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Abstract. Maximality is a desirable property of paraconsistent logics, motivated by

the aspiration to tolerate inconsistencies, but at the same time retain from classical logic

as much as possible. In this paper we introduce the strongest possible notion of maximal

paraconsistency , and investigate it in the context of logics that are based on deterministic

or non-deterministic three-valued matrices. We show that all reasonable paraconsistent

logics based on three-valued deterministic matrices are maximal in our strong sense. This

applies to practically all three-valued paraconsistent logics that have been considered in

the literature, including a large family of logics which were developed by da Costa’s school.

Then we show that in contrast, paraconsistent logics based on three-valued properly non-

deterministic matrices are not maximal, except for a few special cases (which are fully

characterized). However, these non-deterministic matrices are useful for representing in a

clear and concise way the vast variety of the (deterministic) three-valued maximally para-

consistent matrices. The corresponding weaker notion of maximality, called premaximal

paraconsistency , captures the “core” of maximal paraconsistency of all possible paracon-

sistent determinizations of a non-deterministic matrix, thus representing what is really

essential for their maximal paraconsistency.
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1. Introduction

During the last sixty years several philosophers, including Jaśkowski, Nelson,
Anderson, Belnap, da-Costa, and others, have questioned the validity of
classical logic with regard to the principle of ex contradictione (sequitur)
quodlibet (ECQ). According to this principle, any proposition can be inferred
from a single contradiction. Recently, also many computer scientists have
realized that classical logic fails to capture the fact that information systems
which contain some inconsistent pieces of information may produce useful
answers. The following text, given in [18], is a typical argument in favor of
a more appropriate logic:
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Informally speaking, paraconsistency is the paradigm of reasoning in
the presence of inconsistency. Classical logic intolerantly invalidates
any useful reasoning if there is any inconsistency, no matter how
irrelevant it may be. However, inconsistencies, as unpleasant and
dangerous as they can be, are ubiquitous in information systems.
For novel technology which often is not sufficiently mature before be-
ing launched on the market, the risk of inconsistencies is even higher.
Hence, a thoroughly revised inconsistency-tolerant logic fundament is
needed for databases and information systems, also because many fu-
ture applications (e.g., the self-organizing cognitive evolution of net-
worked information systems, involving negotiation, argumentation,
diagnosis, learning, etc.) are likely to deal directly with inconsisten-
cies as inherent constituents of real-life situations.

Thus, to handle inconsistent information one needs a logic that, unlike clas-
sical logic, allows contradictory yet non-trivial theories. Logics of this sort
are called paraconsistent .

There are many approaches to designing paraconsistent logics. One of
the oldest and best known is Newton da Costa’s approach, which has led to
the family of Logics of Formal Inconsistency (LFIs) [15]. Now, already in
the early stages of investigating this topic it has been acknowledged by da
Costa (and others) that paraconsistency by itself is not sufficient. A useful
paraconsistent logic should be maximal : it should retain as much of clas-
sical logic as possible, while still allowing non-trivial inconsistent theories.
Da Costa formulated this property in his seminal paper [17], but admitted
that the precise notion of “maximal paraconsistency” remained somewhat
vague. Later, many three-valued paraconsistent logics (such as Sette’s logic
P1 [31], Jaśkowski-D’Ottaviano’s J3 [19] and other logics in the family of
LFIs [15, 27]) have indeed been shown to be maximally paraconsistent with
respect to classical logic in the following sense: any proper extension of their
set of logically valid sentences yields classical logic (see also [16, 23, 27]).

In this paper, we propose a stronger (and more natural) notion of maxi-
mal paraconsistency, with respect to a very weak notion of “negation”. Our
notion differs from previous notions of maximal paraconsistency considered
in the literature in two aspects. First, it is absolute in the sense that it is not
defined with respect to some other given logic (like classical logic, which is
often taken as a reference logic for maximality). Second, it takes into account
any possible extension of the underlying consequence relation of a logic, not
just its set of logically valid sentences. To show that our notion of maxi-
mal paraconsistency is indeed stronger in the used so far in the literature,
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we provide an example of a paraconsistent logic such that any extension in
the same language of its set of theorems results in either classical logic or a
trivial logic, yet it is not maximally paraconsistent in our sense.

Strong maximality of paraconsistent logics is investigated in this paper
with respect to three-valued deterministic and non-deterministic matrices.
The former are one of the oldest and most common ways of defining a para-
consistent logic. The latter are a recent natural generalization of the former,
introduced in [10], in which non-deterministic interpretations of connectives
are allowed. We show that in the deterministic case, all reasonably expres-
sive three-valued paraconsistent logics are maximal in the strong sense. Our
result applies to all three-valued paraconsistent logics that have been consid-
ered in the literature (including all the examples mentioned above, as well as
any extension of one of them obtained by enriching its language with extra
three-valued connectives).

In the non-deterministic case things are quite different. We show that
paraconsistent logics induced by properly three-valued non-deterministic
matrices (Nmatrices in short) are usually not maximal, except for a few
special cases (which are fully characterized in the paper).1 Nevertheless,
we show that three-valued Nmatrices provide concise representations of the
“core” of the maximal paraconsistency of the three-valued deterministic ma-
trices . For this purpose, we introduce a weaker notion of maximality: We
call an Nmatrix M premaximally paraconsistent , if every paraconsistent
logic which is induced by a “determinization” of M, is maximally paracon-
sistent. Premaximal three-valued Nmatrices are a convenient tool for a sys-
tematization of the vast majority of the available maximally paraconsistent
three-valued logics. As an example we consider a family of 220 three-valued
paraconsistent logics (which includes all the 213 three-valued paraconsistent
LFIs shown in [15, 26] to be maximal in the weak sense). All of these maxi-
mally paraconsistent logics can be represented by a single premaximal Nma-
trix. This Nmatrix (which corresponds to a well-known paraconsistent logic
from da Costa’s school, called Cmin) underlies all these logics, and captures
the “core” of their maximal paraconsistency. We believe that this represen-
tation is faithful to da Costa’s original motivations and intuitions concerning
maximal paraconsistency, replaced by “maximal paraconsistency up to the
point in which choices based on other considerations should be made”.2

1Even these exceptional cases are redundant, as we show that any maximally paracon-
sistent logic defined by a three-valued Nmatrix can be characterized also by a three-valued
deterministic matrix.

2This paper is a corrected and expanded version of [2].
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2. Preliminaries

2.1. Maximally Paraconsistent Logics

In the sequel, L denotes a propositional language with a set AL of atomic
formulas and a set WL of well-formed formulas. We denote the elements of
AL by p, q, r (possibly with subscripted indexes), and the elements of WL

by ψ, φ, σ. Sets of formulas in WL are called theories and are denoted by Γ
or Δ. Following the usual convention, we shall abbreviate Γ ∪ {ψ} by Γ, ψ.
More generally, we shall write Γ,Δ instead of Γ ∪ Δ.

Definition 2.1. A (Tarskian) consequence relation for a language L (a tcr,
for short) is a binary relation � between theories in WL and formulas in WL,
satisfying the following three conditions:

Reflexivity : if ψ ∈ Γ then Γ � ψ.
Monotonicity : if Γ � ψ and Γ ⊆ Γ′, then Γ′ � ψ.
Transitivity : if Γ � ψ and Γ′, ψ � φ then Γ,Γ′ � φ.

Let � be a tcr for L.

• We say that � is structural , if for every uniform L-substitution θ and
every Γ and ψ, if Γ � ψ then θ(Γ) � θ(ψ). (Where θ(Γ) = {θ(γ) | γ ∈ Γ}).

• We say that � is consistent (or non-trivial), if there exist some non-empty
theory Γ and some formula ψ such that Γ �� ψ.

• We say that � is finitary , if for every theory Γ and every formula ψ such
that Γ � ψ there is a finite theory Γ′ ⊆ Γ such that Γ′ � ψ.

Definition 2.2. A (propositional) logic is a pair 〈L,�〉, so that L is a propo-
sitional language, and � is a structural, consistent, and finitary consequence
relation for L.

Note 2.3. The conditions of being consistent and finitary are usually not
required in the definitions of propositional logics. However, consistency is
convenient for excluding trivial logics (those in which every formula fol-
lows from every theory, or every formula follows from every non-empty the-
ory). The other property is assumed since we believe that it is essential
for practical reasoning, where a conclusion is always derived from a finite
set of premises. In particular, every logic that has a decent proof system is
finitary.

A useful property of a propositional logic is that it admits the following
stronger version of Transitivity (referring to a cut on multiple formulas):
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Lemma 2.4. Let 〈L,�〉 be a propositional logic. If Γ � ψi for every ψi ∈ Γ′,
and Γ,Γ′ � φ, then Γ � φ.

Proof. In case that Γ′ is finite, this follows from Transitivity using an
induction on the number of formulas in Γ′. The case in which Γ′ is not finite
is reducible to the finite case by the finitariness assumption on the logic.

