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Sven Ove Hansson Measuring Uncertainty

Abstract. Two types of measures of probabilistic uncertainty are introduced and in-

vestigated. Dispersion measures report how diffused the agent’s second-order probability

distribution is over the range of first-order probabilities. Robustness measures reflect the

extent to which the agent’s assessment of the prior (objective) probability of an event is

perturbed by information about whether or not the event actually took place. The prop-

erties of both types of measures are investigated. The most obvious type of robustness

measure is shown to coincide with one of the major candidates for a dispersion measure,

the mean square deviation measure.

Keywords: uncertainty measure, second-order probability, readjustment, second-order

probability, subjective probability, objective probability, dispersion measure, robustness
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1. Introduction

Since Knight’s [13] classic account of the distinction between risk and un-
certainty, the latter term has usually been reserved for such lack of knowl-
edge that is not fully expressible in terms of a single probability statement.
The following example can be used to illustrate the nature of (epistemic)
uncertainty: A dime has been found among the property of a deceased card-
sharp. We suspect that the coin may be unfair, but we have no clue to
whether it is in that case biased towards heads or tails. Now suppose that
someone decides to toss the coin. If I have to assign a probability that it will
yield heads, then I will say 0.5. This is the same answer that I would give
before someone tossed a coin that I knew to be fair. However, although the
probabilities are the same, I am much more uncertain about the behaviour
of the cardsharp’s coin than about that of the ordinary coin. Although the
probability is the same in the two cases, they differ in the degrees of uncer-
tainty. Probabilities can be measured in numerical terms. Can degrees of
uncertainty also be numerically measured?

It is the purpose of the present contribution to propose and compare two
types of numerical measures of degrees of uncertainty. In Section 2, a frame-
work for these developments will be informally introduced. It is based on the
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coexistence of objective and subjective probabilities. In Section 3, a formal
representation of that framework is provided. In Section 4 two measures of
uncertainty are introduced that are both based on the assumption that a high
degree of uncertainty is associated with a large dispersion of second-order
probability. In Section 5, an uncertainty measure is proposed that is based
on another principle, namely that uncertainty concerning one’s estimate of
the (objective) chance of a possible event is associated with willingness to
revise that estimate. A theorem that connects the two approaches concludes
the section. All proofs of formal results are deferred to an Appendix.

2. A framework for uncertainty measurement

Although uncertainty is by definition not representable with a single proba-
bility function, it may be representable in other, more elaborate ways. One
of the most common representations of uncertainty is in terms of second-
order probabilities. [26, 24, 11] Second-order probabilities have mostly been
discussed in relation to decision-rules that make use of them. A variety of
such decision rules have been proposed. [3, 14, 15, 18, 5, 6]. In the 1980s
a lively debate took place on the relative merits of some of these proposals.
[16, 17, 18, 19, 6, 25, 22]. However, in this paper decisions or decision rules
will not be discussed. Our focus will be on how to measure uncertainty, not
on how do make decisions in its presence.

Examples with fair and biased coins are instructive, and will therefore
be used throughout this paper. To begin with, suppose that I am certain
that a particular coin is fair. Consider the second-order probability func-
tion that represents my subjective beliefs about the objective probabilities
that rule the behaviour of this coin. This function will assign the proba-
bility 1 to the statement that the coin has the probability 0.5 of yielding
heads. Next, suppose instead that I believe that the coin may be biased.
Then the corresponding second-order probability assigns non-zero probabil-
ity to various statements according to which the probability of heads differs
from 0.5. The most obvious interpretation of such a two-levelled structure
is that the first-order probability is objective (i.e. chance in Lewis’s [20]
terminology) whereas second-order probability is subjective (i.e. credence in
Lewis’s terminology; cf. also [2]). This is the interpretation to which I will
refer in what follows. Since objective and subjective probabilities represent
quite different entities, this interpretation has the advantage of being im-
mune against the standard objection to second-order probabilities, namely
that they have no barrier against repeating the reasoning that took us from
first- to second-order probabilities, and thus no means to avoid an infinite
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hierarchy of higher and higher orders of probabilities. (Other interpretations
of two-levelled probabilities are also possible. Hence first-order probabilities
could represent the subjective probability assignments we would have made
if we had access to a certain body of information. See [1].)

In what follows measures of uncertainty will be developed in a framework
containing this two-levelled structure. The constructions will be based on
three assumptions about subjective and objective probabilities:

First assumption: Subjective probabilities and objective probabilities
are separate entities each of which satisfies the standard probability
axioms.

Second assumption: Subjective probabilities can refer to what the
objective probabilities were, are, or will be, at any point in time.

For our present purposes it is particularly important to note that subjective
probabilities can refer to chances in the past. Suppose that you threw a fair
dice yesterday and obtained a six. If I know this, then I may trivially say
(i) that given what we know today, the (subjective or objective) probability
that the die landed on six yesterday is equal to 1. However, I may also
(ii) provide the best estimate of what the objective probability of landing on
six was yesterday before the die was tossed. Given what we know today this
estimate will expectedly be 1/6. The second type of statement is common
in everyday parlance, but not easily expressible in models of probabilistic
reasoning that merge all probabilistic statements into one single probability
function.

Third assumption: Subjective probabilities referring to what the
objective probability of an event E was at a certain point in time can
be revised in retrospect in response to various types of information,
including information on whether or not E actually took place.

