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Abstract. This paper studies methodologically robust options for giving logical con-

tents to nodes in abstract argumentation networks. It defines a variety of notions of attack

in terms of the logical contents of the nodes in a network. General properties of logics are

refined both in the object level and in the metalevel to suit the needs of the application.

The network-based system improves upon some of the attempts in the literature to define

attacks in terms of defeasible proofs, the so-called rule-based systems. We also provide a

number of examples and consider a rigorous case study, which indicate that our system

does not suffer from anomalies. We define consequence relations based on a notion of

defeat, consider rationality postulates, and prove that one such consequence relation is

consistent.
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1. Introduction

An abstract argumentation network has the form (S,R), where S is a non-
empty set of arguments and R ⊆ S ×S is an attack relation. When (x, y) ∈
R, we say x attacks y.

The elements of S are atomic arguments and the model does not give
any information on what structure they have and how they manage to attack
each other.

The abstract theory is concerned with extracting information from the
network in the form of a set of arguments which are winning (or ‘in’), a set
of arguments which are defeated (or are ‘out’) and the rest are undecided.
There are several possibilities for such sets and they are systematically stud-
ied and classified. See Figure 1 for a typical situation. x → y in the figure
represents (x, y) ∈ R.

A good way to see what is going on is to consider a Caminada labelling.
This is a function λ on S distributing values λ(x), x ∈ S in the set {in,
out, ?} satisfying the following conditions.
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Figure 1.

1. If x is not attacked by any y then λ(x) = 1.

2. If (y, x) ∈ R and λ(y) = 1 then λ(x) = 0.

3. If all y which attack x have λ(y) = 0 then λ(x) = 1.

4. If one y which attack x has λ(y) =? and all other y have λ(y) ∈ {0, ?}
then λ(x) =?.

Such λ exist whenever S is finite and for any such λ, the set S+
λ = {x |

λ(x) = 1} is the set of winning arguments, S−λ = {x | λ(x) = 0} is the
set of defeated arguments and S?

λ = {x | λ(x) =?} is the set of undecided
arguments.

The features of this abstract model are as follows:

1. Arguments are atomic, have no structure.

2. Attacks are stipulated by the relation R; we have no information on how
and why they occur.

3. Arguments are either ‘in’ in which case all their attacks are active or are
‘out’ in which case all their attacks are inactive. There is no in between
state (partially active, can do some attacks, etc.). Arguments can be
undecided.

4. Attacks have a single strength, no degrees of strength or degree of trans-
mission of attack along the arrow, etc.

5. There are no counter attacks, no defensive actions allowed or any other
responses or counter measures.
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6. The attacks from x are uniform on all y such that (x, y) ∈ R. There are
no directional attacks or coordinated attacks.1 In Figure 1, a1, . . . , an

attack b individually and not in coordination. For example, a1 does not
attack b with a view of stopping b from attacking e1 but without regard
to e1, . . . , en.

7. The view of the network is static. We have a graph here and a relation R

on it. So Figure 1 is static. We use the words ‘there is no progression in
the network’ to indicate this; the network is static. We seek a λ labelling
on it and we may find several. In the case of Figure 1 there is only one
such λ. λ(ai) = 1, λ(b) = 0, λ(ej) = 1, i, j = 1, . . . , n.
We advocate a dynamic view, like first ai attack b and b then (if it is not
out dead) tries to attack ei. Or better still, at the same time each node
launches an attack on whoever it can. So ai attack b and b attacks ei

and the result is that ai are alive (not being attacked) while b and ej are
all dead.

Points 4 and 7 above have been addressed in [2], and points 6 and 7
in [6], but points 1–3 and 5 remain untreated by us. It is our aim in this
paper to give theoretical answers to these questions.

There are several authors who have already addressed some of these
questions. See [3, 4]. We shall build upon their work, especially [4].

Obviously, to answer the above questions we must give contents to the
nodes. We can do this in two ways. We can do this in the metalevel, by
putting predicates and labels on the nodes and by writing axioms about them
or we can do it in the object level, giving internal structure to the atomic
arguments and/or saying what they are and defining the other concepts, e.g.
the notion of attack in terms of the contents.

Example 1.1 (Metalevel connects to nodes). Figure 2 is an example of
a metalevel extension.

The node a is labelled by α. It attacks the node b with transmission fac-
tor ε. This transmission factor is an important feature of our approach. In
fact, it will prove crucial in answering some of the questions. The idea stems
from our research on neural-symbolic computation [8], where the weights of

1There is some controversy on whether arguments accrue. While Pollock denies the
existence of cumulative argumentation [15], Verheij defends that arguments can be com-
bined either by subordination or by coordination, and may accrue in stages [16]. The
debate is by no means over or out of date, see e.g. also [13]. Relatedly, in neural networks,
the accrual of arguments by coordination appears to be a natural property of the network
models [6]. The accrual of arguments can also be learned naturally by argumentation
neural networks.
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neural networks are always labelled by real numbers which are learnable (i.e.
can be adapted through the use of a learning algorithm to account for a new
situation).

Node b is labelled by β. The attack arrow itself constitutes an attack
on the attack arrow from b to c. This attack is itself attacked by node b.
Each attack has its own transmission factor. We denote attacks on arrows
by double arrows. Allowing attacks on arrows is another new idea in argu-
mentation, first proposed in the context of neural computation in [7]. It can
be associated with the above-mentioned learning process, where an agent
identifies the changes that are required in the system. This concept turns
out to be quite general and yet useful in a computational setting. In the
case of a recurrent network, for example, attacks on arrows can be used to
control infinite loops, as discussed in [2] and exemplified through the use
of learning algorithms in [6]. In other words, we see loops as a trigger for
learning.

Formally, we have a set S of nodes, here

S = {a, b, c}.
The relation R is more complex. It has the usual arrows {(a, b), (b, c)} ⊆ R

and also the double arrows, namely, {((a, b), (b, c)), (b, ((a, b), (b, c)))} ⊆ R.
We have a labelling function l, giving values

l(a) = α, l(b) = β, l(c) = γ,

l((a, b)) = ε, l((b, c)) = η,

l(((a, b), (b, c))) = δ

l((a, ((a, b), (b, c)))) = ω.

We can generalise the Caminada labelling as a function from S ∪ R

to some values which satisfy some conditions involving the labels. We can
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write axioms about the labels in some logical language and these axioms will
give more meaning to the argumentation network. See [2] for some details
along these lines. The appropriate language and logic to do this is Labelled
Deductive Systems (LDS) [9].

We shall not pursue the metalevel extensions approach in this paper
except for one well known construction which will prove useful to us later.