Next we define the notion of paraconsistency in precise terms:

Definition 2.5. [17, 22] A logic 〈L,�〉, where L is a language with a unary
connective ¬, and � is a tcr for L, is called ¬-paraconsistent , if there are
formulas ψ, φ in WL, such that ψ,¬ψ �� φ.

In what follows, when it is clear from the context, we shall sometimes
omit the ‘¬’ symbol and simply refer to paraconsistent logics.

Note 2.6. As � is structural, it is enough to require in Definition 2.5 that
there are atoms p, q such that p,¬p �� q. The original definition is adequate
also for non-structural consequence relations.

While paraconsistency is characterized by a ‘negation connective’, there
is no general agreement about the properties that such a connective should
satisfy.3 Below, we assume some very minimal requirements that a negation
connective should satisfy.4

Definition 2.7. Let L = 〈L,�〉 be a propositional logic for a language L
with a unary connective ¬.

• We say that ¬ is a pre-negation (for L), if p �� ¬p for atomic p.

• A pre-negation ¬ is a weak negation (for L), if ¬p �� p for atomic p.

In what follows, when referring to ¬-paraconsistency we shall assume
that ¬ is a pre-negation.

Definition 2.8. Let L = 〈L,�〉 be a ¬-paraconsistent logic (where ¬ is a
pre-negation for L).

• We say that L is maximally paraconsistent in the weak sense, if every
logic 〈L,�〉 that extends L without changing the language (i.e., � ⊆
�), and whose set of theorems properly includes that of L, is not ¬-
paraconsistent.

3See, e.g., the papers collection in [20] that is devoted to this issue.
4Similar properties are considered, e.g., in [28].
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• We say that L is maximally paraconsistent in the strong sense , if every
logic 〈L,�〉 that properly extends L without changing the language (i.e.,
� ⊂ �) is not ¬-paraconsistent.

Both of the notions of maximal paraconsistency given in Definition 2.8
are absolute in the sense that they are not defined with respect to some par-
ticular logic. This is in contrast to the relative notion of maximal paracon-
sistency (in the weak sense), considered so far in the literature. For instance,
in [16] and in [23] it is noted, respectively, that Jaśkowski–D’Ottaviano three-
valued logic J3 [19] and Sette’s three-valued logic P1 [31] are maximally
paraconsistent with respect to classical logic, in the sense that any proper
extension of their set of logically valid sentences yields classical logic. Now
it is not too difficult to show that for any paraconsistent three-valued logic
which is contained in classical logic, the fact that it is maximally paracon-
sistent in the weak sense according to Definition 2.8 implies that this logic
is also maximally paraconsistent relative to classical logic. To the best of
our knowledge, both of the stronger absolute notions of maximal paracon-
sistency in Definition 2.8 have not been considered before, and the notion of
strong paraconsistency was not considered so far even in its relative form.

Clearly, maximal paraconsistency in the strong sense implies maximal
paraconsistency in the weak sense. As we show next, the converse is not
true: the notion of maximal paraconsistency in the weak sense, which is
based only on extending the underlying set of theorems, is indeed weaker
than the notion of maximal paraconsistency in the strong sense, that is
based on extending the underlying consequence relation.5

Example 2.9. What is usually known as Sobociński’s “three-valued logic”
[34] has been motivated by the matrix (see Definition 2.10) S = 〈{t, f,
},
{t,
}, {→̃, ¬̃}〉, where ¬̃t = f , ¬̃f = t, ¬̃
 = 
, and the implication is
interpreted as follows:

a→̃b =

⎧⎨
⎩


 if a = b = 
,
f if a >t b (where t >t 
 >t f),
t otherwise.

In [34], the set of valid sentences of S was axiomatized by a Hilbert-type sys-
tem HS with Modus Ponens as the single inference rule. The corresponding
logic 〈L,�HS

〉 has the following properties:

5Take note that the weak and the strong notions of maximal paraconsistency do not
necessarily coincide even in case that the underlying logic has an implication connective
which satisfies the standard deduction theorem, since this theorem might not hold anymore
after the addition of new rules.
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• Weak completeness theorem [34]: ψ is provable in �HS
iff ψ is valid in S,

• Equivalence to the purely multiplicative fragment of the semi-relevance
logic RM∼

→
(see [1, pages 148–149] and [29]). In particular, the following

version of the relevant deduction theorem obtains for HS : Γ, ψ �HS
φ if

either Γ �HS
φ or Γ �HS

ψ → φ.

In [4] it is shown that 〈L,�HS
〉 is maximally paraconsistent in the weak sense.

In fact, it is shown that this logic is paraconsistent, but any extension of the
set of theorems of HS by a non-provable axiom yields either classical logic
or a trivial logic. On the other hand, the logic 〈L,�HS

〉 is not maximally
¬-paraconsistent in the strong sense, as �S (see Definition 2.12 below) is a
proper extension of �HS

. Indeed, it holds that

¬(p → q) �S p but ¬(p → q) ��HS
p

(Had ¬(p → q) �HS
p, then by the relevant deduction theorem mentioned

above we would have that either �HS
p or �HS

¬(p → q) → p. This is
impossible by the weak completeness of HS , since neither p nor ¬(p → q) → p
is valid in S).6

In what follows, when referring to ‘maximal paraconsistency’ we shall
mean the strong sense of this notion. Also, when saying that a certain
(paraconsistent) logic is ‘maximal’, we shall mean that it is maximally para-
consistent (in the strong sense).

2.2. Matrices and Their Consequence Relations

The most standard semantic (model-theoretical) way of defining a conse-
quence relation (and so a logic) is by using the following type of structures
(see, e.g., [21, 25, 35]).

Definition 2.10. A (multi-valued) matrix for a language L is a triple M =
〈V,D,O〉, where

• V is a non-empty set of truth values,

• D is a non-empty proper subset of V, called the designated elements of
V, and

• O includes an n-ary function �̃M : Vn → V for every n-ary connective �
of L.

6This also implies that 〈L,�S〉 is not equivalent to RM∼

→
. In [7] it was shown that the

former can be obtained from the latter by adding the inference rule: from φ ⊗ ψ infer φ
(where the intensional conjunction ⊗ is defined, as usual, by φ⊗ ψ = ¬(φ→ ¬ψ)).
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The set D is used for defining satisfiability and validity, as defined below:

Definition 2.11. Let M = 〈V,D,O〉 be a matrix for L.

• An M-valuation for L is a function ν : WL → V such that for every
n-ary connective � of L and every ψ1, . . . , ψn ∈ WL, ν(�(ψ1, . . . , ψn)) =
�̃M(ν(ψ1), . . . , ν(ψn)). We denote the set of all the M-valuations by ΛM.

• A valuation ν∈ΛM is an M-model of a formula ψ (alternatively, ν M-
satisfies ψ), if it belongs to the set modM(ψ) = {ν ∈ ΛM | ν(ψ) ∈ D}.
The M-models of a theory Γ are the elements of the set modM(Γ) =
∩ψ∈Γ modM(ψ).

• A formula ψ is M-satisfiable if modM(ψ) �= ∅. A theory Γ is M-
satisfiable (or M-consistent) if modM(Γ) �= ∅.

In what follows we shall sometimes omit the prefix ‘M’ from the notions
above. Also, when it is clear from the context, we shall omit the subscript
‘M’ in �̃M.

Definition 2.12. Given a matrix M, the relation �M that is induced by
(or associated with) M, is defined by: Γ �M ψ if modM(Γ) ⊆ modM(ψ).
We denote by LM the pair 〈L,�M〉, where M is a matrix for L and �M is
the relation induced by M.

Henceforth we shall say that M is (maximally) paraconsistent, if so
is LM.

Example 2.13. Propositional classical logic is induced by the two-valued
matrix 〈{t, f}, {t}, {∧̃, ¬̃}〉 with the standard two-valued interpretations for
∧ and ¬.

The following proposition has been proven in [32, 33].

Proposition 2.14. For every propositional language L and a finite matrix
M for L, LM = 〈L,�M〉 is a propositional logic.7

The next propositions are straightforward:

Proposition 2.15. A matrix 〈V,D,O〉 is ¬-paraconsistent iff there is x ∈ D
such that ¬̃x ∈ D.

Proposition 2.16. Let LM = 〈L,�M〉 be a logic induced by a matrix M =
〈V,D,O〉 for a language L with a unary connective ¬. Denote D = V \ D.

7The non-trivial part in this result is that �M is finitary; It is easy to see that for every
matrix M (not necessarily finite), �M is a structural and consistent tcr.
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Then:

a) ¬ is a pre-negation for LM, iff there is an element x ∈ D such that
¬̃x ∈ D.

b) ¬ is a weak negation for LM, iff it is a pre-negation for LM and there
is an element x ∈ D such that ¬̃x ∈ D.8

Corollary 2.17. There is no two-valued paraconsistent matrix for a lan-
guage L with a pre-negation.