In other words, information about whether an event took place is among the
information that can influence a post-event estimate of its pre-event proba-
bility. For a simple example, consider again the cardsharp’s coin. Before we
have tossed the coin, I have a strong suspicion that it is biased, but I have
no clue as to the direction of the bias. Therefore, the best estimate that
I can give of its propensity to yield heads in that toss is 0.5. Next, the
coin is tossed, and yields heads. This outcome gives some support to the
supposition that the coin is biased towards heads rather than towards tails.
Therefore, my best estimate of the coin’s propensity towards heads should
now be higher than 0.5. If the coin is flipped repeatedly, and yields heads
each time, then the estimated value should increase after each toss.
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Posterior adjustments of pre-event probability are most easily accounted
for in relation to a repeatable event type such as coin-flipping. However, it
is important to observe that the probabilities of unique or non-repeatable
events can be readjusted in the same way. Suppose that an accident occurs
that we believed to be highly unlikely. A possible reaction is of course:
“This was extremely improbable, so it must have been a case of unusually
bad luck.” However, a more common response, not least among accident
investigators, is: “Since it happened it seems to have been more probable
than we thought.” This reaction involves an adjustment of the previous
probability estimate (not necessarily expressed or even expressible in terms
of second-order probabilities).

I will use the term readjustment for such post-event revisions of esti-
mates of a pre-event probability that are triggered by information about
whether the event actually took place. Readjustments seem to be a common
and arguably indispensable component of informal probabilistic reasoning.
However, they are not part of the standard repertoire of decision theory
or probability theory. In order to account for them we need to distinguish
carefully between the different types of probabilities that are involved. Oth-
erwise, a readjustment will seem to be a conditionalization of an event on
itself. Such conditional statements have the value 1 for all events. (The
probability of E given that E is of course 1.) Authors who have overlooked
these distinctions have often denounced readjustments as resulting from an
irrational “hindsight bias”. [4, 12])

In what follows, two approaches to the measurement of uncertainty will
be investigated. They rely on different principles. Dispersion measures are
based on the assumption that the more uncertain one is about the value of
an objective probability, the more diffused is one’s second-order probability
measure over the range of first-order (objective) probability values. To ex-
emplify the principle we can use the following version of the coins example:
We know that the cardsharp’s coin is one of three types of coin but we do
not know which. It can be a “tails dime” with the (objective) probability 0
of yielding heads, a fair dime for which the corresponding probability is 0.5,
or a “heads dime” for which it is 1. We may further assume for instance
that the subjective probability is 0.25 that this is a tails dime, 0.5 that it is
a fair dime, and 0.25 that it is a heads dime. Based on this principle, we can
measure a person’s uncertainty in a certain matter by measuring the disper-
sion of the estimated probability over the range between 0 and 1. For this
we need a plausible dispersion measure. This approach will be developed
in Section 4.
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The second approach is based on the equally plausible assumption that
a higher degree of uncertainty concerning a possible event is associated with
greater willingness to revise one’s subjective estimate of the (objective)
chance of that event. If I am quite certain about some probability, then
it takes more to make me change my estimate of it than if I am uncertain.
However, willingness to revise cannot be measured in a fully general way.
Typically, there are many potential pieces of information that can make us
change our view of the probability of some event E. We cannot include all
of them in a manageable measure. Fortunately, one of them can be used
as a standard, thereby providing us with a method to measure willingness
to revise.

To introduce the standard, suppose first that I am certain that a partic-
ular coin is fair. Someone tosses it, and the outcome is heads. My original
estimate of the (objective) probability that this would happen was 0.5. The
new information (one toss yielding heads) gives me no reason to change this
estimate. Next, suppose instead that the cardsharp’s coin is tossed and
yields heads. As above, my subjective probability is 0.25 that this is a tails
dime, 0.5 that it is a fair dime, and 0.25 that it is a heads dime. In this
case, my initial estimate that there was a 0.5 chance of obtaining heads
would have to be adjusted upwards. The reason for this is that we now
know that the coin is not a tails dime, and that the hypothesis that it is a
heads dime has been strengthened in comparison to the hypothesis that it is
a fair dime. The extent to which my estimate of the (objective) probability
of the event (heads in the first toss of the coin) is adjusted when I learn
that the event actually took place indicates how uncertain I was concerning
that probability. This readjustment can be used as the standard revision for
determining willingness to revise that we need to measure uncertainty in a
uniform manner. The details of this approach will be developed in Section 5.

3. Formal preliminaries

The usual notation for probabilities will be used. p(H) denotes the prob-
ability of H, and p is assumed to satisfy the standard probability axioms.
For second-order probabilities, the following notation will be used:

Definition 3.1. A second-order probability distribution is a set of pairs

α = {〈w1, p1〉, ...〈wn, pn〉},

where each pk is a probability function,
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0 < wk ≤ 1 for each wk, and
n∑

k=1

wk = 1.

A second-order probability distribution is unary if it has exactly one element
and dual if it has exactly two elements.

Two second-order probability distributions α and α′ are equivalent,
α ≡ α′, if and only if (i) α = α′, or (ii) one of them is obtainable through
cleavage of an element of the other, e.g. α = {...〈x + y, pk〉...} and α′ =
{...〈x, pk〉, 〈y, pk〉...}, or (iii) they form the endpoints of a series α, β1, ...βn, α′

such that if two distributions are adjacent in this series, then one of them is
obtainable through cleavage of an element of the other.

