ideals of L correspond to the open upsets of X of
the form (↓x)c for x ∈ X. Now we give the dual description of ideals of L.
Since each ideal of L is an F-ideal, ideals correspond to special open upsets
of X.

Theorem 8.2. Let L be a bounded distributive meet-semilattice and let X
be its generalized Priestley space. Then the maps I �→ U(I) and U �→ I(U)
defined as above set an isomorphism of the ordered set of ideals of L with
the ordered set of open upsets U of X such that X − U = ↓(X0 − U).
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Proof. First we show that if I is an ideal of L, then X − U(I) = ↓(X0 −
U(I)). The inclusion ↓(X0 − U(I)) ⊆ X − U(I) is trivial. To prove the
other inclusion, let x ∈ X − U(I). Then x ∩ I = ∅. By the prime filter
lemma, there is a prime filter y of L such that x ⊆ y and y ∩ I = ∅. Thus,
y ∈ X0 − U(I), and so x ∈ ↓(X0 − U(I)).

Now we prove that if U is an open upset of X such that X − U =
↓(X0−U), then I(U) is an ideal of L. Suppose that U is an open upset of X.
It follows from Proposition 8.1 that I(U) is an F-ideal of L. Let a, b ∈ I(U)
with ↑a ∩ ↑b ∩ I(U) = ∅. By the optimal filter lemma, there exists x ∈ X
such that ↑a∩↑b ⊆ x and x∩I(U) = ∅. Therefore, x /∈ U , so x ∈ X−U , and
so there exists y ∈ X0 −U such that x ≤ y. It follows that ↑a∩ ↑b ⊆ y, and
as y is a prime filter, we have ↑a ⊆ y or ↑b ⊆ y. Thus, a ∈ y or b ∈ y, which
is a contradiction because a, b ∈ I(U). Consequently, ↑a ∩ ↑b ∩ I(U) �= ∅,
and so I(U) is an ideal of L. Now apply Proposition 8.1.

Our next task is to give the dual description of prime ideals of L.

Lemma 8.3. Let L be a bounded distributive meet-semilattice and let X be
its generalized Priestley space. Then I is a prime ideal of L iff U(I) = (↓x)c

for some x ∈ X0.

Proof. Let I be a prime ideal of L and let x = L− I. By Proposition 2.3,
x ∈ X0. Moreover, we have y ∈ U(I) iff y ∩ I �= ∅ iff y �⊆ x iff y ∈
(↓x)c. Thus, U(I) = (↓x)c. Conversely, suppose that U(I) = (↓x)c for
some x ∈ X0. Then, by Theorem 8.2, I = I(U(I)) is an ideal because
max(U(I)c) = max(↓x) = {x} ⊆ X0. We show that it is prime. Let a ∧ b ∈
I(U(I)). Then ϕ(a) ∩ ϕ(b) = ϕ(a ∧ b) ⊆ U(I). So ϕ(a) ∩ ϕ(b) ⊆ (↓x)c,
and so ↓x ⊆ ϕ(a)c ∪ ϕ(b)c. Therefore, x ∈ ϕ(a)c ∪ ϕ(b)c, which implies that
x ∈ ϕ(a)c or x ∈ ϕ(b)c. Thus, ↓x ⊆ ϕ(a)c or ↓x ⊆ ϕ(b)c, so ϕ(a) ⊆ (↓x)c or
ϕ(b) ⊆ (↓x)c. It follows that ϕ(a) ⊆ U(I) or ϕ(b) ⊆ U(I), so a ∈ I(U(I)) = I
or b ∈ I(U(I)) = I, and so I is a prime ideal.

Putting Theorem 8.2 and Lemma 8.3 together, we obtain:

Proposition 8.4. Let L be a bounded distributive meet-semilattice and let X
be its generalized Priestley space. Then the maps I �→ U(I) and U �→ I(U)
defined as above set an isomorphism of the ordered set of prime ideals of L
with the ordered set of open upsets of X of the form (↓x)c for some x ∈ X0.

Now we give the dual description of filters of L. Since there are less
filters in L than in D(L), not every closed upset of X corresponds to a filter
of L.
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Theorem 8.5. Let L be a bounded distributive meet-semilattice and let X
be its generalized Priestley space. Then the maps F �→ C(F ) and C �→ F (C)
defined as above set an isomorphism of the lattice of filters of L (ordered
by reverse inclusion) and the lattice of closed upsets C of X satisfying the
condition X −C = ↓(X0 − C).