Example 1.2 (The logic program associated with an ordinary abstract net-
work). Let N = (S,R) and consider S as a set of literals. Let ⇒ be the
logic programming arrow and let ∧,¬ be conjunction and negation as failure.
Consider the logic program P (N) containing the following clauses Cx, x ∈ S

Cx :
m∧

i=1

¬yi ⇒ x

where y1, . . . , ym are all the nodes in S which attack x (i.e. (
∧

(y,c)∈R y) ⇒ x).
If no node attacks x then Cx = x.
Cx simply says in logic programming language that x is in if all y which

attack it are out (i.e. ¬yi).

In [14], a neural network is used as a computational model for condi-
tional logic, in which attacks on arrows are allowed. More precisely, these
are graphs where arcs are allowed to connect not only nodes, but nodes
to arcs, denoting an exception that can change a default assumption. For
example, suppose that node a is connected to node b, indicating that a
normally implies b. A node c can be connected to the connection from a
to b, indicating that c is an exception to the rule. In other words, if c is
activated, it blocks the activation of b, regardless of the activation of a. In
logic programming terms, we would have a∧¬c ⇒ b. Leitgeb’s networks can
be reduced to networks containing no arcs connected to arcs; these are the
CILP networks used in [5] to compute and learn logic programming. Here,
the networks are more general. There are three cases to consider:

1. The fact that a node a attacks a node b can attack a node c, (a → b) → c;

2. A node a can attack the attack of a node b on a node c, a → (b → c);
and

3. The fact that node a attacks node b attacks the attack from node c to
node d (but not any other attack on d), (a → b) → (c → d).

Here, there are cases that cannot be reduced or flattened. The most
general network set-up allowing for connections to connections is the fibring



204 D. M. Gabbay and A. S. d’Avila Garcez

set-up of [7], where it is proved that fibred networks are strictly more ex-
pressive than their flattened counterpart, CILP networks. In [7], nodes in
one network (or part of a network) are allowed to change dynamically the
weights (or transmission factors) of connections in another network. This
can be seen as an integration of learning (the progressive change of weights)
into the reasoning system (the network computation). It provides a rich con-
nectionist model towards a unifying theory of logic and network reasoning.

We are now ready for our second approach, namely giving logical content
to nodes.

Assume we are using a certain logic L. L can be monotonic, nonmono-
tonic, algorithmic, etc. At this stage anything will do. This logic has the
notion of formulas A of the logic, theories ∆ of the logic and the notion of
∆ � A, and possibly also the notion of ∆ is not consistent.

The simplest approach is to assume the nodes x ∈ S are theories ∆x

supporting logically a formula Ax (i.e. ∆x � Ax in the logic). The exact
nature of the nodes will determine our options for defining attacks of one
node on another.

We list the important parameters.

1. The nature of the logic at node x and how it is presented. The logic can
be classical logic, intuitionistic logic, substructural logic, nonmonotonic
logic, etc. It can be presented proof theoretically, or semantically or as
a consequence relation, or just as an algorithm.

2. What is ∆x? A set of wffs? A proof? A network (e.g. a Bayesian
network) with algorithms to extract information from it? etc.

3. The nature of the support ∆x gives Ax. We can have ∆x � Ax, or we can
have that Ax is extracted from ∆x by some algorithm Ax (e.g. abduction
algorithms, etc.).

4. How does the node x attack other nodes? Does it have a stock of attack
formulas {α1, α2, . . .} that it uses? Does it use Ax? etc.

5. What does the node x do when it is attacked? How does it respond?
Does it counter attack? Does it transform itself? Does it die (become
inconsistent)?

6. To define the notion of an attack one must give precise formal definitions
of all the parameters involved.

We give several examples of network and attack options.

Example 1.3 (Networks based on monotonic logic). Let L be any mono-
tonic logic, with a notion of inconsistency. Let the nodes have the form
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x = (∆x, Ax) where ∆x is a set of formulas such that ∆x � Ax and ∆x is a
minimal such set (i.e. no Θ � ∆x can prove Ax).

∆x attacks ∆y by forcing itself onto ∆y (i.e. forming ∆x ∪ ∆y). If the
result is inconsistent then a revision process starts working and a maximal
Θy ⊆ ∆y is chosen such that ∆x ∪Θy is consistent. The result of the attack
on y is Θy. Of course if ∆x ∪ ∆y is consistent then the attack fails, as
Θy = ∆y � Ay, otherwise Θy �� Ay and the attack succeeds. However, the
node y transforms itself into a logically weaker node.

Note that unless Θy is empty, the new transformed Θy is still capable of
attacking. To give a specific example, consider the two nodes:

x = (¬A,¬A) and y = ((A,A → B), B)

x attacks y and the result of the attack is a new ∆′y = {A → B}. ∆′y can
still attack its targets though with less force.

Consider the following sequence:

z = (¬E,¬E), x′ = ((E,¬A),¬A ∧ E), y = ((A,A → B), B)

z attacks x′, x′ as a result of the attack regroups itself into x and proceeds
to attack y. Note that we view progression from left to right along R.

Consider now the following Figure 3, as a third example:

x′

y

z

z′ x

Figure 3.

where z′ = (A,A) and z, x′, x and y are as before. Because of the attack of
z′, x′ cannot regroup itself into x because x is also being attacked.

Consider now a fourth example, Figure 4. Here neither x1 nor x2 can
cripple y but a joint attack can.
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y = (A ∨ B → C, C)

x1 = (¬A,¬A)

x2 = (¬B,¬B)

Figure 4.

Remark 1.4 (Summary of options for the monotonic example).

1. Attacks are done by hurling oneself at the target. This can be refined
further by allowing sending different formulas at different targets.

2. Attacks can be combined.

3. The target may be crippled but can still ‘regroup’ and attack some of its
own targets.

4. The nature of any attack is based on inconsistency and revision.

5. We can sequence the attacks as a progression along the relation R.

6. Attacks are not symmetrical since we use revision. So if A attacks ∼ A,
AGM revision [1], for example, will give preference to A. So for ∼ A to
attack A it has to do so explicitly, and the winner is determined by the
progression of the attack sequence.

Example 1.5 (Networks based on nonmonotonic logic). This example al-
lows for nodes of the form x = (∆x, Ax) where the underlying logic is a
nonmonotonic consequence |∼. In nonmonotonic logic we know that we may
have ∆y|∼Ay but ∆y + B � |∼Ay.

2

So if node x = (∆x, Ax) attacks node y, it simply adds ∆x to ∆y and we
get y′ = ∆x ∪ ∆u|∼?Ay.

Here the attack is based on providing more information and not on in-
consistency and revision.

