
Studia Logica (2009) 93: 109–145
DOI: 10.1007/s11225-009-9218-x © Springer 2009

Martin Caminada

Dov M. Gabbay

A Logical Account of

Formal Argumentation

Abstract. In the current paper, we re-examine how abstract argumentation can be

formulated in terms of labellings, and how the resulting theory can be applied in the

field of modal logic. In particular, we are able to express the (complete) extensions of

an argumentation framework as models of a set of modal logic formulas that represents

the argumentation framework. Using this approach, it becomes possible to define the

grounded extension in terms of modal logic entailment.

Keywords: abstract argumentation, argument labellings, modal logic, grounded semantics.

1. Introduction

Formal argumentation has become a popular approach for purposes varying
from nonmonotonic reasoning [2, 11], multi-agent communication [1] and
reasoning in the semantic web [23]. Although some research on formal argu-
mentation can be traced back to the early 1990s (like for instance the work
of Vreeswijk [27] and of Simari and Loui [24]) the topic really started to take
off with Dung’s theory of abstract argumentation [12]. Here, arguments are
seen as abstract entities (although they can be instantiated using approaches
like [11] and [22]) among which an attack relationship is defined. The thus
formed argumentation framework can be represented as a directed graph in
which the arguments serve as nodes and the attack relation as the arrows.

Given such a graph, an interesting question is which sets of nodes can rea-
sonably be accepted. Several criteria of acceptance have been stated, includ-
ing grounded, complete, preferred and stable semantics [12], as well as more
recent approaches like semi-stable semantics [9] and ideal semantics [13].

Despite its relative popularity, formal argumentation has been criticized
for its lack of meta-theory [6]. Although quite extensive work has been done
describing the properties of the various argument-based semantics [4, 3],
what is lacking is a comprehensive way of expressing properties of argumen-
tation using existing logical approaches.

In this paper, we describe several alternative ways to express argumenta-
tion (and in particular argumentation semantics) other then the traditional

Special Issue: New Ideas in Argumentation Theory
Edited by Dov M. Gabbay and Leendert van der Torre

110 M. Caminada and D. M. Gabbay

extensions approach. In particular, we focus on argument labellings, classical
logic and various forms of modal logic.

The remaining part of this paper is structured as follows. First, in Sec-
tion 2, we treat some basic concepts of abstract argumentation, including
the traditional extensions approach. Then, in Section 3, we describe the
labellings approach and show how this can be used an alternative way to
describe the standard admissibility based argumentation semantics. Section
4 then describes how argumentation can be expressed in modal logic. In
section 5 argumentation is described using classical logic, and in Section 6
we introduce an alternative approach for using modal logic to describe argu-
mentation. We then round off with a discussion of related work in Section 7.

2. Argumentation Preliminaries

An argumentation framework [12] consists of a set of arguments and an
attack relation on these arguments. In order to simplify the discussion, we
consider only finite argumentation frameworks.

Definition 1. Let U be the universe of all possible arguments. An argu-
mentation framework is a pair (Ar , att) where Ar is a finite subset of U and
att ⊆ Ar × Ar .

We say that an argument A attacks an argument B iff (A,B) ∈ att .
An argumentation framework can be depicted as a directed graph in

which the arguments are represented as nodes and the attack relation is rep-
resented as arrows. For instance, argumentation framework (Ar , att) where
Ar = {A,B,C,D,E} and att = {(A,B), (B,A), (B,C), (C,D), (D,E),
(E,C)} is represented in Figure 1.

E

A B
C

D

Figure 1. An argumentation framework represented as a directed graph.

The shorthand notation A+ and A− stands for, respectively, the set of
arguments attacked by argument A and the set of arguments that attack
argument A. Likewise, if Args is a set of arguments, then we write Args+

A Logical Account of Formal Argumentation 111

for the set of arguments that are attacked by at least one argument in Args,
and Args− for the set of arguments that attack at least one argument in
Args. In the definition below, F (Args) stands for the set of arguments that
are acceptable in the sense of [12].

Definition 2 (defense / conflict-free). Let (Ar , att) be an argumentation
framework, A ∈ Ar and Args ⊆ Ar .
We define A+ as {B | A att B} and Args+ as {B | A att B for some
A ∈ Args}.
We define A− as {B | B att A} and Args− as {B | B att A for some
A ∈ Args}.
Args is conflict-free iff Args ∩ Args+ = ∅.
Args defends an argument A iff A− ⊆ Args+.
We define the function F : 2Ar → 2Ar as
F (Args) = {A | A is defended by Args}.

In the definition below, definitions of grounded, preferred and stable
semantics are described in terms of complete semantics, which has the ad-
vantage of making the proofs in the remainder of this paper more straight-
forward. These descriptions are not literally the same as the ones provided
by Dung [12], but as was first stated in [7], these are in fact equivalent to
Dung’s original versions of grounded, preferred and stable semantics.

Definition 3 (acceptability semantics). Let (Ar , att) be an argumentation
framework and let Args ⊆ Ar be a conflict-free set of arguments.

- Args is admissible iff Args ⊆ F (Args).

- Args is a complete extension iff Args = F (Args).

- Args is a grounded extension iff Args is the minimal (w.r.t. set-inclusion)
complete extension.

- Args is a preferred extension iff Args is a maximal (w.r.t. set-inclusion)
complete extension.

- Args is a stable extension iff Args is a complete extension that attacks
every argument in Ar\Args .

- Args is a semi-stable extension iff Args is a complete extension where
Args ∪ Args+ is maximal (w.r.t. set-inclusion).

As an example, in the argumentation framework of Figure 1 {B,D} is
a stable extension, {A} is a preferred extension which is neither stable nor
semi-stable, ∅ is the grounded extension, and {B} is an admissible set which
is not a complete extension.

112 M. Caminada and D. M. Gabbay

It is known that for every argumentation framework, there exists at least
one admissible set (the empty set), exactly one grounded extension, one or
more complete extensions, one or more preferred extensions and zero or more
stable extensions. Moreover, when the set of arguments in the argumentation
framework is finite, as is assumed in the current paper, there also exist one
or more semi-stable extensions.

An overview of how the various extensions are related to each other is
provided in Figure 2. The fact that every stable extension is also a semi-
stable extension, and that every semi-stable extension is also a preferred
extension was first stated in [9]. All other relations shown in Figure 2 have
originally been stated in [12].

stable extension

semi−stable extension

preferred extension grounded extension
is a

complete extension

is a

is a

is a

admissible set

conflict−free set

is a

is a

Figure 2. An overview of argumentation semantics (extension based).

3. Argument Labellings

The concepts of admissibility, as well as that of complete, grounded, pre-
ferred, stable or semi-stable semantics were originally stated in terms of sets
of arguments. It is equally well possible, however, to express these concepts
using argument labellings. This approach was pioneered by Pollock [21] and
Jakobovits and Vermeir [20], and has more recently been extended by Cam-
inada [7, 10], Vreeswijk [28] and Verheij [26]. The idea of a labelling is to
associate with each argument exactly one label, which can either be in, out
or undec. The label in indicates that the argument is explicitly accepted,
the label out indicates that the argument is explicitly rejected, and the label
undec indicates that the status of the argument is undecided, meaning that
one abstains from an explicit judgment whether the argument is in or out.

A Logical Account of Formal Argumentation 113

Definition 4. Let (Ar , att) be an argumentation framework. A labelling is
a total function L : Ar −→ {in, out, undec}.

We write in(L) for {A | L(A) = in}, out(L) for {A | L(A) = out} and
undec(L) for {A | L(A) = undec}. Sometimes, we write a labelling L as
a triple (Args1,Args2,Args3) where Args1 = in(L), Args2 = out(L) and
Args3 = undec(L).

We distinguish three special kinds of labellings. The all-in labelling is a
labelling that labels every argument in. The all-out labelling is a labelling
that labels every argument out. The all-undec labelling is a labelling that
labels every argument undec. We say that a labelling is conflict-free if no
in-labelled argument attacks an (other or the same) in-labelled argument.

3.1. Complete Labellings

We will now define the concept of a complete labelling and show its rela-
tionship with Dung’s concept of a complete extension.

Definition 5. Let (Ar , att) be an argumentation framework. A complete
labelling is a labelling such that for every A ∈ Ar it holds that:

1. if A is labelled in then all attackers of A are labelled out

2. if all attackers of A are labelled out then A is labelled in

3. if A is labelled out then A has a attacker that is labelled in, and

4. if A has a attacker that is labelled in then A is labelled out

Conditions 1 and 2 essentially form a bi-implication (“A is labelled in iff
all its attacker are labelled out”), just like conditions 3 and 4 (“A is labelled
out iff it has a attacker that is labelled in”).

It is also possible to characterize a complete labelling as a labelling with-
out arguments that are illegally in, illegally out, or illegally undec.

Definition 6. Let L be a labelling of argumentation framework (Ar , att)
and let A ∈ Ar . We say that:

1. A is illegally in iff A is labelled in but not all its attackers are labelled
out

2. A is illegally out iff A is labelled out but it does not have an attacker
that is labelled in

3. A is illegally undec iff A is labelled undec but either all its attackers are
labelled out or it has a attacker that is labelled in.

114 M. Caminada and D. M. Gabbay

We say that an argument is legally in iff it is labelled in and is not illegally
in. We say that an argument is legally out iff it is labelled out and is not
illegally out. We say that an argument is legally undec iff it is labelled undec
and is not illegally undec.