For any two second-order distributions α = {〈w1, p1〉, ...〈ws, ps〉} and
β = {〈w′

1, p
′
1〉, ...〈w′

t, p
′
t〉} and any number k with 0 < k < 1, the mixture kα∪

(1 − k)β is equal to {〈kw1, p1〉, ...〈kws, ps〉, 〈(1 − k)w′
1, p

′
1〉, ...〈(1 − k)w′

t, p
′
t}.

For simplicity and in order to uphold cognitive realism [9, 10], all second-
order probability distributions will be assumed to have a finite number of
elements. The overall probability function associated with a second-order
probability distribution is obtained in the obvious way:

p(H ↑ α) =
∑

〈wk,pk〉∈α

wk × pk(H)

Uncertainty measures are denoted by m. Subscripts to m are used to distin-
guish between different such measures. Hence, m(H) denotes the uncertainty
concerning H, and m(H ↑ α) the uncertainty concerning H that is inherent
in the second-order probability distribution α.

4. Dispersion measures

This section is devoted to the introduction and characterization of uncer-
tainty measures that operate by measuring the dispersion in second-order
probability distributions. The use of dispersion measures to measure uncer-
tainty is, of course, not a new idea. Ever since Markowitz’s seminal work
[23], it is part of the standard repertoire of economic analysis to use the
mean variance of the (first-order) probability over a variable as a measure
of its uncertainty. Here, dispersion measures will instead be applied to the
second-order probability distribution over first-order probability.

In the statistical literature, two major types of dispersion measures have
been developed, namely those based on (1) the average of the squared differ-
ence between a particular value and the average value (statistical variance),
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Figure 1.

Figure 2.

respectively (2) the average of the absolute value of the difference between a
particular value and the average value (average absolute deviation). These
types of measures both have a long tradition, and neither can be rejected
prior to a careful investigation of its properties. We will therefore investigate
both types of measures, beginning with the former.

A measure based on squared deviations can be developed in four steps,
going from a very simple class of cases to a fully general one. The simplest
cases are those of dual distributions in which both elements have the same
weight and the average is 0.5, i.e. p(H) = 0.5. This is illustrated in Figure 1.
In case (a), the whole mass of the distribution is on the probability value 0.5.
This diagram can illustrate a distribution {〈1, p1〉} such that p1(H) = 0.5. In
case (b), the second-order probability is equally divided between two equally
probable options, namely that the coin has either probability 0.25 or 0.75 of
yielding heads. This diagram can illustrate a distribution {〈0.5, p1〉, 〈0.5, p2〉}
such that p1(H) = 0.25 and p2(H) = 0.75. Diagram (c), finally, illustrates a
distribution of the form {〈0.5, p1〉, 〈0.5, p2〉} with p1(H) = 0 and p2(H) = 1.
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Figure 3.

Clearly, the dispersion of probability values increases as we go from (a) to
(b) and from (b) to (c). The most obvious way to measure the distance
from the mean is the ratio δ

µ as shown in Figure 2. Here δ is the distance
from a probability value to the mean p(H). (Note that in the cases referred
to in this first step, there are only two probability values, and due to the
symmetry of the distribution they both have the same distance to the mean
of the distribution.) We divide δ by the largest possible such distance, which
(again due to the symmetry) is equal to µ, the mean of the distribution. The
square of this ratio, ( δ

µ)2, is the chosen measure. In Figure 1 its value is 0
in case (a), 0.25 in case (b), and 1 in case (c).

In the second step we turn to an arbitrary dual distribution. See Fig-
ure 3. Here we have two deviations, one to the left of p(H) and the other
to its right. The leftwards deviation is δ

µ and the rightwards deviation is
ε

1−µ . A reasonable approach is to use the geometric mean of these two de-

viations,
√

δε
µ(1−µ) . Its square is the proposed measure, to be applied to a

dual distribution:

Definition 4.1. Let α = {〈w1, p1〉, 〈w2, p2〉} be a dual second-order proba-
bility distribution with p1 < p2. The mean square deviation (MSD) of α is
the measure mMSD( ↑ α) such that for all H, mMSD(H ↑ α) = δε

µ(1−µ) , where
µ = w1p1(H) + w2p2(H), δ = µ − p1(H), and ε = p2(H) − µ.

The third step is to extend this measure to a particular class of non-dual
distributions, namely those that are mixtures of two or more dual distri-
butions with the same (overall) probability. The obvious solution is to use
the weighted average of the mean square deviations of the component dual
distributions. Hence, if α = k1α1 ∪ k2α2, where α1 and α2 are dual, and
p(H ↑ α1) = p(H ↑ α2), then we have:
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mMSD(H ↑ α) = k1 × mMSD(H ↑ α1) + k2 × mMSD(H ↑ α2).

The fourth and final step in the construction of this measure is to extend
it to arbitrary second-order probability distributions. This can be done
straightforwardly, due to the following two observations:

Definition 4.2. Let α be a second-order probability distribution and H an
event. Then a paired decomposition of α for H is a set {〈k1, α1〉, ...〈kn, αn〉}
such that α = k1α1 ∪ ... ∪ knαn and

∑n
m=1 km = 1, and that for all m with

1 ≤ m ≤ n: (i) 0 < km < 1 , (ii) αm is an at most dual second-order
probability distribution, and (iii) p(H ↑ αm) = p(H ↑ α).

Observation 4.3. Let α be a finite second-order probability distribution and
H an event. Then there is a finite paired decomposition of α for H.