To show the difference, let ∆y be:

2A nonmonotonic consequence on the wffs of the logic satisfies three minimal properties

1. Reflexivity: ∆|∼A if A ∈ ∆.

2. Restricted monotonicity: ∆|∼A and ∆|∼B imply ∆, A|∼B.

3. Cut Rule: ∆, A|∼B and ∆|∼A imply ∆|∼B.

Note that |∼ can be presented in many ways, semantically, proof theoretically or algorith-
mically.
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1. Bird (a) �→ Fly (a)

2. Penguin (a)∧ Bird (a) �→∼ Fly (a)

3. Bird (a)

where �→ is defeasible implication.
Let Ay be Fly (a).
Let ∆x and Ax be Penguin (a). x can attack y by sending it the extra

information that Penguin (a). Another attack from another point x′ to y

can be by sending ∼ Bird(a) to y, i.e. ∆x′ = Ax′ =∼ Bird (a).

¬b1 → a1

...

¬bn → an

b1 → ...

a1

an

...

...

¬a1 → e1

¬an → en

Figure 5.

Example 1.6 (Prolog programs). The theories here are Prolog programs
and the arguments are the literals they prove.

An attack is executed by sending a literal from the attacking theory to
the target theory. See Figure 5.

Example 1.7 (Counter-attack). The Dung framework does not allow for
counter-attacks being effective only when attacked but not before. The
model is static. The attacks do not ‘progress’ along the network like a flow
going through the nodes activating them as it goes along. However, if we
perceive such progression, we can define the concept of counter-attack. This
is the same progression that may resolve syntactic loops in [6].

Consider Figure 6. ∆1 � a and can attack ∆2 by passing a along the
attacking arrow. The ?d is a counter-attack. As long as ∆2 is not attacked by
∆1, d is not provable and so cannot be sent to ∆1. Once ∆2 is attacked then
d becomes provable and can counter-attack ∆1 and render a unprovable.



208 D. M. Gabbay and A. S. d’Avila Garcez

¬c → a

d → c

¬a → e

a → d

∆1 ∆2

?d

a

Figure 6.

Example 1.8 (Directional attacks). The following is a more enriched logical
model where more options are naturally available. We can let a node a be
a nonmonotonic theory ∆a such that ∆a|∼a. We can understand an attack
of a nonmonotonic node a, say, on node e1 as the transmission of an item of
data, say α1 (such that ∆a|∼α1) to ∆e1

with the effect that ∆e1
+ α1 � |∼e1.

Since ∆e1
is nonmonotonic, the insertion of α1 into it may change what it

can prove. See Figure 7.

en

x β

∆x

a

∆a αn

e1

∆e1

α1

∆en

Figure 7.

We have ∆x|∼β,∆x|∼x,∆a|∼a,∆a|∼αi, i = 1, . . . , n.
We may have

∆a + β � |∼α1

and therefore the attack on e1 fails, but we may still have that ∆a + β|∼αn,
hence the attack on en still succeeds. The attack by β is not a specific attack
on the arrow from a to e1. It tansforms a to something else which does not
attack e1. So Figure 7 is not a good representation of it. It shows the result
but not the meaning.

By the way, to attack the attack from x to a in Figure 7, we might add
a formula β′ to β, and so the attack changes from β to (β and β′).

Example 1.9 (Abduction). Another example can be abduction.



Logical Modes of Attack in Argumentation Networks 209

The node y contains an argument of the following form. It says, we know
of ∆y and the fact that a formula Ey should be provable, but ∆y cannot
prove Ey. So we abduce Ay as the most reasonable additional hypothesis.
So the node y is (∆y, Ay), where Ay = Abduce(∆y, Ey). x can attack by
sending additional information ∆x. It may be that ∆y ∪ ∆x �� Ey, but
Abduce(∆y ∪ Ax, Ey) is some A′y and not Ay.

An example that we like is from Euclid. Euclid proved that if we have
a segment of length l we can construct a triangle ABC whose sides are all
equal to length l. The construction is as in the diagram:

A Blength l

C

α′α

Figure 8.

We construct the two arcs α and α′ of radius l around A and B and they
intersect at point C.

The gap in the proof is that the two arcs may slip through gaps in each
other. In other words the point C may be a hole in the plane. The principle
of minimal hypothesis for abduction would add the least hypothesis needed
namely that all rational points in the field with

√
2 are allowed but not more.

So the lines can still have gaps in them. This argument can be attacked by
the additional information that the Greeks thought in terms of continuous
lines and not in terms of the field generated by the rationals and

√
2. So we

must abduce the hypothesis that lines have no gaps. Computationally this
may, of course, be problematic still. Discrete algorithms cannot deal with
continuous lines having an infinite number of points; some approximation
will be necessary.

Example 1.10 (Replacement networks). Let |∼ be a consequence relation.
Consider a network N = (S,R), where the set S contains atoms of the
language of |∼ and the nodes x have the theories (∆x, Ax) associated with
them, where ∆x = {x} and Ax = x.
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The network (S,R) can now be viewed in two ways. One as an abstract
network and one as a logical network with (∆x, Ax).

To have the two points of view completely identical we must assume
about |∼ that the following holds:

(*) whenever y1, . . . , yk are all the nodes that attack x (i.e. yiRx holds) then
we have {yi, x} � |∼x, for each i, i = 1, . . . , k.

When we have (*) the logical attack coincides with the abstract network
attack. By the properties of consequence relation, we also have yi � |∼x.
Note that we do not know much about |∼ beyond property (*) and so any
nonmonotonic consequence relation satisfying (*) will do the job of being
equivalent to the abstract network. So let us take a Prolog consequence �

for a language with atoms, ∧,⇒ and ¬ (negation as failure). Let

∆x = (
∧¬yi) ⇒ x

Ax = x

This � satisfies condition (*) and so can represent or replace |∼ on the
networks. Compare with Example 1.2.

Remark 1.11. Example 1.10 leaves us with several general questions

1. Given a nonmonotonic |∼ under what conditions can it be represented by
a Prolog program?

2. What can we do with extensions of Prolog, say N -Prolog [10], etc. How
much more can we get?

3. Given the above network, what do we get if we describe it in the meta-
level as we did in Example 1.2

4. Given a reasonable |∼, can we cook up a reasonable extension of Prolog to
match it? Can we be systematic about it and have the same construction
for any reasonable |∼?

2. Methodological considerations

In order to present a methodologically robust view of logical modes of attack
in argumentation networks, as intuitively described in the last section, we
need to clarify some concepts. There is logical tension between two possibly
incompatible themes.
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Theme 1

Start with a general logical consequence |∼, use databases of this logic as
nodes in a network and define the notion of attack and then emerge with
one or more admissible extensions.

Questions

These extensions are sets of nodes (the ‘winning’ nodes or the network ‘out-
put’ nodes). They contain logic in them, being themselves theories of our
background logic. What are we going to expect from them? Consistency?
Are we going to define a new logic from the process?

Theme 2

We start with some notion of proof (argument). We can prove opposing for-
mulas or databases of some language L. We create a network of all the proofs
we are interested in and define the notion of one proof (argument) attacking
another. We emerge with several admissible or winning sets of proofs.