Theorem 7. Let L be a labelling of argumentation framework (Ar , att). It
holds that L is a complete labelling iff

• every in-labelled argument is legally in,

• every out-labelled argument is legally out, and

• every undec-labelled argument is legally undec.

Proof. “=⇒”: The fact that each in-labelled argument is legally in follows
from point 1 of Definition 5. The fact that each out-labelled argument is
legally out follows from point 3 of Definition 5. We will now prove that
each undec-labelled argument is legally undec. Let A be an argument that
is labelled undec. Then from point 2 of Definition 5 it follows that not all
attackers of A are labelled out and from point 4 of Defintion 5 it follows that
A does not have a attacker that is labelled in. Hence, A is legally undec.
“⇐=”: Point 1 of Definition 5 follows from the fact that each in-labelled
argument is legally in. Point 3 of Definition 5 follows from the fact that each
out-labelled argument is legally out. Point 2 of Definition 5 can be proved
as follows. Let A be an argument of which all attackers are labelled out.
Then A cannot be labelled out (otherwise A would be illegally out) and A
cannot be labelled undec (otherwise A would be illegally undec). Therefore,
A can only be labelled in. Point 4 of Definition 5 can be proved as follows.
Let A be an argument that has an attacker that is labelled in. Then A
cannot be labelled in (otherwise A would be illegally in) and A cannot be
labelled undec (otherwise A would be illegally undec). Hence, A can only
be labelled out.

Using the results of Theorem 7 we can restate the concept of a complete
labelling as follows.

Proposition 1. Let L be a labelling of argumentation framework (Ar , att).
It holds that L is a complete labelling iff for each argument A it holds that:

• if A is labelled in then all its attackers are labelled out,

• if A is labelled out then it has at least one attacker that is labelled in,
and

• if A is labelled undec then it has at least one attacker that is labelled
undec and it does not have an attacker that is labelled in.

A Logical Account of Formal Argumentation 115

Lemma 1. Let L1 and L2 be complete labellings of argumentation framework
AF = (Ar , att). It holds that:

• in(L1) ⊆ in(L2) iff out(L1) ⊆ out(L2), and

• in(L1) � in(L2) iff out(L1) � out(L2)

Proof. We first prove that in(L1) ⊆ in(L2) iff out(L1) ⊆ out(L2).
“=⇒”: Suppose in(L1) ⊆ in(L2). Let A ∈ out(L1). From point 3 of
Definition 5 it then follows that A has an attacker (say B) that is labelled
in by L1. That is, B ∈ in(L1). From the fact that in(L1) ⊆ in(L2) it then
follows that B ∈ in(L2). From point 4 of Definition 5 it then follows that A
is labelled out by L2. That is, A ∈ out(L2).
“⇐=”: Suppose out(L1) ⊆ out(L2). Let A ∈ in(L1). From point 1 of
Definition 5 it then follows that each attacker of A must be labelled out by
L1. From the fact that out(L1) ⊆ out(L2) it then follows that each attacker
of A is also labelled out by L2. From point 2 of Definition 5 it then follows
that A is labelled in by L2. That is, A ∈ in(L2).
We now prove that in(L1) � in(L2) out(L1) � out(L2).
“=⇒”: Suppose in(L1) � in(L2). This means that in(L1) ⊆ in(L2) and
not in(L2) ⊆ in(L1). It then follows that out(L1) ⊆ out(L2) and not
out(L2) ⊆ out(L1). This means that out(L1) � out(L2).
“⇐=”: Suppose out(L1) � out(L2). This means that out(L1) ⊆ out(L2)
and not out(L2) ⊆ out(L1). It then follows that in(L1) ⊆ in(L2) and not
in(L2) ⊆ in(L1). This means that in(L1) � in(L2).

Lemma 1 implies that a complete labelling is uniquely defined by the
in-labelled part, as well as by the out-labelled part.

Lemma 2. Let L1 and L2 be complete labellings of argumentation framework
(Ar , att).

1. if in(L1) = in(L2) then L1 = L2

2. if out(L1) = out(L2) then L1 = L2

Proof.

1. Suppose in(L1) = in(L2). Then in(L1) ⊆ in(L2) and in(L2) ⊆ in(L1),
so from Lemma 1 it follows that out(L1) ⊆ out(L2) and out(L2) ⊆
out(L1), so out(L1) = out(L2). From the fact that in(L1) = in(L2)
and out(L1) = out(L2) it then follows that undec(L1) = undec(L2) so
L1 = L2.

116 M. Caminada and D. M. Gabbay

2. Suppose out(L1) = out(L2). Then out(L1) ⊆ out(L2) and out(L2) ⊆
out(L1), so from Lemma 1 it follows that in(L1) ⊆ in(L2) and in(L2) ⊆
in(L1), so in(L1) = in(L2). From the fact that in(L1) = in(L2)
and out(L1) = out(L2) it then follows that undec(L1) = undec(L2) so
L1 = L2.

It turns out that there is a one-to-one relationship between complete
labellings and complete extensions, and that it is relatively straightforward
to convert a complete labelling to a complete extension and vice versa.

Definition 8. Let AF = (Ar , att) be an argumentation framework,
clabellings be its set of all conflict-free labellings and csets be its set of
all conflict-free sets.
We define a function Ext2LabAF : csets → clabellings such that Ext2LabAF

(Args) = {(A, in) | A ∈ Args} ∪ {(A, out | A ∈ Args+} ∪ {(A, undec | A 	∈
Args and A 	∈ Args+}.
We define a function Lab2ExtAF : clabellings → csets such that Lab2ExtAF

(L) = in(L).

Sometimes, when the argumentation framework is either clear or not rel-
evant, we write Ext2Lab and Lab2Ext instead of Ext2LabAF and Lab2ExtAF .

Theorem 9. Let AF = (Ar , att) be an argumentation framework and let L
be a complete labelling. Then Lab2ExtAF (L) is a complete extension.

Proof. Let Args = Lab2ExtAF (L). We now prove that Args is a fixpoint
of F .

Args ⊆ F (Args): Let A ∈ Args . Then L(A) = in. The fact that L is a
complete labelling implies (point 1 of Definition 5) that each attacker
B of A is labelled out. Point 3 of Definition 5 then implies that each
such B has an attacker (say C) that is labelled in. From the definition
of Lab2ExtAF it then follows that C ∈ Args . This means that for each
attacker B of A, there is a C ∈ Args that attacks B. Therefore, A ∈
F (Args).

F (Args) ⊆ Args: Let A ∈ F (Args). Then each B that attacks A is attacked
by some C ∈ Args . From the definition of Lab2ExtAF it follows that C
is labelled in. The fact that L is a complete labelling then implies (point
4 of Definition 5) that each such B is labelled out, which then implies
(point 2 of Definition 5) that A is labelled in. Therefore, by definition
of Lab2ExtAF , it holds that A ∈ Args .

A Logical Account of Formal Argumentation 117

The fact that Args is a fixpoint of F , together with the fact that Args is
conflict-free (which follows from the fact that each complete labelling is also
a conflict-free labelling) implies that Args is a complete extension.

Theorem 10. Let AF = (Ar , att) be an argumentation framework and let
Args be a complete extension. Then Ext2LabAF (Args) is a complete la-
belling.

Proof. We first observe that Ext2LabAF (Args) is well-defined because
the fact that Args is a complete extension implies that it is conflict-free. We
now prove the four properties of Definition 5.

1. “if A is labelled in then all attackers of A are labelled out”
Let A be an argument that is labelled in. From the definition of
Ext2LabAF it then follows that A ∈ Args . The fact that Args is a
complete extension implies that it is an admissible set. That is, Args
attacks every attacker of A. From the definition of Ext2LabAF it then
follows that every attacker of A is labelled out.

2. “if all attackers of A are labelled out then A is labelled in”
Let A be an argument such that every attacker of A is labelled out.
From the definition of Ext2LabAF it then follows that every attacker
of A is an element of Args+. This means that A is defended by Args
(A ∈ F (Args)). From the fact that Args is a complete extension it then
follows that A ∈ Args. From the definition of Ext2LabAF it then follows
that A is labelled in.

3. “if A is labelled out then A has an attacker that is labelled in”
Let A be an argument that is labelled out. From the definition of
Ext2LabAF it then follows that A ∈ Args+, so there is an argument
B ∈ Args that attacks A. From the definition of Ext2LabAF it follows
that B is labelled in.

4. “if A has an attacker that is labelled in then A is labelled out”
Let A be an argument that has an attacker (say B) that is labelled
in. From the definition of Ext2LabAF it follows that B ∈ Args , so
A ∈ Args+. From the definition of Ext2LabAF it then follows that A is
labelled out.

When the domain and range of Lab2ExtAF are restricted to complete la-
bellings and complete extensions, and the domain and range of Ext2LabAF

are restricted to complete extensions and complete labellings, then the re-
sulting functions (call them Lab2Ext

c
AF and Ext2Lab

c
AF) are bijective and

each other’s inverse.

118 M. Caminada and D. M. Gabbay

Theorem 11. Let AF = (Ar , att) be an argumentation framework,
cextensions its set of complete extensions and clabellings its set of complete
labellings. Let Ext2Lab

c
AF : cextensions → clabellings be a function such

that Ext2Labc
AF (Args) = Ext2LabAF (Args) and Lab2Ext

c
AF : clabellings →

cextensions be a function such that Lab2Ext
c
AF (L) = Lab2ExtAF (L). The

functions Ext2Labc
AF and Lab2Ext

c
AF are bijective and each other’s inverse.