Observation 4.4. Let α be a second-order probability distribution and H
an event. Let π′ = {〈k′

1, α
′
1〉, ...〈k′

s, α
′
s〉} and π′′ = {〈k′′

1 , α′′
1〉, ...〈k′′

t , α′′
t 〉} be

two paired decompositions of α. Then:

s∑
r=1

k′
r × mMSD(H ↑ α′

r) =
t∑

r=1

k′′
t × mMSD(H ↑ α′′

r )

Hence, each second-order probability distribution can be reconstructed as a
mixture of a set of dual distributions with the same probability, and if there
are several such reconstructions then it makes no difference which of these
we use to calculate the weighted average of the mean square deviation. We
can therefore define the mean square deviation of an arbitrary second-order
probability distribution through the following extension of Definition 4.1.

Definition 4.5. For any second-order probability distribution α and
event H:

mMSD(H ↑ α) =
s∑

r=1

kr × mMSD(H ↑ αr),

where {〈k1, α1〉, ...〈ks, αs〉} is a paired decomposition of α for H.

The other major type of dispersion measure is the average absolute deviation.
Consider a second-order probability distribution α = {〈w1, p1〉, ...〈wn, pn〉}
with the associated overall probability p(H ↑ α). For each vector 〈wk, pk〉
in α, the absolute deviation from p(H ↑ α) is |pk(H) − p(H ↑ α)|, and the
weight that it should be assigned in the calculation of the average is wk.
This could lead us to use
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n∑
k=1

wk × |pk(H) − p(H ↑ α)|

as a measure. However, as can easily be verified, although its minimal value
is 0, its maximal value is 0.5. By doubling it we obtain a measure that has
0 as its minimal and 1 as its maximal value, just like the MSD measure:

Definition 4.6. Let α = {〈w1, p1〉, ...〈wn, pn〉}. Then the average absolute
deviation (AAD) of α is the measure mAAD( ↑ α) such that for all H:

mAAD(H ↑ α) = 2 ×
n∑

k=1

wk × |pk(H) − p(H ↑ α)|

The AAD measure can be axiomatically characterized as follows: (I will
return shortly to the intuitive motivations of the least transparent of these
postulates.)

Theorem 4.7. An uncertainty measure m coincides with mAAD if and only
if it satisfies the postulates:

Spread: Let α = {〈w1, p1〉, 〈w2, p2〉} and α′ = {〈w1, p
′
1〉, 〈w2, p

′
2〉} with

p(H ↑ α) = p(H ↑ α′) and p′1(H) < p1(H) ≤ p2(H) < p′2(H), and let
0 < k ≤ 1. Let β = kα + (1 − k)γ and β′ = kα′ + (1 − k)γ. Then
m(H ↑ β′) > m(H ↑ β).

Calibration: The minimal value of m is 0 and its maximal value 1.

Linear interpolation: If p(H ↑ α) = p(H ↑ β) then

m(H ↑ kα ∪ (1 − k)β) = k × m(H ↑ α) + (1 − k) × m(H ↑ β).

Leverage: If 0 ≤ k ≤ 1 then

m(H ↑ {〈x, p(H ↑ α) + ky〉, ...}) =

m(H ↑ {〈kx, p(H ↑ α) + y〉, 〈(1 − k)x, p(H ↑ α)〉, ...}

Translation: If there is some c such that p′k(H) = pk(H) + c for all
1 ≤ k ≤ n, then

p(H ↑ {〈w1, p1〉, ...〈wn, pn〉}) = p(H ↑ {〈w1, p
′
1〉, ...〈wn, p′n〉}).

Observation 4.8. mAAD satisfies:
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Independence of other probabilities: If α = {〈w1, p1〉, ...〈wn, pn〉},
β = {〈w1, p

′
1〉, ...〈wn, p′n〉}, and pk(H) = p′k(H) holds for all k, then

m(H ↑ α) = m(H ↑ β).

Certainty: If α is unary, then m(H ↑ α) ≤ m(H ↑ β) for all β.

Negation symmetry: m(H ↑ α) = m(¬H ↑ α).

Spread ensures that uncertainty increases as probability mass is moved away
from the centre of the distribution. Leverage ensures that the effect of such
movements of probability mass away from the centre is proportionate to how
far it is removed.

The MSD measure satisfies three of the five axioms that characterize the
AAD measure; the two exceptions are both closely related to the linearity
of the AAD measure.

Observation 4.9. (1) mMSD satisfies Spread, Calibration, Linear interpo-
lation, Independence of other probabilities, Certainty, and Negation sym-
metry.

(2) mMSD does not satisfy Leverage or Translation.

The axiomatic characterization of the MSD measure is left as an open issue.

5. The robustness measure

As explained in Section 2, the robustness of an agent’s estimate of an (ob-
jective) first-order probability can be measured by determining how much it
is perturbed in a readjustment, i.e. a revision by information about whether
the event actually took place. However, readjustments are not easily repre-
sentable in a one-levelled model of probability. Clearly, standard condition-
alization of probabilities cannot be used to represent them, for the simple
reason that p(H|H) = 1. For repeatable event types, readjustments can be
expressed in terms of probabilities of event sequences. Hence, in the coin
example let H denote that the coin lands heads in the first throw and HH
that it does so in both the first and the second throw. Then p(H) is the ini-
tial and p(HH|H) the readjusted estimate of the coin’s propensity to yield
heads. However, for non-repeatable events this representation cannot be
used. A possible solution is to introduce a more limited form of condition-
alization, that does not use all the information derivable from the fact that
the event in question has occurred, but only those parts of this information
that concern what the world was like before up to the actual occurrence of
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the event. For any proposition E and point in time t, let [E]t be the maximal
proposition implied by E that contains all the information that E carries
about particular facts before t and about (probabilistic and other) laws, but
contains no information about events at t or later (other than what can be
inferred from the facts before t and from the laws).