Proof. Let M = 〈V,D,O〉 be such as matrix. By Propositions 2.15
and 2.16, D contains at least two elements. Since D is non-empty, V has at
least three elements.

2.3. Non-Deterministic Matrices

Next, we consider a generalization of the standard matrix semantics, ob-
tained by relaxing the principle of truth-functionality. According to this
principle, the truth-value of a complex formula is uniquely determined by
the truth-values of its subformulas. However, real-world information is some-
times incomplete, uncertain, vague, imprecise or inconsistent, and these
phenomena are related to non-deterministic behavior, which cannot be cap-
tured by a truth-functional semantics. This leads to the concept of non-
deterministic matrices (Nmatrices), introduced in [10], according to which
the truth-value of a formula is chosen non-deterministically from some set
of options. Nmatrices have important applications in reasoning under un-
certainty, proof theory, etc. This includes modeling of non-deterministic
computations, analysis of non-deterministic behavior of various elements of
electrical circuits, handling linguistic ambiguity, and representing incomplete
and inconsistent information. For instance, in [9] Nmatrices are utilized
for knowledge-base integration, and in [3] they are used in the context of
distance-based reasoning.

In [8, 11] Nmatrices have been used to provide a simple and modular
non-deterministic semantics for LFIs [15]. Although the syntactic formula-
tions of the propositional LFIs are relatively simple, the previously known
semantic interpretations were more complicated: the vast majority of LFIs
cannot be characterized by means of finite deterministic matrices. Now,
the first systems of da-Costa have been introduced only proof-theoretically,
and only some years later bivaluations semantics and possible translations

8See also a related discussion in [28].
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semantics have been proposed for their interpretation (see [15]). The frame-
work of Nmatrices provides an alternative for these types of semantics. It has
several attractive properties which the other frameworks lake. First of all,
the semantics provided by Nmatrices is modular : the main effect of each
of the rules of a proof system is to reduce the degree of non-determinism
of operations, by forbidding some options. The semantics of a proof sys-
tem is obtained by combining the semantic constraints imposed by its rules
in a rather straightforward way. As a result, the semantic effect of each
syntactic rule can be analyzed separately. This is impossible in standard
multi-valued matrices, where the semantics of a system can only be pre-
sented as a whole. We demonstrate this modularity property in the context
of LFIs in Example 4.8 below. Secondly, the non-deterministic semantics is
analytic (or effective), i.e., any partial valuation closed under subformulas
can be extended to a full valuation. Having this property is a crucial con-
dition for a practical use of semantics, in particular for decision procedures
and for constructing counterexamples.9 Finally, the use of finite Nmatrices
has all the benefits of the usual multi-valued semantics, such as decidability
and compactness.10

In this paper, we demonstrate another appealing utilization of Nmatri-
ces. We use premaximal Nmatrices (see Definition 4.6) for representing the
“core” of maximality of different kinds of maximally paraconsistent logic,
thus ‘extracting’ what is really essential for their maximal paraconsistency.

Below, we shortly reproduce the basic definitions of Nmatrices and prove
some basic properties related to paraconsistency.

Definition 2.18. A non-deterministic matrix (Nmatrix) for a language L
is a triple M = 〈V,D,O〉, where

• V is a non-empty set (of truth values),

• D is a non-empty proper subset of V (the designated elements of V),

• O includes an n-ary function �̃M : Vn → 2V \ {∅} for every n-ary con-
nective � of L.

We say that an n-ary connective � is non-deterministic in M, if there are
some x1, . . . , xn ∈ V, such that �̃(x1, . . . , xn) is not a singleton. An Nmatrix

9No general theorem concerning this extremely important property is known at present
for the semantics of bivaluations or for the possible translations semantics described in [15].
Hence it has to be proven from scratch for any instance of these types of semantics which
actually has it.

10See [12] for a comprehensive survey on Nmatrices and their further applications.
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M for L is called deterministic if no connective of L is non-deterministic
in M. Clearly, the matrices considered in the previous section may be
associated with corresponding deterministic Nmatrices. We shall say that a
matrix M is properly non-deterministic if at least one of the connectives of
L is non-deterministic in M.

Definition 2.19. Let M = 〈V,D,O〉 be an Nmatrix for L. An M-valuation
ν is a function ν : WL → V such that for every n-ary connective � of L and
every ψ1, . . . , ψn ∈ WL,

ν(�(ψ1, . . . , ψn)) ∈ �̃(ν(ψ1), . . . , ν(ψn)).

As before, we denote the set of all M-valuations by ΛM. The notions of a
model of a formula ψ and of a theory Γ are defined just as in the deterministic
case (see Definition 2.11). Similarly, the relation �M that is induced by M
is defined exactly as before (see Definition 2.12).

As in the deterministic case (see Proposition 2.14), we have the following
result:

Proposition 2.20. [10] For every propositional language L and a finite
Nmatrix M for L, LM = 〈L,�M〉 is a propositional logic.

Henceforth we shall say that M is (maximally) paraconsistent, if so is LM.

Example 2.21. Let M2 = 〈{t, f}, {t},O〉 be an Nmatrix for the language
Lcl of classical logic, where ¬̃f = {t}, ¬̃t = {t, f}, and the rest of the
connectives are interpreted classically. In [10] it is shown that LM2

is the
same as the paraconsistent adaptive logic CLuN [14], however it is not
induced by any finite deterministic matrix. Moreover, it is also shown that
none of the two-valued proper Nmatrices can be characterized by a finite
(deterministic) matrix.

Next we describe some operations on Nmatrices which will be useful in
what follows.

Definition 2.22. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nma-
trices for a language L. M1 is a simple refinement of M2, if V1 ⊆ V2,
D1 = D2 ∩ V1, and �̃M1

(x) ⊆ �̃M2
(x) for every connective � of L and every

n-tuple x ∈ Vn
1 . We say that M1 is a determinization of M2, if M1 is a

deterministic Nmatrix that is a simple refinement of M2 in which V1 = V2.

Note 2.23. Let M = 〈V,D,O〉 be an Nmatrix for L. A determinization
of M is any (deterministic) matrix 〈V,D,O∗〉, where O∗ is obtained by
choosing one element from each set �̃M(x) (where � is a connective in L,
and x ∈ Vn).
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Proposition 2.24. [8] If M1 is a simple refinement of M2 then �M2
⊆�M1

.

Example 2.25. The two-valued (deterministic) matrixMcl = 〈{t, f}, {t},O〉
with ordinary interpretations for the connectives of the standard proposi-
tional language Lcl, is a simple refinement of the matrix M2 considered in
Example 2.21. By Proposition 2.24 and the fact that LM2

is paraconsis-
tent while classical logic is not, we have that LM2

is strictly weaker than
classical logic.

Definition 2.26. Let M = 〈V,D,O〉 be an Nmatrix for L and let F be
a function that assigns to each x ∈ V a non-empty set F (x), such that
F (x1) ∩ F (x2) = ∅ if x1 �= x2. The F -expansion of M is the Nmatrix
MF = 〈VF ,DF ,OF 〉, where VF =

⋃
x∈V F (x), DF =

⋃
x∈D F (x), and for

every n-ary connective � of L,

�̃MF
(y1, . . . , yn) =

⋃
z∈�̃M(x1,...,xn)

F (z)

for every xi ∈ V and yi ∈ F (xi) (i = 1, . . . , n). We say that M1 is an
expansion of M2 if M1 is an F -expansion of M2 for some function F .

Example 2.27. The F -expansion of the positive part of the classical two-
valued matrix, where F (t) = {t,
} and F (f) = {f}, is the three-valued
Nmatrix M = 〈{t, f,
}, {t,
}, {∧̃, ∨̃, ⊃̃}〉, in which:

a∨̃Mb =

{
D if either a ∈ D or b ∈ D,
{f} if a = b = f .

a∧̃Mb =

{
D if a, b ∈ D,
{f} if either a = f or b = f .

a⊃̃Mb =

{
D if either a = f or b ∈ D,
{f} if a ∈ D and b = f .

Proposition 2.28. If M1 is an expansion of M2, then LM1
and LM2

are
identical.

Proof. Let M1 be an F -expansion of M2 for some F . Suppose first that
Γ �M1

ψ but Γ ��M2
ψ. Then there is an M2-model ν of Γ that is not an M2-

model of ψ. Define a valuation ν ′ as follows: for every ψ ∈ WL, let ν ′(ψ) =
xψ for some xψ ∈ F (ν(ψ)). Then for ψ = �(ψ1, . . . , ψn), ν ′(ψi) ∈ F (ν(ψi))
for all 1 ≤ i ≤ n, and ν(ψ) ∈ �̃M2

(ν(ψ1), . . . , ν(ψn)). By definition of F -
expansion, ν ′(ψ) ∈ F (ν(ψ)) ⊆ �̃M1

(ν ′(ψ1), . . . , ν
′(ψn)). Hence ν ′ ∈ ΛM1

.
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Moreover, DM1
=

⋃
x∈D2

F (x), and so, for every formula φ, ν ′ is an M1-
model of φ iff ν is an M2-model of φ. This implies that ν ′ is an M1-model
of Γ that does not M1-satisfy ψ, in contradiction to Γ �M1

ψ. The proof
for the other direction is similar.

