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Abstract. Current dynamic-epistemic logics model different types of information
change in multi-agent scenarios. We generalize these logics to a probabilistic setting,
obtaining a calculus for multi-agent update with three natural slots: prior probability
on states, occurrence probabilities in the relevant process taking place, and observation
probabilities of events. To match this update mechanism, we present a complete dynamic
logic of information change with a probabilistic character. The completeness proof follows
a compositional methodology that applies to a much larger class of dynamic-probabilistic
logics as well. Finally, we discuss how our basic update rule can be parameterized for
different update policies, or learning methods.
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1. Introduction

Conditional probabilities P;(¢ | A) describe how agent i’s probability distri-
butions for propositions ¢ change as new information A comes in. The stan-
dard probabilistic calculus describing such changes revolves around Bayes’
Law in case the new information A is factual, concerning some actual situ-
ation under investigation. But there are also proposed mechanisms in the
literature that deal with non-factual new information A, such as the Jef-
frey Update Rule for probabilistic information of the form “P;(A) = 2” and
Dempster’s rule for combining evidence.

Current dynamic-epistemic logics (we will write DEL as an abbreviation
for this approach) manipulate formulas [!A]K;¢ describing what an agent
knows or believes after a proposition A has been publicly communicated or
publicly observed. Here A may be either about the real world or about infor-
mation that other agents have. More sophisticated modern update systems
deal with many further scenarios, which involve partial observation and dif-
ferent information for different agents, as happens with whispers, or lies, or
just seeing some situation from different angles.

Compared to epistemic logics, a probabilistic approach provides a much
more finely-grained view of information strength for agents. Conversely,
dynamic-epistemic logics may be viewed as qualitative update systems that
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bring out basic laws of reasoning with complex, perhaps iterated epistemic
assertions. Thus, it seems of interest to combine the two perspectives to ob-
tain one system for reasoning about interaction of knowledge and probability
where both may change.

This paper takes its point of departure in two earlier stages of achieving
such a combination. Kooi [18] provides a complete dynamic logic of prob-
abilistic update after public announcements, which is basically a DEL ap-
proach to conditional probability when the current probabilistic model may
change under new ‘hard information’. Van Benthem [25] extends this ac-
count to probabilistic update after arbitrary publicly observed events, where
also, these events can have different, but known probabilities for their occur-
rence in different states. These aspects come together in non-trivial scenarios
like the well-known Puzzle of the Quizmaster (also known as ‘Monty Hall’).
The participants in a quiz observe a door being opened by the quizmaster,
and must recompute the probability that the car is behind the door they
have chosen originally. In doing so, two probabilities play a crucial role.
Their own prior probability for the car being behind any of the doors mat-
ters, but so does their knowledge of the ‘process’, viz. the probability that
the quizmaster would have opened a particular door, given his knowledge of
the door behind which the prize car is located.

The first, and perhaps the main new contribution of this paper is a
further, more comprehensive view of probabilistic update from a dynamic-
epistemic perspective, identifying not two, but three crucial probabilistic
aspects of incoming information. In addition to the prior and occurrence
probabilities, we also separate out the role of the agent’s observation itself.
The main point of DFEL is that the information extracted from observation
can be very different for different agents (think of a card game where you
draw from the stack, while I only observe you), and this naturally invites
a further feature, that we call observation probabilities. All three are then
used to provide a generalized update mechanism that we feel is a natural and
convenient format for modeling information flow. As an additional benefit,
and this is our second contribution: the dynamic logic of this scheme can be
axiomatized completely. With this much in place, our third contribution is
a way of generalizing our scheme to scenarios that allow diversity in learning
from probabilistic input.

The paper is organized as follows. The first two sections cover our point
of departure: in Section 2 we present a static epistemic-probabilistic logic,
and in Section 3 we give purely dynamic-epistemic logics. In Section 4
we give our full probabilistic update rule involving all three aspects: prior
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probability, occurrence probability, and observation probability. In Section 5
we turn to reasoning about these updates, and prove a general completeness
result for dynamic-epistemic-probabilistic logic. Finally, in Section 6, we
discuss how our update rule can be generalized still further so as to allow for
different ‘policies’ or ‘agent types’. We provide a mechanism for weighing

the different sources of probabilistic information available to us’.

2. Static epistemic-probabilistic logic

Epistemic and probabilistic languages describing what agents know and be-
lieve plus the probabilities they assign were introduced by Halpern and Tut-
tle [15] and further developed by Fagin and Halpern [7]. We take a simple
instance of such a system as our starting point.

DEFINITION 1 (Epistemic probability models). Given is a set of agents Ag

and a set of propositional variables At. An epistemic probability model is a
structure M = (S, ~, P, V) such that

S is a finite non-empty set of states?,

~ is a set of equivalence relations ~; on S for each agent i € Ag,
P:Ag — (S — (S — [0,1])) assigns a probability function over S to
each agent i € Ag and each state s € S (the probability assigned to t by
the probability function assigned to i at s is denoted as P;(s)(t)),

e V/ assigns a set of states to each propositional variable.

So in these models both the non-probabilistic information and the proba-
bilistic information of the agent is represented (by ~; and P; respectively).
This is reflected in the semantics by two modal operators for these notions.

DEFINITION 2 (Static epistemic-probabilistic language). The static episte-
mic-probabilistic language is given by the following Backus-Naur form:
pu=plopleNe| Kip| Pp=Fk

where p € At, i € Ag, and k € Q. We will omit or add parentheses, and
often also, drop subscripts for agents, to enhance readability of the formulas.

This language allows for iterated epistemic or probability operators, and
in particular also, mixed expressions such as:

Ki(Pj() = k), or Pi(Kjg) = k.

!"While our presentation is self-contained, we refer to the extended on-line version [27]
for details and additional topics.

2We have S finite to keep our exposition simple: but see the end of this section.
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In this way, we can talk about agents’ knowledge of each other’s probabili-
ties, or about the probabilities they assign to the fact that someone knows
some proposition. The semantics of this language are an extension of the
semantics for epistemic logic, where the probability statements P;(¢) = k

over propositions ¢ are evaluated by summing over those states in M where
© holds:

DEFINITION 3 (Semantics for epistemic-probabilistic logic).

M,skE=p iff se€V(p)
M,s = —p ifft M,s -
M,sE @AY ifft M,sEypand M,s Y
M,s = Kjp iff forallt e S: if s~;t, then M t | ¢
M,skPlp) =k iff > Ps)(t)=k
t with M t=¢

The definition of epistemic probability models leaves room for further con-
straints on the relation between the probability assignments and the knowl-
edge of the agents as defined by ~. For example, it may be reasonable to ask
that probability assignments are uniform in the sense that if P;(s)(t) is pos-
itive, then P;(s) = P;(t), or to assume that the probability assignments are
related to the knowledge of the agents, e.g. by assuming that P;(s) assigns
positive probabilities only to states that are in the ~;-equivalence class of s.
Such assumptions define classes of models with different logics. For example,
in many natural applications epistemically indistinguishable states get the
same probability distribution. Thus, agents will know the probabilities they
assign to propositions, and hence we have a valid principle

Pi(p) =k — Ki(Pi(p) = k)

that is, ‘epistemic introspection’ holds for subjective probability.