Proof. First we prove that if F is a filter of L, then X − C(F ) = ↓(X0 −
C(F )). The inclusion ↓(X0 − C(F )) ⊆ X − C(F ) is trivial. For the other
inclusion, let x ∈ X−C(F ). Then x /∈ C(F ), and so there exists a ∈ F such
that a �∈ x. By the prime filter lemma, there is y ∈ X0 such that x ⊆ y and
a �∈ y. Thus, y �∈ C(F ), so y ∈ X0 −C(F ), and so x ∈ ↓(X0 −C(F )). Next,
it is easy to see that if C is a closed upset of X, then F (C) is a filter of L.
We show that C = C(F (C)) iff X − C = ↓(X0 − C). Let C = C(F (C)).
Since F (C) is a filter of L, we have X−C(F (C)) = ↓(X0−C(F (C))). From
C = C(F (C)) and the last equality we get X −C = ↓(X0 −C). Conversely,
suppose that X − C = ↓(X0 − C). We show that C = C(F (C)). Since

C(F (C)) =
⋂

{ϕ(a) : C ⊆ ϕ(a)}, it is obvious that C ⊆ C(F (C)). For

the converse, suppose that x /∈ C. Then there exists y ∈ X0 − C such that
x ≤ y. Since C is a closed upset of X, C is the intersection of clopen upsets
of X containing C. Therefore, from y /∈ C it follows that there is a clopen
upset U of X such that C ⊆ U and y /∈ U . As each clopen upset of X
is a finite union of elements of ϕ[L], there exist a1, . . . , an ∈ L such that
U = ϕ(a1)∪ . . .∪ϕ(an). Thus, y �∈ ϕ(a1)∪ . . .∪ϕ(an), and so a1, . . . , an �∈ y.
Since y is a prime filter of L, we have

⋂n
i=1 ↑ai �⊆ y. Therefore, there exists

a ∈
⋂n

i=1 ↑ai such that a �∈ y. But then ϕ(a) ⊇ ϕ(a1)∪ . . .∪ϕ(an) = U ⊇ C
and y /∈ ϕ(a). Consequently, C ⊆ ϕ(a) and x /∈ ϕ(a), implying that x �∈
C(F (C)). The theorem follows.

In particular, since there is a 1-1 correspondence between prime filters
and prime ideals of L, we obtain that prime filters of L correspond to closed
upsets of X of the form ↑x for x ∈ X0. Also, optimal filters of L correspond
to closed upsets of X of the form ↑x for x ∈ X.

8.2. Dual description of 1-1 and onto homomorphisms

Our next task is to give the dual description of 1-1 and onto homomorphisms.

Lemma 8.6. Let X and Y be generalized Priestley spaces and let R ⊆ X×Y
be a generalized Priestley morphism.

1. If F is a closed subset of X, then R[F ] is a closed upset of Y .

2. If G is a closed subset of Y , then R−1[G] is a closed downset of X.
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Proof. (1) Suppose that F is a closed subset of X. It follows from Lemma
6.3 that R[F ] is an upset of Y . We show that R[F ] is closed in Y . Let
y �∈ R[F ]. Then for each x ∈ F we have xR�y. By condition (1) of Definition
6.2, there is Ux ∈ Y ∗ such that R[x] ⊆ Ux and y /∈ Ux. Thus, x ∈ �RUx

and by condition (2) of Definition 6.2, �RUx ∈ X∗, so �RUx is clopen.

Then we have F ⊆
⋃

{�RUx : x ∈ F}. Since F is a closed subset of a

compact space, F is compact. Therefore, there are x1, . . . , xn ∈ F such that
F ⊆

⋃n
i=1 �RUxi

. We claim that U c
x1

∩ . . . ∩ U c
xn

∩ R[F ] = ∅. If not, then
there exists z ∈ U c

x1
∩ . . .∩U c

xn
∩R[F ]. Thus, there is u ∈ F such that uRz.

But then u ∈ �RUxi
, so z ∈ Uxi

for some i ≤ n, which is a contradiction.
It follows that there is an open neighborhood U c

x1
∩ . . . ∩ U c

xn
of y missing

R[F ], so R[F ] is closed in Y .