Questions

What are we to do with these proofs? Do we define a logical consequence
relation using them? For example, let ∆ be a set of formulas and rules. Let
S be all possible proofs we can build up using ∆. Note that these proofs
can prove opposing results, e.g. q and ∼ q, etc. So we do not yet have
a consequence relation for getting results out of ∆. Let R be a notion of
attack we define on S. Let E be a winning extension chosen in some agreed
manner. Then we define a new consequence by declaring ∆|∼E.

What connection do we require between this new consequence |∼ and
some other possibly reasonable consequence relation we can define directly
using proofs (without the intermediary of networks)? We need rationality
postulates on the notion of defeat.

To make the above questions precise and gain some intuitions towards
their solutions we need to examine some examples in rigorous detail. We
begin with some puzzles critically examined in [4].

Example 2.1. This is example 4 in [4, p. 292]. The language allows for
atoms, negation ∼, strict rules (implication) → and defeasible rules (impli-
cation) ⇒. The theory ∆ contains
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1. wr (strict fact)
Reading: John wears something that looks like a wedding ring.

2. go (strict proof)
Reading: John often goes out until late with his friends.

3. wr ⇒ m

m reads: John is married

4. go ⇒ b

b reads: John is a bachelor

5. m → hw

hw reads: John has a wife

6. b →∼ hw

If modus ponens (detachment) is the only rule we can use, we can construct
the following arguments from ∆ :

A1 : wr

A2 : go

A3 : wr,wr ⇒ m

A4 : go, go ⇒ b

A5 : wr,wr ⇒ m,m → hw

A6 : go, go ⇒ b, b →∼ hw.

The following is implicit in the Caminada and Amgoud understanding
of the situation.

I1 ∆ = {1, 2, 3, 4, 5, 6}
I2 The argument network is all possible arguments that can be constructed

from elements of ∆.

I3 An argument is a sequence (chain) or elements from ∆ that respect
modus ponens (detachment).

I4 Given x → y, we take it literally and do not say that we also have
∼ y →∼ x. If we want the latter we need to include it explicitly. This
assumption is clear since later Caminada and Amgoud do include such
additional rules explicitly as part of their proposed solution to some
anomalies.

I5 One argument attacks another if the last head of the last implication is
the negation of the last head of the last implication of the other.
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Caminada and Amgoud point out an anamoly in this example. They point
out that A1, . . . , A4 do not have any defeaters. So they win. What {A1, . . . ,

A4} prove (their ‘output’ as they define it), is the set {wr, go,m, b}. Thus if
the output is supposed to mean what is justified then both m and b are to
be considered justified. Yet, and here is the anomaly, the strict rules closure
of the output is inconsistent since it contains {hw,∼ hw}.

We now discuss this example.
First let us try to sort out some confusion. Are we working in Theme 1,

where there is a background logic or in Theme 2 where we want to use an
argumentation framework to define a logic?

If there is a background logic then does it inlcude closure under strict
rules? If yes, then A3 and A4 already attack each other. If no, then don’t
worry about the inconsistency of the output. We simply have defined an
inconsistent theory using the tool of argumentation networks.

Caminada and Amgoud are aware that if we allow closure under strict
rules at every stage then the anomaly is resolved. They attribute this so-
lution to Prakken and Sartor [17]. They offer another example, which has
anomaly, example 6, page 293, and where this trick does not work. We shall
address this example later. Let us first consider Caminada and Amgoud’s
own solution to Example 4. They add two more contraposition rules to
the database.

7. hw →∼ b

8. ∼ hw →∼ m

With two more rules in the database, two more arguments can be constructed
from the database:

A7 wr,wr ⇒ m,m → hw, hw →∼ b

A8 go, go → b, b ⇒∼ hw,∼ hw →∼ m.

Now that our stock of arguments has A7 and A8, we have that A8 defeats
A3 and A7 defeats A4. The set of winning arguments changes and the only
justified arguments are {wr, go}, without the anomalies {b,m}.

We do not consider this as a solution to the anomaly. Caminada and
Amgoud changed the problem (i.e. took a different, bigger database) and
changed the underlying logic. Not always do we have that if x → y is a
rule so is ∼ y →∼ x. We need to give a rigorous definition of the defeasible
logic we are using, and then examine the problem of anomalies. We shall do
this in Section 3. See Example 3.9 and Remark 3.12. The anomalies arise
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because the Dung framework does not allow for joint attacks. By the way,
Caminada and Amgoud have done an excellent analysis of the anomalies.
We are simply continuing their initial work.

Let us now address Example 6 of [4].

Example 2.2. The database has the following facts and rules

1. a, strict fact

2. d, strict fact

3. g, strict fact

4. b ∧ c ∧ e ∧ f →∼ g

5. a ⇒ b

6. b ⇒ c

7. d ⇒ e

8. e ⇒ f .

Caminada and Amgoud consider the following arguments

A: a, a ⇒ b

B: d, d ⇒ e

C: a, a ⇒ b, b ⇒ c

D: d, d ⇒ e, e ⇒ f .

We also have the arguments

F1: a

F2: d

F3: g

The notion of one argument defeating another is the same as before, i.e.
we need the two arguments to end their chains with opposite heads. Thus
A,B,C,D do not have any defeaters. The justified literals are {b, c, e, f} as
well as the facts {a, d, g}.

Thus we get an anomaly: the closure of the winning facts under strict
rules is not consistent.

We again ask the question, what exactly is the underlying logic? We
need a formal definition to assess the situation.

Is the following argument G also acceptable?
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G: A,C,B,D, 4

In other words, G is

a, a ⇒ b; a, a ⇒ b, b ⇒ c; d, d ⇒ e; d, d ⇒ e; e ⇒ f, b ∧ c ∧ e ∧ f →∼ g

We first use A,C,B,D to prove the antecedent of 4 and then get ∼ g.
If this argument is acceptable, then it must be included in the network,

as the rules of the game is to include in the network all arguments which
can be constructed from ∆, then G and F3 attack each other and so the
winning set is only {b, c, e, f, a} and we have no inconsistency.

If argument G is not acceptable because we cannot do modus ponens with
more than one assumption, then the winning set is indeed {b, c, e, f, a, g} but
then we cannot get inconsistency because we cannot use modus ponens with
b ∧ c ∧ e ∧ f →∼ g.

So again we ask: we need a rigorous definition of the logic!
Depending on how the logic works, we may be able to deduce, for exam-

ple, from A the rule c ∧ e ∧ f ⇒∼ g (since b defeasibly follows from a) and
similarly from B we deduce b ∧ c ∧ f ⇒∼ g and from C we get e ∧ f ⇒∼ g

and from D we get b ∧ c ⇒∼ g.
If we are allowed to have that then we have that C and D defeat each

other, and again we have no anomaly. So it all depends on the logic.
It would be better to compute these arguments using the network itself,

as we have done in [6] for a simpler argumentation framework (where argu-
ments are atomic rather than proofs). We are working on this for the general
case. We believe that network fibring has the answer [11, 7].