As for complete logics for reasoning with this epistemic-probabilistic lan-
guage, Fagin and Halpern [7] and Halpern [13] provide excellent overviews
with completeness and complexity results for various languages and model
classes. In particular, in Section 5 we will use their complete system for an
extended language with linear inequalities of probability statements.

What we will have to say in what follows about the dynamics of proba-
bilistic update does not hinge on specific decisions about the class of static
models, which is why we assume as little as possible. That said, our frame-
work could have been even more general: we could have allowed S to be infi-
nite and used o-algebras, as in [7], or represent insecurity about probabilities
by upper and lower bounds, as in Dempster-Shafer theory, also discussed in
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[13]3. Still, since our main emphasis is on dynamic update phenomena, the
preceding simple system suffices to make our point.

3. Dynamic-epistemic logics for non-probabilistic informa-
tion update

Dynamic-epistemic logics describe information flow engendered by events.
The simplest informative event, and a pilot case for much of the theory, is
a public announcement !A of some true proposition A to a group of agents.
Updates for more complex communicative events can be described in terms of
‘update models’, which model more complex patterns of access that agents
may have to the event currently taking place. While much of the theory
has been developed with conversation and communication in mind, it is
important, also for our later probabilistic applications, to stress that we are
not doing some sort of formal linguistics. The formal systems we will be
dealing with apply just as well to observation, experimentation, learning,
or any sort of information-carrying scenario. The logics of both public and
more private informational scenarios will be discussed below.

3.1. Public announcements

The dynamic effect of a public announcement is to change some current
(non-probabilistic) model M = (S,~, V') to an updated model M|A, which
is defined by restricting the states of M to just those where A is true.

A public announcement is usually very informative. Hence, the truth val-
ues of epistemic statements can change due to an announcement. E.g., I did
not know that A before, but I do now, after I learned that B. These truth
value changes can be quite subtle, witness the existence of self-refuting true
statements, such as “You don’t know that p, but p is true”, which become
false upon public announcement. Therefore we need a dynamic-epistemic
language, whose logic helps us keep careful track of things over time.

First, we add a ‘dynamic’ modal operator [!A4] to the epistemic language.

DEFINITION 4 (Public announcement language). The public announcement
language is given by the following Backus-Naur form:

pu=p|-p|leAe| Kl [lolp

3We believe our account extends to these cases as well, witness also a recent proposal
by Sack [22] merging DEL with models involving infinite o-algebras of events.
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Table 1. Reduction axioms for public announcement logic.

A formula [!A]y is read as ‘¢p holds after the announcement that A’. The
resulting language is interpreted in standard models for epistemic logic M =
(S, ~i, V). (These models may be viewed as the epistemic probabilistic mod-
els from Definition 1, stripped of their probability functions). The semantics
for this language is the same as in Definition 3 in as far as the languages have
the same operators. The public announcement operator has the following
semantics,

DEFINITION 5 (Semantics of public announcements). Let an epistemic model
M = (S,~,V) be given, with a state s € S.

M,s = ['Alp iff M,s = A implies M|A,s = ¢

where M| A is the model (S',~', V') such that, writing [A] for {t € S |
Mt E A}:

o §'= [[A]]7
o ~=ny A(S' % S,
o Vi(p)=V(p)ns"

This completes the description of our models, and the epistemic update
procedure over them. Now for the key task of describing valid reasoning.
A complete dynamic-epistemic logic PAL for public announcement was first
given by Plaza [20], and was independently developed by Gerbrandy [10].
It exemplifies a typical set-up for dynamic-epistemic analysis. There is

e a complete set of axioms for the static base language over epistemic
models — the logic S5, for example — and on top of that,

e anumber of reduction axioms that analyze effects of informational events.
These axioms describe the effects of an announcement by relating what
is true after to what is true before an announcement.

The crucial reduction axioms of PAL are given in Table 1. They de-
scribe how public announcement modalities interact with Atoms, Boolean
and epistemic operators. Note how these axioms move each logical operator
of the static language outside the scope of the new operator [!A]. Thus, they
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perform a compositional analysis of the effects of receiving information. As a
side-effect, working inside out in a stepwise manner, such a ‘recursion equa-
tion’ allows us to translate any sentence from the dynamic language into an
equivalent sentence of the underlying static language — always provided the
latter has enough expressive power to do the necessary ‘pre-encoding’.

This expressive harmony between the static and dynamic parts of the sys-
tem is not always obvious, and we may have to redesign the base language to
achieve it. For instance, conditional probabilities are crucial for this purpose,
and later on, we also need the ‘linear inequalities’ of Halpern and Tuttle [15]
and Fagin and Halpern [7]. Much more can be said about this methodology
(cf. [29]), but the main point for our paper is just this: Once the design
is right, for any class of epistemic models with a complete set of axioms in
the static language, a completeness result for the extended language comes
‘for free’. We just need to identify the right ‘recursion equations’, in the
form of reduction axioms like the above. To apply these equivalences inside
formulas, we also need some suitable rule for substitution of equivalents, in
the format:

from ¢ « 1, infer that x < X/, where X’ is obtained from y by
replacing an occurrence of ¢ by 1.4

Below, we will formulate reduction axioms for a suitably designed dy-
namic-probabilistic language, and obtain the same kind of dynamic com-
pleteness result.

3.2. Update models

Baltag, Moss and Solecki [4] first introduced more general update models.

DEFINITION 6 (Update models). Given a set of agents Ag and a logical
language £, an update model is a structure A = (E, ~, pre) such that

e F is a non-empty finite set of events,
e ~ is a set of equivalence relations ~; on E for each agent i € Ag,
e pre assigns a formula from £ to each event e € F.

The ‘precondition function’ pre determines in which states the events can
actually occur by assigning a formula (pre,) to each event in F.

“In our dynamic logics, some syntactic restrictions are needed on admissible substitu-
tions, but their details do not concern us here.
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These models are quite similar to epistemic models, but instead of infor-
mation about static situations, information about events is modeled®. The
indistinguishability relations ~ over events model uncertainty about which
event actually happens in the same way that the relations in the static mod-
els model ignorance about situations: e ~; €’ can be read as ‘given that event
e occurs, it is consistent with agent ¢’s information that event e’ occurs.” The
result of an event represented by A occurring in a situation represented by
M is modeled by means of a product construction.

DEFINITION 7 (Update rule). Let M be an epistemic model and let A be an
update model. The product update model M x A = (S’,~', V') is defined
by setting:

o S'={(s,e) | s€ S, ec Eand M,s = pre,},
° (81,61) N; (82,62) iff 51 ~; 52 and e; ~; ea.
o Vip)={(s,e) € 5" | s € V(p)}.