(2) Suppose that G is a closed subset of Y . It follows from Lemma 6.3
that R−1[G] is a downset of X. We show that R−1[G] is closed in X. Let
x /∈ R−1[G]. Then for each y ∈ G we have xR�y. So, by condition (1) of
Definition 6.2, there is Uy ∈ Y ∗ such that x ∈ �RUy and y /∈ Uy. Therefore,

G ⊆
⋃

{U c
y : y ∈ G}, and as G is compact, there are y1, . . . , yn ∈ G such

that G ⊆
⋃n

i=1 U
c
yi
. We claim that �RUy1∩ . . .∩�RUyn∩R−1[G] = ∅. If not,

then there is z ∈ �RUy1 ∩ . . . ∩�RUyn ∩ R−1[G]. So R[z] ⊆ Uy1 ∩ . . . ∩ Uyn

and z ∈ R−1[G]. Thus, there is u ∈ G such that zRu. But then u ∈
Uy1 ∩ . . .∩Uyn ∩G, which is a contradiction. Consequently, there is an open
neighborhood �RUy1 ∩ . . .∩�RUyn of x missing R−1[G], so R−1[G] is closed
in X.

Definition 8.7. Let X and Y be generalized Priestley spaces and let R ⊆
X × Y be a generalized Priestley morphism.

1. We call R onto if for each y ∈ Y there is x ∈ X such that R[x] = ↑y.

2. We call R 1-1 if for each x ∈ X and U ∈ X∗ with x /∈ U , there is V ∈ Y ∗

such that R[U ] ⊆ V and R[x] �⊆ V .

Let X and Y be generalized Priestley spaces and let R ⊆ X × Y be
a generalized Priestley morphism. We observe that if R is 1-1, then R is
total. Indeed, if R is not total, then there exists x ∈ X such that R[x] = ∅.
Therefore, for each V ∈ Y ∗ we have R[x] ⊆ V . Thus, R can not be 1-1. We
also observe that using condition (5) of Definition 5.5, it is easy to verify that
if a generalized Priestley morphism R is 1-1, then x �≤ y implies R[y] �⊆ R[x],
and x /∈ U implies R[x] �⊆ R[U ] for each x, y ∈ X and U ∈ X∗. However,
these two conditions do not imply that R is 1-1 (see [1, Ex. 11.14]).
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Lemma 8.8. Let L and K be bounded distributive meet-semilattices and let
h : L → K be a meet-semilattice homomorphism preserving top. Then for
x ∈ K∗ and y ∈ L∗ we have Rh[x] = ↑y iff h−1(x) = y.

Proof. First suppose that Rh[x] = ↑y. Then xRhy, so h−1(x) ⊆ y, and so
h−1(x) is a proper filter of L. Thus, by the optimal filter lemma, h−1(x) =⋂

{z ∈ L∗ : h−1(x) ⊆ z} =
⋂

{z ∈ L∗ : xRhz} =
⋂

Rh[x] =
⋂

↑y = y.

Now suppose that h−1(x) = y. Then Rh[x] = {z ∈ L∗ : xRhz} = {z ∈ L∗ :
h−1(x) ⊆ z} = {z ∈ L∗ : y ⊆ z} = ↑y.

Theorem 8.9. Let L and K be bounded distributive meet-semilattices and
let h : L → K be a meet-semilattice homomorphism preserving top.

1. h is 1-1 iff Rh is onto.

2. h is onto iff Rh is 1-1.

Proof. (1) Suppose that h is 1-1. We show that Rh is onto. Let y ∈ L∗.
Since h preserves ∧, we have ↑h[y] is a filter of K. Let J be the F-ideal
generated by h[L − y]. We claim that ↑h[y] ∩ J = ∅. If ↑h[y] ∩ J �= ∅, then
there exist a ∈ y, a1, . . . , an ∈ L − y, and b ∈ K such that h(a) ≤ b and⋂n

i=1 ↑h(ai) ⊆ ↑b. Therefore,
⋂n

i=1 ↑h(ai) ⊆ ↑h(a). Since h is 1-1, we have⋂n
i=1 ↑ai ⊆ ↑a. As y is an optimal filter of L, we have L− y is an F-ideal of

L, so a ∈ L − y, a contradiction. Thus, ↑h[y] ∩ J = ∅, and by the optimal
filter lemma, there is x ∈ K∗ such that ↑h[y] ⊆ x and x ∩ J = ∅. It follows
that h−1(x) = y, and so Rh[x] = ↑y by Lemma 8.8. Now suppose that Rh

is onto. For a, b ∈ L with a �= b, we may assume without loss of generality
that a �≤ b. Then ↑a ∩ ↓b = ∅, and so by the prime filter lemma, there is
y ∈ L+ ⊆ L∗ such that a ∈ y and b /∈ y. Since Rh is onto, there is x ∈ K∗

such that Rh[x] = ↑y. This, by Lemma 8.8, implies that h−1(x) = y. Thus,
h(a) ∈ x and h(b) /∈ x, and so h(a) �≤ h(b). It follows that h is 1-1.