To further clarify the meaning of this notation, let A denote the state-
ment that a certain die yielded six when it was thrown at a point in time t,
namely eight o’clock yesterday morning. Let p(A) denote our best estimate
of the propensity for this to happen. Assuming that we have no specific
information about the die in question, it can be assumed that p(A) = 1/6.
Let B denote the statement that the die was tested with 99 throws yes-
terday evening and that 59 of them yielded a six. Suppose that A and B
are both true and that they are all the information that we have about
the die’s propensities. Then, based on the information A&B our best es-
timate of what the objective chance of A was is 0.6. This can be written
p(A|[A&B]t) = 0.6. Note that [A&B]t differs from A&B in containing no
information about events that happened at time t or later.1 It does however
contain information discovered after t about what the world was like before
t, and this information has impact on our best estimate of what the chance
was for A to happen. Hence, p(A|[A&B]t) �= p(A|A&B) = 1. It is important
to observe that p is not an objective probability but a subjective estimate of
an objective probability. (Otherwise the notation would not have a reason-
able interpretation, since the restriction of informational content represented
by [ ]t makes sense in a condition on a subjective credence function, but not
in a condition for an objective chance function.)

For our present purposes, the time index t of [E]t can be suppressed
without loss of clarity.

In the case of the cardsharp’s coin, p(H|[H]) is the readjusted estimate
of the coin’s propensity to land heads, after we learn that it actually did so.
Similarly, p(H|[¬H]) is the readjusted estimate of the coin’s propensity to
land heads, after we learn that it actually landed tails. (Both [H] and [¬H]
are admissible in David Lewis’s sense. Cf. [20, 21, 7, 8].)

The difference between the two readjusted probabilities p(H|[H]) and
p(H|[¬H]) can be used as a measure of uncertainty. This will be called
the robustness measure since it tells us how robust a probability estimate is
against readjustments:

1Or more precisely: about events at time t or later that cannot be inferred with certainty
from information about what the world was like before t.
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Definition 5.1. The robustness measure mR associated with a probability
function p is the measure such that for all H:

mR(H) = p(H|[H]) − p(H|[¬H]).

It is important to note that the robustness measure can be applied without
knowledge (or existence) of second-order probabilities. It is based on our
probability estimates and how we revise them when we receive new infor-
mation. The only addition to the standard apparatus of probability theory
that we need in order to introduce this measure is the temporal restriction
of information, as denoted by [ ]. However, it is nevertheless interesting to
investigate how the robustness measure relates to second-order probability
distributions in the cases when such distributions exist and our readjust-
ments are based on them.

To see how this can be done, let us again assume that the cardsharp’s
coin has to belong to one of three types: it is either a tails dime with
the (objective) probability 0 of yielding heads, a fair dime for which the
corresponding probability is 0.5, or a heads dime for which it is 1. The
pre-event second-order probabilities that the dime had these properties were
0.25, 0.5, and 0.25, respectively. Thus, we have a second-order probability
distribution α = {〈0.25, pt〉, 〈0.5, pf 〉, 〈0.25, ph〉}, where pt(H) = 0, pf (H) =
0.5, and ph(H) = 1. Now suppose the coin is flipped and yields heads.
This gives us reason to replace α with a revised second-order probability
distribution, to be denoted by α ∗H. If this revision is performed on the w-
values (0.25, 0.50, and 0.25) with standard probabilistic conditionalization,
then we have α ∗ H = {〈0.5, pf 〉, 〈0.5, ph〉}, and consequently p(H|[H]) =
p(H ↑ α ∗ H) = 0.75. Similarly p(H|[¬H]) = p(H ↑ α ∗ ¬H) = 0.25. This
yields an mR-value based on α, namely

mR(H ↑ α) = p(H|[H])− p(H|[¬H]) = p(H ↑ α ∗H)− p(H ↑ α ∗¬H) = 0.5.

This procedure is generalized in the following definitions:

Definition 5.2. Let α = {〈w1, p1〉, ...〈wn, pn〉}. Then

α ∗ H =
{〈

w1 × p1(H)∑n
k=1(wk × pk(H))

, p1

〉
, ...

〈
wn × pn(H)∑n

k=1(wk × pk(H))
, pn

〉}

Definition 5.3. The robustness measure of uncertainty mR is based on a
second-order probability distribution α if and only if it is the case that for
all H, p(H) = p(H ↑ α) and p(H|[H]) = p(H ↑ α ∗ H).
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Observation 5.4. Let mR be based on a second-order probability distribution
α = {〈w1, p1〉, ...〈wn, pn〉}. Then

mR(H ↑ α) =(
1

p(H)

n∑
k=1

wk × (pk(H))2
)

+

(
1

1 − p(H)

n∑
k=1

wk × (1 − pk(H))2
)

− 1

Finally, the following theorem connects our two major approaches to uncer-
tainty measurement. If we base our readjustments on conditionalization of
second-order probabilities, then mR and mMSD coincide.