The indistinguishability relation in M x A is determined by the indistin-
guishability relations in M and A. An agent cannot distinguish a pair (s, e;)
from (s2,e2) in the new model if the agent could not distinguish s; from so
in the old model and could not distinguish event e; from es. Note that truth
values of propositional variables do not change due to an epistemic event:
the propositional variables true in (s,e) are those true in s°.

Again, there is a dynamic-epistemic language and a matching complete

dynamic logic to reason about product updates.

DEFINITION 8 (Dynamic-epistemic language). The syntax of the dynamic-
epistemic language is given by the following Backus-Naur form:

pu=plop|lene| K| [Aep

In this language the update models are update models with respect to the

5Tt is rather unfortunate that the term event is widely used in both probability theory
and dynamic-epistemic logic, but with slightly different interpretations. In probability
theory an event is what one would call a proposition in logic. While an event in dynamic
epistemic logic also comes with a proposition, viz. its precondition, events in an event
model really transform a given probabilistic model, and are not part of that model itself.
To make matters worse, sometimes a whole event model is referred to as an event in
dynamic-epistemic logic. We can only warn the reader to suspend any easy identifications
across fields here.

5This mechanism can easily be generalized to include an account of factual change in
the state: cf. [29].
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s€]lp < (pre, — p)

s€]mp « (pre, — —[A, e]p)

el(p AY) < ([Aselp A[A, e]y)

el Kip « (pre. — Ao KilA, €]p)

S

[A
[A
[A
[A

Table 2. Reduction axioms for update models.

language defined above”. This language, too, can be interpreted on epistemic
models.

DEFINITION 9 (Semantics of update models). Given an epistemic model
M = (S,~,V) with s € S:

M,s = [Ayelp iff M,s | pre, implies M x A, (s,e) = ¢
where M x A is the product update model.

A formula of the form [A, e|p states that, if event e can occur, then ¢ is true
in the result. A growing literature shows how this simple product update
mechanism can model a wide variety of informational scenarios [3, 16, 29, 31].

Next, there is again the issue of valid reasoning. As before, the complete
dynamic logic of product update consists of a simple super-structure of re-
duction axioms on top of whatever valid principles we had for the static base
language — this may be multi-agent S5, but it does not have to be. The
axiomatization is a straightforward generalization of the earlier one for the
logic of public announcements. The reduction axioms are given in Table 2.

4. Modeling probabilistic information change

Extensions of dynamic-epistemic logic with probabilistic information have
been proposed, as mentioned earlier, in [18], on probabilistic update after
public announcement, and [25] on probabilistic update after publicly ob-
served events with known probabilities for their occurrence. Both papers
also provide dynamic update rules as well as matching complete logics. But
in this paper, we forego details, and move straight ahead to our new propos-
als subsuming these systems. Our generalization arises from the observation
that Kooi’s priors and van Benthem’s occurrence probabilities still do not

"There is a simultaneous recursion here: update models are defined in terms of the
language, and the dynamic language is defined in terms of update models, just as formulas
and programs are defined simultaneously in PDL. This can be handled without vicious
circularity, but we do not pursue details here.
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exhaust all natural probabilistic aspects of incoming information, at least,
not from the observation-driven perspective of DEL. Our first step then is
a more comprehensive view of three crucial probabilistic aspects of incoming
information, that each should feed into a generalized epistemic-probabilistic
update rule.

4.1. Three sources of probability

As we have suggested already in Section 1 for the well-known Monty Hall
Puzzle, there are at least two basic places where update by observing an
event involves probability:

e prior probabilities of states in the current epistemic-probabilistic model
M, representing agents’ current informational attitudes, and

e occurrence probabilities for events from the update model A, representing
agents’ views on what sort of process produces the new information.

But these probabilities do not yet address the other crucial feature of DEL
update, namely, that it is about agents with limited powers of observation.
We see this as a third basic type of uncertainty, that we call

observation probability, reflecting agents’ uncertainty as to which
event is currently being observed.

For a simple example, suppose that I see you reading a letter from our
funding agency, and I know it is either a rejection of your grant proposal or an
acceptance. You know which event (reading ‘yes’, or reading ‘no’) is taking
place, while I do not. If I know nothing more than this, and I have no idea
about the frequency of rejection versus acceptance letters, pure epistemic
product update might compute a new model, but it will not fully indicate
to what extent 1 should consider a state in that model possible. But now
suppose that there is additional information in my observation. Perhaps
I saw a glimpse of your letter, or you looked smug, and I therefore assume
that you were probably reading a letter of acceptance rather than a rejection.
This would be a case of ‘observation probability’ in our sense.

The notion of observation probability is not totally new, it is like the
probabilities from scenario’s used to motivate Jeffrey conditioning, where
one is uncertain about the evidence one receives due to partial observa-
tion. Yet rather than starting with Jeffrey conditioning (we will return to
the latter update mechanism in Section 6), we will update in such a way
that these observation probabilities are taken as evidence for the underlying
actual event.
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A slightly more elaborate scenario where all three kinds of probability
distinguished here come together is as follows.

ExAMPLE 1 (The Hypochondriac). Suppose you are reading about some hor-
rible disease on a website, and you start to wonder whether you have it.
The chances of having this disease are very slight, say only 1 in 100.000.
The website states that one of the symptoms of this disease is that a cer-
tain gland is swollen. If you have the disease, the chance that this gland is
swollen is 97%, while if you do not have the disease, the chance is 0 that
it is swollen. You immediately examine the gland. The problem is that it
18 hard to determine if it is swollen or not. It is the first time you actually
examine the gland and — not being a physician — you do not know what its
size ought to be. You are uncertain, but you think the chances are 50% that
the gland is swollen. What chances should you assign to having the disease?

How should we update given such a scenario, and the three kinds of
probability feeding into it? We will give our answer in the next section. But
before we do, it may be useful to state more precisely what we are up to here.
We are not saying that there is no way classical probability theory could
handle the preceding scenario. Indeed, it can, since there is always great
freedom in where to encode relevant probabilities. But what we want here is
a systematic DFE L-style update mechanism that retains the elegance of the
earlier product scheme, while allowing for the natural threefold structure of
probability that we see.

4.2. Update models and probabilistic product update

For a start, our static epistemic-probabilistic models M are still the same as
before, and so is our epistemic-probabilistic language. We will also continue
using the earlier notation [A, e]p for the effects of executing an update model
(A,e) in the current epistemic probabilistic model M. Our first task is
to define appropriate probabilistic update models. For this purpose, we
will redefine the earlier update models, so as to make them look more like
processes consisting of various events with uniformly specified occurrence
and observation probabilities:

DEFINITION 10 (Probabilistic update models). Probabilistic update models
arestructures A = (E, ~, ®, pre, P) where:

e F is a non-empty finite set of events,
e ~ is a set of equivalence relations ~; on E for each agent i € Ag,
e d is a set of pairwise inconsistent sentences called preconditions,
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e pre assigns to each precondition ¢ € ® a probability distribution over £
(we write pre(y, e) for the probability that e occurs given that ¢),
e For each ¢, P; assigns to each event e a probability distribution over F.