(2) Suppose that h is onto. We show that Rh is 1-1. Let x ∈ K∗, b ∈ K,
and x /∈ ϕ(b). Since h is onto, there is a ∈ L such that h(a) = b. By
Proposition 6.6, �Rh

(ϕ(a)) = ϕ(b). So Rh[ϕ(b)] ⊆ ϕ(a) and Rh[x] �⊆ ϕ(a).
Thus, Rh is 1-1. Now suppose that Rh is 1-1. Let b ∈ K. For each x ∈ K∗

such that b /∈ x, we have x /∈ ϕ(b). Since Rh is 1-1, there exists ax ∈ L
such that Rh[ϕ(b)] ⊆ ϕ(ax) and Rh[x] �⊆ ϕ(ax). Then ϕ(b) ⊆ �Rh

ϕ(ax) and

x �∈ �Rh
ϕ(ax). Therefore,

⋂
{�Rh

ϕ(ax) : x /∈ ϕ(b)} ∩ ϕ(b)c = ∅. Since X is

compact, there exist x1, . . . xn /∈ ϕ(b) such that
⋂n

i=1�Rh
ϕ(axi

)∩ϕ(b)c = ∅.
Thus, �Rh

ϕ(ax1
∧ . . . ∧ axn) ∩ ϕ(b)c = ∅, so ϕ(b) = �Rh

ϕ(ax1
∧ . . . ∧ axn) =

ϕ(h(ax1
∧ . . . ∧ axn)), and so b = h(ax1

∧ . . . ∧ axn). It follows that h is
onto.
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Proposition 8.10. Let X and Y be generalized Priestley spaces and let
R ⊆ X × Y be a generalized Priestley morphism.

1. R ⊆ X × Y is onto iff RhR
⊆ X∗

∗ × Y ∗
∗ is onto.

2. R ⊆ X × Y is 1-1 iff RhR
⊆ X∗

∗ × Y ∗
∗ is 1-1.

Proof. Apply Theorem 8.9 and Propositions 6.6 and 6.7.

Theorem 8.11. Let X and Y be generalized Priestley spaces and let R ⊆
X × Y be a generalized Priestley morphism.

1. R is 1-1 iff hR is onto.

2. R is onto iff hR is 1-1.

Proof. It follows from Theorem 8.9 and Proposition 8.10.

Thus, we obtain that 1-1 homomorphisms of bounded distributive meet-
semilattices preserving top correspond to onto generalized Priestley mor-
phisms, and that bounded 1-1 homomorphisms correspond to total onto gen-
eralized Priestley morphisms. Moreover, onto homomorphisms of bounded
distributive meet-semilattices preserving top coincide with bounded onto
homomorphisms (which is easy to see either algebraically or by recalling
that each 1-1 generalized Priestley morphism is total) and correspond to 1-1
generalized Priestley morphisms.

Our results above imply the well-known dual description of 1-1 and onto
homomorphisms of bounded distributive lattices. We skip the details and
refer the interested reader to [1, Sec. 11.2.1].

9. Non-bounded case

The duality we have developed for bounded distributive meet-semilattices
can be modified accordingly to obtain a duality for non-bounded distributive
meet-semilattices. In this section we discuss briefly the main ideas of the
modification.

