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1. Introduction

Dung’s theory of abstract argumentation has been shown to be suitable to
express a whole range of logical formalisms for nonmonotonic reasoning,
including logic programming with weak negation [6]. The main concept in
Dung’s theory is that of an argumentation framework, which is essentially
a directed graph in which the nodes represent arguments and the arrows
represent the defeat an attack relation.

Given such a graph, different sets of nodes can be accepted according
to various argument based semantics such as grounded, preferred and sta-
ble semantics [6], semi-stable semantics [3] or ideal semantics [7]. Many of
these semantics can be seen as restricted cases of complete semantics; an
overview is provided at the left hand side of Figure 1. The facts that every
stable extension is also a semi-stable extension and that every semi-stable
extension is also a preferred extension has been proved in [3]. The facts that
every preferred extension is also a complete extension and that the grounded
extension is also a complete extension have been stated in [6].

At the right hand side of Figure 1 we find a number of logic programming
semantics. The 3-valued stable semantics in logic programming was intro-
duced in [14]. It has been used as the basis for describing other semantics in
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Figure 1. An overview of the different semantics

logic programming such as well-founded model, regular models, stable mod-
els and L-stable models. It has been proved that the well-founded model is
also a 3-valued stable model [14]. In [8] it is shown that every L-stable model
is also a regular model, that every regular model is also a 3-valued stable
model and that every (2-valued) stable model is also an L-stable model.

Many of the existing semantics for logic programing can be understood
in a uniform way using argumentation. The overlap between logic program-
ming and abstract argumentation has been studied by Dung in [6] which
shows that the grounded extension in abstract argumentation corresponds
to the well-founded model in logic programming, and that the stable ex-
tensions in abstract argumentation correspond to the stable models in logic
programming.

In the current paper we will examine an additional similarity between ar-
gumentation theory and logic programming, namely the correspondence be-
tween 3-valued stable models in logic programming and complete extensions
in abstract argumentation. This correspondence can easily lead to other
overlaps between abstract argumentation semantics and logic programming
semantics since they are both used as basis of defining other semantics in
abstract argumentation and logic programming.

The remaining part of this paper is organized in the following way. Sec-
tion 2 and Section 3 state some preliminaries on argument semantics, ar-
gument labellings and logic programing. Section 4 demonstrates the equiv-
alence between complete labellings (which coincide with complete exten-
sions [1]) and 3-valued stable models. Finally in Section 5 we discuss the
main results of the paper and identify some possibilities for further research.

2. Argument Semantics and Argument Labellings

In this section, we briefly restate some preliminaries regarding argument
semantics and argument-labellings. For simplicity, we only consider finite
argumentation frameworks.
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Definition 1. An argumentation framework is a pair (Ar , att) where Ar is
a finite set of arguments and att ⊆ Ar × Ar .

We say that argument A attacks argument B iff (A,B) ∈ att . An argu-
mentation framework can be represented as a directed graph in which the
arguments are represented as nodes and the attack relation is represented
as arrows.

Definition 2 (defense / conflict-free). Let (Ar , att) be an argumentation
framework, A ∈ Ar and Args ⊆ Ar . Args is conflict-free iff ¬∃A,B ∈
Args : A attacks B. Args defends argument A iff ∀B ∈ Ar : (B attacks
A ⊃ ∃C ∈ Args : C attacks B). Let F (Args) = {A | A is defended by
Args}.

Definition 3 (acceptability semantics). Let (Ar , att) be an argumentation
framework. A conflict-free set Args ⊆ Ar is called a complete extension iff
Args = F (Args).

The concept of complete semantics was originally stated in terms of sets
of arguments. It is equally well possible, however, to express this concept in
terms of argument labellings. The approach of (argument) labellings has been
used by Pollock [11] and by Jakobovits and Vermeir [10], and has recently
been extended by Caminada [1], Vreeswijk [16] and Verheij [15]. The idea
of a labelling is to associate with each argument exactly one label, which
can either be in, out or undec. The label in indicates that the argument
is explicitly accepted, the label out indicates that the argument is explicitly
rejected, and the label undec indicates that the status of the argument is
undecided, meaning that one abstains from an explicit judgment whether
the argument is in or out.

Definition 4. A labelling is a function L : Ar −→ {in, out, undec}.

We write in(L) for {A | L(A) = in}, out(L) for {A | L(A) = out} and
undec(L) for {A | L(A) = undec}. We say that an argument A is legally

in iff L(A) = in and all the attackers of A are labelled out. We say that
an argument A is legally out iff L(A) = out and there exists an attacker
of A which is labelled in. We say that an argument A is legally undec iff
L(A) = undec and there is no attacker of A that is labelled in and not all
the attackers of A are labelled out.

Definition 5. Let L be a labelling of argumentation framework (Ar , att)
and A ∈ Ar . We say that:
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1. A is legally in iff L(A) = in and ∀B ∈ Ar : (B att A ⊃ L(B) = out)

2. A is legally out iff L(A) = out and ∃B ∈ Ar : (B att A ∧ L(B) = in).

3. A is legally undec iff L(A) = undec

and ¬∀B ∈ Ar : (B att A ⊃ L(B) = out)
and ¬∃B ∈ Ar : (B att A ∧ L(B) = in).

We say that an argument A is illegally in iff L(A) = in but A is not
legally in. We say that an argument A is illegally out iff L(A) = out but A is
not legally out. We say that an argument A is illegally undec iff L(A) = out

but A is not legally undec.