Let us now define one such a logic. We shall indicate what options
we have.

Definition 2.3. Let Q be a set of atoms. Let ∧ be conjunction, ∼ a form of
negation and → stand for strict (monotonic) implication and ⇒ for defeasible
implication.

1. A rule has the form
±a1 ∧ . . . ∧ ±an → ±b (strict rule)
±a1 ∧ . . . ∧ ±an ⇒ ±b (defeasible rule)
where ai, b are atoms, +a means a and −a means ∼ a.

2. A fact has the form ±a (we consider strict facts only; an alternative would
be to consider beliefs, and yet another to consider degrees of belief).

3. A database ∆ is a set of rules (strict or defeasible) and facts.
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Definition 2.4. Let ∆ be a database. We define the notion of the se-
quence π of formulas (actually a tree of formulas written as a sequence) is
an argument for the literal ±a of length n and defeasible degree m, and
specificity σ.

1. π is an argument of ±a from ∆ of length 1 and degree 0 iff ±a ∈ ∆ and
π = (±a). Let σ = {±a}.

2. Assume π1, . . . , πk are all proofs of ±a from ∆ of lengths ni and degree
mi and specificity sets σi resp. for i = 1, . . . , k. Assume

∧±ai → ±b is
a strict rule. Then (π1, π2, . . . , πn,

∧±ai → ±b) is an argument for ±b

of length 1+
∑

i ni and degree f→(m1, . . . ,mk), where f→ is some agreed
function representing the degree of ‘defeasiblility’ in the argument.
Options for f→ are

Option max

f→ = max(mi)

Option sum3

f→ =
∑

mi

Let σ =
k⋃

i=1
σi.

3. Assume πi are arguments of ±ai. Let
∧±ai ⇒ ±b be a defeasible

rule. Then π1, . . . , πk,
∧±ai → ±b is an argument of ±b. The length

of the argument is 1 +
∑

ni and the degree of the argument is f⇒ =
1 + f→(m1, . . . ,mk), and σ =

⋃
σi.

Remark 2.5.

1. The strict rules are not necessarily classical logic. So for example from
x →∼ y and y we cannot deduce ∼ x.

2. The definition of an argument watched for the complexity m measuring
how many defeasible rules are used in the argument and the specificity σ

recording the set of literals (i.e. the factual information) used in the ar-
gument. This measure is used later to define when one argument defeats
another. We know from defeasible logic that the specificity of a rule is
also important. So a ∧ b ⇒ c is more specific that a ⇒ c. The set σ is a

3One could think of this as: the more involved the proof, the weaker the argument.
For example, the more steps there are in the proof, the larger

∑
mi. Notice that a fact is

strongest.
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rough measure of specificity. One can be more fine tuned. We can define
a more complex measure say µ which reflects a finer balance between the
number of defeasible rules used and their specificity.

Definition 2.6. Let ∆ be a database. An argument π is said to be based
on ∆ if all its elements are in ∆. We now define the notion of ∆|∼ ± a, a

atomic, using Theme 1 point of view.
We wish to do this in steps:

Step 1 ∆|∼1 ± a iff ±a ∈ ∆

Step m + 1 ∆|∼m+1 ± a iff there is a rule in ∆ of the form
∧±ai ⇒ ±a

such that ∆|∼mi
± ai, with

∑
mi = m, and for no rule in ∆ of

the form
∧±a′i ⇒ ∓a (note ∓a =∼ ±a) do we have ∆|∼m′

j
± bj

with
∑

m′
i < m, or if

∑
m′

i = m then we do not have that⋃
σi �

⋃
σ′i. (In words, ±a is proved using defeasible rule

complexity m and specificity set σ and there is neither a less
complex argument for ∓a nor an argument for ∓a with the same
complexity but more specific, i.e. σ � σ′.)

We also agree that if ∆|∼m ± ai and
∧±ai → ±a ∈ ∆ then ∆|∼m ± a. We

say ∆|∼ ± a if ∆|∼m ± a for some m.

Remark 2.7. The previous definition is one possibility of many. The impor-
tant point to note is that any definition of |∼ must say inside the induction
step how one argument defeats another.

Let us give some examples.

Example 2.8.

1. Let ∆ be {d, a, a ⇒ b, d ⇒∼ c, d ∧ b ⇒ c}.
We have that ∆ |�∼2 c because the argument a, a ⇒ b, d, d ∧ b ⇒ c is
defeated by the argument d, d ⇒∼ c, and thus ∆|∼ ∼ c.

Some defeasible systems will say the argument for c defeats the argument
for ∼ c because it is more specific. Our system says the argument for
∼ c defeats the argument for c because it uses fewer defeasible rules.

2. Our definition does say, for example, that for the database ∆′ = {a, d, a ⇒
c, a∧ d ⇒∼ c} we have that ∼ c can be proved because it relies on more
specific information. See remark 2.5.

3. We could give a definition which measures not only how many defeasi-
ble rules are used but also gives them weights according to how specific
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they are. Our aim here is not to develop the theory of defeasible sys-
tems and their options and merits but simply to show how one defines
the notion of defeasible consequence relation and to make a single most
important point:

To define the notion of consequence relation for a defeasible sys-
tem we must already have a clear notion of argument defeat.

Definition 2.9. We now give a second definition of a consequence relation:

1. Let A,B be two arguments. Define the notion of A defeats B in some
manner. Denote it by ADB.

2. Let ∆ be a theory, being a set of rules and literals. Let N be the set of
all arguments based on ∆. Consider the network (N,D) where D is the
relation from (1) above. Let A be an algorithm for choosing a winning
justified set of atoms from the net, e.g. let us A take the unique grounded
extension which always exists. Then define ∆|∼D,A±a iff ±a is justified
by the above process A in the (N,D) network.

We are now ready for some methodological comments.

Rationality postulates for defeat

We need rationality postulates on the notion D of one argument defeating
another where the arguments are defined in the context of facts, strict rules
and defeasible rules. Caminada and Amgoud give rationality postulates on
the admissible sets derived from D but this is insufficient. D must be such
that it ensures we get a proper consequence relation |∼D out of it, satisfying
reflexivity, restricted monotonicity and cut.

Representation problem

1. Given a consequence relation |∼ for defeasible logic (i.e. |∼ contains de-
feasible and strict rules), can we extract from |∼ a defeat notion D = D|∼
for arguments, and a network algorithm A such that the notion |∼D,A

is
a subset of |∼?

2. Given any consequence relation defined by any means (e.g. defined se-
mantically), can we guess/invent a notion of argument and a notion of
defeat D such that the associated |∼D,A

is a subset of |∼?