Theorem 5.5. If a robustness measure of uncertainty mR is based on a
second-order probability distribution, then it coincides with the MSD measure
mMSD that is based on the same distribution.

Appendix: Proofs

The following simplifying notation will be used in the proofs:

Definition 5.6. If α = {〈w1, p1〉, ...〈wn, pn〉}, then
α/H = {〈w1, p1(H)〉, ...〈wn, pn(H)〉} .

Proof of Observation 4.3: Let α/H = {〈x1, y1〉, ...〈xn, yn〉} with n > 2 and
y1 < y2... < yn. We are going to show that α can be decomposed into two
distributions such that one of them is dual and the other has fewer elements
than α. Since α is finite the desired paired decomposition can be obtained
through repetition of this procedure a finite number of times. There are
two cases:

Case i, p
({〈

x1
x1+xn

, y1

〉
,
〈

xn
x1+xn

, yn

〉})
≥ p(H ↑ α): Then there is some

z such that 0 ≤ z ≤ xn and p
({〈

x1
x1+z , y1

〉
,
〈

z
x1+z , yn

〉})
= p(H ↑ α).

We then have:

α = {〈x1, y1〉, 〈z, yn〉} ∪ {〈x2, y2〉, ...〈xn−1, yn−1〉, 〈xn − z, yn〉} =
(x1 + z){〈 x1

x1+z , y1〉, 〈 z
x1+z , yn〉}∪

∪(1 − x1 − z){〈 x2
1−x1−z , y2〉, ...〈 xn−1

1−x1−z , yn−1〉, 〈 xn−z
1−x1−z , yn〉}

Here, p
(
{〈 x1

x1+z , y1〉, 〈 z
x1+z , yn〉}

)
=

= p
(
{〈 x2

1−x1−z , y2〉, ...〈 xn−1

1−x1−z , yn−1〉, 〈 xn−z
1−x1−z , yn〉}

)
,
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and the former distribution is dual and the second has one element less
than α.

Case ii, p
({〈

x1
x1+xn

, y1

〉
,
〈

xn
x1+xn

, yn

〉})
< p(H ↑ α): The proof is

analogous. Here, 〈x1, y1〉 should be decomposed instead of 〈xn, yn〉.

Proof of Observation 4.4: Let α ≡ α′ and α′ = {〈w1, p1〉, 〈w2, p2〉, ...
〈wn, pn〉}, where 〈w1, p1〉 and 〈w2, p2〉 are the two elements that give rise
to the first part of the decomposition π′ of α, etc. Then k′

1 = w1 + w2 and

α′
1 =

{〈
w1

w1+w2
, p1(H)

〉
,
〈

w2
w1+w2

, p2(H)
〉}

. Letting µ = w1p1(H)+w2p2(H)
w1+w2

,
δ = µ − p1(H), and ε = p2(H) − µ we then have:

mMSD(H ↑ α′
1) = δε

µ(1−µ) = δε2+εδ2

µ(1−µ)(δ+ε)

=
(

ε
δ+ε

) (
(µ−δ)2

µ + (1−(µ−δ))2

1−µ − 1
)

+
(

δ
δ+ε

) (
(µ+ε)2

µ + (1−(µ+ε))2

1−µ − 1
)

Using the above definitions of µ, δ, and ε, we can derive:

ε
δ+ε = p2(H)−µ

p2(H)−p1(H) =
p2(H)−w1p1(H)+w2p2(H)

w1+w2
p2(H)−p1(H) = w1

w1+w2
and similarly δ

δ+ε =
w2

w1+w2
. Inserting this we obtain mMSD(H ↑ α′

1) =(
w1

w1+w2

) (
p1(H)2

µ + (1−p1(H))2

1−µ − 1
)

+
(

w2
w1+w2

) (
p2(H)2

µ + (1−p2(H))2

1−µ − 1
)
.

The contribution that this first element of the paired decomposition makes
to mMSD(H ↑ α′) is k′

1 × mMSD(H ↑ α′
1) =

w1

(
p1(H)2

µ + (1−p1(H))2

1−µ − 1
)

+ w2

(
p2(H)2

µ + (1−p2(H))2

1−µ − 1
)
,

and it follows from the weighted average construction that

mMSD(H ↑ α′) =
∑

〈wk,pk〉∈α′ wk

(
pk(H)2

µ + (1−pk(H))2

1−µ − 1
)

=
∑

〈wk,pk〉∈α wk

(
pk(H)2

µ + (1−pk(H))2

1−µ − 1
)
.

The same result can be obtained from the other paired decompositions of α.

Proof of Theorem 4.7: From construction to postulates: This direction of
the proof is straight-forward with the possible exception of the maximal value
part of Calibration. For that part, note that since mAAD(H ↑ α) increases as
probability mass is removed from the average, the maximum of mAAD(H ↑ α)
must be for some α such that α/H = {〈x, 1〉, 〈1−x, 0〉}. Then p(H ↑ α) = x,
and mAAD(H ↑ α) = 2x|1 − x| + 2(1 − x)|x − 0| = 4(x − x2), which has its
maximal value = 1 when x = 0.5.

From postulates to construction: (In this part of the proof we will use
Certainty, that follows from two of the other postulates, see Observation 4.8.)
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It follows from Observation 4.3 that α is a linear combination of at most
dual distributions all of which assign the same probability to H. Therefore,
for this part of the theorem it is sufficient to show that if m satisfies the
postulates, then:

(1) m(H ↑ α) = mAAD(H ↑ α) if α is unary,

(2) m(H ↑ α) = mAAD(H ↑ α) if α is dual, and

(3) m(H ↑ α) = mAAD(H ↑ α) if α is a linear combination of at most dual
distributions that all assign the same probability to H.