The next propositions are the analogue for the non-deterministic case of
Propositions 2.15 and 2.16:

Proposition 2.29. An Nmatrix M = 〈V,D,O〉 is paraconsistent iff there
is some x ∈ D such that ¬̃x ∩ D �= ∅.

Proof. Suppose that ¬̃x ∩ D �= ∅ and let y ∈ ¬̃x ∩ D. Let ν ∈ ΛM be a
valuation such that ν(p) = x, ν(¬p) = y and ν(q) ∈ D. Then ν is an M-
model of {p,¬p} but not an M-model of q. Hence M is ¬-paraconsistent.
Conversely, if M is ¬-paraconsistent, then p,¬p ��M q for some p, q in AL,
and so modM({p,¬p}) �= ∅. It follows that there is an M-valuation ν and
some x, y ∈ D such that x = ν(p), and y ∈ ¬̃ν(p). Thus, y ∈ ¬̃x∩D, and so
¬̃x ∩ D �= ∅.

Proposition 2.30. Let LM = 〈L,�M〉 be a logic induced by an Nmatrix
M = 〈V,D,O〉 for a language L with a unary connective ¬. Then:

• ¬ is a pre-negation for LM iff there is x ∈ D such that ¬̃x ∩ D �= ∅.

• ¬ is a weak negation for LM iff it is a pre-negation for LM and there is
an element x ∈ D such that ¬̃x ∩ D �= ∅.

Note, however, that the analogue of Corollary 2.17 does not hold in the
non-deterministic case, as there are paraconsistent two-valued Nmatrices for
languages with a pre-negation (consider, for instance, the Nmatrix M2 from
Example 2.21). However, the following theorem shows that no two-valued
paraconsistent logic is maximal:

Theorem 2.31. LetM = 〈V,D,O〉 be anNmatrix for a languageL with a pre-
negation ¬. If D is a singleton then M is not maximally ¬-paraconsistent.

Proof. Suppose that D = {x} for some x ∈ V, and that M is paracon-
sistent. By Proposition 2.29, x ∈ ¬̃x, and since ¬ is a pre-negation, by
Proposition 2.30, ¬̃x ∩ D �= ∅. Let M′ be an expansion of M, in which x
is duplicated to two elements t and 
 (that is, M′ is an F -expansion of M
for some F , such that F (x) = {t,
}). Let M∗ be a simple refinement of
M′ that is identical to M′, except that ¬̃M∗
 = {t} and ¬̃M∗t = ¬̃Mx∩D.
Then M∗ is still ¬-paraconsistent, ¬ is still a pre-negation in M∗, and by
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Proposition 2.24, �M ⊆ �M∗ . Moreover, we have that p,¬p,¬¬p �M∗ q
(since the set {p,¬p,¬¬p} has no model in M∗), while p,¬p,¬¬p ��M q (let
ν(p) = ν(¬p) = ν(¬¬p) = x and ν(q) ∈ D). Thus M is not maximally
paraconsistent.

3. All Reasonable Three-Valued Paraconsistent Logics In-

duced by Deterministic Matrices are Maximal

In this section, we investigate maximal paraconsistency of logics induced by
three-valued deterministic matrices. In what follows M = 〈V,D,O〉 denotes
such a matrix for a language L with a pre-negation ¬. We start by specifying
sufficient and necessary conditions for M to be paraconsistent.

Proposition 3.1. A three-valued matrix M with a pre-negation ¬ is ¬-para-
consistent iff it is isomorphic to a matrix 〈V,D,O〉 in which V = {t,
, f},
D = {t,
}, ¬̃t = f , and ¬̃
 �= f .

Proof. Suppose that M is isomorphic to a matrix 〈V,D,O〉 satisfying the
conditions in the proposition. Since ¬̃t = f , by Item (a) in Proposition 2.16,
¬ is a pre-negation. Also, ν = {p : 
, q : f} is an M-model of {p,¬p} that
does not M-satisfy q, thus p,¬p ��M q, and so LM is ¬-paraconsistent.

For the converse, suppose that LM is ¬-paraconsistent. Since ¬ is a
pre-negation for LM, by Item (a) in Proposition 2.16 again, there is an
element in D, denote it t, such that ¬̃t �∈ D. So let f ∈ D such that
¬̃t = f . Also, since LM is ¬-paraconsistent, we have that p,¬p ��M q for
some p, q ∈ AL, and so modM({p,¬p}) �= ∅. In this case t cannot be the
only designated element, since otherwise for ν ∈ modM({p,¬p}) necessarily
ν(p) = t. But ν(¬p) = ¬̃t = f �∈ D, and so ν �∈ modM({p,¬p}). It follows
that V = {t,
, f}, where 
 ∈ D, and f is the only non-designated element.
Also, by the discussion above, for ν ∈ modM({p,¬p}) necessarily ν(p) = 
.
This implies that ν(¬p) = ¬̃
 ∈ D, and so ¬̃
 �= f .

From now on whenever we refer to a three-valued paraconsistent matrix
M we assume that it has the form described in Proposition 3.1 (i.e., M =
〈V,D,O〉, where V = {t,
, f}, D = {t,
}, ¬̃t = f , and ¬̃
 �= f).

Now we turn to the main result of this section.

Theorem 3.2. Let M be a three-valued paraconsistent matrix for a language
L with a pre-negation ¬. Suppose that there is a formula Ψ(p, q) in L such
that for all ν ∈ ΛM, ν(Ψ) = t if either ν(p) �= 
 or ν(q) �= 
. Then M is
maximally ¬-paraconsistent for L.
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Proof. Let 〈L,�〉 be a (finitary) propositional logic that is strictly stronger
than 〈L,�M〉. Then there is a finite theory Γ and a formula ψ in L, such
that Γ � ψ but Γ ��M ψ. In particular, there is a valuation ν ∈ modM(Γ)
such that ν(ψ) = f . Consider the substitution θ, defined for every p ∈
Atoms(Γ ∪ {ψ}) by

θ(p) =

⎧⎨
⎩

q0 if ν(p) = t,
¬q0 if ν(p) = f ,
p0 if ν(p) = 
,

where p0 and q0 are two different atoms in L. Note that θ(Γ) and θ(ψ)
contain (at most) the variables p0, q0, and that for every valuation μ ∈ ΛM

where μ(p0) = 
 and μ(q0) = t it holds that μ(θ(φ)) = ν(φ) for every
formula φ such that Atoms({φ}) ⊆ Atoms(Γ ∪ {ψ}). Thus,

(�) any μ ∈ ΛM such that μ(p0) = 
, μ(q0) = t is an M-model of
θ(Γ) that does not M-satisfy θ(ψ).

Now, consider the following two cases:

Case I. There is a formula φ(p, q) such that for every μ ∈ ΛM, μ(φ) �= 
 if
μ(p) = μ(q) = 
.

In this case, let tt = Ψ(q0, φ(p0, q0)). Note that μ(tt) = t for every μ ∈ ΛM

such that μ(p0) = 
. Now, as � is structural, Γ � ψ implies that

θ(Γ) [tt/q0] � θ(ψ) [tt/q0]. (1)

Also, by the property of tt and by (�), any μ ∈ ΛM for which μ(p0) = 
 is
a model of θ(Γ) [tt/q0] but does not M-satisfy θ(ψ) [tt/q0]. Thus,

• p0,¬p0 �M θ(γ) [tt/q0] for every γ ∈ Γ. As 〈L,�〉 is stronger than
〈L,�M〉, this implies that

p0,¬p0 � θ(γ) [tt/q0] for every γ ∈ Γ. (2)

• The set {p0,¬p0, θ(ψ)[tt/q0]} is not M-satisfiable, thus p0,¬p0, θ(ψ)[tt/q0]
�M q0. Again, as 〈L,�〉 is stronger than 〈L,�M〉, we have that

p0, ¬p0, θ(ψ) [tt/q0] � q0. (3)

By (1)–(3) and by Lemma 2.4, p0,¬p0 � q0, thus 〈L,�〉 is not ¬-para-
consistent.