The formal language for the preconditions ® is left open, but it will be
formally defined in Section 5. Just as for ordinary update models there is a
harmless simultaneous recursion here.

The definition should be understood as follows. Part of the models con-
sists in the specification of ‘occurrence probabilities’ of a process which makes
events occur with certain probabilities, depending on a set of conditions .
Such a process is captured by the function pre. Diseases and quiz masters
are such processes, that follow rules of the form “if p holds, then do a with
probability ¢”. But one can also think of Markov Processes or other stan-
dard probabilistic devices. The ‘evidence spaces’ of Halpern and Pucella
[14] that connect hypotheses with a space of possible observations are very
similar as well.

The second component of the models are the ‘observation probabilities’
represented by the functions P;. The probability P;(e)(e’) is the probability
assigned by the observer i as to event €’ taking place, given that e actually
takes place®. In other words, given what the observer experiences when event
e actually occurs, the probability that €' is actually taking place according
to i is Pj(e)(e’). These probability functions add a probabilistic structure
to the uncertainty relations ~; in much the same way as they do in the
static models®.

Our next task is defining a dynamic update rule using these models.
Merging the input from all three sources of probability can be done in various
ways, but the base mechanism that we propose here assigns equal weight to
all three:

DEFINITION 11 (Probabilistic Product Update Rule). Let M be an epis-
temic-probabilistic model and let A be a probabilistic update model. If s is
a state in M, write pre(s, e) for the value of pre(p, e), where ¢ is the element
of ® that is satisfied in M, s. If no such ¢ exists, pre(s,e) = 0.

Now, the product update model M x A = (S',~', P', V') is defined by:

8Note that P;(e) represents observation probabilities in probabilistic update models
and P;(s) represents probabilities in the epistemic probability models.

90ne more argument in favor of distinguishing these various probabilities may be this.
One might think of an occurrence probability more in terms of objective frequencies, and
of observation probabilities more as subjective probabilities. Thus, our perspectives allows
for natural co-existence of both major views of probability within the same scenario.
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= {(s, )|sESeEEandpre(se)>0}
o (s,e)w (s',¢) iff s ~; s and e ~; €

Pl((s,6), (>¢)) =
Pi(s)(s") - pre(s’,€e’) - Pi(e)(€)
Y RO prels ) Ble)(e")

s'’eSe’eF
if the denominator > 0 and 0 otherwise

o V'((s,€)) = V(s)

So, the new space of states after the update consists of all pairs (s, e) such
that event e occurs with a positive probability in s (as specified by pre). The
indistinguishability relations are defined just as before.

The most interesting part is the definition of the new probability mea-
sures, and it reflects our earlier intuition of the Hypochondriac example. The
new probabilities P/(s,e) for (s, €') are the arithmetical product of the prior
probability for s’, the probability that ¢’ actually occurs in s’, and the prob-
ability that i assigns to observing €’. To obtain a proper probability measure
in the resulting state, we normalize the computed product value. Taking a
normalized product of probability measures is similar to Dempster’s rule for
combining beliefs (with belief functions as probability measures), but our
rule does not grind all probabilities together, as usual — but rather sepa-
rates out the process description and the observation probabilities, while it
allows for indices for many agents in a natural manner'?.

Here is how our general update mechanism works out in practice.

Example: The Hypochondriac Again In our example of the hypochon-
driac feeling a certain gland, the initial hypothesis about the proposition p
of having the disease is captured by a prior probability distribution

1 99.999
100.000 100.000
bpe-------- o p

10Tf the denominator in the definition of the new probability measure sums to 0, we just
stipulate that the value of the whole division is 0. This means that the model M x A is not
strictly speaking a probabilistic epistemic model: after an update, P;(s,e)(-) may assign
probability 0 to all states. From a strictly formal viewpoint, this is no problem (and the
choice is certainly defendable from a probabilistic viewpoint as well, cf. e.g. [2]), but for the
reader who does not like this feature, there are straightforward ways of circumventing it.
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In our scenario, we also take this to be the hypochondriac’s initial infor-
mation state. Next, the hypochondriac feels whether the gland is swollen,
assigning our probabilities regarding the disease (if he has the disease, he
has a swollen gland with probability .97) and his power of observation (he
thinks the gland is swollen with probability .5) as above, resulting in the
following probabilistic update model:

P — 0.97 — swollen (.5)

A
Q

0.00D

“p —— 1 — normal (.5)

The product of our initial state with this model is as follows:
97

10.000.000
p, swollen e

N
|
!
!
|
|
|
|

N

p, normal e -------- o —p, normal
3 99.999
10.000.000 100.000

This diagram is our new probabilistic information state after the whole
episode. The probability the Hypochondriac should assign to having the
disease is still 1 in 100.000. Since his observation was inconclusive he has
not gained any information about whether he has the disease or not.

But our mechanism could also lead to other outcomes. Had the Hypo-
chondriac found it more probable that the gland was swollen, the probability
of having the disease would have been higher than 1 in 100.000, and had he
found it more probable that it was not swollen, the probability would have
been lower than 1 in 100.000.

Discussion. Now, one example proves very little. Is our update rule
‘the correct one’? We do feel that it is a very straightforward way of weigh-
ing probabilistic information when engaging in what DFEL is good at: the
systematic construction of new information spaces, in our case: epistemic-
probabilistic models. But we note that it is less radical than other update
rules, e.g., Jeffrey Update, in that it does not let the observation probability
of the new event override the prior. Likewise, if we were to state things in
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terms of belief revision, a new observation strongly in favor of some propo-
sition ¢ need not immediately lead us to believe that ¢, because of the
influence of the prior, amongst other things — though a public observation
of ¢ would, because of the filtering role of its precondition. However this
may be, we now proceed to show that our proposed update rule raises in-
teresting questions, and allows for systematic logical analysis. In Section 6,
we look at variants of our rule that weigh its three factors differently, and
Section 7 has further alternatives.

As for connections with the existing literature, we just say this. We have
emphasized a view of update models with occurrence probabilities as rep-
resenting probabilistic processes. But there are alternative interpretations.
Occurrence probabilities and the way we update with them are also very
similar to what [24] calls a parametric model, and [14] an evidence space. On
the latter view, observations constitute evidence for certain hypotheses, and
these observations are statistically related to the hypotheses in the way de-
scribed by the model. Then, our preconditions take the place of hypotheses,
our events correspond to observations, and our precondition function corre-
sponds to Halpern and Pucella’s [14] likelihoods. Updating with evidence
spaces goes back to Shafer [23], and they are a special case of our update
rule — for a single agent, and without observation probabilities.