(1) follows directly from Calibration and Certainty, and (3) from Linear
interpolation since mAAD also satisfies this postulate. It remains to prove
(2). This proof has two steps. In the first step we are going to show that
m({〈0.5, 0〉, 〈0.5, 1〉}) = 1.

First step: We use Independence of other probabilities and introduce the
notation of Definition 5.6. We know from Spread that the maximal value of
m(H ↑ α) must be for some α such that α/H = {〈1 − x, 0〉, 〈x, 1〉} for some
x. We are going to show that m({〈1 − x, 0〉, 〈x, 1〉) is maximal for x = 0.5.
It is convenient to divide the proof into two cases, x ≥ 0.5 and x ≤ 0.5.
In the former case we have:

m({〈1 − x, 0〉, 〈x, 1〉})
= 2 × m

({〈
1−x

2 , 0
〉
,
〈
0.5, x

〉
,
〈

x
2 , 1

〉})
(Linear interpolation and m({〈1, x〉}) = 0 that follows from Certainty
and Calibration)

= 2 × m
({〈

x
2 , 2x − 1

〉
,
〈
1 − x, x

〉
,
〈

x
2 , 1

〉})
(Leverage)

= 2 × m
({〈

x
2 , x − 0.5

〉
,
〈
1 − x, 0.5

〉
,
〈

x
2 , 1.5 − x

〉})
(Translation)

= 2 × m
({〈

x − x2, 0
〉
,
〈
1 − 2x + 2x2, 0.5

〉
,
〈
x − x2, 1

〉})
(Leverage)

= 2 × m
({〈

x − x2, 0
〉
,
〈
1 − 2x + 2x2 − 0.5, 0.5

〉
,
〈
0.5, 0.5

〉
,
〈
x − x2, 1

〉})
(since 1 − 2x + 2x2 ≥ 0.5 when x ≥ 0.5)

= m
({〈

2x − 2x2, 0
〉
,
〈
1 − 4x + 4x2, 0.5

〉
,
〈
2x − 2x2, 1

〉})
(Linear interpolation and m({〈1, 0.5〉}) = 0 that follows from Certainty
and Calibration)

Due to Spread this expression is maximal when 1− 4x + 4x2 is minimal,
i.e. when x = 0.5.

The proof for the other case, x ≤ 0.5, is similar. Hence m(H ↑ α) has
maximal value when α/H = {〈0.5, 0〉, 〈0.5, 1〉}. It follows from Calibration
that m(H ↑ α) = 1.
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Second step: Let α/H = {〈1 − x, a〉, 〈x, b〉}. Without loss of generality
we assume that a < b. It is convenient to divide the proof into two cases,
x ≥ 0.5 and x ≤ 0.5. We prove here the case when x ≥ 0.5. We have
p(H ↑ α) = a− ax + bx. For a simplifying notation, let s = a− ax + bx. We
then have:

m({〈1 − x, a〉, 〈x, b〉}) =

= 2m
({〈

1−x
2 , a

〉
,
〈
0.5, s

〉
,
〈

x
2 , b

〉})
(Linear interpolation and m({〈1, s〉}) = 0 that follows from Certainty
and Calibration)

= 2m
({〈

(1−x)(s−a)
2(b−s) , 2s − b

〉
,
〈
1 − x

2 − (1−x)(s−a)
2(b−s) , s

〉
,
〈

x
2 , b

〉})
(Leverage)

= 2m
({〈

(1−x)(s−a)
2(b−s) , s−b+0.5

〉
,
〈
1− x

2 − (1−x)(s−a)
2(b−s) , 0.5

〉
,
〈

x
2 , b−s+0.5

〉})
(Translation)

= 2m
({〈

(1−x)(s−a)(b−s)
2(b−s)×0.5 , 0

〉
,
〈
1− (1−x)(s−a)(b−s)

2(b−s)×0.5 − x(b−s)
2×0.5 , 0.5

〉
,
〈

x(b−s)
2×0.5 , 1

〉})
(Leverage)

= 2m{〈x(b − s), 0〉, 〈1 − 2x(b − s), 0.5〉, 〈x(b − s), 1〉})
(since (1−x)(s−a)(b−s)

2(b−s)×0.5 = x(b − s) due to the definition of s)

= 2x(b−s)
0.5 × m({〈0.5, 0〉, 〈0.5, 1〉})

(Linear interpolation and Certainty and Calibration as above)

= 4x(b − s) (since m({〈0.5, 0〉, 〈0.5, 1〉} = 1 according to the first step)

4(b − a)(x − x2) (since s = a − ax + bx)

= 2((1 − x)(a − ax + bx − a) + x(b − a + ax − bx))

= mAAD(H ↑ α)

The other case, x ≤ 0.5, is similar.

Proof of Observation 4.8: Independence of other probabilities follows di-
rectly from Translation, let c = 0.

Certainty follows from Spread and Translation: Let α be a unary distri-
bution. If β is also unary then m(H ↑ α) = m(H ↑ β) follows from Trans-
lation. If β is non-unary, then it follows from Spread (letting p1 = p2) and
Observation 4.3 that m(H ↑ β) > m(H ↑ {〈1, p(H ↑ β)〉}). Due to Transla-
tion, m(H ↑ {〈1, p(H ↑ β)〉} = m(H ↑ α), thus m(H ↑ β) > m(H ↑ α).