Proof. As every function that has an inverse is bijective, we only need to
prove that Lab2Ext

c
AF and Ext2Lab

c
AF are each other’s inverses. That is

(Lab2Extc
AF)−1 = Ext2Lab

c
AF and (Ext2Labc

AF)−1 = Lab2Ext
c
AF . For this,

we prove the following two things:

1. For every complete labelling L it holds that
Ext2Lab

c
AF (Lab2Extc

AF (L)) = L.
Let L be a complete labelling of AF and let A ∈ Ar .
If L(A) = in then A ∈ Lab2Ext

c
AF (L), so Ext2Lab

c
AF (Lab2Extc

AF (L))
(A) = in.
If L(A) = out then A is attacked by Lab2Ext

c
AF (L), so Ext2Lab

c
AF

(Lab2Extc
AF (L))(A) = out.

If L(A) = undec then A 	∈ Lab2Ext
c
AF (L) and A is not attacked by

Lab2Ext
c
AF (L), so Ext2Lab

c
AF (Lab2Extc

AF (L))(A) = undec.

2. For every complete extension Args it holds that
Lab2Ext

c
AF (Ext2Labc

AF (Args)) = Args .
Let Args be a complete extension of AF . We now prove two things:

(a) Lab2Ext
c
AF (Ext2Labc

AF (Args)) ⊆ Args
Let A ∈ Lab2Ext

c
AF (Ext2Labc

AF (Args)). Then A is labelled in by
Ext2Lab

c
AF (Args). Therefore A ∈ Args .

(b) Args ⊆ Lab2Ext
c
AF (Ext2Labc

AF (Args))
Let A ∈ Args . Then A is labelled in by Ext2Lab

c
AF (Args). Therefore

A ∈ Lab2Ext
c
AF (Ext2Labc

AF (Args)).

From Theorem 10 it follows that complete labellings and complete ex-
tensions stand in a one-to-one relationship to each other. In essence, com-
plete labellings and complete extensions are different ways of describing the
same thing.

Given the one-to-one relationship between complete extensions and com-
plete labellings, the next step would be to examine what kind of labellings
are associated with stable, grounded, preferred and semi-stable extensions,
all of which are essentially special forms of complete extensions. What would
be the properties of the labellings associated with these types of extensions?
This question is studied in the following sections.

A Logical Account of Formal Argumentation 119

3.2. Stable Labellings

We start the discussion with examining the labellings that are associated
with stable extensions. These labellings will be called stable labellings.

Definition 12. Let AF = (Ar , att) be an argumentation framework.
A stable labelling is a complete labelling L such that Lab2ExtAF (L) is a
stable extension.

The fact that for complete labellings and complete extensions, Lab2Ext
and Ext2Lab are inverse functions implies that if Args is a stable extension,
then Ext2Lab(Args) is a stable labelling.

Stable labellings can also be characterized as complete labellings without
undec.

Theorem 13. Let AF = (Ar , att) be an argumentation framework.
The following statements are equivalent:

1. L is a complete labelling such that undec(L) = ∅

2. L is a stable labelling

Proof.

from 1 to 2: Suppose L is a complete labelling such that undec(L) = ∅.
Let Args be Lab2ExtAF (L). We now prove that Args is a stable extension
(Definition 3). Let A ∈ Ar\Args . From the fact that A 	∈ Args it follows
that A is not labelled in by L. From the fact that undec(L) = ∅ it
follows that A is not labelled undec either. Therefore, A is labelled out

by L. From the fact that L is a complete labelling, it follows that A is
attacked by an argument (say B) that is labelled in. From the fact that
B is labelled in it follows that B ∈ Args . This means that A is attacked
by Args.

from 2 to 1: Suppose L is a stable labelling, meaning that Args =
Lab2ExtAF (L) is a stable extension. We now prove that undec(L) = ∅.
Let A ∈ Ar . We distinguish two cases:

1. A ∈ Args. Then A is labelled in by L.

2. A 	∈ Args . Then from the fact that Args is a stable extension, it
follows that A is attacked by Args , so A is labelled out by L.

In both cases, A 	∈ undec(L). Since this folds for an arbitrary A ∈ Ar ,
it follows that undec(L) = ∅.

120 M. Caminada and D. M. Gabbay

As an aside, one can also raise the question whether there exist labellings
with empty in or empty out, and if so, what would be the meaning of these
labellings. As for complete labellings with empty in it follows that these
also have empty out, so each argument has to be labelled undec. Thus, a
complete labelling with empty in is essentially the grounded labelling (see
Definition 14 and Theorem 15) in an argumentation framework where each
argument has at least one attacker.

As for complete labellings with empty out, it follows that each argument
has to be labelled either in or undec. This means that no argument that is
labelled in attacks any (other) argument. In essence, a complete labelling
with empty out is the grounded labelling in an argumentation framework
where each argument without attackers also does not attack any argument
itself.

3.3. The Grounded Labelling

The next thing to be examined are the properties of the labelling associated
with the grounded extension.

Definition 14. Let AF = (Ar , att) be an argumentation framework.
A grounded labelling is a complete labelling L such that Lab2ExtAF (L)
is the grounded extension.

The fact that the grounded extension is unique, and that for complete
labellings and complete extensions, Lab2Ext and Ext2Lab are inverse func-
tions, implies that the grounded labelling is unique, and that if Args is the
grounded labelling, then Ext2Lab(Args) is the grounded extension.

The grounded labelling can be characterized as the complete labelling
with minimal in, as the complete labelling with minimal out, or as the
complete labelling maximal undec.

Theorem 15. Let AF = (Ar , att) be an argumentation framework.
The following statements are equivalent:

1. L is a complete labelling where in(L) is minimal (w.r.t. set inclusion)
among all complete labellings of AF

2. L is a complete labelling where out(L) is minimal (w.r.t. set inclusion)
among all complete labellings of AF

3. L is a complete labelling where undec(L) is maximal (w.r.t. set inclusion)
among all complete labellings of AF

4. L is the grounded labelling

A Logical Account of Formal Argumentation 121

Proof.

from 1 to 2: Let L be a complete labelling where out(L) is not minimal.
Then there exists a complete labelling L′ with out(L′) � out(L). From
Lemma 1 it then follows that in(L′) � in(L), so L is a labelling where
in(L) is not minimal.

from 2 to 1: Let L be a complete labelling where in(L) is not minimal.
Then there exists a complete labelling L′ with in(L′) � in(L). From
Lemma 1 it then follows that out(L′) � out(L), so L is a labelling
where out(L) is not minimal.

from 1 to 4: Let L be a complete labelling where in(L) is minimal. Then
Lab2ExtAF (L) is a minimal complete extension, which implies it is the
grounded extension, so L is the grounded labelling.

from 4 to 1: Let L be the grounded labelling. Then Lab2ExtAF (L) is the
grounded extension, which means it is the minimal complete extension.
It then follows that in(L) is minimal.

from 1 to 3: Let L be a complete labelling where in(L) is minimal. Then
Lab2ExtAF (L) is the grounded extension. Now suppose that undec(L) is
not maximal. Then there exists a complete labelling L′ with undec(L) �
undec(L′). It holds that Lab2ExtAF (L′) is a complete extension, and
from the fact that the grounded extension is a subset of each complete
extension, it follows that Lab2ExtAF (L) ⊆ Lab2ExtAF (L′), so in(L) ⊆
in(L′). From Lemma 1 it then follows that out(L) ⊆ out(L′). From
the fact that in(L) ⊆ in(L′) and out(L) ⊆ out(L′) it then follows that
undec(L′) ⊆ undec(L). Contradiction.

from 3 to 1: Let L be a complete labelling where in(L) is not minimal.
Then there exists a complete labelling L′ with in(L′) � in(L).
It then also follows (Lemma 1) that out(L′) � out(L), so undec(L) �
undec(L′). Contradiction.

3.4. Preferred Labellings

We now examine the properties of the labellings associated with preferred
extensions.

Definition 16. Let AF = (Ar , att) be an argumentation framework.
A preferred labelling is a complete labelling L such that Lab2ExtAF (L) is
a preferred extension.

122 M. Caminada and D. M. Gabbay

The fact that for complete labellings and complete extensions, Lab2Ext
and Ext2Lab are inverse functions implies that if Args is a preferred exten-
sion, then Ext2Lab(Args) is a preferred labelling.

Preferred labellings can be characterized as complete labellings with
maximal in, or as complete labellings with maximal out.

Theorem 17. Let AF = (Ar , att) be an argumentation framework. The
following statements are equivalent:

1. L is a complete labelling where in(L) is maximal (w.r.t. set inclusion)
among all complete labellings of AF

2. L is a complete labelling where out(L) is maximal (w.r.t. set inclusion)
among all complete labellings of AF

3. L is a preferred labelling

Proof.

from 1 to 2: Let L be a complete labelling where out(L) is not maximal.
Then there exists a complete labelling L′ with out(L) � out(L′). From
Lemma 1 it then follows that in(L) � in(L′), so L is a labelling where
in(L) is not maximal.

from 2 to 1: Let L be a complete labelling where in(L) is not maximal.
Then there exists a complete labelling L′ with in(L) � in(L′). From
Lemma 1 it then follows that out(L) � out(L′), so L is a labelling
where out(L) is not maximal.

from 1 to 3: Let L be a complete labelling where in(L) is maximal. Then
Lab2ExtAF (L) is a maximal complete extension, which implies it is
a preferred extension, so L is a preferred labelling.

from 3 to 1: Let L be a preferred labelling. Then Lab2ExtAF (L) is
a preferred extension, which means it is a maximal complete extension.
It then follows that in(L) is maximal.