Definition 6. An admissible labelling L is a labelling where each argument
that is labelled in is legally in and each argument that is labelled out

is legally out. A complete labelling is an admissible labelling where each
argument that is labelled undec is legally undec.

We now define two functions that, given an argumentation framework,
allow a set of arguments to be converted to a labelling and vice versa. The
function Ext2Lab(Ar ,att) takes a set of arguments (possibly an extension) and
converts it to a labelling. The function Lab2Ext(Ar ,att) takes an labelling and
converts it to a set of arguments (possibly an extension). Since a labelling
is a function, it is possible to represent the labelling as a set of pairs.

Definition 7. Let (Ar , att) be an argumentation framework, Args ⊆ Ar

such that Args is conflict-free, and L : Ar → {in, out, undec} a labelling.
We define Ext2Lab(Ar ,att)(Args) as {(A, in) | A ∈ Args} ∪ {(A, out) | ∃A′ ∈
Args : A′attA} ∪ {(A, undec) | A /∈ Args ∧ ¬∃A′ ∈ Args : A′attA}. We
define Lab2Ext(Ar ,att)(L) as {A | (A, in) ∈ L)}.

When the associated argumentation framework is clear, we sometimes
simply write Ext2Lab and Lab2Ext instead of Ext2Lab(Ar ,att) and
Lab2Ext(Ar ,att).

It can be proved that the various types of labellings correspond to the
various kinds of argument semantics [1, 4].

Theorem 8. [1] Let (Ar , att) be an argumentation framework. If L is

a complete labelling then Lab2Ext(L) is a complete extension. If Args is a

complete extension then Ext2Lab(Args) is a complete labelling.

Proof. Please refer to [2].

When the domain and the range of Lab2Ext are restricted to complete la-
bellings and complete extensions, and the domain and the range of Ext2Lab
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are restricted to complete extensions and complete labellings, then the re-
sulting functions (call them Lab2Ext

r and Ext2Lab
r) are bijective and are

each other’s inverse.

Theorem 9. [1] Let Lab2Ext
r
(Ar ,att) : {L | L is a complete labelling of

(Ar , att)} → {Args | Args is a complete extension of (Ar , att)} be a func-

tion defined by Lab2Ext
r
(Ar ,att)(L) = Lab2Ext(Ar ,att)(L).

Let Ext2Lab
r
(Ar ,att) : {Args | Args is a complete extension of (Ar , att)} →

{L | L is a complete labeling of (Ar , att)} be a function defined by

Ext2Lab
r
(Ar ,att)(Args) = Ext2Lab(Ar ,att)(Args).

The functions Lab2Ext
r
(Ar ,att) and Ext2Lab

r
(Ar ,att) are bijective and are each

other’s inverse.

Proof. Please refer to [2].

From Theorem 9 it follows that complete labellings and complete exten-
sions stand in a one-to-one relationship to each other. In essence, complete
labellings and complete extensions are different ways to describe the same
concept.

3. 3-Valued Stable Models in Logic Programming

We will first summarize some basic concepts and terminologies in the field
of logic programming.

A logic program is a finite set of rules of the form A ← A1, . . . , An,not
B1, . . . ,not Bm, where n,m ≥ 0 and A,Ai, Bj (1 ≤ i ≤ n, 1 ≤ j ≤ m) are
atoms. A is called the head of the rule. A1, . . . , An,not B1, . . . ,not Bm is
the body of the rule.

Given a logic program P , AP is the set of all atoms occurring in P . An
interpretation I =< T ;F > for a program P can be viewed as a mapping
from AP to the set of truth values {t, f, u}, denoted by:

I(A) =

⎧⎨
⎩

t if A ∈ T,

u if A ∈ I
f if A ∈ F

where I = AP − (T ∪F ). t, f, u denote true, false and undefined respec-
tively, ordered as f < u < t.

Definition 10. Let P be a logic program and M be a 3-valued interpreta-
tion for P . Then M is a 3-valued model for P if every rule r in P is satisfied
by M .
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Let P be a logic program and I be any 3-valued interpretation. The
GL-transformation P

I
of P w.r.t. I is obtained by replacing in the body of

every rule of P all negative literals which are true (respectively undefined,
false) by t (respectively u, f). The resulting program P

I
is positive, so it has

a least model J . We define Γ∗(I) = J .

Definition 11. [14] A 3-valued interpretation M of a logic program P is
a 3-valued stable model of P if Γ∗(M) = M .

4. Complete Labellings Coincide with 3-Valued Stable

Models

In this section we first transform argumentation frameworks into logic pro-
grams and prove that the complete labellings of an argumentation framework
coincide with the 3-valued stable models of the associated logic program
(Section 4.1). Then, in Section 4.2 we transform logic programs into argu-
mentation frameworks and prove that the 3-valued stable models of a logic
program coincide with the complete labellings of the associated argumenta-
tion framework.

4.1. Transforming Argumentation Frameworks into Logic

Programs

We use the approach of [9] to transform argumentation frameworks into logic
programs.
An argumentation framework can be transformed into a logic program by
generating a rule for each argument in the argumentation framework such
that the argument itself is in the head of the rule and the negations of all
its attackers are in the body of the rule.

Definition 12. Let AF = (Ar , att) be an argumentation framework. We
define the associated logic program PAF as follows,
PAF = {A ← not B1, . . . ,not Bn | A,B1, . . . , Bn ∈ Ar (n ≥ 0) and {Bi |
(Bi, A) ∈ att} = {B1, . . . , Bn}}.