For Negation symmetry, let α/H = {〈x1, y1〉, ...〈xn, yn〉}. Then α/¬H =
{〈x1, 1 − y1〉, ...〈xn, 1 − yn〉}, and we have:



38 S. O. Hansson

mAAD(H ↑ α) = 2 × ∑n
k=1 xk × |pk(H) − p(H ↑ α)|

= 2 × ∑n
k=1 xk × |(1 − pk(H)) − (1 − p(H ↑ α))|

= 2 × ∑n
k=1 xk × |pk(¬H) − p(¬H ↑ α)| = mAAD(¬H ↑ α)

Proof of Observation 4.9: Part 1: Linear interpolation, Independence of
other probabilities, Certainty, and Negation symmetry follow directly from
the construction. For Spread, note that since Linear interpolation holds, it is
sufficient to show that Spread holds for dual distributions. For Calibration,
use the case δ = ε = µ = 0.5.

Part 2: To see that Leverage does not hold, it is sufficient to note that
the identity

mMSD(H ↑ {〈x, p(H ↑ α) + ky〉, ...})
= mMSD(H ↑ {〈kx, p(H ↑ α) + y〉, 〈(1 − k)x, p(H ↑ α)〉, ...})

does not hold when x = y = p(H ↑ α) = 0.5 and k = 0.2. That Translation
does not hold follows from

mMSD({〈0.5, 0.0〉, 〈0.5, 0.5〉}) �= mMSD({〈0.5, 0.25〉, 〈0.5, 0.75〉}).

Proof of Observation 5.4: Let α = {〈w1, p1〉, ...〈wn, pn〉}. Then according

to Definition 5.2 α ∗H =
{〈

w1×p1(H)∑n
k=1(wk×pk(H))

, p1

〉
, ...

〈
wn×pn(H)∑n

k=1(wk×pk(H))
, pn

〉}
,

from which it follows that p(H|[H]) = p(H ↑ α∗H) =
∑n

k=1
wk×pk(H)×pk(H)∑n

k=1 wk×pk(H))

= 1
p(H)

∑n
k=1 wk × (pk(H))2. Due to Definitions 5.1 and 5.3 we then have

mR(H ↑ α) = p(H|[H]) − p(H|[¬H]) = p(H|[H]) + p(¬H|[¬H]) − 1 =(
1

p(H)

∑n
k=1 wk × (pk(H))2

)
+

(
1

1−p(H)

∑n
k=1 wk × (1 − pk(H))2

)
− 1.

Lemma 1. If a robustness measure of uncertainty mR is based on a second-
order probability distribution, then it satisfies Linear interpolation.

Proof of Lemma 1: Let α/H = {〈w1, x1〉, ...〈ws, xs〉} and furthermore let
β/H = {〈v1, y1〉, ...〈vt, yt〉}, and p(H ↑ α) = p(H ↑ β). Let 0 ≤ k ≤ 1.

We are going to show that mR(H ↑ kα ∪ (1 − k)β) = k × mR(H ↑ α)+

(1 − k)mR(H ↑ kβ). Due to Observation 5.4 we have mR(H ↑ α) =(∑s
r=1 wr ×

(
(xr)2

p(H) + (1−xr)2

1−p(H)

))
− 1 and in the same way mR(H ↑ β) =(∑t

r=1 vr ×
(

(yr)2

p(H) + (1−yr)2

1−p(H)

))
− 1. From this and (kα ∪ (1 − k)β)/H =
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{〈kw1, x1〉, ...〈kws, xs〉, 〈(1 − k)v1, y1〉, ...〈(1 − k)vt, yt〉} it follows that:

mR(H ↑ kα ∪ (1 − k)β))

=
(∑s

r=1 k × wr ×
(

(xr)2

p(H) + (1−xr)2

1−p(H)

))
+

(∑t
r=1(1 − k) × vr ×

(
(yr)2

p(H) + (1−yr)2

1−p(H)

))
− 1

= k × (mR(H ↑ α) + 1) + (1 − k) × (mR(H ↑ β) + 1) − 1

= k × mR(H ↑ α) + (1 − k) × mR(H ↑ β).

Proof of Theorem 5.5: Due to Observation 4.3, Lemma 1, and the Linear
interpolation property of the MSD measure (Observation 4.9), it is sufficient
to show that the theorem holds for dual second-order probability distribu-
tions. For this purpose, let µ = p(H) and let α/H = {〈w1, µ−δ〉, 〈w2, µ+ε〉}.
Since w1+w2 = 1 we then have α/H = {〈 ε

δ+ε , µ−δ〉, 〈 δ
δ+ε , µ+ε〉}. It follows

from Observation 5.4 that:
mR(H ↑ α) =
= 1

µ ×
(

ε(µ−δ)2

δ+ε + δ(µ+ε)2

δ+ε

)
+ 1

1−µ ×
(

ε(1−(µ−δ))2

δ+ε + δ(1−(µ+ε))2

δ+ε

)
− 1

= (1−µ)(ε(µ−δ)2+δ(µ+ε)2)+µ(ε(1−(µ−δ))2+δ(1−(µ+ε))2)−µ(1−µ)(δ+ε)
µ(1−µ)(δ+ε)

= δε2+εδ2

µ(1−µ)(δ+ε) = δε
µ(1−µ) .
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