3. If we don’t have such a representation theorem in the case of (1) above,
using a natural D|∼, then we perceive this as an anomaly.
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Any solution to the anomalies raised in [4] must respect the above method-
ologial observations. It must not be an ad hoc solution.

3. A rigorous case study — 1

This section shows in a rigorous way how Theme 2 works. We define a
nonmonotonic consequence relation using networks on arguments built up
using rules.

Two comments

1. The strict rules need not be classical logic.

2. We use labelling to keep control of the proof process and possibly add
strength to rules. However, the labels will not be used at first in our
definitions and examples.

Some strict logics require the labels in their formulation (e.g. resource
logics) as well.

Definition 3.1.

1. Let our language contain atomic statements Q = {p, q, r, . . .}, the con-
nective ∼ for negation, ∧ for conjunction, → for strict rules and ⇒ for
defeasible rules.

2. A literal x is either an atom q or ∼ q. We write −x to mean ∼ q if x = q

and q if x =∼ q.

A rule has the form (x1, . . . , xn) → x (strict rule) or (x1, . . . , xn) ⇒ x

(defeasible rule) where xi, x are literals. We are writing (x1, . . . , xn) → x

instead of
∧

xi → x to allow us to regard the antecedent of a rule as
a sequence. This gives us a greater generality in interpreting the strict
rules as not necessarily classical logic. We can also allow for ∅ ⇒ x,
where ∅ is the empty set.

3. A rule of the form (x1, . . . , xn) ⇒ x is said to be more specific than a rule
(y1, . . . , ym) ⇒ y iff m < n and for some i1, . . . , im ≤ n we have xij = yj.
Of course, any rule (x1, . . . , xn) ⇒ x is more specific than ∅ ⇒ y. Note
that we are not requiring y =∼ x.

4. A labelled database is a set of literals, strict rules and defeasible rules.
We assume each element of the database has a unique label from a set
of labels Λ. Λ is a new set of symbols, not connected with Q or any-
thing else.
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So we present the database as

∆ = {α1 : A1, . . . , αk : Ak}

where αi are different atomic labels from Λ and Ai are either literals
or rules.

The labels are just names at this stage, allowing us greater control of
whatever we are going to do.

5. Let ∆ be a labelled database. We define by induction the strict closure
of ∆ denoted by ∆S as follows:

(a) Let ∆S
0 = ∆.

(b) Assume ∆S
n has been defined. Let ∆S

n+1 = ∆S
n∪{β : x | for some αi :

xi ∈ ∆S
n, α : (x1, . . . , xn) → x ∈ ∆ and β = (α,α1, . . . , αn)}.

Let ∆S =
⋃

n ∆S
n .

∆ is consistent if for no literal x do we have +x and −x ∈ ∆S.

6. Note that we do not close under Boolean operations. The strict logic is
not necessarily classical. We may have ∼ q → r,∼ r ∈ ∆, this does not
imply q ∈ ∆S.

7. Also note that only strict rules are used in the closure. So if ∆0 is the
set of defeasible rules in ∆, then ∆S = ∆0 ∪ (∆ − ∆0)

S .

Definition 3.2 (Arguments). We define the notion of an argument (or
proof) π (based on a database ∆) its ∆-output θ∆(π), its head H(π), its
literal base L(π), and its family of subarguments A(π).

1. Any literal t : x ∈ ∆ is an argument of level 1. Its head is t : x. Its
∆-output is the set of all literals in the strict closure of {t : x} and its
head rule H(∆) is t : x. Its literal base is {t : x} and its subarguments
are ∅.

2. Let π1, . . . , πn be arguments in ∆ of level mi, and let ρ : (x1, . . . , xn) ⇒
x be a defeasible rule in ∆. Assume αi : xi can be proved using
strict rules from the union of the outputs θ∆(πi). Then (π1, . . . , πn, ρ :
(x1, . . . , xn) ⇒ x) is a new argument π. Its output is all the literals
in the strict closure of {x} ∪ ⋃

i θ∆(πi),H(π) = ρ : (x1, . . . , xn) ⇒ x,
L(π) =

⋃
L(πi), and A(π) = {π1, . . . , πn} ∪

⋃
i A(πi). The level of π is

1 + max(mi).

3. An argument is consistent if its output is consistent.
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4. Note that there is no redundancy in the structure of an argument. If a, b

are literals then (a, b) is not an argument. If π1, π2 are arguments then
(π1, π2) is not a argument.

Definition 3.3 (Notion of defeat for arguments of levels 1 and 2). Let π1, π2

be two consistent arguments. We define the notion of π1 defeats π2, π1Dπ2,
as follows:

1. A literal t : x ∈ ∆ considered as an argument of level 1 defeats any argu-
ment π of any level 1 with −x in its output. Note that if our arguments
come from a consistent theory ∆, then no level 1 argument can defeat
another level 1 argument. They are all consistent together as elements
of ∆S .

2. Let
π1 = (t1 : x′1, . . . , tn : x′n, r : (x1, . . . , xn) ⇒ x)
π2 = (s1 : y′i, . . . , sm : y′m, s : (y1, . . . , ym) ⇒ y)

be two arguments of level 2, then π1 defeats π2 if r : (x1, . . . , xn) ⇒ x

is more specific than s : (y1, . . . , ym) ⇒ y, and θ∆(π2) and θ∆(π1) are
inconsistent together.4

3. In (2) above, we defined how an argument of level 2 can defeat another
argument of level 2. (It cannot defeat any argument of level 1). Note
that it can defeat an argument of any level m if it defeats any of its
subarguments of level 2.

4. Note that two arguments of level 2 cannot defeat each other.

5. We shall give later the general definition of defeat for levels m,n.

6. An argument π1 attacks an argument π2 if

(a) Their outputs are not consistent.

(b) The head rule of π1 is more specific than the head rule of π2, or π1

is of level 1.

7. π1 may attack π2 but not defeat it. However a level 2 argument always
defeats other arguments it attacks.

Example 3.4. Let ∆ = {a, a ⇒ x, a ⇒ y, x ∧ y →∼ a}. ∆ is consistent
because ∆S = {a}.
The arguments

π1 = (a, a ⇒ x)
π2 = (a, a ⇒ y)

4Note that we do not require that x =∼ y, nor that {x, y} is inconsistent. The require-
ment is that the outputs are inconsistent.
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attack each other, but none can defeat the other because it has to be
more specific.
Compare with Example 3.9.

Example 3.5. This example does not use labels. We also write
∧

xi ⇒ x,
when we do not care about the order of xi.

1. Consider the two arguments

π1 = (d, a, d ∧ a ⇒ c)
π2 = (d, a, a ⇒ b, a ∧ b ∧ d ⇒∼ c).