We now define two functions that, given an argumentation framework
AF , allow a labelling to be converted to a 3-valued interpretation of PAF

and vice versa.

Definition 13. Let Labellings be the set of all labellings of AF andModels
be all the 3-valued interpretations of PAF . Let L ∈ Labellings. We intro-
duce a function Lab2Mod : Labellings →Models such that Lab2Mod(L) =<
in(L); out(L) > and Lab2Mod(L) = undec(L).
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Definition 14. Let Labellings be the set of all labellings of AF andModels
be all the 3-valued interpretations of PAF . Let I ∈ Models and I =<
T,F >. We define a function Mod2Lab : Models → Labellings such that
in(Mod2Lab(I)) = T and out(Mod2Lab(I)) = F and undec(Mod2Lab(I)) = I.

When L is a complete labelling of an argumentation framework, then
Lab2Mod(L) is a 3-valued stable model of the associated logic program, as is
stated by the following theorem.

Theorem 15. Let AF = (Ar , att) be an argumentation framework and L
be a complete labelling of AF . Then Lab2Mod(L) is a 3-valued stable model

of PAF .

Proof. In order to prove Lab2Mod(L) is a 3-valued stable model of PAF

we have to verify that Lab2Mod(L) is a fixed point of Γ∗. We first examine
PAF

Lab2Mod(L) (the reduct of PAF under Lab2Mod(L)).

Let A ← not B1, . . . ,not Bn be a rule of PAF (corresponding with an
argument A that has attackers B1, . . . , Bn). We distinguish three cases.

1. A is labelled in by L.
Then from the fact that L is a complete labelling it follows that B1, . . . ,
Bn are labelled out by L. The reduct of the rule is therefore A ← t, so
in the smallest model of PAF

Lab2Mod(L) , A will be true in Γ∗(Lab2Mod(L)).

2. A is labelled out by L.
Then, from the fact that L is a complete labelling it follows that there is
a Bi (1 ≤ i ≤ n) that is labelled in. The reduct of the rule is therefore
A← v1, . . . , f, . . . , vn (vi ∈ {t, f, u}) which is equivalent to A← f . Since
there is no other rule with A in the head, this means that in the smallest
model of PAF

Lab2Mod(L) , A will be false in Γ∗(Lab2Mod(L)).

3. A is labelled undec by L.
Then from the fact that L is a complete labelling it follows that not
each B1, . . . , Bn is labelled out by L and there is no Bi (i ≤ i ≤ n)
that is labelled in by L. It also follows that there is at least one Bi

labelled undec. The reduct of the rule is therefore A ←, v1, . . . , u, . . . , vn

(vi ∈ {t, u}). Since this is the only rule that has A in the head, A will
be undefined in Γ∗(Lab2Mod(L)).

Since for any arbitrary argument A, it holds that Lab2Mod(L)(A) =
Γ∗(Lab2Mod(L))(A), it follows that Lab2Mod(L) = Γ∗(Lab2Mod(L)).
Hence Lab2Mod(L) is a fixed point of Γ∗, so Lab2Mod(L) is a 3-valued stable
model of PAF .
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The next thing to be proved is that when an argumentation framework
is transformed into a logic program, and M is a 3-valued stable model of
this logic program, then Mod2Lab(M) is a complete labelling of the original
argumentation framework.

Theorem 16. Let AF = (Ar , att) be an argumentation framework and M
be a 3-valued stable model of PAF . Then Mod2Lab(M) is a complete labelling

of AF .

Proof. Let M be a 3-valued stable model of PAF . Then M is a fixed point
of Γ∗, that is Γ∗(M) = M. We now prove that Mod2Lab(M) is a complete
labelling of AF .
Let A be an arbitrary argument in Ar . We distinguish three cases.

1. M(A) = t.
From the fact that Γ∗(M) = M it follows that the reduct of the rule
A ← not B1, . . . ,not Bn is equivalent to A ← t. This means that each
Bi (1 ≤ i ≤ n) is labelled out in Mod2Lab(M). So A is legally in in
Mod2Lab(M).

2. M(A) = f .
From the fact that Γ∗(M) = M it follows that the reduct of the rule
A← not B1, . . . ,not Bn is equivalent to A ← f . This implies that there
exists a Bi (1 ≤ i ≤ n) that is labelled in in Mod2Lab(M). So A is legally
out in Mod2Lab(M).

3. M(A) = u.
From the fact that Γ∗(M) = M it follows that the reduct of the rule
A← not B1, . . . ,not Bn is equivalent to A← u. This implies that there
exists a Bi (1 ≤ i ≤ n) that is undefined in M and that each of the Bj

(1 ≤ j ≤ n, j �= i) is either false or undefined in M . Hence, A has no
attackers that is labelled in by Mod2Lab(M) and not all its attackers are
labelled out by Mod2Lab(M). Thus A is legally undec in Mod2Lab(M).

Since this holds for any arbitrary argument A, it follows that each argument
that is in is legally in, each argument that is out is legally out, and each
argument that is undec is legally undec. Hence, Mod2Lab(M) is a complete
labelling of AF .

When Lab2Mod and Mod2Lab are restricted to work only on complete
labellings and 3-valued stable models, they turn out to be bijective and each
other’s inverse.
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Theorem 17. Let AF = (Ar , att) be an argumentation framework.

Let Lab2Mod
r : {L | L is a complete labelling of AF} → {M | M is a

3-valued stable model of PAF} be a function defined by Lab2Mod
r(L) =

Lab2Mod(L).
Let Mod2Lab

r : {M | M is a 3-valued stable of model of PAF} → {L | L
is a complete labelling of AF} be a function defined by Mod2Lab

r(M) =
Mod2Lab(M).
Lab2Mod

r and Mod2Lab
r are bijective and are each other’s inverse.