Case II. For every formula φ in p, q and for every μ ∈ ΛM, if μ(p) = μ(q) =

 then μ(φ) = 
.
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Again, as � is structural, and since Γ � ψ,

θ(Γ) [Ψ(q0, q0)/q0] � θ(ψ) [Ψ(q0, q0)/q0]. (4)

In addition, (�) above entails that any valuation μ ∈ ΛM such that μ(p0) = 

and μ(q0) ∈ {t, f} is a model of θ(Γ) [Ψ(q0, q0)/q0] which is not a model of
θ(ψ) [Ψ(q0, q0)/q0]. Thus, the only M-model of {p0,¬p0, θ(ψ) [Ψ(q0, q0)/q0]}
is the one in which both of p0 and q0 are assigned the value 
. It follows
that p0,¬p0, θ(ψ) [Ψ(q0, q0)/q0] �M q0. Thus,

p0,¬p0, θ(ψ) [Ψ(q0, q0)/q0] � q0. (5)

By using (�) again (for μ(q0) ∈ {t, f}) and the condition of case II (for
μ(q0) = 
), we have:

p0,¬p0 � θ(γ) [Ψ(q0, q0)/q0] for every γ ∈ Γ. (6)

Again, by (4)–(6) above and by Lemma 2.4, we have that p0,¬p0 � q0, and
so 〈L,�〉 is not ¬-paraconsistent in this case either.

Note 3.3.

1. The requirement on the underlying language, stated in Theorem 3.2, is
very minor, and all the interesting three-valued logics that we are aware
of meet it (see Example 3.8 below).

2. Suppose that M is a three-valued paraconsistent matrix which satisfies
the condition of Theorem 3.2. Then any three-valued extension of it,
obtained by enriching the language of M with extra three-valued con-
nectives, necessarily has the same properties. Hence, not only is M
maximally paraconsistent, but so must be also all its three-valued exten-
sions that are so obtained.11

Below are three particular cases of Theorem 3.2.

Definition 3.4. Let M = 〈V,D,O〉 be a matrix for a language L that
includes a unary connective ¬. Then ¬ is an extension in LM of classical
negation, if there are t ∈ D and f ∈ D, such that ¬̃t = f and ¬̃f = t.

Clearly, an extension in LM of classical negation is a weak negation for
LM. Moreover, by Proposition 3.1, when M is a three-valued paraconsistent
matrix, the only extensions of classical negation are Kleene’s negation (in
which ¬̃
 = 
) and Sette’s negation (in which ¬̃
 = t); See also Example 3.8
below.

11Note, however, that this fact does not imply that maximal paraconsistency is always
robust with respect to an addition of connectives.
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Corollary 3.5. Let M be a three-valued paraconsistent matrix for a lan-
guage L that includes a unary connective ¬ that extends classical negation
and a binary connective +, such that for every x ∈ V, x +̃ t = t +̃ x = t.
Then M is maximally ¬-paraconsistent for L.

Proof. By Theorem 3.2, where Ψ(p, q) = (p + ¬p) + (q + ¬q).

Corollary 3.6. Let M be a three-valued paraconsistent matrix for a lan-
guage L that includes a unary connective ¬ that extends classical negation
and a binary connective ·, such that for every x ∈ V, x ·̃ f = f ·̃x = f . Then
M is maximally ¬-paraconsistent for L.

Proof. By Corollary 3.5, taking ψ + φ = ¬(¬ψ · ¬φ) (and so Ψ(p, q) =
¬((p · ¬p) · (q · ¬q))).

Corollary 3.7. Let M be a three-valued paraconsistent matrix for a lan-
guage L that includes a unary connective ¬ that extends classical negation,
and a formula f for which ν(f) = f for all ν ∈ ΛM. Then M is maximally
¬-paraconsistent for L.

Proof. By Theorem 3.2, where Ψ(p, q) = ¬f.

Example 3.8. Theorem 3.2 and Corollaries 3.5, 3.6 and 3.7 imply that all
of the following well-known three-valued logics are maximally paraconsistent
for their languages:

• Sette’s logic P1 [31] is induced by the matrix P1 = 〈{t, f,
}, {t,
},
{∨̃, ∧̃, →̃, ¬̃}〉, where the operations are defined by the tables below:

∨̃ t f 

t t t t
f t f t

 t t t

∧̃ t f 

t t f t
f f f f

 t f t

→̃ t f 


t t f t
f t t t

 t f t

¬̃

t f
f t

 t

Now, the {¬,∨}-fragment of P1 is maximally paraconsistent by Corol-
lary 3.5 (where the role of + is taken by ∨), the {¬,∧}-fragment of P1 is
maximally paraconsistent by Corollary 3.6 (where the role of · is taken
by ∧), and the {¬,→}-fragment of P1 is maximally paraconsistent by



48 O. Arieli, A. Avron and A. Zamansky

Corollary 3.7 (taking ¬(p → p) as the formula f). Each of these facts
implies of course that P1 itself is maximally paraconsistent.

• Priest’s LP [30] is induced by the matrix LP = 〈{t, f,
}, {t,
}, {∨̃, ∧̃, ¬̃}〉
with the following standard Kleene’s operations [24]:

∨̃ t f 

t t t t
f t f 


 t 
 


∧̃ t f 

t t f 

f f f f

 
 f 


¬̃
t f
f t

 


Again, the {¬,∨}-fragment and the {¬,∧}-fragment of LP (and so LP
itself) are maximally paraconsistent by Corollary 3.5 and Corollary 3.6
(respectively).

• The three-valued logic S3, induced by Sobociński’s matrix S considered
in Example 2.9, is maximally paraconsistent, as the connective +, defined
by x + y = ¬x → y, meets the condition of Theorem 3.2.

• Let L be a logic that is obtained from one of the previous examples by
enriching its language with extra three-valued connectives. Then L is
also a maximally paraconsistent logic. This includes the following logics:

1. PAC [13, 5], extending LP by an implication connective ⊃, defined
by: x ⊃ y = y if x ∈ {t,
}, otherwise x ⊃ y = t.

2. J3 [19], obtained from PAC by adding the propositional constant f.

3. The logic of the maximally monotonic language in [6] that consists
of the connectives of LP and two propositional constants f and T,
where the latter is defined by ν(T) = 
 for every ν ∈ ΛM.

4. The logic of the functionally complete language in [6], consisting of
the connectives of PAC and the two propositional connectives con-
sidered in the previous item.

5. The semi-relevant logic SRM3, that can be obtained from Sobociński’s
three-valued matrix S by the addition of the standard three-valued
interpretations for ∧ and ∨, as in LP.

• In Section 5.3 of [15] a whole family 8Kb of three-valued logics of formal
inconsistency (LFIs) that are “maximal fragments of classical logic” is
described. These are the logics which are induced by any of the following
three-valued matrices for the language of {¬, ◦,∨,∧,→}, in which V =
{t,
, f}, D = {t,
} and the interpretations of the connectives are as
follows (below, we denote by ‘x �y’ that x and y are two optional values):
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∧̃ t f 

t t f t � 

f f f f

 t � 
 f t � 


∨̃ t f 

t t t t � 

f t f t � 


 t � 
 t � 
 t � 


→̃ t f 

t t f t � 

f t t t � 


 t � 
 f t � 


¬̃ ◦̃
t f t
f t t

 t � 
 f

Thus, there are 2 possible interpretations for ¬, 23 interpretations for
∧, 25 interpretations for ∨, and 24 interpretations for →, altogether
213 (8192) distinct logics. Now, by Corollary 3.6 (with the role of ·
again taken by ∧) the {¬,∧}-fragments of these logics (and so the logics
themselves) are all maximally paraconsistent (in the strong sense). It
follows that any extension of one of these fragments (including all logics
in the family 8Kb) is maximally paraconsistent. With the exception of
S3 (and its extensions), this includes all the examples considered so far.12

• Let M be any three-valued paraconsistent matrix in a language which
includes a pre-negation ¬ and an operation ◦ (‘consistency’), interpreted
as in the previous item (i.e., ◦̃t = t, ◦̃f = t, and ◦̃
 = f). Then by
Corollary 3.7, the fact that ν(◦ ◦ ψ) = t for every ψ implies that M
induces a logic that is maximally paraconsistent (in the strong sense).
This again includes, e.g., logics like J3 and P1, and of course all the 213

logics in 8Kb, since ◦ with the above interpretation is definable in them.

Theorem 3.2 and the examples we have given above show that all reason-
ably expressive three-valued paraconsistent logics are necessarily maximal.
An important related question that was left open in [2] is whether there ex-
ist three-valued paraconsistent logics which are not maximal. The following
proposition answers this question affirmatively, and shows that three-valued
paraconsistent logics may or may not be maximal when their languages are
of weak expressive power.

Proposition 3.9.

a) The ¬-fragment L¬
J3

of Jaśkowski-D’Ottaviano’s J3 (or of Priest’s LP)
is not maximally paraconsistent.

12The 213 LFIs of the family 8Kb (in the full language with ◦) have been shown in [15,
26, 27] to be maximally paraconsistent in the weak sense (with respect to classical logic).
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b) The ¬-fragment L¬
P1

of Sette’s P1 is maximally paraconsistent.