First we deal with the case of distributive meet-semilattices with top but
possibly without bottom. Let L ∈ DM. If L does not have bottom, then we
have to add L to the set of optimal filters of L, and so then for each a ∈ L, we
have L ∈ ϕ(a). As a result, L is the greatest element of L∗, and so max(L∗)
is not contained in L+. Thus, we have to drop condition (3) of Definition 5.5.
Moreover, for x = L we have Ix = ∅, so Ix is trivially updirected, although
L /∈ L+. Thus, we have to modify condition (4) of Definition 5.5 as follows:
x ∈ L+ iff Ix is nonempty and updirected. This suggests the following
modification of the definition of a generalized Priestley space.
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Definition 9.1. A quadruple X = 〈X, τ,≤,X0〉 is called a ∗-generalized
Priestley space if (i) 〈X, τ,≤〉 is a Priestley space, (ii) X0 is a dense subset
ofX, (iii) x ∈ X0 iff Ix is nonempty and updirected, and (iv) for all x, y ∈ X,
we have x ≤ y iff (∀U ∈ X∗)(x ∈ U ⇒ y ∈ U).

Clearly each generalized Priestley space is a ∗-generalized Priestley space,
so the concept of ∗-generalized Priestley space generalizes that of generalized
Priestley space. Moreover, a ∗-generalized Priestley space is a generalized
Priestley space iff max(X) ⊆ X0 iff X∗ has a bottom element. Therefore,
a ∗-generalized Priestley space is a generalized Priestley space iff it satisfies
condition (3) of Definition 5.5. Let GPS∗ denote the category of ∗-generalized
Priestley spaces and generalized Priestley morphisms. Then we immediately
obtain the following theorem, which generalizes the duality we obtained for
BDM to DM.

Theorem 9.2. The category DM is dually equivalent to the category GPS
∗.

If L is a distributive meet-semilattice without top but with bottom, then
two cases are possible: either D(L) has top or D(L) does not have top. If
D(L) has top, then we obtain the dual of L in exactly the same way as in
the bounded case. But in this case L will be realized as L∗

∗−{L∗}. If D(L)
does not have top, then again we construct the dual of L as before, however
in this case the space we obtain is locally compact but not compact. We can
handle this as the case for distributive lattices [12, Sec. 10] by adding a new
top to L. If L� is the resulting meet-semilattice, then the dual space of L�

is the one-point compactification of the dual of L. Moreover, the new point
of (L�)∗ is the smallest optimal filter {�} of L�, which is below every point
of L∗.

This way we can handle all possible situations; that is, when L has �,
but lacks ⊥; when L has ⊥, but lacks �; or the most general case, when L
lacks both � and ⊥.

10. Comparison with the relevant work

In this final section we compare our duality with the existing dualities for
distributive meet-semilattices. The first representation of distributive meet-
semilattices is already present in the pioneering work of Stone [13]. It was
made more explicit in Grätzer [7], where with each join-semilattice L with
bottom is associated the space S(L) of prime ideals of L. The topology on
S(L) is generated by the basis consisting of the sets r(a) = {I ∈ S(L) :
a �∈ I}. The space S(L) is not Hausdorff in general, and it is compact
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iff L has a top. In [7] it is shown that such spaces can be characterized as
topological spaces 〈X, τ〉 satisfying (i) X is T0, (ii) the compact open subsets
of X form a basis for τ , and (iii) for each closed subset F of X and each
nonempty downdirected family of compact open subsets {Ui : i ∈ I} of X,

from F ∩ Ui �= ∅ for each i ∈ I, it follows that F ∩
⋂

{Ui : i ∈ I} �= ∅.

Erné [4] showed that these spaces are exactly the compactly based sober
spaces, where we recall that a subset A of a topological space X is irreducible
if A = F ∪G implies A = F or A = G for any closed subsets F,G of X, that
X is sober if each closed irreducible subset of X is the closure of a unique
point x ∈ X, and that X is compactly based if it has a basis of compact
open sets.

It follows from Celani [3] that this 1-1 correspondence between distribu-
tive join-semilattices with bottom and compactly based sober spaces extends
to full duality. Celani chose to work with meet-semilattices instead of join-
semilattices, hence his building blocks for the dual space were prime filters
instead of prime ideals. To be more specific, let us recall that DM de-
notes the category of distributive meet-semilattices with top as objects and
meet-semilattice homomorphisms preserving top as morphisms. Celani’s
dual category has (in the terminology of [3]) DS-spaces as objects and meet-
relations between two DS-spaces as morphisms. We recall from [2, Sec.
6] that DS-spaces are simply compactly based sober spaces. For a DS-
space X, let E(X) denote the set of compact open subsets of X, and let
DX = {U ⊆ X : U c ∈ E(X)}. Let X and Y be two DS-spaces and let
R ⊆ X × Y be a binary relation. We call R a meet-relation if (i) U ∈ DY

implies �RU ∈ DX and (ii) R[x] is closed for each x ∈ X. Let DS denote
the category of DS-spaces as objects and meet-relations as morphisms.