3.5. Semi-Stable Labellings

We now examine the properties of the labellings associated with semi-stable
extensions.

Definition 18. Let AF = (Ar , att) be an argumentation framework.
A semi-stable labelling is a complete labelling L such that Lab2ExtAF (L) is
a semi-stable extension.

A Logical Account of Formal Argumentation 123

The fact that for complete labellings and complete extensions, Lab2Ext
and Ext2Lab are inverse functions implies that if Args is a semi-stable ex-
tension, then Ext2Lab(Args) is a semi-stable labelling.

Semi-stable labellings can be characterized as complete labellings with
minimal undec.

Theorem 19. Let AF = (Ar , att) be an argumentation framework. The
following statements are equivalent:

1. L is a complete labelling where undec(L) is minimal (w.r.t. set inclusion)
among all complete labellings of AF

2. L is a semi-stable labelling

Proof.

from 1 to 2: Suppose L is a complete labelling, but not a semi-stable la-
belling. Then Lab2ExtAF (L) is a complete extension but not a semi-
stable extension. This implies that Lab2ExtAF (L) ∪ Lab2ExtAF (L)+

is not maximal. So there exists a complete extension Args ′ such that
Lab2ExtAF (L) ∪ Lab2ExtAF (L)+ � Args ′ ∪ Args ′+. Let L′ be the la-
belling associated with Args ′ (that is: L′ = Ext2LabAF (Args ′) and Args ′

= Lab2ExtAF (L′)). It then follows that Lab2ExtAF (L)∪Lab2ExtAF (L)+

� Lab2ExtAF (L′) ∪ Lab2ExtAF (L′)+, so in(L) ∪ out(L) � in(L′) ∪
out(L′), so undec(L′) � undec(L). This means that L is not a labelling
where undec(L) is minimal.

from 2 to 1: Suppose that L is a complete labelling where undec(L) is not
minimal. This implies that there exists a complete labelling L′ such that
undec(L′) � undec(L). It then follows that in(L) ∪ out(L) � in(L′) ∪
out(L′). Let Args = Lab2ExtAF (L) and Args ′ = Lab2ExtAF (L′). It
then follows that Args ∪ Args+ � Args ′ ∪ Args ′+, which means that
Args is not a semi-stable extension, which implies that L is not a semi-
stable labelling.

3.6. Roundup

The main results of the discussion until so far are summarized in Table 1.
Notice that we have covered all combinations of minimal or maximal in, out
or undec. Almost all combinations turn out to correspond to the traditional
Dung-style semantics. The only exception are the labellings with minimal
undec, which corresponds with a semantics not introduced in [12] but in [9].

124 M. Caminada and D. M. Gabbay

restriction Dung-style linked by
complete labellings semantics def. and th.

no restrictions complete semantics Def. 5 and Th. 7

empty undec stable semantics Def. 12 and Th. 13

maximal in preferred semantics Def. 16 and Th. 17

maximal out preferred semantics Def. 16 and Th. 17

maximal undec grounded semantics Def. 14 and Th. 15

minimal in grounded semantics Def. 14 and Th. 15

minimal out grounded semantics Def. 14 and Th. 15

minimal undec semi-stable semantics Def. 18 and Th. 19

Table 1. Argument labellings and Dung-style semantics.

Overall, one can see labellings as an alternative way to specify argumen-
tation semantics. The essential rule is that an argument has to be accepted
iff all its attackers are rejected, and an argument has to be rejected iff it has
at least one attacker that is accepted. Thus, argumentation can be explained
without referring to things like admissibility or fixpoints of Dung’s charac-
teristic function. In a gunfight, one stays alive iff all attackers are dead, and
one dies iff at least one attacker is still alive. Those who can understand
this have basically understood what abstract argumentation is all about.

3.7. Admissible Labellings

Until so far, we have modelled the concepts of complete, stable, grounded,
preferred and semi-stable semantics in terms of labellings. This was done by
strengthening the concept of complete labellings. Another route would be to
weaken the concept of a complete labelling. An obvious way to do this would
be to take only a subset of the four properties of Definition 5. However, these
four properties are not completely independent. If one requires property 1
(“if A is labelled in then all attackers of A are labelled out”) then it makes
sense also to require property 3 (“if A is labelled out then A has an attacker
that is labelled in”), and vice versa. If one requires each in label to make
sense, and defines this in terms of out labels, then one should also require
each out label to make sense (and vice versa). Together, properties 1 and 3
stand for admissibility.

Definition 20. Let (Ar , att) be an argumentation framework. An admis-
sible labelling is a labelling such that for every A ∈ Ar it holds that:

A Logical Account of Formal Argumentation 125

1. if A is labelled in then all attackers of A are labelled out

2. if A is labelled out then A has an attacker that is labelled in

Admissible labellings correspond to admissible sets, but the relationship
is no longer one-to-one.

Theorem 21. Let AF = (Ar , att) be an argumentation framework. It holds
that:

1. if Args is an admissible set of AF then Ext2LabAF (Args) is an admis-
sible labelling of AF , and

2. if L is an admissible labelling of AF then Lab2ExtAF (L) is an admissible
set of AF .

Proof.

1. Let Args be an admisssible set of AF , and let L = Ext2LabAF (Args).
We now prove that L is an admissible labelling.

(a) Let A be an argument that is labelled in by L. Let B be an arbitrary
attacker of A. The fact that A is labelled in by L implies that
A ∈ Args. The fact that Args is an admissible set implies that Args
attacks B. That is, B ∈ Args+, so B is labelled out by L. Since this
holds for any attacker B of A it follows that every attacker of A is
labelled out by L

(b) Let A be an argument that is labelled out by L. It then follows that
A ∈ Args+, so there exists a B ∈ Args that attacks A. This B is
labelled in by L. This means that A has a attacker that is labelled
in by L.

2. Let L be an admissible labelling of AF , and let Args = Lab2ExtAF (L).
We now prove that Args is an admissible set.

(a) We first prove that Args is conflict-free. Suppose this is not the case.
Then there exist A,B ∈ Args such that A attacks B. It then follows
that both A and B are labelled in by L. But this cannot be the
case because the fact that L is an admissible labelling implies that
all attackers of A (including B) are labelled out by L.

(b) We now prove that Args defends all its elements. Let A ∈ Args.
Then A is labelled in by L. Let B be an arbitrary argument that
attacks A. From the fact that L is an admissible labelling, it follows
that B is labelled out by L. From the fact that L is an admissible
labelling it then also follows that B has an attacker C that is labelled
in by L, so C ∈ Args . Therefore Args is self-defending.

126 M. Caminada and D. M. Gabbay

Admissible labellings and admissible sets have a many-to-one relation-
ship. That is, each admissible labelling is associated with exactly one admis-
sible set, but each admissible set is associated with one or more admissible
labellings. As an example, consider again the argumentation framework of
Figure 1. Here, ({B}, {A,C}, {D,E}) and ({B}, {A}, {C,D,E}) are two
admissible labellings associated with the same admissible set {B}.

For admissible labellings (say L1 and L2) it does not hold that if in(L1) ⊆
in(L2) then out(L1) ⊆ out(L2). As a counter example, consider again
the argumentation framework of Figure 1, with L1 = ({B}, {A,C}, {D,E})
and L2 = ({B}, {A}, {C,D,E}). Similarly, it also does not hold that if
out(L1) ⊆ out(L2) then in(L1) ⊆ in(L2). As a counter example, consider
the argumentation framework AF = ({A,B,C,D}, {(A,C), (B,C), (C,D)})
with L1 = ({A,B,D}, {C}, ∅) and L2 = ({A,D}, {C}, {B}).

Between the concept of an admissible labelling and a complete labelling,
one can distinguish two intermediate forms.

Definition 22. Let AF = (Ar , att) be an argumentation framework.
A JV-labelling is a labelling that satisfies:

1. if A is labelled in then all attackers of A are labelled out

2. if A is labelled out then A has an attacker that is labelled in

3. if A has an attacker that is labelled in then A is labelled out

A VJ-labelling is a labelling that satisfies:

1. if A is labelled in then all attackers of A are labelled out

2. if A is labelled out then A has an attacker that is labelled in

3. if all attackers of A are labelled out then A is labelled in

In essence, an admissible labelling satisfies point 1 and 3 of a complete
labelling (Definition 5), a JV-labelling satisfies point 1, 3 and 4, and a
VJ-labelling satisfies point 1, 3 and 2. It immediately follows that every
complete labelling is also a JV-labelling and a VJ-labelling, and that every
JV-labelling or VJ-labelling is also an admissible labelling. We use the term
JV-labelling, because these are quite close to a proposal of Jakobovits and
Vermeir [20]. An important difference, however, is that in our approach each
argument gets exactly one out of three possible labels (in, out or undec)
whereas in Jakobovits and Vermeir’s original proposal, there are four possi-
bilities (either no label, single in, single out, or both in and out).1

1Another difference is that Jakobovits and Vermeir use the symbol “+” instead of in
and the symbol “−” instead of out.