Proof. For Part (a), note first that it is not difficult to see that L¬
J3

can be
axiomatized by the double-negation rules p � ¬¬p and ¬¬p � p (indeed, by
using these rules we can reduce the question whether Γ �L

¬
J3

ψ to the case

where all formulas in Γ ∪ {ψ} are literals, and it is easy to see that in this
case Γ �L

¬
J3

ψ iff ψ ∈ Γ). It follows that the two-valued logic LID, induced

by the matrix in which ¬̃ is the identity function, is an extension of L¬
J3

. For
the same reason so is the ¬-fragment of the two-valued classical logic, and
therefore so is also the intersection L of these two logics. We show that L is
a proper extension of L¬

J3
which is ¬-paraconsistent with respect to its weak

negation ¬. For this, note that p,¬p,¬q ��L
¬
J3

q (since ν(q) = f, ν(p) = 


is a legal valuation), while p,¬p,¬q �L q. Moreover, p,¬p ��L q, since
ν(p) = ν(¬p) = t, ν(q) = f is a legal valuation with respect to LID, and so
L is paraconsistent. Finally, p ��L ¬p, since ν(p) = t, ν(¬p) = f is a legal
valuation with respect to LCL. Hence ¬ is a pre-negation also for L. That
it is actually a weak negation for L is proved similarly.

For Part (b), let L be a proper extension of L¬
P1

. Since L is finitary
(see Definition 2.2), this means that there is a finite Γ and a formula ψ so
that Γ �L ψ but Γ ��L

¬
P1

ψ. Since ¬¬¬φ is equivalent in L¬
P1

to ¬φ, we

may assume that Γ ∪ {ψ} consists only of formulas of the forms p, ¬p, or
¬¬p, where p is atomic. Moreover: since Γ cannot contain both ¬¬p and ¬p
(otherwise Γ �L¬

P1

ψ), and ¬¬p �L¬
P1

p, we may assume that if ¬¬p is in Γ

then neither p nor ¬p is in Γ. These observations leave the following three
possibilities:

1. Suppose that ψ = ¬r for atomic r. Then ¬r �∈ Γ. It follows (using
weakening if necessary and the fact that ¬¬r � r) that Γ′,¬¬r �L ¬r,
where r does not occur in Γ′ and Γ′ has the same properties we assume
about Γ. Substituting r for any p such that ¬¬p ∈ Γ′, and q for any
other atom occurring in Γ′ (and using weakenings if necessary), we get
that q,¬q,¬¬r �L ¬r. Since ¬¬r,¬r �L

¬
P1

p for any p, we get that

q,¬q,¬¬r �L p for any p, q, r. Substituting ¬q for r and using the fact
that ¬q � ¬¬¬q, we get that ¬q, q �L p for every p, q.

2. Suppose that ψ = r for atomic r. Then neither r nor ¬¬r is in Γ.
Substituting ¬r for r we return to the previous case, and so again L is
not paraconsistent.

3. Suppose that ψ = ¬¬r for atomic r. Then ¬¬r �∈ Γ. Since ¬¬r,¬r �L
¬
P1

q,

also ¬¬r,¬r �L q, and since Γ �L ¬¬r we get that Γ,¬r �L q for any q
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that does not occur in Γ and ¬r. By substituting ¬r for any p such that
¬¬p ∈ Γ (such p is necessarily different from r), and r for any atom that
is different from q and such that ¬¬p does not occur in Γ, we get (using
weakenings and the fact that ¬r � ¬¬¬r) that r,¬r �L q. Hence again
L is not paraconsistent.

We have found that in all three cases the proper extension L is not
paraconsistent. Hence L¬

P1
is maximally paraconsistent.

4. Three-Valued Non-Deterministic Semantics: Maximal

and Premaximal Paraconsistency

We now turn to three-valued logics induced by properly non-deterministic
matrices. In this respect, we investigate the following subjects:

1. We check what three-valued Nmatrices induce maximally paraconsistent
logics.

2. We use Nmatrices for representing extensive sets of related deterministic
matrices, each one of which is maximally paraconsistent. For this, we
introduce the notion of premaximality .

Regarding the first subject, we note that the expressive power of Nma-
trices is in general greater than that of ordinary matrices, as there are logics
which cannot be characterized by finite matrices, but do have characteristic
finite Nmatrices.13 However, as the next theorem shows, in the context of
maximally paraconsistent logics, this is not the case:

Theorem 4.1. Let M be an three-valued maximally paraconsistent Nmatrix.
Then there is a (deterministic) three-valued matrix M∗ that induces the same
(maximally paraconsistent) logic.

Proof. By Theorem 2.31, D has at least two elements. From this fact,
together with Propositions 2.29 and 2.30, it follows that there are two dif-
ferent elements t and 
 in D and an element f ∈ D, such that f ∈ ¬̃t,
while ¬̃
 ∩ D �= ∅ (note that it is possible that also ¬̃t ∩ D �= ∅, or that
f ∈ ¬̃
). Let M∗ be any determinization (Definition 2.22) of M, for which
¬̃M∗t = f and ¬̃M∗
 ∈ ¬̃M∗
∩ D. Then, by Proposition 2.24, the logic of
M∗ extends that of M, and it is paraconsistent with respect to ¬ (which is
still pre-negation in M∗). Since M is maximally paraconsistent, this implies
that �M = �M∗ .

13For instance, the (non-maximal) paraconsistent logic LM2
from Example 2.21, is not

induced by any deterministic matrix (see [10, 12]).
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Theorem 4.1 implies that all maximally paraconsistent logics induced
by three-valued Nmatrices also have characteristic three-valued standard
matrices. Yet, it is still interesting to identify the three-valued Nmatrices
that induce maximally paraconsistent logics. This is what we do next.

Theorem 4.2. Let M = 〈V,D,O〉 be a maximally paraconsistent three-
valued proper Nmatrix for a language L with pre-negation ¬. Then M is
isomorphic to an Nmatrix in which V = {t,
, f}, D = {t,
}, the interpre-
tations of all connectives except ¬ are deterministic, ¬̃t = {f}, ¬̃
 = {t, f},
and ¬̃f = {f} or ¬̃f = {t}.

Proof. First we show that there is no x ∈ D such that x ∈ ¬̃x and
¬̃x ∩ D �= ∅. Suppose otherwise, and let y ∈ D \ {x} (such y exists, by
Theorem 2.31). Now

1. if ¬̃y ∩ D �= ∅, we let M∗ be a determinization of M for which ¬̃x ∈ D
and ¬̃y ∈ D.

2. if ¬̃y ∩ D �= ∅, we let M∗ be a determinization of M for which ¬̃x = x
and ¬̃y ∈ D.

In both cases ¬ is still a pre-negation in M∗, M∗ is ¬-paraconsistent, and the
logic induced by M∗ extends the logic induced by M (see Proposition 2.24).
Now M∗ is a three-valued deterministic matrix, and so p,¬p,¬¬p �M∗

¬¬¬p.14 On the other hand, p,¬p,¬¬p ��M ¬¬¬p, since we may take
ν(p) = ν(¬p) = ν(¬¬p) = x, and ν(¬¬¬p) ∈ D. Thus, the logic induced by
M∗ properly extends the logic induced by M, and so M is not maximally
paraconsistent. A contradiction.

Propositions 2.29, 2.30, Theorem 2.31, and what we just have proved
together imply that V consists of three elements t, f , and 
, such that
D = {t,
} and f ∈ ¬̃t, t �∈ ¬̃t, ¬̃
∩D �= ∅, ¬̃
 �= {f,
} and ¬̃
 �= {f,
, t}.
Hence, either ¬̃
 ⊆ D or ¬̃
 = {t, f}, and ¬̃t is either {f} or {f,
}.

A Suppose that ¬̃t = {f,
} and ¬̃
 = {f, t}. Let M∗ be a simple re-
finement of M in which ¬̃t = {f} and ¬̃
 = {t}. Then ¬ is still a
pre-negation in M∗, and M∗ is still paraconsistent. Moreover, �M∗

properly extends �M (implying that the latter is not maximal). In-
deed, p,¬p,¬¬p �M∗ q, while p,¬p,¬¬p ��M q (let ν(p) = ν(¬¬p) = t,
ν(¬p) = 
 and ν(q) = f). This contradicts the fact that M is maximally
paraconsistent.

14See the proof of Theorem 3.4 in [10].
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B Suppose that ¬̃
 ⊆ D and ¬̃t = {f}. Assume that S = �̃(x1, . . . , xn) is
not a singleton. Let ψ = �(q1, . . . , qn), where qi = p1 if xi = 
, qi = p2

if xi = t, and qi = ¬p2 if xi = f . Then ν(ψ) ∈ S for every ν such that
ν(p1) = 
 and ν(p2) = t, and any element of S can be chosen to be ν(ψ)
in this case.