4.3. Further issues, and technical developments

There is much more to the preceding proposal than meets the eye. Many
issues that arise in DEL now also emerge in a probabilistic setting.

Update with epistemic and probabilistic assertions. In dynamic-
epistemic logic, update need not be about factual assertions. I can also learn
that you do not know the answer to some question, and this information may
be highly relevant and useful. And the complete logics describe this update
with complex assertions just as well as with factual ones. The same is true
for our update rule. Events can have complex epistemic-probabilistic precon-
ditions, and through these, information can flow from, say, an assertion like
“John knows that Mary assigns probability 1/3 to proposition p”. Our rule
will compute what agents know after this has been publicly announced. This
setting has some surprises for received wisdom, just like dynamic epistemic
logic of assertions. In particular, van Benthem [25] uses higher epistemic
updates to provide counter-examples to Bayes’ Law for factual assertions.

Systematic model construction. Here is another typical feature of
product update that goes beyond simple probabilistic conditioning. We do
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not just eliminate existing states or change prior probabilities, but may also
construct new types of possibility, increasing the number of options. We start
from a simple probability space and, step by step, build up more complex
probability spaces using descriptions of informational events given by update
models. This control over successive spaces may be useful in practice, where
management of relevant spaces, rather than correct use of the probability
calculus, is the main difficulty in reasoning with uncertainty. Over time, the
new possibilities may be viewed as the set of all possible runs of some total
informational process, linking up with more global descriptions in terms of
epistemic probabilistic versions of temporal logics. The update rule provides

a good modeling tool for the analysis of such complex scenarios'!.

We now briefly state a few more technical points, merely to show that
our proposal invites further technical theory that may have independent
interest. For details, we refer to the extended version [27] of this paper.

Conservative extension. First, we have truly generalized the original
non-probabilistic update models of DEL. It is easy to prove that, for each
non-probabilistic update model A there is a probabilistic update model B
such that for each M, if M’ is the non-probabilistic model obtained from
removing the probability measures from M, then M’ x A is the same model
as M x B with its probability measures removed.

Model theory and probabilistic bisimulation. Next, there is the
fundamental issue of expressive power for a language in harmony with the
right structural invariance between models. Kooi [18] proposed a notion of
epistemic-probabilistic bisimulation that is adequate for our static language.
It is easy to show that our product update rule respects such bisimulations
between input models, and hence the model theory of our system is still like
that of its predecessors.

Shifting loci of probabilistic information. Then, even though we
have defended our three-source scheme for probabilistic input, one very nat-
ural question to ask is whether the three components of our system —
prior state probabilities, and occurrence and observation probabilities on

" Sometimes, the ‘events’ in such scenarios serve mainly to enrich the current description
of states. For instance, with the Hypochondriac, initially, we only considered options for
one single aspect of reality: having the disease or not. After the update, we consider more
complex options, like whether the gland is swollen or not. As a reviewer pointed out, in
the current paper, this is not reflected in the logical language, since one need not be able
to express anything about swollen glands. But ‘language enrichment’ per se can be added
to DEL, for instance, using the techniques developed for factual change by van Benthem,
van Eijck and Kooi [29].
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events — are really independent. Intuitively, in concrete scenarios one can
choose where to locate things, shifting between the three kinds. Indeed, van
Benthem, Gerbrandy and Kooi [27] provide a number of technical trans-
formations on update models, showing how under suitable redefinitions of
events, occurrence probabilities can absorb observation probabilities, and
vice versa'?. In our view, such technical observations do not endanger the
intuitive plausibility of our three-source scheme.

Modeling complex temporal scenarios. Finally, here is a general
point about our update mechanism, and the general relation between DEL
and temporal logics of processes over time. While the relationship between
dynamic-epistemic logic and epistemic-temporal logic is somewhat delicate
(cf. [28]), our simple mechanism is more powerful than might appear at
first sight — with applications beyond single episodes of reading letters by
colleagues, or body movements of hypochondriacs. Consider informational
protocols for behavior over time, say, for an agent whose assertions over time
have a certain probabilistic reliability. Here is how we can bring this into
our setting.

The key point here is the freedom we have in choosing what we take to
be the relevant events. Here is how one can update our information about
the kind of process that we are observing, instead of just taking that to
be a fixed piece of knowledge. We make the hypothesis part of the events.
Instead of showing this in formal detail, we give a simple example:

Say, we meet a person telling us something in one of the ubiquitous
‘island puzzles’ beloved by logicians: who might be a truth-teller or a liar.
We have to find out what is what (cf. [19, Chapter 5], for such scenarios in
straight epistemic logic). To model this, it seems natural to encode the two
relevant hypotheses inside the update model, introducing complex structured
‘pair events’

‘(Truth Teller, !A)’, ‘(Liar, !A)’

encoding both the assertion made, and the type of agent making it. It
is easy to check that this produces the right intuitive results. A general
event construction with pairs ‘(process type, observed event)’ is found in the

120ne word of explanation. Suppressing much notation, the heart of our update rule is
the product format P(s,e) = Pi(s).P2(e|s).Ps(e) multiplying the prior with a conditional
occurrence probability with an observation probability. It is clear that we can group factors
differently here, and get the same outcomes computed differently. Thus, while our results
intuitively extend the probabilistic DEL systems cited earlier, they might still fall within
their scope after all under some technical ‘re-encoding tricks’.
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extended version of this paper [27], which shows how, in this manner, the
scope of our analysis extends into more general protocol logics'®. Recent
dynamic-epistemic logics for formal learning theory do just this'.

This concludes the first new contribution of this paper: the distinction
between three sorts of input probability, and the definition of one simple
epistemic-probabilistic update mechanism based upon it. We now pass to
our second main result, the design of a complete dynamic logic for agents
reasoning with our Product Update Rule.

5. Dynamic logics of probabilistic update

In order to reason explicitly about probabilistic information change in a
dynamic-epistemic format, we must extend existing epistemic probabilistic
logics with appropriate dynamic reduction axioms. In this section, we show
how this can be done for a logic based on our product update semantics.

5.1. Adding probabilistic inequalities

As explained before, the crucial information about our Product Update Rule
will be reflected in recursive ‘reduction axioms’, which state when proposi-
tions get certain probabilities after an epistemic event took place. More-
over, we already saw that such axioms express a certain harmony between
the dynamic and static parts of an epistemic language. In order to obtain
completeness in this style, we crucially need what might look like a mere
technical feature of the system of Fagin and Halpern ([15], [7]). They add
linear inequalities to the language of epistemic-probabilistic logic:

a; X Pi(p1) + -+ an x Pi(pn) >0

where a7, ..., a,, 3 are rational numbers. Incorporating this feature, here is
the total dynamic language that we will use.

DEFINITION 12 (Dynamic-epistemic-probabilistic language). The dynamic-
epistemic-probabilistic language is given by the following Backus-Naur form:

pu=plop oA | K| [Acelp|ar-P(e1)+-+an- Pi(en) >0

13Even so, van Benthem, Gerbrandy, Hoshi and Pacuit [26] do propose a full-fledged
merge of dynamic-epistemic logic with explicit epistemic temporal protocols in the end.