Proof. As every function that has an inverse is bijective, we only need
to prove that Lab2Mod

r and Mod2Lab
r are each other’s inverse, meaning

that (Lab2Modr)−1 = Mod2Lab
r and (Mod2Labr)−1 = Lab2Mod

r. Let AF =
(Ar , att) be an argumentation framework.We prove the following two things:

1. For every complete labelling L of AF
it holds that Mod2Labr(Lab2Modr(L)) = L.
Let L be a complete labelling of AF and A ∈ Ar .
If L(A) = in then A is t in Lab2Mod

r(L),
so Mod2Lab

r(Lab2Modr(L))(A) = in.
If L(A) = out then A is f in Lab2Mod

r(L),
so Mod2Lab

r(Lab2Modr(L))(A) = out.
If L(A) = undec then A is u in Lab2Mod

r(L),
so Mod2Lab

r(Lab2Modr(L))(A) = undec.

2. For every 3-valued stable model M of PAF

it holds that Lab2Modr(Mod2Labr(M)) = M.
Let M be a 3-valued stable model M of PAF .
If M(A) = t then Mod2Lab

r(A) = in,
so A is t in Lab2Mod

r(Mod2Labr(M)).
If M(A) = f then Mod2Lab

r(A) = out,
so A is f in Lab2Mod

r(Mod2Labr(M)).
If M(A) = u then Mod2Lab

r(A) = undec,
so A is u in Lab2Mod

r(Mod2Labr(M)).

From Theorem 17, it follows that complete labellings of an argumentation
framework and 3-valued stable models of the associated logic program are
one-to-one related.

4.2. Transforming Logic Programs to ArgumentationFrameworks

We show that the complete labellings still coincide with 3-valued stable
models if we transform logic programs into argumentation frameworks.
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We follow the approach of structured arguments (like is taken in [13, 5,
12]) to do the transformation. The reasons for doing so are discussed in
the epilogue.

Definition 18. Let P be a logic program.

• An argument A based on P is a finite tree of rules from P such that
(1) each node (of the form c ← a1, . . . , an, not b1, . . . , not bm with n ≥
0 and m ≥ 0) has exactly n children, each having a different head ai ∈
{a1, . . . , an} and (2) no rule occurs more than once in any root-originated
branch of the tree. The conclusion of A (Conc(A)) is the head of its root.

• An argument a1 attacks an argument a2 iff a1 has conclusion c and a2

has a rule containing not c.

We say that argument A is a subargument of argument B iff A is a subtree
of B.

In Definition 18 the reason for including the condition that each rule
occurs no more than once in each root-originated branch is to make sure
that a finite program will yield a finite number of arguments.1

Definition 19. Let P be a logic program. We define the associated ar-
gumentation framework AFP = (Ar , att) where Ar is the set of arguments
that can be constructed using P , and att is the attack relation under P .

We define a strict order on the labels {out, undec, in} such that out <
undec < in.

In order to convert labellings to 3-valued stable interpretations, we define
a function that assigns a label to each atom. The idea is that the label of
an atom should be the label of the “best” argument that yields the atom as
a conclusion (or be out if there is no argument at all that yields this atom
as a conclusion).

Definition 20. Let P be a logic program and AP be the set of all ground
atoms that occur in P . Let AFP = (Ar , att) be the associated argu-
mentation framework and L be a labelling of AFP . We define a function
W (L) : AP → {in, undec, out} such that W (L)(c) = max({L(A) | A ∈
Ar ∧ Conc(A) = c} ∪ {out}).

We now define two functions that, given a logic program P , allow a
3-valued interpretation to be converted to a labelling of AFP and vice versa.

1Without this condition the logic program {a←; a← a} would yield an infinite number
of arguments.
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Definition 21. Let Models be all the 3-valued interpretations of P and
c ∈ AP . Let Labellings be the set of all labellings of AFP and L ∈
Labellings. We introduce a function Lab2Mod : Labellings → Models
such that Lab2Mod(L) = M =< T ;F > where

• T = {c | c ∈ AP and W (L)(c) = in};

• F = {c | c ∈ AP and W (L)(c) = out};

• M = {c | c ∈ AP and W (L)(c) = undec}.

Definition 22. Let Models be all the 3-valued interpretations of P and
Labellings be the set of all labellings of AFP . Let M ∈Models and M =<
T,F > and A be an argument in Ar . We define a function Mod2Lab :
Models → Labellings such that

1. Mod2Lab(M)(A) = in if for each attacker B of A, Conc(B) ∈ F .

2. Mod2Lab(M)(A) = out if there is an attacker B of A such that
Conc(B) ∈ T .

3. Mod2Lab(M)(A) = undec if not each attacker of A has a conclusion
that is in F and there is no attacker B of A such that Conc(B) ∈ T .

When a logic program is transformed into an argumentation frame-
work, and L is a complete labelling of this argumentation framework, then
Lab2Mod(L) is a 3-valued stable model of the logic program.

Theorem 23. Let P be a logic program and L be a complete labelling of

AFP . Then Lab2Mod(L) is a 3-valued stable model of P .

Proof. Let M = Lab2Mod(L). In order to prove M is a 3-valued stable
model of P we have to verify that M is a fixed point of Γ∗. We first examine
P
M

(the reduct of P under M).