A Logical Account of Formal Argumentation 127

It turns out that JV-labellings are uniquely identified by their in labelled
part, whereas VJ-labellings are uniquely identified by their out labelled part.

Lemma 3. Let AF = (Ar , att) be an argumentation framework. Let L1 and
L2 be JV-labellings of AF and let L3 and L4 be VJ-labellings of AF . It holds
that:

1. if in(L1) ⊆ in(L2) then out(L1) ⊆ out(L2)

2. if in(L1) � in(L2) then out(L1) � out(L2)

3. if out(L3) ⊆ out(L4) then in(L3) ⊆ in(L4)

4. if out(L3) � out(L4) then in(L3) � in(L4)

Proof. Similar to the proof of Lemma 1.

Lemma 4. Let AF = (Ar , att) be an argumentation framework. Let L1 and
L2 be JV-labellings of AF and let L3 and L4 be VJ-labellings of AF . It holds
that:

1. if in(L1) = in(L2) then L1 = L2

2. if out(L3) = out(L4) then L3 = L4

Proof. Similar to the proof of Lemma 2.

Since JV-labellings are uniquely identified by their in labelled part, and
the fact that an admissible set essentially specifies a set of in labelled argu-
ments, it does not come as a surprise that there exists a one-to-one relation
between admissible sets and JV-labellings.

Theorem 23. Let AF = (Ar , att) be an argumentation framework, asets
be its set of admissible sets and JV-labellings be its set of JV-labellings.
Let Ext2Lab

JV
AF : asets → JV-labellings be a function such that

Ext2Lab
JV
AF (Args) = Ext2LabAF (Args) and Lab2Ext

JV
AF : JV-labellings →

asets be a function such that Lab2Ext
JV
AF (L) = Lab2ExtAF (L). The func-

tions Ext2Lab
JV
AF and Lab2Ext

JV
AF are bijective and each other’s inverse.

Proof. Similar to the proof of Theorem 11.

A global overview of the relations between the various forms of labellings
is provide in Figure 3.

128 M. Caminada and D. M. Gabbay

stable labelling

preferred labelling
is a

is a

is a

is a

semi−stable labelling

grounded labelling

complete labelling

conflict−free labelling

is a

admissible labelling

JV−admissible labelling VJ−admissible labelling

is a

is a is a

is a

Figure 3. An overview of argumentation semantics (labelling based).

4. Argumentation and Modal Logic

There are three main methods of introducing modal logic into argumen-
tation theory: the metalevel approach, the object level approach and the
mixed approach. We view an argumentation system as a combination of an
argumentation framework AF = (Ar , att) (where Ar is a set of atomic ar-
guments and att ⊆ Ar ×Ar is the attack relation) and a complete labelling
L of AF . To us, the thus described argumentation system serves as the
object level.

The metalevel approach talks about the argumentation framework from
“above”, using another language and logic. The metalevel language can
be classical logic or modal logic. These are traditional metalevel languages
and are used in this way in many areas. Classical logic can be full classical
logic or the computational Horn clause logic programming language. When
classical logic is used, one can think of the process as translation. There is
a traditional translation of modal logic into classical logic and through this
translation the metalevel approaches are related.

For the sake of clarity, we shall present all three metalevel versions in
the appropriate sections: the classical logic one, the Horn clause logic pro-
gramming one, and the modal logic one. They are related but are not the
same; each one has its advantages and limitations.

A Logical Account of Formal Argumentation 129

4.1. Modal Logic Preliminaries

This subsection introduces some modal logic background needed for intro-
ducing our approaches.

The modal logic K is a propositional system with the modal operator �

and the atomic propositions Q = {q1, q2, q3 . . .} and ¬, ∧, ∨, →, � and ⊥.
Models for K have the form M = (S,R, h) where S is the set of possible
worlds, R ⊆ S × S, S 	= ∅ and h is the assignment function, giving to each
atomic letter q a subset h(q) ⊆ S. Satisfaction is defined as follows for t ∈ S:

• t � q iff t ∈ h(q), for atomic q

• t � A ∧ B, A ∨ B, ¬A, A → B are defined as usual

• t � �A iff for all s such that tRs we have s � A

• A holds in (S,R, h) iff for all t ∈ S we have t � A.

K can be axiomatised as follows:

1. all substitution instances of truth functional tautologies

2. �(A → B) → (�A → �B)

3.
� A

� �A

It is complete for the class of all finite frames of the form (S,R) where
S 	= ∅, S is finite, and R ⊆ S × S.

4.2. Products of Modal Logics

We need the concept of an H-product of a fixed frame modal logic. To define
this, we need to introduce the concept of a fixed frame modal logic as well
as the concept of a product.

Definition 24. A modal logic L is said to be a fixed frame modal logic
(FF modal logic) if it can be characterised by a family of models of the
form (S0, R0, h), h ∈ H, where (S0, R0) is a fixed frame and H is a set of
assignments to this frame. We have L � A iff A holds in all FF-models
(S0, R0, h), h ∈ H.

We can now define the cross product of the two modal logics. Let �1

be a modality of modal logic E1 that is completely chacterised by a class
of models of the form M1 = {(S1

i , R1
i , h

1
i)}, i ∈ I1 and similarly for �2,

E2, M2 = {(S2
j , R2

j , h
2
j)}, j ∈ I2. We define the flat-cross product of

these two logics semantically, through their models. The language contains

130 M. Caminada and D. M. Gabbay

the two modalities {�1,�2}. The models have the form (S1 × S2, R1 ∪
R2, h1,2) where (S1, R1, h1) and (S2, R2, h2) are any models of �1 and �2

respectively and S1 ×S2 is the product of the sets S1 and S2. We define R1

and R2 as follows.
(x1, x2)R1(y1, x2) iff x1R

1y1

(x1, x2)R2(x1, y2) iff x2R
2y2

We define h1,2 by some boolean function of h1 and h2, for example
(x1, x2) ∈ h1,2(q) iff x1 ∈ h1(q) or x2 ∈ h2(q)
or another definition
(x1, x2) ∈ h1,2(q) iff x1 ∈ h1(q).
We have
(x1, x2) � �1A iff for all y1, x1R

1y1 we have (y1, x2) � A.
(x1, x2) � �2A iff for all y2, x2R

2y2 we have (x1, y2) � A.
The above definition defines a general flat product.

When we have a single FF-logic, with � characterised by a fixed frame
(S0, R0) and a family of assignments H, we can form the universal product
of the logic with � along the axis of H. We need a new modality for the H
axis, which we denote by �.

Definition 25. Let (S0, R0) be a frame for a fixed frame modal logic L
with �. Let H be a family of assignments h ∈ H such that (S0, R0, h) is
a model of L. We form the universal H product of the frame as follows. We
form the set M = {(S0, R0, h) | h ∈ H}. We use a modality � to move
around M. We then have two modalities: � and �. Satisfaction in M is
defined as follows.
(t, h) � q iff t ∈ h(q), for t ∈ S, h ∈ H
(t, h) � �A iff for all s, tRs implies (s, h) � A
(t, h) � �A iff for all h′ 	= h, (t, h′) � A
A holds in the model iff for all t, h, (t, h) � A.

Figure 4 shows this is indeed a product.

See the book [17] for a wealth of material products.

4.3. Modal Provability Logic

Löb’s logic for one modality � has the following axioms and rules.

1. axioms and rules of modal logic K

2. ♦A → ♦(A ∧ �¬A)

3. �A → ��A

A Logical Account of Formal Argumentation 131

t

s

h h´
H axis

model (S ,R ,t,h)

0R axis

0 0

Figure 4. � moves from t to s on the h vertical.� moves from h to h′ on the t horizontal.

Axiom 2 says that if A is possible then it is possible for the last time. Axiom 3
says R is transitive.

It is complete for the class of all frames which are finite and acyclic (we
can take all finite tree frames). The following holds.

Theorem 26 (fixed point theorem). Let Ψ(x) be a modal formula with the
propositional variable x such that x is in the scope of a modality �. Then
there is a formula φ which is a solution to the fixed point equation x ↔ Ψ(x).
Namely, we have � φ ↔ Ψ(x/φ).

Proof. See Theorem 3.4 (page 464) of [25].

We shall use an extension of this logic in our object level modal approach.
The logic we use we call LN1; it is characterised by linear chains. The axiom
we add for it is:
4. ♦A ∧ ♦B → ♦(A ∧ B) ∨ ♦(A ∧ ♦B) ∨ ♦(B ∧ ♦A)
If we then also add the following axiom
5. ���⊥
we get the logic of chains of length 3 (3-chains) of the form of Figure 5.

The next step will be to connect these chains to labellings.

132 M. Caminada and D. M. Gabbay

1

2

3

Figure 5. A 3-chain.

4.4. The Metalevel Approach

We use the modal logic K to describe the system of Definition 4. We can
view (Ar , att) as a modal frame and view L as an assignment to three propo-
sitional atomic letters: q1, q0 and q?, which we regard as constants. We have
a � q1 iff L(a) = in,
a � q0 iff L(a) = out, and
a � q? iff L(a) = undec.
The modality goes by the direction of “being attacked from”, namely
a � �A iff for all y such that y att a (that is, (y, a) ∈ att), we have y � A.
We therefore must adopt the following axioms, written as ∆(q1, q0, q?).