" Gierasimezuk [11] shows how things fall into place by casting states of a learning
process as pairs of DFE L-style events and hypotheses about the eventual outcomes.
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where A is a probabilistic update model, and e an event from the domain of
A, while «4, 3 stand for rational numbers.

Note again that there is a joint recursion hidden in this set-up: the formu-
las that define the preconditions in our probabilistic update models come
from the same language that we are defining here, but through the dynamic
modalities, such models themselves enter the language again. The semantics
for [A, e]e is similar to the non-probabilistic case.

DEFINITION 13 (Semantics of probabilistic updates models). Let an epis-
temic probability model M = (S,~, P, V) be given, with s € S. The key
truth clause is:

M,s = [A,ely iff for all p € @ if M, s = ¢, then M x A, (s,e) E ¢
where M x A is the product update model.

5.2. A complete dynamic-epistemic probabilistic logic
With all this in place, here is the main result of this section:

THEOREM 1. The dynamic-epistemic probabilistic logic of update by proba-
bilistic event models is completely axiomatizable, modulo some given axiom-
atization of the logic of the chosen class of static models.

PROOF. We explain the numerical core idea first. To obtain a complete logic
for product update, we must find the key axiom that relates formulas of the
form [A, e]y) with ¢ involving probabilities to static assertions with suitable
probabilities in the original model (M, s). The following calculation is the
heart of our reduction.

Heuristic analysis. Consider the probability value P;(1)) of a formula
in a product model (M, s) x (A,e). In the equations below, we drop some
subscripts, exchanging exactness for legibility. We will abbreviate P;(s) in
the initial model with PM, write PM*4 for the value of Pj(s,e) in the
product model, and write P4 for P;(e) in the action model. Furthermore,
we write (A, e)y for =[A, e]—).

I > eserca PM(s") - pre(s”,e") - PA(e") > 0, the following must hold:
PMXA(w) — Z PMXA(S/,G/)

(s',¢/) in MxA:MxA,(s",e") =y

_ Z PMXA(S/,GI)

s'eS,e’eE:M,s'"=(A,e' )
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Zs’éS,e’GE:M,s’#(A,e’)@ZJ PM(S/) ’ pre(s’, 6/) ’ PA(el)
Y sres,eren PM (") - pre(s”, ") - PA(e")

Yweseermsiiaeyy PM () - pre(s’ ¢) - PA()
ZS,,E&G,,EE PM(s") - pre(s”,e") - PA(e")

The numerator of this last equation can be written as

> PM(s') - pre(p, ) - PA(e)
ped s'eS,e’€E,M,s' =, M,s'=(A,e' Y1)

which is equivalent to
> PMp (A e)p) - pre(p,e) - PA()
ISR

We can analyze the denominator of the equation in a similar way, and
rewrite it as

> Pulyp)-pre(p,€”) - Pa(e”)
ped, e’ cE

In other words, we can rewrite the probability P™*4(¢) in the new model
as a term of the following form:

PMXA(w) _ Z@E@,@’EE PM(QO A <A7€/>¢) : kap,e’
Z@E@,@”GE PM(‘)O) : ktp,e”
where, for each ¢ and f, k, s is a constant, namely the value pre(yp, f) -PA(f).

This observation gives us a reduction axiom of sorts. Because both the
set of preconditions ® and the domain of A are finite, we can enumerate

them as ¢, ..., ¢, and eq,...,e,. We can rewrite a formula in which ‘P’
refers to the probabilities after the update of the form
(A, e)P(y) =r

to an equation in which ‘P’ refers to probabilities in the prior model:
Zlgign,lgjgm K e; - P(pi N (A, e5)) -
Z1§ign,1§j§m ksoi,ej - P(pi) a
which can be rewritten to a sum of terms:
Pi<i<ni<j<m Keie; - Ploi A (A, €5)1)+
Z1gz‘§n,1§j§m —1 kg, e, Plgi) =0

The key probabilistic reduction axiom. To express these observations
as one reduction axiom in our formal language, we need sums of terms to deal
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with single probability assignments after the update. A language with only
simple equalities cannot do this, and thus it is not in ‘expressive harmony’
in our terms. But our language with linear inequalities is up to the job.

Here are the principles that we need. Concentrating on the only part of
our language that is new, we must achieve a reduction, not just for single
probability assignments, but also for linear inequalities of these. In order to
achieve this, we start with a formula of the form

[A,e](a1 - P(¥1) + -+ ag - P(ty) > B)
We can replace the separate terms P(v) after the modal update operator

by their equivalents as computed just before. We then obtain an expression
of the form

Y i<h<ki<i<ni<j<m Oh - ke e; - Poi N [Asej]n)+
Z1gz‘§n,1§j§m 8- kw,ej “P(pi) 20
This is an expression in the language. To formulate the axiom, then, let
us abbreviate this last inequality as x. The above formulas are equivalent
only under the condition that the denominator of the equation that is used
to compute the posterior probabilities is greater than 0. The full axiom
then becomes:

([A,e](ar - P(¢1) + -+ +ap - P(Yg) > B) <

(Zl<i<n,1<j<m kpie; - Plpi) 20— X)/\

(Zl<i<n,1<j<m kpie; - Plpi) =0 —0 > 3))

Finale: the complete logic. The other reduction axioms for our system
are familiar from the non-probabilistic event updates. We only need to
formulate the preconditions of an event in the object language. We can
define pre 4 . to be the sentence \/ >0 - We then have the following
set of valid equivalences: -

pED,pre(ip,e)

L. [A e]p < (prey . — p) if p is an atomic formula

[A, elp Nip — [A el N [A, €]y

[A7 6]—\()0 A (preA,e - _‘[Av G]Lp)

[A e]KZSO - (preA,e - /\e~¢f KZ[A7f]§0

Our theorem now follows by the usual argument. Applying the reduc-
tion axioms, each formula in the extended dynamic epistemic probabilistic
language is provably equivalent to one in the base language, and hence it
suffices to prove its static equivalent in the complete language of Halpern
and Fagin. [

=W
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Note that our methodology via reduction axioms yields a relative, rather
than an absolute axiomatization of the full dynamic language. One can
take any base system of reasoning about probabilities for the chosen static
models, and the reduction axioms will then also allow for reasoning about
effects of dynamic actions on top of that. The conditions under which the
theorem applies are mainly two. First of all, the base logic should be able to
express the above type of linear inequalities. The factors in these inequali-
ties should be able to capture the probability values in the update models,
because these turn up as k, s in the axiom. Secondly, the base logic should
be formulated carefully, because uniform substitution does not hold in the
dynamic logic — given the special reduction axiom for atomic formulas.
That means that we need axiom schemes rather than axioms and the rule
of substitution of equivalents. But that should be about it — any reason-
able axiomatization for any subclass of our probabilistic epistemic models
leads automatically to a complete axiom system for the dynamic language
for update over these models'®.