Although not addressed in [3], the composition of two meet-relations is
not the usual set-theoretic composition. Rather, similar to the case of GPS,
we have that for DS-spaces X,Y, and Z and meet-relations R ⊆ X × Y and
S ⊆ Y × Z, the composition S ∗R ⊆ X × Z is given by

x(S ∗R)z iff (∀U ∈ DZ)(x ∈ �R�S(U) ⇒ z ∈ U)

for each x ∈ X and z ∈ Z.
Celani’s functors (−)+ : DM → DS and (−)+ : DS → DM are defined

as follows. If L ∈ DM, then L+ = 〈L+, τ〉, where L+ is the set of prime
filters of L and τ is the topology generated by the basis {σ(a)c : a ∈ L}; if
h : L → K is a meet-semilattice homomorphism preserving �, then h+ =
Rh ⊆ K+ × L+ is defined by xRhy iff h−1(x) ⊆ y. If X is a DS-space, then
X+ = 〈DX ,∩,X〉; if X and Y are DS-spaces and R ⊆ X × Y is a meet-
relation, then R+ = hR : DY → DX is defined by hR(U) = �RU . Then it
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follows from [3] that the functors (−)+ and (−)+ are well-defined, and that
they establish a dual equivalence of the categories DM and DS.

The bounded distributive meet-semilattices are exactly the objects of
DM whose dual spaces are compact. Indeed, if L is a bounded distributive
meet-semilattice, then σ(⊥) = ∅, so σ(a)c = L+, and so L+ is compact as
{σ(a)c : a ∈ L} = E(L+). Conversely, if L+ is compact, then L+ = σ(a)c for
some a ∈ L, so a is the bottom of L, and so L is bounded. It follows that the
full subcategory BDM of DM whose objects are bounded distributive meet-
semilattices is dually equivalent to the full subcategory CDS of DS whose
objects are compact DS-spaces. Now putting Celani’s duality together with
ours, we obtain that CDS is equivalent to GPS. In fact, as follows from [1,
Prop. 13.3 and 13.4], for a generalized Priestley space X = 〈X, τ,≤, X0〉,
the space X0 = 〈X0, τ0〉 is a compact DS-space, where τ0 is the topology
generated by the basis {X0 − U : U ∈ X∗}; also, for generalized Priestley
spaces X and Y and a generalized Priestley morphism R ⊆ X × Y , the
relation R0 = R ∩ (X0 × Y0) is a meet-relation between the compact DS-
spaces X0 and Y0.

We conclude the paper by comparing our work to that of Hansoul [8, 9].
Like Grätzer, Hansoul prefers to work with distributive join-semilattices.
But unlike both Grätzer and Celani, he tries to build a Priestley-like dual
of a bounded distributive join-semilattice. Thus, his work is the closest to
ours. We recall the main definition of [8, 9]. A Priestley structure is a tuple
X = 〈X, τ,≤,X0〉, where:

1. 〈X, τ,≤〉 is a Priestley space.

2. X0 is a dense subset of X.

3. If x, y ∈ X with x �≤ y, then there is z ∈ X0 such that x �≤ z and y ≤ z.

4. X0 is the set of elements of X for which the family of clopen downsets
U that contain x and have the property that U ∩X0 is cofinal in U is a
basis of clopen downset neighborhoods of x.

5. For each x ∈ X there exists y ∈ X0 such that x ≤ y.

Hansoul constructs the dual X of a bounded distributive join-semilattice
L by taking weakly prime ideals of L as points of X and by taking prime
ideals of L as points of the dense subset X0 of X. The weakly prime ideals
of L are exactly the optimal filters of the dual Ld of L and the prime ideals
of L are exactly the prime filters of Ld. Thus, Hansoul’s construction is dual
to ours. It turns out that Hansoul’s Priestley structures are equal to our
generalized Priestley spaces (see [1, Prop. 13.6]).
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In [8, 9] Hansoul provided duality for the category whose objects are
bounded join-semilattices and whose morphisms correspond to our sup-
homomorphisms. Consequently, Hansoul’s duality is a particular case of
our duality.
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pendices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P.

Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung and R.

Wille, 1998.

[8] Hansoul, G., ‘Priestley duality for distributive semilattices’, Institut de Mathéma-
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