1. �⊥∨ �q0 → q1 (if a is not attacked by any argument, i.e. �⊥ holds, or
all attackets of a are out then a is in)

2. ♦q1 → q0 (if a is attacked by an argument which is in then a is out)

3. �(q0 ∨ q?) ∧ ♦q? → q? (if all the attackers of a are either out or undec

and at least one attacker of a is undec then a is undec)

4. �m (q0 ∨ q1 ∨ q?), m ≥ 0 (each argument has at least one label out, in
or undec)

5. �m (¬(qi∧qj)), i 	= j, i, j ∈ {0, 1, ?}, m ≥ 0 (no argument has more than
one label)

Let ∆ be the above theory and let AF = (Ar , att) be an argumentation
framework and L be a labelling of AF . Then for any a ∈ Ar it holds that
a � ∆(q1, q0, q?), provided that
a � q1 iff L(a) = in

A Logical Account of Formal Argumentation 133

a � q0 iff L(a) = out

a � q? iff L(a) = undec

Conversely if (S,R, h) is a modal model of ∆ (i.e. for all t ∈ S, t � ∆)
then it is an argumentation system with
L(a) = in iff a � q1

L(a) = out iff a � q0

L(a) = undec iff a � q?

This turns g into a complete labelling (see Theorem 7 and Proposition 1).
The above is may be a nice model but there is still not much we can

do with it. Since the extensions are assignments to q0, q1, q? satisfying ∆
we cannot directly talk about them, except for the grounded labelling. We
shall see later how to deal with the other labellings, using circumscription.
We shall see that to be able to fully understand our metalevel modal model
and its options we should also introduce and compare with the classical logic
metamodel. This we shall do in section 5.

Using the modality � as above and results from [5], we can define ex-
tensions. Let E be a propositional letter. Then E defines a set of points in
Ar . So according to our notation, t � �E iff for all s such that sRt we have
s � E.

So if E denotes a set of arguments, the ♦E is the set of arguments
attacked by E and �♦E is the set of arguments defended by E. We have:

1. E is stable iff E = ¬♦E = �¬E

2. (a) E is conflict-free iff E → ¬♦E

(b) E is admissible iff E → (�♦E) ∧ (�¬E) iff E → �(¬E ∧ ♦E)

3. E is a complete extension iff E = �(¬E ∧ ♦E)

Using fixed points methods of Section 4.5 and reference [15], we can
find the fixed point solutions for (1) (stable extensions) and (3) (complete
extensions) for finite frames.

Altogether, the metalevel approach can be summarized as follows. Given
AF = (Ar , att)

1. We view elements a ∈ Ar as possible worlds and so AF becomes a model
for modal logic K (with the modality �).

2. Labellings become assignments in the modal logic.

3. The frame of our modal logic is fixed, it is (Ar , att). What changes are
the assignments defined by the labellings. This means we have what we
call a fixed frame modal logic FF modality.

4. Properties of labellings are studied in a circumscription logic based on
modal logic K (to be introduced in Section 5.

134 M. Caminada and D. M. Gabbay

4.5. The object level approach

The previous view used modal logic to talk about argumentation. The
now to be introduced object level approach will model argumentation from
within. To introduce our point of view, let us ask what does an argumen-
tation framework of the form AF = (Ar , att) say to us? Here we view
the arguments a ∈ Args as atoms in some logic. So let X be the logi-
cal content of the argumentation framework AF and labelling L. Hence if
a is in then X � a in some logic. If a is out then X � ¬a and if a is
undec then we have neither. We might take the simple minded view and let
XL = {a | L(a) = in} ∪ {¬a | L(a) = out} and propose this as a solution.
The problem, however, is that this is too simplistic because

1. It does not take into account the internal structure of AF (i.e. the attack
relation)

2. It has an explicit dependence on L

Our aim is therefore to introduce a more sophisticated approach.
We borrow the Löb modal provability logic and use a suitable extension

of it, which we call LN1, and view the logical content of (AF,L) as a formula
M(AF,L) of LN1. LN1 is a fixed frame modal logic, the frame being a chain
of 3 elements. We should therefore have (using � as the modal provability
operator)

1. M(AF,L) � �a if a is in

2. M(AF,L) � �¬a if a is out

3. neither, if a is undec

We read � as provability. Figure 6 shows how we find M(AF,L).

x

y

y

1

n∧
a not attacked by any y

Figure 6. Finding M(AF,L).

Let x ∈ Ar and let y1, . . . , yn denote all arguments attacking it
(i.e. (yi, x) ∈ att). The labelling conditions basically say that L(x) = in iff

A Logical Account of Formal Argumentation 135

for each attacker yi it holds that L(yi) is out. So if in means provable, we
get x ↔

∧
yi
¬ � ¬(M(AF,L) ∧ ¬yi)

so we have something like
M(AF,L) ↔ ∧

a not atttacked by any
y � a ∧ [

∧
a∈Ar ,x attacked by y1,...,yn

(x ↔
∧

yi
¬ � ¬(M(AF,L) ∧ ¬yi))].

The exact solution formula for M(AF,L) is given in the beginning of
Section 6.

Thus, M(AF,L) is obtained as a fixed point solution in a suitable modal
provability logic. The fixpoint equation is generated by AF . All models of
M(AF) should give us all labellings of AF . A model of M(AF) gives the
atoms, the elements of Ar assignments and from the assignments we can tell
which a is in, out or undec. This we will see in later sections.

Altogether, the object level approach can be summarised as follows. Let
AF = (Ar , att).

• We regard elements of Ar as atomic propositions in some modal prov-
ability logic LN1. The graph (Ar , att) generates a fixed point equation
in the modal logic and the unique solution M(AF) of this equation is a
formula of modal logic representing the logical content of AF .

• The possible world models of M(AF) are in one to one correspondence
with all labellings L of AF .

• The logic we use, LN1 is a fixed frame modal logic.

4.6. The Mixed Approach

We saw that the metalevel approach regards arguments as possible worlds,
while the object level approach regards them as propositions in a logic. The
problem in both approaches is how to characterise extensions. We will now
introduce a mixed approach. Consider the previous two approaches. In each
of them, the fixed argumentation framework gives rise to a fixed frame modal
logic. On the metalevel approach, the fixed frame is (Ar , att), and the set
of assignments H is what all the possible labellings give us. On the object
level approach the fixed frame is a chain of three elements (see Figure 5) and
the assignments are all those assignments L that give us models of M(AF).
We shall see later that there is a one-to-one correspondance between the
assignments which are models of M(AF) and the labellings of AF .

In either case we get a fixed frame modal logic, one with � and the other
with �. The mixed approach adds the modality � to the existing modality
and forms the universal products with {�,�} and with {�,�} respectively.

136 M. Caminada and D. M. Gabbay

To show how the mixed approach works, consider the semi-stable seman-
tics of Table 1. For this we need to say that our labelling has a minimal
undec. Let us explain the approach for the metalevel mixed case. Let gs−s

be the assignment arising from the semi-stable labelling. Then there is no
other h for a model such that h(q2) � gs−s(q?). We can express this in the
universal model.

The grounded extension for example is characterised by minimal in, so
we obtain � q1 ∧ �q1.

5. The metalevel approach

We saw that the metalevel approach uses modal logic K to talk about argu-
mentation frameworks of the form AF = (Ar , att). The arguments become
the possible worlds of a Kripke model, the attack relation becomes the acces-
sibility relation and an associated labelling L gives rise to and assignment.
By varying L we get a fixed frame modal logic based on K. To fully appreci-
ate the advantages and limitations of this approach we need to compare it to
two other approaches, the Logic Programming and the classical logic ones.

5.1. The Classical Logic Metalevel Approach

We start with classical logic with equality (“=”) and three modal predicates
Q1, Q0 and Q? and a binary relation R. Given an argumentation framework
AF = (Ar , att) and a labelling L we construct the associated model of
classical logic. We take Ar as the domain, att as the relation R and use L
to get the extensions of tree predicates Q0, Q1 and Q? as follows.

1. a ∈ Q1 iff L labels a as in

2. a ∈ Q0 iff L labels a as out

3. a ∈ Q? iff L labels a as undec

Consider the following classical theory ∆(R,Q0, Q1, Q?).

1. ∀x(Q0(x) ∨ Q1(x) ∨ Q?(x))

2. ¬∃x(Qi(x) ∧ Qj(x)) for i 	= j, i, j ∈ {0, 1, ?}

3. ∀y(∀x(xRy → Q0(x)) → Q1(y)

4. ∀y(∃x(xRy ∧ Q1(x)) → Q0(y))

5. ∀y(∀x(xRy → (Q0(x) ∨ Q?(x))) ∧ ∃x(xRy ∧ Q?(x)) → Q?(y))

A Logical Account of Formal Argumentation 137

Any model of ∆ with domain D defines an argumentation framework
with Ar = D, att = R and L is what we obtain from the elements satisfying
the respective predicates Q0, Q1 and Q?. Notice that we are not using “=”.

If we want to characterise any specific argumentation framework AF =
(Ar , att) we need equality and we need constant names for every element
of Ar . We write the following additional axioms θ(AF).

6. ∀x(
∨

a∈Ar x = a)

7.
∧

a,b∈Ar ,a �=b a 	= b

8.
∧

a,b∈att aRb

We want to see how to characterise the different extensions of the ar-
gumentation frameworks obtained in classical logic as models of ∆. This
means for example that we want to say that the predicate Q1 is minimal
in the model (in order to obtain the grounded extension) or for example
that the predicate Q? is minimal to get the semi-stable extension, or that
the predicate Q1 is maximal to get the preferred extension. The concept
“Q is maximal” or “Q is minimal” is not first order. We therefore need
second order formula to express this, an approach that is know as predicate
circumscription of John McCarthy; the subject has a very well developed
theory.