Let A ∈ Ar and c ← a1, . . . , an,not b1, . . . ,not bm (n,m ≥ 0) be the root
of A. We distinguish three cases.

1. c ∈ T .
This means that W (L)(c) = in. It follows that there exists an argument
A such that A is labelled in and Conc(A) = c. Then all attackers of A
are labelled out. Let c′ ← a′1, . . . , a

′
k,not b′1, . . . ,not b′l (k, l ≥ 0) be an

arbitrary rule of A. It follows that W (L)(b′j) = out (0 ≤ j ≤ l). Then
b′j is false in M. We prove that all the conclusions of subarguments of
A are true in Γ∗(M) by induction.
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• Basis. Let c′′′ ← not b′′′1 , . . . ,not b′′′m′′′ (m′′′ ≥ 0) be an arbitrary leaf
in A such that the distance between the leaf and the root of A is
the furthest. The distance between two nodes is the vertical distance
between the two nodes in the direction from root down to leaves.
Since b′′′j′′′ (0 ≤ j′′′ ≤ m′′′) is false in M, then the reduct of the leaf

is c′′′ ← t. So in the least model of P
M

, c′′′ will be true in Γ∗(M).

• Step. Let a′′1, . . . , a
′′
n′′ (n′′ ≥ 0) be heads of nodes such that the

distance between them and the furthest leaf is n′. Assume that
a′′1 , . . . , a

′′
n′′ are true in Γ∗(M).

Let c′′ ← a′′i′′ , . . . , a
′′
j′′ ,not b′′1 , . . . ,not b′′m′′ (0 ≤ i′′, j′′ ≤ n′′,m′′ ≥ 0)

be a node that is n′ + 1 distance from the furthest leaf in the tree of
A. Since b′′1 , . . . , b′′m′′ are false in M and a′′i′′ , . . . , a

′′
j′′ are true in M,

the reduct of the node is c′′ ← t. So in the least model of P
M

, c′′ will
be true in Γ∗(M).

So all the conclusions of subarguments of A are true in Γ∗(M). Therefore
in the least model of P

M
, c will be true in Γ∗(M).

2. c ∈ F .
This means that W (L)(c) = out. It follows that for all arguments A
such that Conc(A) = c, A is labelled out. Then there exists an at-
tacker of A that is labelled in. It follows that there exists a rule c′ ←
a′1, . . . , a

′
k,not b′1, . . . ,not b′l (k ≥ 0, l ≥ 1) in A such that W (L)(b′j) =

in (1 ≤ j ≤ l). Then b′j is true in M. Then the reduct of the root of A

is the c ← f . So in the least model of P
M

, c will be false in Γ∗(M).

3. c ∈M.
This means that W (L)(c) = undec. It follows that there exists an argu-
ment A such that Conc(A) = c and L(A) = undec and there is no argu-
ment A such that Conc(A) = c and L(A) = in. Then not each attacker
of A is labelled out and there is no attacker that is labelled in. It follows
that there exists a rule c′′′′ ← a′′′′1 , . . . , a′′′′k′ ,not b′′′′1 , . . . ,not b′′′′l′ (k′, l′ ≥ 0)
in A such that W (L)(b′′′′j ) = undec (1 ≤ j ≤ l′). Then b′′′′j is undefined in
M. Let c′ ← a′1, . . . , a

′
k,not b′1, . . . ,not b′l (k ≥ 0, l ≥ 1) be an arbitrary

rule in A. Since there is no attacker that is labelled in, then for each
b′i (0 ≤ i ≤ l), b′i is not true in M. We prove that the conclusions of
subarguments of A are undefined in Γ∗(M) if they have attackers that
are labelled undec by induction.

• Basis. Let c′′′ ← not b′′′1 , . . . ,not b′′′m′′′ (m′′′ ≥ 0) be an arbitrary leaf
in A such that the distance between the leaf and the root of A is the
furthest. Since b′′′j′′′ (0 ≤ j′′′ ≤ m′′′) is either false or undefined in M,
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then the reduct of the leaf is c′′′ ← v1, . . . , vm′′′ (vi ∈ {t, u}, 0 ≤ i ≤
m′′′). If the leaf has no attacker that is labelled undec the reduct of
the leaf is c′′′ ← t. So in the least model of P

M
, c′′′ will be true in

Γ∗(M). If the leaf has an attacker that is labelled undec the reduct
of the leaf is c′′′ ← v1, . . . , u, . . . , vm′′′ (vi ∈ {t, u}, 0 ≤ i ≤ m′′′). So
in the least model of P

M
, c′′′ will be undefined in Γ∗(M).

• Step. Let A′′
1 , . . . , A

′′
n′′ (n′′ ≥ 0) be subarguments of A and their roots

are n′ distance from the furthest leaf. Let a′′1, . . . , a
′′
n′′ be conclusions

of A′′
1 , . . . , A

′′
n′′ respectively. Assume that a′′i (0 ≤ i ≤ n′′) is true in

Γ∗(M) if A′′
i does not have an attacker that is labelled undec and a′′i

is undefined in Γ∗(M) if A′′
i has an attacker that is labelled undec.