1. Suppose that 
 ∈ S. In this case, p1,¬p1, p2, ψ,¬ψ ��M ¬p2, since by
taking ν(p1) = 
, ν(¬p1) ∈ D, ν(p2) = t, ν(¬p2) = f , ν(ψ) = 
, and
ν(¬ψ) ∈ D we get a counter-model. Let M∗ be the refinement of M
in which �̃(a1, . . . , an) = S\{
} (note that S\{
} �= ∅, since S is not
a singleton). Then p1,¬p1, p2, ψ,¬ψ �M∗ ¬p2. Indeed, ν is a model
of the l.h.s only if ν(p1) = ν(p2) = 
 (because now ν(ψ) ∈ {t, f} if
ν(p2) = t), and such ν is also a model of ¬p2 (because ¬̃
 ⊆ D).
Hence �M∗ properly extends �M. It remains to show that ¬ is still
a pre-negation in M∗, and that M∗ is still paraconsistent. This is
trivial in case � �= ¬. So assume that � = ¬. Then n = 1, and x1

is an element of V s.t. ¬̃x1 is not a singleton. Since we assume that
¬̃t = {f}, x1 �= t, and ¬ is still a pre-negation (since ¬t = {f}).
If x1 = f then the paraconsistency of M is not affected (it follows
from the properties of 
). Finally, if x1 = 
 then S = ¬̃
, which by
assumption is a subset of D. Since S is not a singleton, S = D, and
so ¬̃M∗
 = {t}. Hence M∗ is paraconsistent. It follows that M is
not maximally paraconsistent in this case. A contradiction.

2. Suppose that S = {t, f}. In this case either � is different from ¬, or
x1 = f (since we assume that ¬̃
 ⊆ D and ¬̃t = {f}). It follows
that ¬ is still a pre-negation in the refinement M∗ of M, in which
�̃(a1, . . . , an) = {f}, and M∗ is paraconsistent. It remains to show
that �M∗ properly extends �M. In this case p1,¬p1, p2, ψ ��M ¬p2

(because by letting ν(p1) = 
, ν(¬p1) ∈ D, ν(p2) = t, ν(¬p2) = f
and ν(ψ) = t we get a counter-model), while p1,¬p1, p2, ψ �M∗ ¬p2

(since again ν is a model of the l.h.s only if ν(p1) = ν(p2) = 
).
Again this contradicts the maximal paraconsistency of M.

C Suppose that ¬̃
 ⊆ D and ¬̃t = {f,
}. Let M∗ be the refinement of
M in which ¬̃t = {f}. Then ¬ is still a pre-negation in M∗, and M∗

is still paraconsistent. By Case B, M∗ is not maximally paraconsistent.
Hence the same applies to M. A contradiction.

It follows from the above analysis that ¬̃
 = {f, t} and ¬̃t = {f}. Now we
determine ¬̃f .
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1. Assume that ¬̃f is not a singleton. In this case either f ∈ ¬̃f or t ∈ ¬̃f .
Hence we can get a simple refinement M∗ of M s.t. ¬¬p �M∗ p by
either defining ¬̃f = {f} or ¬̃f = {t}. Obviously, in both cases ¬ is
still a pre-negation in M∗, and M∗ is still paraconsistent. Now since
¬̃f is not a singleton, either f ∈ ¬̃f or 
 ∈ ¬̃f . In the first case we
let ν(p) = ν(¬p) = f and ν(¬¬p) be some element of ¬̃f ∩ D (such an
element exists since ¬̃f is not a singleton). In the second case, we take
ν(p) = f , ν(¬p) = 
, and ν(¬¬p) = t. In both cases we get an M-model
of ¬¬p which is not a model of p. It follows that ¬¬p ��M p, and so �M∗

properly extends �M. This contradicts the maximal paraconsistency
of M.

2. Assume that ¬̃f = {
}. Let in this case M∗ be the refinement of M in
which ¬̃
 = {t}. Obviously, ¬ is still a pre-negation in M∗, and M∗ is
still paraconsistent. Now in M∗ we have that p,¬p �M∗ ¬¬¬¬p (the only
model of {p,¬p} is when ν(p) = 
, and in M∗ ν(¬¬¬¬p) = t for such
ν). However, p,¬p ��M ¬¬¬¬p, since we get a counter-model by taking
ν(p) = 
, ν(¬p) = f , ν(¬¬p) = 
, ν(¬¬¬p) = t, and ν(¬¬¬¬p) = f .
Again, this contradicts the maximal paraconsistency of M.

It follows that either ¬̃f = {t} or ¬̃f = {f}.

Finally, assume that � is a connective different from ¬ that has a properly
non-deterministic interpretation in M. Let M′ be the simple refinement of
M that is the same as M except that ¬̃
 = {t}. Then M′ is still ¬-
paraconsistent and ¬ is still a pre-negation for LM′ . By case B above, M′

cannot be maximally paraconsistent. As �M ⊆ �M′ (Proposition 2.24), M
is not maximally paraconsistent either. A contradiction.

Corollary 4.3. The only non-determinism that may exist in a three-valued
maximally paraconsistent Nmatrix is ¬̃
 = {t, f}.

Now we turn to the case in which ¬ is a weak negation (this is the really
interesting case).

Theorem 4.4. A three-valued proper Nmatrix M for a language with a weak
negation ¬ can be maximally paraconsistent only if it is isomorphic to an
Nmatrix 〈V,D,O〉, in which V = {t,
, f}, D = {t,
}, and:

1. ¬̃t = {f}, ¬̃
 = {t, f} and ¬̃f = {t}.

2. The interpretation of any other connective � of M is deterministic, gets
values only in {t, f}, and does not distinguish between t and 
 (i.e. if � is
n-ary, then �̃(x1, . . . , xj−1, t, xj+1, . . . , xn) = �̃(x1, . . . , xj−1,
, xj+1, . . . ,
xn) for every 1 ≤ j ≤ n and x1, . . . , xj−1, xj+1, . . . , xn ∈ V).
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Proof. Most of the claims are immediate from Theorem 4.2 and Propo-
sition 2.30. We only need to show that if � is an n-ary connective other
than ¬, then �̃ gets values only in {t, f}, and does not distinguish between
t and 
. For this we use M′, the determinization of M in which ¬̃
 = {t}.
Obviously, ¬ is still a weak negation in M′, M′ is still paraconsistent with
respect to it, and (by Proposition 2.24) �M′ extends �M.

Assumefirst that �does not get values only in {t, f}. Then �̃(x1, . . . , xn) =
{
} for some x1, . . . , xn (because � is deterministic). Like in Case B in
the proof of Theorem 4.2, this implies the existence of a formula ψ(p1, p2),
such that ν(ψ) = 
 for every ν such that ν(p1) = 
 and ν(p2) = t. Therefore
p1,¬p1, p2,¬¬p2 ��M ¬ψ, because a counterexample is provided by taking
ν(p1) = 
, ν(p2) = t, ν(ψ) = 
, and ν(¬ψ) = f . On the other hand
p1,¬p1, p2,¬¬p2 �M′ ¬ψ, and so �M′ properly extends �M. Hence M is
not maximally paraconsistent.

Now assume that � distinguishes between t and 
. So there are e.g.
x1, . . . , xn−1 such that �̃(x1, . . . , xn−1,
) �= �̃(x1, . . . , xn−1, t). Since �̃ is
deterministic and gets values only in {t, f}, we may assume (using ¬ if
necessary and the fact that ¬̃t = {f}, ¬̃f = {t}) that �̃(x1, . . . , xn−1,
) =
{t}, while �̃(x1, . . . , xn−1, t) = {f}. Let ψ = �(q1, . . . , qn−1, q), where for
1 ≤ i ≤ n − 1, qi = p1 if xi = 
, qi = p2 if xi = t, and qi = ¬p2 if xi = f .
Then ν(ψ) = t for every assignment ν such that ν(p1) = 
, ν(p2) = t
and ν(q) = 
, while ν(ψ) = f for every assignment ν such that ν(p1) =

, ν(p2) = t and ν(q) = t. It follows that p1,¬p1, p2,¬¬p2, q, ψ ��M ¬q,
(take ν(p1) = ν(q) = 
, ν(p2) = t, ν(¬p1) = t, ν(¬p2) = f, ν(¬¬p2) =
t, ν(ψ) = t, and ν(¬q) = f). On the other hand, it is easy to see that
p1,¬p1, p2,¬¬p2, q, ψ �M′ ¬q. Hence again �M′ properly extends �M, and
so M is not maximally paraconsistent.

The following theorem provides a sort of converse for Theorem 4.4:

Theorem 4.5. Let M be a three-valued proper Nmatrix which satisfies all
the conditions specified in Theorem 4.4. Then �M=�M′, where M′ is the
(unique) paraconsistent determinization of M (in which ¬̃
 = {t}). Hence
M is maximally paraconsistent in any case where M′ is.