This second main result of our paper shows that our framework can
formulate rich probability logics, in which information change due to proba-
bilistic events is described explicitly. Moreover, the preceding completeness
argument allows us to analyze complex probability updates over a wide vari-
ety of static base logics with standard semantical and proof-theoretical tools.

6. Parameterizing the Update Rule

The third and final contribution of this paper is an analysis of possible
policies and agent-diversity in epistemic-probabilistic update.

6.1. Inductive logic, policies and weights

Our analysis so far identified three component probabilities that drive in-
formation update. But this still leaves out one more major issue, having to
do with legitimate diversity of update rules. In the earliest publications on
Inductive Logic in the 1950s, Carnap [6] pointed out that update requires
another component, viz. a policy on the part of agents. We have a current
probability distribution, encoded in the model M. We observe a new event,
encoded in an update model A. The resulting model will now depend on
how much weight agents assign to the two factors: ‘past experience’ versus

15This relative style of axiomatization may even make special sense in quantitative prob-
abilistic settings, since we can ‘factor out’ the possibly high complexity of the underlying
numerical reasoning in standard mathematical structures.
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‘the latest news’. The result was Carnap’s famous ‘continuum of induc-
tive methods.” Diversity of update policies is also a key feature in modern
Learning Theory [17], and belief revision theory [9]. See also [19] on diver-
sity of update policies inside non-probabilistic dynamic-epistemic logic, for
agents with different memory capacities or different belief revision habits.
By contrast, our updates in Section 4 essentially assigned equal weight to
all three factors.

Carnap’s continuum of inductive methods modeled compromises between
such extremes by assigning weights to the probabilities that go into the
Update Rule. These weights seem an independent dimension when modeling
updating agents, viz. how they use the evidence that is given by probabilistic
update models, and we will make a proposal later on for a rule that allows
for variation. But before doing so, let us first consider a radical alternative.

6.2. Jeffrey Update and ‘over-ruling’

Actually, there already exists a well-known alternative probabilistic update
rule, which favors new evidence absolutely over the prior probabilities, the
so-called Jeffrey Update. This sort of update cannot be modeled using our
product update rule. Yet, as we will see below, by parameterizing the update
rule we are able to capture it.

Let us first consider this example, adapted from Halpern [13]:

EXAMPLE 2 (The Dark Room). An object in a room has one of 5 possible
colors, 3 of them light (red, yellow, green), 2 dark (brown, black). We have
an initial probability distribution over these five cases, say, the equiprobability
measure. Now we make an observation of the object, such that we assign a
probability of 3/4 to the object being dark. What are the new probabilities?

Jeffrey Update takes this scenario as an instruction of the following form.
The new probability of the object being dark must become 3/4, and that of
its being light 1/4. But within those zones, the relative probabilities of the
five initial cases should remain the same. Thus, the radical intuition behind
the Dark Room scenario tells us to do two things:

e Set the probability values of propositions in some partition according to
some stipulated values coming from the new observation,
e Stick to the old probability ratios for states within partition cells.

More precisely, the information contained in a Jeffrey Update is given by a
pair (®, P) of a set of sentences partitioning the logical space and a proba-
bility distribution P over ®. The Jeffrey Update of a probability measure
P°'Y with this new information is defined as:
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P (s) = P*(s | ¢) - P(e)

Thus, in this update scenario, the observation of the new signal completely
overrules any prior information about the sentences in ®.

Excursion: a comparison It is interesting to compare Jeffrey Update
with our Product Update scenario so far. To do so conveniently, we make
things comparable by taking an update model with ‘signal events’ for the rel-
evant propositions (only one such event can happen in each state), and then
assigning them observation probabilities equal to the desired Jeffrey values.
Formally, the information represented by (®, P) is then easily captured in an
event model A = (®,~, ®, pre, P) as before with ‘signal events’ for partition
members. Here we set pre(p, ) = 1 iff ¢ = ¢. For instance, with the ob-
ject in the Dark Room, we have two signals ‘Light’, ‘Dark’, with occurrence
probabilities 1 and 0 only, and observation probabilities 1/4, 3/4.

Now, our earlier straight Product Update will not get the same effect
here, and it is easy to see why. Its value for the probability that the object
is dark will weigh two factors: the observation probability, but also the prior
probability that the object was dark. This interpolates somewhere between
2/5 and 3/4. And there may be something to this. The way the Dark Room
is described by Halpern [13], it is not so clear intuitively that one would
want to discard the prior in Jeffrey’s manner.

Even so, Jeffrey Update is a widely accepted and interesting rule. It has
natural counterparts in belief revision, where ‘lexicographic reordering’ of
states according to plausibility on the basis of a new fact A makes all A-states
better than all —A-states, but inside these two zones, the old comparison
order is retained.'6

Before we do something about this, a methodological comment is in
order concerning the scope of update stipulations of the ‘overruling’ kind.
Jeffrey Update sets the probabilities of the elements of ® to certain specified
values. This will only work if ® contains ‘factual’ sentences without proba-
bility operators or epistemic operators which are sensitive to model changes.
Formulas containing information about current probabilities or epistemic
possibilities do not in general remain constant over an update — as we have
observed before. This observation high-lights a matter of ‘temporal’ perspec-
tive. DFE L-style systems describe update through ‘preconditions’: what we
learn from observing an event is what was true in order for it to happen. The

16 Jeffrey Update with over-ruling is also the model for the general ‘Priority Update
Rule’ of Baltag and Smets [5]. So, the failure of our Product Update Rule in subsuming
such a natural scenario seems a problem to be taken seriously.
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reduction axioms express this backward-looking feature, analyzing precondi-
tions for assertions. By contrast, Jeffrey Update involves ‘forward-looking’
instructions of the type found in belief revision theory, or ST IT-type action
logics: ‘See to it that A’, ‘Come to believe that A’. Thus, the two perspec-
tives toward new beliefs and probabilities are related, but have a somewhat
different thrust. We prefer the ‘backward-looking’ perspective, since it can
deal with non-factual information without any problem.

6.3. General weighing: the ABC formula

Now suppose that we want to allow agents to give different weights to the
three probability factors in our update scenario. This can be done in various
ways, but a convenient one would work with three numbers «, (3, v from the
interval [0, 1]. These numbers represent the respective strength of the three
kinds of probabilities in the light of new evidence, with 0 meaning “does not
count at all” and 1 representing the judgment that this evidence is at least
as good as any other.

Before formulating our weighed update rule, we need to consider more
precisely which prior probabilities actually change when we encounter the
evidence represented in an update model. An update model is about some-
thing specific — it represents evidence about the probabilities of the set of
preconditions ®, and no more. Our update rule reflects this, as it essentially
only changes probabilities of members of the ®, and changes the probabil-
ities of other propositions only in so far as it is necessary to accommodate
this change. If we, to use our earlier example, choose to give the evidence of
medical self-examination a high weight with respect to our prior beliefs, this
is no reason to adapt our prior probabilities about unrelated information,
say, about where we parked our car yesterday night. In this way, it is similar
to Jeffrey Update we discussed above.