Let c′′ ← a′′i′′ , . . . , a
′′
j′′ ,not b′′1 , . . . ,not b′′m′′ (0 ≤ i′′, j′′ ≤ n′′,m′′ ≥ 0)

be a node that is n′ + 1 distance from the furthest leaf in the tree
of A. b′′1, . . . , b′′m′′ are either true or undefined in M and a′′i′′ , . . . , a

′′
j′′

are either true or undefined in M. Then the reduct of the node is
c′′ ← v1, . . . , vj′′−i′′+1+m′′ (vi ∈ {t, u}, 0 ≤ i ≤ j′′ − i′′ + 1 + m′′). If
there is an attacker that is labelled undec the reduct of the node is
c′′ ← v1, . . . , u, . . . , vj′′−i′′+1+m′′ (vi ∈ {t, u}, 0 ≤ i ≤ j′′−i′′+1+m′′).
So in the least model of P

M
, c′′ will be undefined in Γ∗(M) if the

subargument has an attacker that is labelled undec.

A has an attacker that is labelled undec and A is a subargument of A.
Then in the least model of P

M
, c will be undefined in Γ∗(M).

Since for any arbitrary atom c, it holds thatM(c) = Γ∗(M)(c), it follows
thatM = Γ∗(M). Hence M is a fixed point of Γ∗, so M is a 3-valued stable
model of P .

When M is a 3-valued stable model of a logic program, then Mod2Lab(M)
is a complete labelling of the associated argumentation framework, as is
stated by the following theorem.

Theorem 24. Let P be a logic program and M =< T ;F > be a 3-valued

stable model of P . Let L = Mod2Lab(M) and c be a ground atom. Then L
is a complete labelling of AFP such that W (L)(c) = in if c ∈ T , W (L)(c) =
out if c ∈ F and W (L)(c) = undec if c ∈M.

Proof. M is a 3-valued stable model of P . Then M is a fixed point of Γ∗,
that is Γ∗(M) = M. Let A be an argument in Ar . We now prove that L is
a complete labelling of AFP . We distinguish three cases.
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1. L(A) = in.
According to Definition 22, for each attacker B of A, Conc(B) ∈ F . Let
c ← a1, . . . , am,not b1, . . . ,not bn be the root of B. Then c ∈ F . From
the fact that Γ∗(M) = M it follows that reduct of the rule is equivalent
to c ← f . Then there exists a rule c′ ← a′1, . . . , a

′
k,not b′1, . . . ,not b′l (k ≥

0, l ≥ 1) in B such that there is a b′j ∈ T (1 ≤ j ≤ l). It follows that
B has an attacker whose conclusion is in T which implies B is labelled
out. Since this holds for an arbitrary attacker B of A it follows that each
attacker of A is labelled out. So A is legally in in Mod2Lab(M).

2. L(A) = out.
According to Definition 22, there exists an attacker B of A such that
Conc(B) ∈ T . Then from the fact that Γ∗(M) = M it follows that the
reduct of the root of B is Conc(B) ← t. Let c ← a1, . . . , am,not b1, . . . ,
not bn be the root of B and c′ ← a′1, . . . , a

′
k,not b′1, . . . ,not b′l (k, l ≥ 0) be

an arbitrary rule of B. So c ∈ T and c ← t. Then for all b′j (0 ≤ j ≤ l),
b′j ∈ F . It follows that the conclusions of all attackers of B are in F
which implies B is labelled in. So A is legally out in Mod2Lab(M).

3. L(A) = undec.
According to Definition 22, there is no attacker of A that has a conclusion
that is in T and not all attackers of A have a conclusion that is in F .

(a) Assume there is an attacker B of A that is labelled in. Let c ←
a1, . . . , am,not b1, . . . ,not bn (m,n ≥ 0) be the root of B and c′ ←
a′1, . . . , a

′
k,not b′1, . . . ,not b′l (k, l ≥ 0) be an arbitrary rule of B.

According to Definition 22, the conclusion of each attacker of B is
false in M. Then for all b′j (0 ≤ j ≤ l), b′j ∈ F . So the reduct of the
root of B is equivalent to c ← t. From the fact that Γ∗(M) = M it
follows that c ∈ T . Contradiction.

(b) Assume all attackers of A are labelled out. Let B be an arbi-
trary attacker of A and c ← a1, . . . , am,not b1, . . . ,not bn be the
root of B. According to Definition 22, there exists an attacker of
B whose conclusion is true in M. Then there exists a rule c′ ←
a′1, . . . , a

′
k,not b′1, . . . ,not b′l (k ≥ 0, l ≥ 1) in B such that there is a

b′j ∈ T (1 ≤ j ≤ l). Then the reduct of the root of B is equivalent to
c ← f . From the fact that Γ∗(M) = M it follows that c ∈ F . Then
each attacker of A has a conclusion that is in F . Contradiction.

Therefore there is no attacker of A that is labelled in and not all attackers
of A are labelled out. So A is legally undec in Mod2Lab(M).
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Since this holds for any arbitrary argument A, it follows that each argument
that is in is legally in, each argument that is out is legally out, and each
argument that is undec is legally undec. Hence, L is a complete labelling
of AFP .

The next things to be proved is that (1) if c ∈ T then W (L)(c) = in, (2)
if c ∈ F then W (L)(c) = out and (3) if c ∈M then W (L)(c) = undec.

1. If c ∈ T .
From the fact that Γ∗(M) = M it follows that there is a rule whose
reduct is equivalent to c ← t. Let this rule be the root of an argument A
which implies that Conc(A) = c. Let c ← a1, . . . , am,not b1, . . . ,not bn

(m,n ≥ 0) be the root of A and c′ ← a′1, . . . , a
′
k,not b′1, . . . ,not b′l

(k, l ≥ 0) be an arbitrary rule of A. Then for all b′j (0 ≤ j ≤ l),
b′j ∈ F . It follows that the conclusions of all attackers of A are in F
which implies that A is labelled in. So L(A) = in = max({L(A′) | A′ ∈
Ar ∧ Conc(A′) = c} ∪ {out}). Then W (L)(c) = in.