Proof. By Proposition 2.24, �M⊆�M′. For the converse, assume Γ ��M ψ.
Let ν ∈ ΛM be a model of Γ in M such that ν(ψ) = f . Define ν ′ ∈ ΛM′

as follows: ν ′(p) = t in case p is an atomic formula such that ν(p) = 
 and
ν(¬p) = f , ν ′(φ) = ν(φ) for any other φ. It is easy to see that ν ′ is indeed in
ΛM′ , and that for every formula φ, ν ′(φ) is designated iff ν(φ) is designated.
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In particular: ν ′ is a model of Γ in M′ which is not a model of ψ. It follows
that Γ ��M′ ψ. Hence �M′⊆�M.

To sum up: from the last two theorems it follows that the only maxi-
mally paraconsistent three-valued proper Nmatrices with a weak negation ¬
are those which are obtained by letting ¬̃
 = {t, f} (rather than ¬̃
 = t)
from the class of maximally paraconsistent three-valued (deterministic) ma-
trices which have the following properties: they employ Sette’s negation, all
their other operations get values only in {t, f}, and they do not distinguish
between t and 
. Recall that this class of three-valued matrices includes
every fragment of Sette’s logic P1 in which ¬ is included (see Example 3.8
and Part (b) of Proposition 3.9). On the other hand, any properly nonde-
terministic three-valued Nmatrix with a weak negation ¬ that includes a
connective ◦ interpreted as in the family 8Kb (see Example 3.8) is not max-
imally paraconsistent, since ◦̃ does distinguish between t and 
. (Compare
this to the corresponding deterministic case, which is described at the last
item of Example 3.8).

We now turn to the second goal of this section, namely: using Nmatri-
ces for representing the “core” of maximality, shared by different maximally
paraconsistent logics (induced by deterministic matrices). This is particu-
larly important since, as implied by Item (2) of Note 3.3, the number of max-
imally paraconsistent logics can be ‘artificially expanded’ by adding extra
three-valued connectives to the language of a maximally paraconsistent logic.
The representation of all these logics by their premaximal non-deterministic
basis preserves the ‘essence’ of their maximality.

Definition 4.6. Let M be an Nmatrix for a language L with a pre-nega-
tion ¬. We say that M is pre-maximally ¬-paraconsistent for L, if every
¬-paraconsistent determinization of M (in the sense of Definition 2.22) is
maximally ¬-paraconsistent for L.

Corollary 4.7. Let M be a three-valued paraconsistent Nmatrix for a lan-
guage L with a pre-negation ¬. Suppose that there is a formula Ψ(p, q) in L
such that for all ν ∈ ΛM ν(Ψ) = t if either ν(p) �= 
 or ν(q) �= 
. Then M
is premaximally ¬-paraconsistent for L.

Proof. Any paraconsistent determinization of M is necessarily three-
valued, and it trivially satisfies the condition in Theorem 3.2, hence the claim
follows.

Premaximality is useful for systematizing the vast variety of the available
three-valued maximally paraconsistent logics. Even among the three-valued
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paraconsistent LFIs there are thousands of maximally paraconsistent candi-
dates for being the paraconsistent logic envisioned by da Costa. However,
all of these logics share some common properties, which ensure their maxi-
mal paraconsistency. This common characteristics, or the “core” of maximal
paraconsistency, is captured by the underlying premaximal Nmatrix. Hence,
a premaximal Nmatrix represents the family of its maximally paraconsistent
determinizations, up to the point in which choices based on other consider-
ations should be made. This is demonstrated by the following example.

Example 4.8. Let MB be the following three-valued Nmatrix for L =
{¬,∧,∨,→}:

∧̃ t f 

t {t,
} {f} {t,
}
f {f} {f} {f}

 {t,
} {f} {t,
}

∨̃ t f 

t {t,
} {t,
} {t,
}
f {t,
} {f} {t,
}

 {t,
} {t,
} {t,
}

→̃ t f 

t {t,
} {f} {t,
}
f {t,
} {t,
} {t,
}

 {t,
} {f} {t,
}

¬̃
t {f}
f {t}

 {t,
}

It is easy to check that the formula ¬((p ∧ ¬p) ∧ (q ∧ ¬q)) satisfies the con-
dition of Corollary 4.7, hence MB is pre-maximally ¬-paraconsistent for L.
Moreover, it is easy to see that all of its 220 three-valued determinizations are
paraconsistent, and so all of them are maximal (in the strong sense). In [10]
it is shown that LMB

is identical to the basic paraconsistent logic Cmin [15]
that can be axiomatized by adding the axiom schemes (c) ¬¬ψ → ψ and
(t) ¬ψ ∨ ψ to an axiomatization of positive classical logic.

We observe that (the ◦-free fragments of the) 213 LFIs from Example 3.8
are those among the 220 determinizations of MB, which are compatible
with classical logic. Note that the above mentioned family of 220 logics
includes many other maximally paraconsistent logics, which do not have
this property (even though the purely positive fragment of all of them is
identical to positive classical logic). Thus, for instance, in those refinements
of the family, in which t∨̃t = 
, the formula ¬ψ ∨ ¬ϕ ∨ ¬(ψ ∨ ϕ) is valid,
even though it is not a classical tautology.

By refining our basic Nmatrix above, we obtain M8Kb, the Nmatrix
underlying exactly (the ◦-free fragments of) the Marcos-Carnielli 213 maxi-
mally paraconsistent LFIs from Example 3.8 and [15, 26] (the modifications
are emphasized):
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∧̃ t f 

t {t} {f} {t,
}
f {f} {f} {f}

 {t,
} {f} {t,
}

∨̃ t f 

t {t} {t} {t,
}
f {t} {f} {t,
}

 {t,
} {t,
} {t,
}

→̃ t f 

t {t} {f} {t,
}
f {t} {t} {t,
}

 {t,
} {f} {t,
}

¬̃
t {f}
f {t}

 {t,
}

A strongly sound and complete axiomatization for the logic LM8Kb
can

be obtained by adding to Cmin the following ◦-free counterparts of the (a)-
axioms of da Costa [17]:

(a∧)∗ ¬(ψ ∧ ϕ) → (¬ψ ∨ ¬ϕ)

(a∨)∗ ¬(ψ ∨ ϕ) →
(
(¬ψ ∧ ¬ϕ) ∨ (¬ψ ∧ ψ) ∨ (¬ϕ ∧ ϕ)

)
(a→)∗ ¬(ψ → ϕ) →

(
(ψ ∧ ¬ϕ) ∨ (¬ψ ∧ ψ) ∨ (¬ϕ ∧ ϕ)

)
This example also demonstrates the modularity property of Nmatrices,

mentioned previously. Each of the axioms above corresponds to some se-
mantic condition on the basic Nmatrix MB, which leads to some simple
refinement of it. For instance, the axiom (a∧)∗ imposes the condition:
t∧̃t = {t}. Indeed, it is easy to see that to ensure the validity of the
schema (a∧)∗, 
 should not be allowed in t∧̃t. Similarly, the axioms (a∨)∗

and (a→)∗ impose the semantic conditions t∨̃t = t∨̃f = f ∨̃t = {t}, and
f→̃t = f→̃f = t→̃t = {t} respectively. The Nmatrix M8Kb is then ob-
tained by straightforwardly combining the semantic conditions of the three
axioms, yielding the truth-tables above. Adding the schema (e) ψ → ¬¬ψ
allows for obtaining similar results for involutive negation. In both cases, the
addition of the axioms (p) ◦ψ → ((ψ ∧¬ψ) → ϕ) and (i) ¬◦ψ → (ψ ∧¬ψ)
leads to similar results in the language with the addition of ◦. The obtained
systems are equivalent to the LFIs Cia and Ciae (see [15]), respectively.

We thus believe that logics like LM8Kb
are faithful to da Costa’s original

intuitions and motivations in his search for a “maximally paraconsistent
logic”, rephrased to “maximal paraconsistency up to the point in which
choices based on other considerations should be made”.
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[34] Sobociński, B., ‘Axiomatization of a partial system of three-value calculus of propo-

sitions’, Journal of Computing Systems, 1 (1952), 23–55.

[35] Urquhart, A., ‘Many-valued logic’, in D. Gabbay, and F. Guenthner, (eds.), Hand-

book of Philosophical Logic, vol. II, Kluwer, 2001, pp. 249–295. Second edition.

Ofer Arieli

School of Computer Science
The Academic College of Tel-Aviv, Israel
oarieli@mta.ac.il

Arnon Avron

School of Computer Science
Tel-Aviv University, Israel
aa@post.tau.ac.il

Anna Zamansky

Department of Software Engineering
Jerusalem College of Engineering, Israel
annaza@jce.ac.il


	Maximal and Premaximal Paraconsistency in the Framework of Three-Valued Semantics
	Abstract
	1. Introduction
	2. Preliminaries
	2.1. Maximally Paraconsistent Logics
	2.2. Matrices and Their Consequence Relations
	2.3. Non-Deterministic Matrices

	3. All Reasonable Three-Valued Paraconsistent Logics Induced by Deterministic Matrices are Maximal
	4. Three-Valued Non-Deterministic Semantics: Maximaland Premaximal Paraconsistency
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