π1 is of level 2 and π2 is of level 3. In this section, our definition of defeat
will say that π2 defeats π1 because the head of π2 is more specific than
the head of π1. We are not giving advantage to π1 on account of it being
shorter (contrary to Definition 2.6).

2. Consider now π3

π3 = (d, a, a ∧ d ⇒∼ b, a ∧ d ⇒ c).

Does π2 defeat π3?
Its main head rule, a ∧ b ∧ d ⇒∼ c is more specific but its subproof
(d, a, a ⇒ b) is defeated by the π3 subproof (d, a, a ∧ d ⇒∼ b).

So π3 defeats π2 according to this section (as opposed to Definition 2.6).

Example 3.6 (Cut rule). Again we do not use labels, and we do not care
about order in the antecedents of rules.

Let ∆ be

∆ = {b, d, d ∧ a ∧ b ⇒ c, d ⇒ c, a ∧ b ⇒∼ c, c ⇒ a}
We have

∆, a|∼c

Because of the proof

π1 : (b, d, a, d ∧ a ∧ b ⇒ c),

π2 = (a, b, a ∧ b ⇒∼ c) is defeated by π1.
We also have

∆|∼a

This is because of π3.
π3 = (d, d ⇒ c, c ⇒ a).
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We ask do we have ∆|∼c? We can substitute the proof of a into the proof
of c, that is we substitute π3 into π1. We get π4.

π4 = (b, d, d ⇒ c, c ⇒ a, d ∧ a ∧ b ⇒ c).

The question is, can we defeat π4? We can get a proof of ∼ c by substituting
π3 into π2, to get π5

π5 = (d, d ⇒ c, c ⇒ a, b, a ∧ b ⇒∼ c).

Example 3.7 (Mutual defeat). Let π1 be (a, b, a ∧ b ⇒ x). Let π2 be
(a, b, c, a ⇒ ∼ x, a ∧ b ∧ c ⇒ ∼ x,∼ x ∧ ∼ x ⇒ y). Then π1 defeats a
subargument of π2, namely (a, a ⇒∼ x). A subargument of π2, namely
(a, b, c, a ∧ b ∧ c →∼ x) defeats π1. You may ask why does π2 prove ∼ x

twice in two different ways? Well, maybe the strict rules of the logic are not
classical and so two copies of ∼ x are needed (in linear logic ∼ x → (∼ x → y)
is not the same as ∼ x → y), or maybe that is the way π2 is; however, a
proof is a proof.

The output of π1 is {a, b, x} and the ouput of π2 is {a, b, c,∼ x, y}. Each
is consistent.

Definition 3.8 (Defeat for higher levels).

1. We already defined how any argument of level 1 can defeat any argument
of level m ≥ 2. No argument of level m can defeat an argument of level
1 (this is because all arguments are based on a consistent ∆).

2. We defined how an argument of level 2 can defeat another argument of
level 2.

3. An argument π1 of level 3 can defeat an argument π2 of level 2 if

(a) one of its level 1 or level 2 subarguments defeats π2

or

(b) its head is more specific than the head of π2 of level 2, its output is
inconsistent with the output of π2, and π2 does not defeat any of its
level 2 subarguments.

4. Assume by induction that we know how an argument π2 of level 2 can
defeat or be defeated by an argument π1 of level k ≤ m. We show the
same for level m + 1.

• π2 defeats π1 if
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(a) π2 defeats some subargument of level k ≤ m of π1

or

(b) the head of π2 is more specific than the head of π1, its output is
inconsistent with that of π1, and no subargument of π1 of level
≤ m defeats π2.

• The argument π2 is defeated by π1 if

(a) Some subargument of π1 of level ≤ m defeats π2

or

(b) the head of π1 is more specific than the head of π2, its output is
inconsistent with that of π2, and π2 does not defeat any subargu-
ment of level ≤ m of π1.

We have thus defined how an argument of level 2 can defeat or be defeated
by any argument of level m for any m.

5. Assume by induction on k that we defined for level k and any m how
any argument of level k can defeat or be defeated by any argument of
level m for any m.

We define the same for level k + 1.

We define this by induction on m. We know from item (4) how πk+1 can
defeat or be defeated by an argument of level 2. Assume we have defined
how πk+1 can defeat or be defeated by any argument π′n of level n ≤ m.
We define the same for level n = m + 1.

(a) πk+1 is defeated by an argument π′m+1 of level m + 1 if either π′m+1

defeats a subargument of πk+1 of level ≤ k or if the head of π′m+1

is more specific than the head of πk+1, its output is not consistent
with the output of πk+1 and no subargument of π′m+1 of level ≤ m is
defeated by πk+1.

(b) πk+1 defeats an argument π′m+1 if either it defeats a subargument
of π′m+1 of level ≤ m or its head is more specific than the head of
π′m+1, its output is not consistent with the output of π′m+1 and no
subargument of πk+1 of level ≤ k is defeated by π′m+1.

6. We thus completed the induction step of (5) and we have defined for any
k and m how an argument of level k can defeat or be defeated by an
argument of level m for any m and k.

7. We need one more clause: π1 defeats π2 if some subargument π3 of π1

defeats π2 according to clause (1)–(5) above.
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Example 3.9 (Anomalies). Consider the following database ∆.

∆ = {a, b, c, a ⇒ d, b ⇒ e, c ⇒ f, a ∧ b ∧ c ∧ d ∧ e →∼ f}.
∆S = {a, b, c}.

The arguments are, besides the literals a, b, c, the following:

π1 : a, a ⇒ d

π2 : b, b ⇒ e

π3 : c, c ⇒ f

In our system, all the arguments form an admissible winning set and we get
an anomaly since the output is inconsistent. We have no more arguments
since we use in our definition only defeasible rules. If we allow in arguments
for strict rules, or turn the strict rule into a defeasible rule, a ∧ b ∧ c ∧ d ∧
e ⇒∼ f , this might help. ∆ itself becomes one big argument, and ∆ defeats
π3 on account of it being more specific. But then ∆ itself contains π3 and so
it is self defeating. Thus we are still left with a, b, c, π1, π2, π3 as the winning
arguments and the anomaly stands.

By the way, a well known rule of nonmonotonic logic is that if a � b

monotonically then a|∼b nonmonotonically. So we can add/use the strict
rules in our arguments.

We can add the axiom

(x1, . . . , xn) → x

(x1, . . . , xn) ⇒ x

So why are we getting anomalies? The reason is not our particular
definition of defeat or the way we write the rules or the like.

The reason is that we do not allow for joint attacks. You will notice that
some of the devices used in Example 2.1 can help here, but they are not
methodological. We are getting anomalies because outputs of successful ar-
guments can join together in the strict reasoning part to get a contradiction,
but their sources (i.e. the defeasible arguments which output them) cannot
join together in a joint attack. See Example 2.2 which is very similar to this
example.