2. If c ∈ F .
From the fact that Γ∗(M) = M it follows that each rule with c in the
head has the reduct c ← f . Let A ∈ Ar be an arbitrary argument such
that Conc(A) = c and c ← a1, . . . , am,not b1, . . . ,not bn (m,n ≥ 0) be
the root of A. Then the reduct of the root of A is equivalent to c ← f .
Then there exists a rule c′ ← a′1, . . . , a

′
k,not b′1, . . . ,not b′l (k ≥ 0, l ≥ 1)

in A such that there is a b′j ∈ T (1 ≤ j ≤ l). It follows that A has an
attacker whose conclusion is in T which implies A is labelled out. It
follows that each argument A such that Conc(A) = c is labelled out. So
L(A) = out = max({L(A′) | A′ ∈ Ar ∧ Conc(A′) = c} ∪ {out}). Then
W (L)(c) = out.

3. If c ∈ M then there is no rule whose reduct is c ← t and there is a
rule whose reduct is c ← u. It follows that there is no argument A such
that Conc(A) = c is labelled in and there is an argument A such that
Conc(A) = c is labelled undec. So L(A) = undec = max({L(A′) | A′ ∈
Ar ∧ Conc(A′) = c} ∪ {out}). Then W (L)(c) = undec.

When Lab2Mod and Mod2Lab are restricted to work only on complete
labellings and 3-valued stable models, they turn out to be bijective and each
other’s inverse.

Theorem 25. Let P be a logic program and AFP be the associated argu-

mentation framework.

Let Lab2Modr : {L | L is a complete labelling of AFP } → {M | M is



398 Y. Wu, M. Caminada, and D. M. Gabbay

a 3-valued stable model of P} be a function defined by Lab2Modr(L) =
Lab2Mod(L). Let Mod2Labr : {M | M is a 3-valued stable of model of P}
→ {L | L is a complete labelling of AFP } be a function defined by

Mod2Labr(M) = Mod2Lab(M).

Lab2Modr and Mod2Labr are bijective and are each other’s inverses.

Proof. As every function that has an inverse is bijective, we only need
to prove that Lab2Modr and Mod2Labr are each other’s inverses. That
is (Lab2Modr)−1 = Mod2Labr and (Mod2Labr)−1 = Lab2Modr. Let
AFP = (Ar , att) be an argumentation framework. We prove the following
two things:

1. For every 3-valued stable model M of P it holds that
Lab2Modr(Mod2Labr(M)) = M.
Let M be a 3-valued stable model M of P .
If M(c) = t then W (Mod2Labr)(c) = in (Theorem 24), so c is true in
Lab2Modr(Mod2Labr(M)).
If M(c) = f then W (Mod2Labr)(c) = out (Theorem 24), so c is false

in Lab2Modr(Mod2Labr(M)).
If M(c) = u then W (Mod2Labr)(c) = undec (Theorem 24), so c is
undefined in Lab2Modr(Mod2Labr(M)).

2. For every complete labelling L of AFP it holds that
Mod2Labr(Lab2Modr(L)) = L.
Let L be a complete labelling of AFP and let A ∈ Ar .
If L(A) = in then each attacker of A is labelled out. Let B be an ar-
bitrary attacker of A and Conc(B) = b, then L(B) = out = max({L(B′) |
B′ ∈ Ar ∧ Conc(B′) = b} ∪ {out}). Then W (L)(b) = out. So
Lab2Modr(L)(b) = f . Then for each attacker B of A, Conc(B) = b is
false in Lab2Modr(L). It follows from Definition 22 that A is labelled in

in Mod2Labr(Lab2Modr(L)). So Mod2Labr(Lab2Modr(L))(A) = in.

If L(A) = out then there is an attacker B of A that is labelled in. Let
Conc(B) = b, then L(B) = in = max({L(B′) | B′ ∈ Ar ∧ Conc(B′) =
b} ∪ {out}). Then W (L)(b) = in. So Lab2Modr(L)(b) = t. Then there
is an attacker B of A such that Conc(B) = b is true in Lab2Modr(L).
It follows from Definition 22 that A is labelled out in
Mod2Labr(Lab2Modr(L)). So Mod2Labr(Lab2Modr(L))(A) = out.

If L(A) = undec then there is an attacker B of A that is labelled undec

and there is no attacker of A that is labelled in. Let Conc(B) = b, then
L(B) = undec = max({L(B′) | B′ ∈ Ar ∧ Conc(B′) = b} ∪ {out}). Then
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W (L)(b) = undec. So Lab2Modr(L)(b) = u. Then there is an attacker
B of A such that Conc(B) = b is undefined in Lab2Modr(L).
Assume there is an attacker C of A such that Conc(C) is true in
Lab2Modr(L). Let Conc(C) = b′, then W (L)(b′) = in. It follows that
in = max({L(B′) | B′ ∈ Ar ∧ Conc(B′) = b′} ∪ {out}). Then there is
an attacker (C) of A such that Conc(C) = b′ and L(C) = in. Then
from the fact that L is a complete labelling it follows that L(A) = out.
Contradiction.
So there is no attacker of A has a conclusion that is true in Lab2Modr(L)
and not each attacker of A has a conclusion that is false in Lab2Modr(L).
So Mod2Labr(Lab2Modr(L))(A) = undec.