So the theory we want is for example

∆semi−stable(R,Q0, Q1, Q?) = ∆(R,Q0, Q1, Q?) ∧ “Q? is minimal”.

Any model of ∆semi−stable yields an argumentation framework based on the
domain of the model, with L (derived from Q1, Q1, Q?) which is semi-stable.

Using circumscription we write

∆semi−stable = ∆(AF,Q0, Q1, Q?) ∧ ∀Q0∀Q1∀Q∗?((Q
∗
? � Q?)

→ ¬∆(AF,Q0, Q1, Q
∗
?))

where X � Y is defined as ∀y(X(y) → Y (y)) ∧ ∃z(Y (z) ∧ ¬X(z)).
Similarly to maximise we use � in the circumscription formulas for Q1

and Q∗1. According to our book [18] it is possible to eliminate such second
order quantifiers under certain circumstance. We need to check whether this
can be done in our case.

When we deal with a specific finite argumentation framework AF , our
set of axioms is ∆(AF) = ∆ ∪ θ(AF). In this case characterising some of
the extensions is easier. For one thing we can use provability to characterise
some extensions and for others circumscription becomes first order.

138 M. Caminada and D. M. Gabbay

The above axioms ∆(AF) = ∆ ∪ θ(AF) can immediately characterise
the grounded extension of AF as the set of all x such that ∆(AF) � Q1(x).

The preferred semantics is characterised by maximal in, which implies

that Q1 is maximal, so ¬Q1 is minimal. So let Q
min
1 = {x | ∆(L) � ¬Q1}

and add the axiom ∀(Q1(x) ↔ Q
min
1 (x)). The problem with the above

definition is that Qmin
? and Q

min

1 are defined using provability, which is
outside the logic itself. To bring this in, we need to use circumscription as
we did before. However, since for a given AF , Ar is finite, we can turn the
second order qualtifier ∀X into a big conjunction by enumerating all possible
subsets B ⊆ Ar . We get ∀XΨ[y ∈ X] is replaced by

∧
B⊆Ar Ψ[

∨
a∈B y = a].

This makes circumscription first order for AF fixed.

5.2. The Logic Programming Metalevel Approach

The logic programming metalevel approach has been worked out in [29].
The approach is similar to the classical logic approach except that we use
logic programming to represent the argumentation framework. The exten-
sions correspond to the models of the corresponding logic program. For
each argument x we write the clause x ← ¬y1, . . . ,¬yn (n ≥ 0), where
{y1, . . . , yn} is the set of all arguments attacking x. We get a resulting logic
program satisfying

1. each atom is the head of exactly one clause

2. the bodies of clauses consist of weakly negated atoms only

For more information, we refer to [29] and [16].

6. The Modal Provability Object Level Approach

Let AF = (Ar , att) be an argumentation framework. Let x be an argument
whose set of attackers is y1, . . . , yn, as was illustrated in Figure 6.

We construct the following modal formula in the modal logic LN3 of
provability.

M(AF) = G(�⊥ ∨
∧

y∈Ar and y has attackers yi

y ↔
∧

i ♦¬yi) ∧∧
y∈Ar and y is not attacked Gx

Here, GA stands for A ∧ �A. The logic LN3 has the following axioms.

1. all substitution instances of classical tautologies

2. all K4 axioms

A Logical Account of Formal Argumentation 139

• �(A → B) → (�A → �B)

• �A → ��A

•
� A

� �A
3. all substitution instances of Löb’s axioms

♦A → ♦(A ∧ �¬A)

4. linearity axiom
♦A ∧ ♦B → ♦(A ∧ B) ∨ ♦(A ∧ ♦B) ∨ ♦(B ∧ ♦A)

5. 3-chain axiom
���⊥

6. axioms for atoms q only

• q → �(¬q → �q)

• �(�⊥ ∨ q) ↔ �q

• �(�⊥ ∨ ¬q) ↔ �¬q

Lemma 5.

1. The logic LN3 is complete for all 3-chain models whose assignment to
atoms has one of the types of Table 2.

2. Any 3-chain model of LN1 allows for the atoms to have one of types 1,
0 or 2 assignments.

Proof. The axioms of LN1 force the following for atomic q in the chain
1 < 2 < 3:

• 1 � q and 2 � q ⇒ 3 � q

• 1 �∼ q and 2 �∼ q ⇒ 3 �∼ q

• 1 � q and 2 �∼ q ⇒ 3 � q.

We need to prove that the option “1 � q and 2 �∼ q and 3 �∼ q” cannot
arise. Consider a point y such as y is being attacked. (If not then Gy is in
M(AF) and so y is of type 1.) We have G(�⊥ ∨ (y ↔

∧
♦ ∼ yi)) holds in

the model. Hence y ↔
∧

i ♦ ∼ yi holds at points 1 and 2. We distinguish
several cases:

1. If for any j, if yj = ⊥ at 3 then ♦ ∼ yj is true at 1 and 2 and it plays no
role in the conjunction. If for all yj, 3 �∼ yj then y = � at 1 and 2 and
y is of type 1.

2. Some yj are � at 3. Then ♦ ∼ yj is ⊥ at 2 and y = ⊥ at 2.

140 M. Caminada and D. M. Gabbay

3. We now check whether yj is true or false at 2. If for some j, yj = � at 2
then ♦ ∼ yj = ⊥ at 1 and y = ⊥ at 1 and hence y = ⊥ everywhere, and
hence y is of type 0.

If for all j, yj = ⊥ at 2 then y = � at 1 and we have that y = � at 1
and y = ⊥ at 2 and we must have by the axiom 4.1 that 3 � y and y is of
type 3.

world type 1 type 0 type 2

3 � ⊥ �
2 � ⊥ ⊥
1 � ⊥ �

Table 2. 3-chain models.

Theorem 27. Let AF = (Ar , att) be an argumentation framework and let
M(AF) be the modal sentence as defined. Then:

1. Any complete labelling L for AF gives rise to a model of M(AF), where
for any q, the correspondence is as in Table 2.

• q is assigned type 1 assignment iff L(q) = 1

• q is assigned type 0 assignment iff L(q) = 0

• q is assigned type 2 assignment iff L(q) = ?

2. Let M1,M2,M3, . . . be all the 3-chain models of M(AF). Then {Mi}
are all the complete labellings for AF , where these complete labellings
are obtained as in Table 2.

Proof.

Direction 1. Let h be an assignment model satisfying M(AF). By Lemma
5 every atom node x in P gets assigned values h(x) of types 0,
1, or ?.

Define a Caminada candidate function L according to the ty-
pes, namely L(x) = i iff h(x) is of type i, i ∈ {0, 1, ?}. We now
show that L satisfies the conditions of a Caminada function of
Definition 5.

1 If x is an initial point then Gx is a conjunct of M(AF),
therefore h(x) is of type 1 and hence L(x) = 1.

A Logical Account of Formal Argumentation 141

2 If y1, . . . , yn are all nodes with arrows to y, then we have
the conjunct y ↔

∧
i ♦ ∼ yi in M(AF) in the clause

G(�⊥ ∨
∧

y

(y ↔
∧

i

♦ ∼ yi))

This means that at nodes 1 and 2 of the chain y ↔
∧

i ♦ ∼
yi must hold. Assume all yi are of type 0, then y = � at 2
and 1. Hence by axiom 6.2, y = � also at node 3 and y is
of type 1. This means that if all yi are ‘out’ then y is ‘in’.

Assume one of yi is of type 1. Then for this yi,♦ ∼ yi is ⊥
at nodes 1 and 2. Hence y is false at 1 and 2 and by axiom
4.3, y = ⊥ at node 3. Hence y is of type 0.

Now assume all of yi are either of type 0 or of type ?, and
at least one of yi say y1 is of type?. The yi of type 0 have
no influence on y because ♦ ∼ yi is � at nodes 1 and 2.
The crucial nodes are the nodes like y1 which are of type ?.
This means that 1 � y1, 2 �∼ y1, 3 � y1. Thus ♦ ∼ y1 = ⊥
at 2 and ♦ ∼ y1 = � at 1.

This holds for any type yi of type ?. Thus y = � at 1 and
y = ⊥ at 2. Hence by axiom 6.1, y = � at 3 and hence y
is of type ?.

Direction 2. Let L be a Caminada function. Define a model by assigning
values to the propositions according to the code of Table 2. We
claim M(AF) holds in this model.
First all nodes y without arrows into them are assigned type
1 and hence Gy holds. For the other nodes we must check the
formula

G(�⊥ ∨
∧

y
y has arrows leading to it

(y ↔
∧

i

♦ ∼ yi))

and show it holds in the model.
We distinguish several cases. Assume all yi are of type 0. This
means L(yi) = 0 for all yi. So ♦ ∼ yi is � at nodes 1 and
2. But since all L(yi) = 0 we get that L(y) = 1 and hence
y ↔

∧
i ♦ ∼ yi holds at 1 and 2 as required.

If one of yi is of type 1, this means ♦ ∼ yi is ⊥ at 1 and 2.
Hence

∧
i ♦ ∼ yi is ⊥ at 1 and 2. But also since L(yi) = 1, we

get L(y) = 0 and so y is of type 0 and y = ⊥ at 1 and 2.