The difference now in comparison with Example 2.2 is that we have
precise definitions for our notions of defeat, etc. and so we can define joint
attacks, change the underlying logic or take whatever methodological steps
we need.

The simplest way to introduce joint attacks in our system without chang-
ing the definitions is to add the following rule axiom schema for any ∆

(x1, . . . , xn) ⇒ �
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for any x1, . . . , xn, any n. Thus we would have the proofs

η3 : (π1, π2, (d, e) ⇒ �)
η2 : (π1, π3, (d, f) ⇒ �)
η1 : (π2, π3, (e, f) ⇒ �)

η0 : (π1, π2, π3, (d, e, f) ⇒ �)

The argument η0 is inconsistent, and we ignore arguments like (a, a ⇒ �)
or (a, a ⇒ d, (a, d) ⇒ �), which give nothing new.

Since attacks and defeats are done by the output of the arguments, we
get that ηi attacks and is being attacked by πi.

The resulting network will need a Caminada labelling and not all πi, ηi

will always be winning.

The outputs of the various arguments are as follows:

output(a) = {a}
output(b) = {b}
output(c) = {c}
output(π1) = {a, d}
output(π2) = {b, e}
output(π3) = {c, f}
output(η3) = {a, b, d, e}
output(η2) = {a, d, c, f}
output(η1) = {b, e, c, f}
output(η0) = {a, b, c, d, e, f,∼ f}.

Figure 9 shows the network (we ignore the arguments which give nothing
new). Clearly, any Caminada labelling will choose one of the pairs {ηi, πi}.
The justified theory will be consistent!

Definition 3.10 (Consequence relation based on defeat). We assume we
allow joint attacks as suggested in Example 3.9. Let ∆ be a consistent
theory and let a be a literal. We define the notion of ∆|∼a as follows:

Let A be the set of all consistent arguments based on ∆ and let D be the
defeat relation as defined above. Then (A,D) is a Dung framework. Let T
be an admissible set of arguments (take some Caminada labelling or if you
wish, take the unique grounded set) and let A∆ be the strict closure of the
union of all outputs of the arguments in T. Then we define

∆|∼a iff a ∈ Q∆.
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Figure 9.

Lemma 3.11. Q is consistent.

Proof. Otherwise we have several winning arguments. πi, i = 1, . . . , n with
xi ∈ θ∆(πi) such that ∆S and {xi} and the strict rules in ∆ can prove y and
∼ y. Assume n is minimal for giving a contradiction.

However, the argument

ηi = (π1, . . . , πi−1, πi+1, . . . , πn, (x1, . . . , xi−1, xi+1, . . . , xn) ⇒ �)

attacks and is being attacked by πi.

So not all πi can be winning!

Remark 3.12. The exact results for |∼ depend on the admissible set winning
but the important point is that now the system is aware of the anomaly
(inconsistency) and so we have no anomaly!

To summarise, the devices we used are:

1. joint attacks through the axiom
∧

xi ⇒ �
2. arguments attack through their output and not just through the head of

the last rule in the argument. In other words, we always close under
strict rules at every stage of the argument.
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Remark 3.13 (Failure of cut — 1). This example shows that we cannot
always chain proofs together.

Let ∆ = {u, u ⇒∼ b,∼ b ⇒ a, a ⇒ b}.
Then ∆|∼a because of πa = (u, u ⇒∼ b,∼ b ⇒ a).

We also have ∆, a|∼b because of πb = (a, a ⇒ b). However, we cannot
string πa and πb together to get a proof for ∆|∼b because (u, u ⇒∼ b,∼ b ⇒
a, a ⇒ b) is not consistent.

Thus cut fails for the consequence relation of Definition 3.10. The next
example shows failure of cut even when the proofs πa and πb can consis-
tently chain.

Example 3.14 (Failure of cut — 2). This is another example for the failure
of cut for the consequence relation of Definition 3.10. Let ∆ = {u, u ⇒
a, a ⇒ ν, ν ⇒ b, x, x ⇒ ν, x ∧ ν ⇒ w, x ∧ u →∼ w}.

Then ∆|∼a because of

πa = (u, u ⇒ a).

∆, a|∼b because of

πb = (a, a ⇒ ν, ν ⇒ b).

The outputs of πa and πb together are {u, a, ν, b} and are consistent. So we
can string the proofs together to πa

b proving b from ∆.

πa
b = (u, u ⇒ a, a ⇒ ν, ν ⇒ b).

This proof however is defetated by the proof η (which is consistent and
undefeated).

η = (x, x ⇒ ν, x ∧ ν ⇒ w).

The output of η is {x, ν,w}. The reason for the defeat is because

1. The head rule of η is more specific than that of πa
b .

2. The union of the outputs of η and πa
b is the set {u, a, ν, b, x, w} which is

inconsistent because of the strict rule x ∧ u →∼ w. η does not defeat πb

because we need u to get inconsistency.

Example 3.15 (Success of cut). Let ∆ be the following database

∆ = {u, x, a ⇒ ν, ν ⇒ b, x ⇒∼ a,∼ a ⇒ ν, u ⇒ x ∧ ν ⇒∼ b}.
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The arguments we can construct from ∆ ∪ {a} are as follows.

πa = (u, u ⇒ a)
πb = (a, a ⇒ ν, ν ⇒ b)
η = (x, x ⇒∼ a,∼ a ⇒ ν, x ∧ ν ⇒∼ b)
A1 = (a, a ⇒ ν)
A2 = (x, x ⇒∼ a)
A3 = (x, x ⇒∼ a,∼ a ⇒ ν)
A4 = (u, u ⇒ a, a ⇒ ν)
πa

b = (u, u ⇒ a, a ⇒ ν, ν ⇒ b)
B1 = (a, x, a ⇒ ν, x ∧ ν ⇒∼ b)
B2 = (x, u, u ⇒ a, a ⇒ ν, x ∧ ν ⇒∼ b).

We also have the atomic arguments (a), (u) and (x). We have ∆|∼a because
of πa and maybe ∆, a|∼b because of πb, but this is attacked and defeated by
B1. We now look at πa

b and ask whether it is undefeated and hence shows
that ∆|∼b. It is attacked by η and defeated.

4. Conclusion

We have proposed methodologically robust options for giving logical contents
to nodes in abstract argumentation networks. We have provided a number
of examples and considered a rigorous case study. We have also defined
consequence relations based on a notion of defeat, considered rationality
postulates, and proved that one such consequence relation is consistent. As
future work we shall investigate the issue of network computation in connec-
tion with the general methodology of fibring, and the question of learning
and adapting the network system further to new information and evolving
scenarios so that statistical aspects of the data can also be taken into ac-
count by the logic. Our objective is to provide a unified theory of logic and
network reasoning, from unifying principles to computational systems and
applications. Along with [18] and [8], this paper is a step in this direction.
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