From Theorem 17 and Theorem 25, it follows that complete labellings and
3-valued stable models are one-to-one related. Since Theorem 9 states that
complete extensions and complete labellings are one-to-one related, it follows
that complete extensions, complete labellings and 3-valued stable models are
different ways of describing essentially the same concept.

5. Discussion

The results presented in this paper show that the complete labellings are
semantically equivalent to 3-valued stable models.

We transformed argumentation frameworks into logic programs and
proved that the complete labellings of an argumentation framework coin-
cide with 3-valued stable models of the associated logic programs. We can
obtain the same correspondence between complete labellings and 3-valued
stable models if we transform logic programs into argumentation frame-
works. Since complete extensions and complete labellings are one-to-one
related, complete extensions and 3-valued stable models stand in a one-to-
one relationship to each other. Therefore, complete extensions and 3-valued
stable models express the same concept in different ways.

Since complete extensions and 3-valued stable models are both used as
bases for describing other semantics in abstract argumentation and logic
programming, the currently proved equivalence between complete seman-
tics and 3-valued stable model semantics could perhaps be used to prove
other equivalences as well, between argumentation and logic programming
semantics.

One particular topic for further study would for instance be the possible
correspondence between the semi-stable extensions in abstract argumenta-
tion [3] and the L-stable models [8] in logic programming. Once established
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this equivalence would allow for algorithms and complexity results that were
found for argumentation under semi-stable semantics to be applied to logic
programming under the L-stable model approach.

Epilogue

In section 4.2, the transformation from logic programming to argumenta-
tion was done using arguments that have an internal structure. This internal
structure was then used to determine the attack relationship. This approach
is in line with Dung’s argumentation theory, which is after all about abstract

argumentation systems, meaning that it is a meta-theory of argumentation
that abstracts from specific aspects of the underlying object level argumen-
tation formalisms. In particular, it abstracts from the internal structure of
the arguments and the nature of the attack relation. These need to be spec-
ified in order for the Dung-style argumentation theory to be “instantiated”
into a full object-level argumentation formalism.

In this paper, we have chosen to do the translation from logic program-
ming to argumentation using an instantiated object-level argumentation for-
malism. An interesting question is whether one could also perform the trans-
lation purely at the abstract level. In some cases, this would actually be
possible, by applying the procedure of Section 4.1 in reverse order. Recall
that the translation from argumentation to logic programming (Definition
12) produces a logic program where the arguments are represented by atoms
such that each atom occurs in the head of exactly one rule, and the body
of each rule consists of only weakly negated atoms. So if we have a logic
program with these properties, we can directly transform it back into an
argumentation framework. The problems begin when some atoms occur in
the head of more than one rule (or in the head of no rule at all) or when
the body of a rule contains non-negated atoms. One could, however, devise
a program transformation that transforms a “general” logic program into
the shape that is required for further transformation into an argumentation
framework. Such a translation could be done by adding extra atoms to a
logic program to deal with the non-negated atoms in the bodies of the rules
and the occurrences of atoms in the heads of more than one rule. More
specifically, this could be done in the following way. First, we would trans-
late each rule containing non-negated literals in the body, like

c← a1, . . . , an, not b1, . . . , not bm

by replacing it by a rule

c ← not a∗1, . . . , not a∗n, not b1, . . . , not bm
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and adding the additional rules

a∗i ← not ai (1 ≤ i ≤ n)

This yields a new program in which each rule contains only weakly negated
literals in the body. The next step is to deal with literals that occur in the
head of more than one rule. Suppose there are n rules (n ≥ 2) with atom c
in the head:

c← not ai,1, . . . , not ai,m (1 ≤ i ≤ n)

Then replace these rules by

ci ← not ai,1, . . . , not ai,m (1 ≤ i ≤ n)

and add the rule
c∗∗ ← not c1, . . . , not cn

as well as the rule
c← not c∗∗

Similarly, for each atom c occurring in the program, but not in the head of
any clause, add a clause

c∗∗ ←

as well as a clause
c← not c∗∗

This yields a program in which each literal is the head of exactly one rule,
and in which the body of each rule consists only of weakly negated atoms.
Such a program can be directly translated into an argumentation framework
by the reverse process of Definition 12. This transformation takes place en-
tirely on the abstract argumentation level, without the need for instantiated
arguments.

The problem, however, is that the thus described transformation pro-
cess, although intuitive, does not preserve the original meaning of the logic
program, at least not from the perspective of the 3-valued stable model se-
mantics. To see why things fail, consider the following logic program P.

a← b
b← a

In the 3-valued stable model semantics, this program has only one model:
< ∅; {a, b} >. However, the translation process yields the following program.
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a a*

b* b

Figure 2. Argumentation framework associated with logic program P

a← not b∗

b∗ ← not b
b← not a∗

a∗ ← not a

This program can then be translated into the argumentation framework of
Figure 2.

The program has three 3-valued stable models: < {a, b}; {a∗, b∗} >,
< {a∗, b∗}; {a, b} > and < ∅, ∅ >. Only the second model corresponds with
the meaning of the original program. Therefore the transformation process
is not meaning-preserving, at least not from the perspective of the 3-valued
stable model semantics.

Although one cannot rule out the existence of another transformation
process that is meaning-preserving, such a process is likely to be more com-
plex than the process described above. Our approach of instantiated argu-
ments (Section 4.2) avoids these problems by using abstract argumentation
the way it is intended: as a meta-level theory that is capable of describing
instantiated argumentation formalisms by abstracting from some of their
properties.
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