More precisely, with our Product Update Rule, we have this property:

Fact 1. If states s and t satisfy the same precondition in ® on E, then for
all e the ratio of the probability of the sets {(s,e) | e € E} and {(t,e) | e € E}
1s the same as the ratio of the probabilities of s and t before the update.

We want to preserve this property for our weighed update rule. If we
assign a low weight to our prior probabilities, we should only do that with
regard to the propositions in the relevant set ® of preconditions of E. This
can be done by an equation with a numerator of the following form:

Pi(s)(s" | ps) - Pi(s) ()™ - pre(s’,€')? - Pi(e)(e)",

where we stipulate that 20 = 1 for all x.
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The complete statement of our parameterized update rule then becomes:
DEFINITION 14 (Weighted Product Update Rule). P/((s,e), (s',¢)) :=
Pi(s)(s' | ) - Pi(s)(s))° - pre(s',€)? - Pi(e)(€)
Yo B | o) - Pils)(s")* - pre(s”, ¢")B - Pi(e)(e")

s"€S, e €E

if the denominator > 0 and 0 otherwise

To understand the power of this mechanism, one can consider a number
of special cases of interest.

First of all, setting all three weighing factors equal to 1, returns our
original product update.

Next, setting «, 3,7 = (1,0,0) effectively ‘binarizes’ the new evidence:
all events that can occur will occur with equal probability at each state.
This does not mean exactly that all new evidence is ignored — states that
were eliminated by the unweighed update will still be eliminated. What it
does mean that all probabilistic evidence is ‘flattened.” As a special case, it
follows that, if no state in the prior model is eliminated by the update, then it
produces an epistemic product model M x A where the summed probability
of states (s,e) in the product model is the same as the probability of s in
M. This conservatively copies the prior onto the new model, and distributes
the probability of s evenly over the new states (s, e).

Also of interest is the case o, 3,7 = (0,0,0). Here we ignore all evidence
pertaining to ® — not just the new evidence, but also the prior evidence
pertaining to the elements of ® (“Now that I have heard this, I don’t know
what to think anymore”). If the update does not eliminate any states, then
in the new product model, all propositions in ® become equally probable.

Finally, setting a, 3,7 = (0,0,1) is the opposite, extremely radical, pol-
icy where the observation probabilities for e determine the probabilities for
states (s,e). This mimics (and generalizes) the Jeffrey Update for precondi-
tions that do not contain probability statements or epistemic operators.

FAcT 2. The weighted o, 3,y = (0,0,1) update rule is Jeffrey Update.

PRrROOF. We compute as follows. If we omit the 0 factors, we have
Pi(s)(s' | ¢sr) - Pile)(€)
S P o) Pile)e)

s'"eS,e"ekr
if the denominator > 0 and 0 otherwise

P{((S, 6)7 (S/, 6/)) =
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To see that this is like Jeffrey Update, consider the example with the dark
room. There are five equally probable states (red, yellow, green, brown,
black). The observation probabilities are 1/4 and 3/4 for observing a light
color and a dark color respectively. We have that P;(s)(red | light) = 1/3,
and likewise for all light colors. And we have P;(s)(brown | dark) = 1/2
and likewise for black. Going through the calculations reveals that after
executing this update the probability of a light color is now 1/4 and for a
dark color it is now 3/4. |

As for the explicit dynamic logic of our weighted update rule, as long as
the weighed probabilities can be represented in the static language, it can be
axiomatized along the lines of the previous section for the pure case. But a
more interesting logical issue might be to have a language which can define
various types of updating agent explicitly, and then analyze their interaction,
such as learning about other agents’ types, and choosing optimal strategies
for dealing with them.

7. Related work

In the logical literature, combinations of epistemic logics and probabilis-
tic reasoning have been studied since the 1990s (cf. e.g., [30]). Fagin and
Halpern [7] and Halpern and Tuttle [15] were our point of departure for the
static case, and Kooi [18] and van Benthem [25] for the dynamic aspect. In
addition, [13] should be compared as a general study of probabilistic rea-
soning in an epistemic-temporal setting, and in particular also, the work by
Griinwald and Halpern [12] as a study of probabilistic update, including Jef-
frey Update. We also mention the paper by Aucher [1] which was developed
independently in a dynamic-epistemic line. Some of Aucher’s conclusions
seems similar to ours, whereas other features diverge (e.g., he also treats
drastic belief revisions triggered by ‘surprise events’ of probability zero) —
but we leave detailed comparisons to other times, places, and agents.

Next, returning to the very motivation of our update mechanism, Baltag
and Smets [5] raise an interesting challenge to our parameterized ABC ap-
proach, by providing one uniform update rule for qualitative belief update.
The crucial idea here is that we keep the revision rule uniform, while relo-
cating all information about the ‘force’ of the belief revision signal (radical,
conservative, intermediate), to the event model that serves as an input to the
rule. Moreover, interestingly, their rule is like Jeffrey’s in allowing overruling
of old plausibility comparison of states by new plausibilities among events
observed. It would be of interest to see if our Product Update Rule can also
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be cast in this more uniform format, by changing the way we present our
three probability factors as input to our rule.

Finally, other areas are relevant, too. We already mentioned inductive
logic and learning theory as paradigms to be compared, with agents modi-
fying their probability distributions over time. But maybe more pointedly,
the foundations of Bayesian statistics seem close to what we have been
discussing, and the concerns and insights of its practitioners (and also its
critics, cf. Fitelson [8]) seem very congenial to ours. Romeijn [21] is a first
attempt by a person from the latter tradition at a fruitful confrontation with
dynamic-epistemic approaches.

8. Conclusions

We have presented an analysis of three major probabilistic aspects of ob-
serving an event in the framework of dynamic-epistemic logic. The resulting
distinction of prior probabilities, occurrence probabilities, and observation
probabilities seems to make general sense, and through our proposed new
‘product rule’, it allows for an explicit modular view of probabilistic update
and the concomitant construction of successive new probability spaces. The
resulting update logic merges ideas from multi-agent epistemic logic and
probabilistic update in a harmonious fashion. In particular, we have shown
how one can find complete logics for reasoning about and with these updates,
provided the epistemic-probabilistic base language is made rich enough. Fi-
nally, we have shown how our approach can be parameterized to different
update policies, representing different ways of responding to new evidence.

We believe that this is just a start. Throughout our paper new technical
questions have come up, while we feel our system might also have uses in
practice. In particular, our explicit calculus of model construction makes
sense in analyzing well-known probabilistic scenarios, while qualitative ver-
sions of our product update rule might provide a richer view of the events
that lead to belief revision.
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