142 M. Caminada and D. M. Gabbay

Hence y ↔
∧

i ♦ ∼ yi holds at 1 and 2.
Now assume that all yi are either of type 0 or type ?. This
means L(yi) is either 0 or ?. Assume that at least one yi is of
type ? (i.e. L(yi) =?). Then L(y) =? and we have y = � at 1
and y = ⊥ at 2. Let us check whether

∧
i ♦ ∼ yi is ⊥ at and �

at 2. Since all yi are of type ? or ⊥ with at least one yi of type
?, the type ? yi will be � at node 2 and hence ♦ ∼ yi = ⊥ at
node 1 and hence y = ⊥ at node 1.
On the other hand all yi are ⊥ at node 3 and hence

∧
i ♦ ∼ yi

is � at node 2. This shows that y ↔
∧

i ♦ ∼ yi is � at nodes
1 and 2.
Thus the above argument shows that

G(�⊥ ∨
∧

u

(y ↔
∧

i

♦ ∼ yi))

holds at all nodes 1, 2, and 3.

This completes the proof of the theorem.

Corollary 1. M(AF) characterises all the extensions of AF through the
modal logic LN3.

In particular, we obtain the following theorem.

Theorem 28. x is in the grounded extension of AF iff M(AF) �LN3 Gx.

Proof. This holds because the grounded extension is the minimal complete
extension [12].

Since Gx is in every model of M(AF) we cannot characterise other
extensions, e.g. preferred extensions, in a similar way. We need the mixed
approach with additional modalities.

7. Discussion

Grossi in [19] uses modal logic to represent argumentation frameworks. His
approach is metalevel. We use (in Section 5.1) classical logic to talk about
argumentation frameworks and use circumscription to define the various ex-
tensions. Grossi uses modal logic to describe the argumentation frameworks.
He needs two modalities, one to go with the attack relation and one to go
with the converse of the attack relation (like two temporal logic modali-
ties). He also uses a universal modality and to get the extensions he needs

A Logical Account of Formal Argumentation 143

µ-calculus on top. Our approach, on the other hand, is to use classical
logic with circumscription to do the job. We would not be surprised if the
approach of Grossi could simulate the relevant classical logic with circum-
scription, since all the ingredients are present. Note that our use of modal
logic in section 6 is object level and is completely different from its use as a
metalevel tool.

As was mentioned in Section 3 the approach of argument labellings can be
traced back to Pollock, who in his 1995 book [21] described his oscar system
in terms of labellings. As explained in [20], Pollock’s approach essentially
boils down to preferred semantics. The labelling approach of Jakobovits and
Vermeir [20] is aimed not so much at describing Dung’s original semantics
but rather to defining additional semantics driven by what they perceive to
be problems in Dung’s original semantics. Caminada first described com-
plete semantics in terms of labellings in [8] and showed how this can be used
to provide labelling based descriptions of other semantics as well. This ap-
proach was then applied in [10] and [28] to provide labelling-based algorithms
for computing particular argumentation sets and extensions.

Besnard and Doutre [5] examine how complete and preferred semantics
can be expressed in terms of set theoretical equations, but do not provide a
logical account of these semantics.

A connection between the current work and the topic of linear program-
ming equations can be found in [14]. We did use some of the equations of [14]
in Section 4.4.

References

[1] Amgoud, L., N. Maudet, and S. Parsons, ‘Modelling dialogues using argumen-

tation’, Proceedings of the Fourth International Conference on MultiAgent Systems

(ICMAS-00), Boston, MA, 2000, pp. 31–38.

[2] ASPIC-consortium, Deliverable D2.5: Draft formal semantics for ASPIC system,

June 2005.

[3] Baroni, P., and M. Giacomin, ‘Comparing argumentation semantics with respect

to skepticism’, Proc. ECSQARU 2007, 2007, pp. 210–221.

[4] Baroni, P., and M. Giacomin, ‘On principle-based evaluation of extension-based

argumentation semantics’, Artificial Intelligence 171 (10-15): 675–700, 2007.

[5] Besnard, Ph., and S. Doutre, ‘Characterization of semantics for argument sys-

tems’, Proceedings of the Ninth International Conference on the principles of Know-

ledge Representation and reasoning, AAAI Press, 2004, pp. 183–193.

[6] Boella, G., J. Hulstijn, and L. van der Torre, ‘A logic of abstract argumen-

tation’, Proceedings of the Workshop on Argumentation in Multi-Agent Systems

(ArgMAS), 2005.

144 M. Caminada and D. M. Gabbay

[7] Caminada, M. W.A., ‘On the issue of reinstatement in argumentation’, in M. Fischer,

W. van der Hoek, B. Konev, and A. Lisitsa (eds.), Logics in Artificial Intelligence;

10th European Conference, JELIA 2006, LNAI 4160, Springer, 2006, pp. 111–123.

[8] Caminada, M.W.A., On the issue of reinstatement in argumentation, Technical

Report UU-CS-2006-023, Institute of Information and Computing Sciences, Utrecht

University, 2006.

[9] Caminada, M.W.A., ‘Semi-stable semantics’, in P. E. Dunne and T. J. M. Bench-

Capon (eds.), Computational Models of Argument; Proceedings of COMMA 2006,

IOS Press, 2006, pp. 121–130.

[10] Caminada, M.W.A., ‘An algorithm for computing semi-stable semantics’, Proceed-

ings of the 9th European Conference on Symbolic and Quantitalive Approaches to

Reasoning with Uncertainty (ECSQARU 2007), number 4724 Springer Lecture Notes

in AI, Springer Verlag, Berlin, 2007, pp. 222–234.

[11] Caminada, M.W.A., and L. Amgoud, ‘On the evaluation of argumentation for-

malisms’, Artificial Intelligence 171 (5-6): 286–310, 2007.

[12] Dung, P. M., ‘On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming and n-person games’, Artificial Intelligence

77: 321–357, 1995.

[13] Dung, P. M., P. Mancarella, and F. Toni, ‘Computing ideal sceptical argumen-

tation’, Artificial Intelligence 171 (10-15): 642–674, 2007.

[14] Gabbay, D. M., ‘Fibring argumentation frames’, Studia Logica 93 (2-3): 231–295,

2009, this issue.

[15] Gabbay, D. M., ‘Modal provability foundations for argumentation networks’, Studia

Logica 93 (2-3): 181–198, 2009, this issue.

[16] Gabbay, D. M., and A. S. d’Avila Garcez, ‘Logical modes of attack in argumen-

tation networks’, Studia Logica 93 (2-3): 199–230, 2009, this issue.

[17] Gabbay, D. M., A. Kurucz, F. Wolter, and M. Zakharyaschev, Many-

dimensional Modal Logics: Theory and Applications, Number 148 Studies in Logic

and the Foundations of Mathematics, Elsevier, 2003.

[18] Gabbay, D. M., R. Schmidt, and A. Sza�las, Order Quantifier Elmination, College

Publications, 2008.

[19] Grossi, D., Doing argumentation theory in modal logic, Technical Report PP-2009-

24, ILLC, 2009.

[20] Jakobovits, H. and D. Vermeir, ‘Robust semantics for argumentation frameworks’,

Journal of logic and computation 9 (2): 215–261, 1999.

[21] Pollock, J. L., Cognitive Carpentry. A Blueprint for How to Build a Person, MIT

Press, Cambridge, MA, 1995.

[22] Prakken, H., and G. Sartor, ‘Argument-based extended logic programming with

defeasible priorities’, Journal of Applied Non-Classical Logics 7: 25–75, 1997.

[23] Rahwan, I., F. Zablith, and C. Reed, ‘Laying the foundations for a world wide

argument web’, Artificial Intelligence 171 (10-15): 897–921, 2007.

[24] Simari, G. R., and R. P. Loui, ‘A mathematical treatment of defeasible reasoning

and its implementation’, Artificial Intelligence 53: 125–157, 1992.

[25] Smorynski, C., ‘Modal logic and self reference’, in D. M. Gabbay and F. Guenter

(eds.), Handbook of Philosophical Logic, 1st edition, volume 2. Kluwer, 1984.

A Logical Account of Formal Argumentation 145

[26] Verheij, B., ‘A labeling approach to the computation of credulous acceptance in

argumentation’, in M. M. Veloso (ed.), Proceedings of the 20th International Joint

Conference on Artificial Intelligence, Hyderabad, India, 2007, pp. 623–628.

[27] Vreeswijk, G. A. W., Studies in defeasible argumentation, PhD thesis at Free

University of Amsterdam, 1993.

[28] Vreeswijk, G. A. W., ‘An algorithm to compute minimally grounded and admis-

sible defence sets in argument systems’, in P. E. Dunne and T. J. M. Bench-Capon

(eds.), Computational Models of Argument; Proceedings of COMMA 2006, IOS, 2006,

pp. 109–120.

[29] Wu, Y., M. Caminada, and D. M. Gabbay, ‘Complete extensions in argumentation

coincide with 3-valued stable models in logic programming’, Studia Logica 93 (2-3):

383–403, 2009, this issue.

Martin W.A. Caminada

Interdisciplinary Lab
for Intelligent and Adaptive Systems
University of Luxembourg
martin.caminada@uni.lu

Dov M. Gabbay

King’s College, London
Bar-Alan University, Israel
University of Luxembourg
dov.gabbay@kcl.ac.uk

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

