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Maria Bulińska On the Complexity of
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Abstract. Nonassociative Lambek Calculus (NL) is a syntactic calculus of types in-

troduced by Lambek [8]. The polynomial time decidability of NL was established by de

Groote and Lamarche [4]. Buszkowski [3] showed that systems of NL with finitely many as-

sumptions are decidable in polynomial time and generate context-free languages; actually

the P-TIME complexity is established for the consequence relation of NL. Adapting the

method of Buszkowski [3] we prove an analogous result for Nonassociative Lambek Calcu-

lus with unit (NL1). Moreover, we show that any Lambek grammar based on NL1 (with

assumptions) can be transformed into an equivalent context-free grammar in polynomial

time.
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1. Introduction

The Lambek calculus (associative or nonassociative) is a calculus of types
introduced by Lambek [7, 8] in order to consider formal grammars as de-
ductive systems. Lambek also proved that the derivability problem for as-
sociative and nonassociative Lambek calculus is decidable. The polynomial
time decidability of Nonassociative Lambek Calculus (NL) was established
by de Groote and Lamarche [4]. Buszkowski [3] showed that the consequence
relation of NL is decidable in polynomial time, and the corresponding cate-
gorial grammars generate context-free languages; the same holds for systems
with unary modalities, studied in Moortgat [10] and for Generalized Lam-
bek Calculus (with n-ary operations). The context-freeness of the languages
generated by NL was earlier proved by Buszkowski [2], Kandulski [6], and
a new proof was proposed by Jäger [5]. The method of interpolation used
in [5] is also essential in our work. We take into consideration Nonasso-
ciative Lambek Calculus with unit (NL1). NL1 enriched with a finite set
of assumptions Γ is denoted by NL1(Γ). To show that the provability in
NL1(Γ) is decidable in polynomial time we adapt the method of Buszkowski
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[3]. Our modification of this method is essential, since we have to eliminate
”nullary” sequents Λ → A as premises of the cut rule. The context-freeness
of the languages generated by systems NL1(Γ) is also established. Further,
we show that any categorial grammar based on NL1(Γ) can be transformed
into an equivalent context-free grammar in polynomial time.

For certain reasons one may be interested in adding some assumptions
to the calculus. What can we gain in this way? First of all, we can study the
consequence relation associated with the given logic. Further, we can use
additional assumptions to describe subcategorization in a natural language.
For example, Lambek [9] uses axioms of the form πi → π to express the
inclusion of the class of pronouns in i-th Person in the class of pronouns.
Bulińska [1] obtained the weak equivalence of context-free grammars and
grammars based on the Associative Lambek Calculus with any finite set of
simple assumptions of the form p → q, where p, q are primitive types. With
arbitrary assumptions, systems of Associative Lambek Calculus generate
all recursively enumerable languages [3]. We can use this fact to surpass
the limitations of context-free languages. NL is naturally related to tree
structures of linguistic expressions. By enriching this calculus with finite
set of assumptions, we can improve its expressibility without losing the nice
computational simplicity. For example, one can take NL as the basic logic
and add axioms of the form (A • B) • C ↔ A • (B • C) and A • B ↔
B•A, for some concrete types A,B, C to admit associativity and permutation
in some special cases. (Moortgat [10] prefers to apply axiom-schemes for
types preceded by special modalities.) Sometimes a limited usage of other
structural rules may be helpful. For instance, any sentence conjunction of
type S\(S/S) can also act as a verb phrase conjunction of type V P\(V P/
V P ), where V P = PN\S. But in Lambek calculus we cannot transform the
former type into the latter (in Associative Lambek Calculus permutation
and contraction are needed). So, the sequent S\(S/S) → V P\(V P/V P )
can be added as an assumption.

2. Preliminaries

First we describe the formalism of NL1. Let At be a denumerable set of
atoms (primitive types). Formulas (also called types) are built from atoms
p, q, r, . . . and the constant 1 by means of three binary connectives \ , / ,
• , called left residuation, right residuation, and product, respectively. We
denote the set of all formulas by Tp1. The set of formula structures STR1
is defined recursively as follows: (i) Λ ∈ STR1, where Λ denotes the empty
structure, (ii) all formulas are (atomic) formula structures, i.e. Tp1 ⊆ STR1,
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(iii) if X, Y ∈ STR1, then (X ◦ Y ) ∈ STR1. We set (X ◦Λ) = (Λ ◦X) = X.
Substructures of a formula structure are defined in the following way: (i) Λ
is the only substructure of Λ, (ii) if X is an atomic formula structure, then
Λ and X are the only substructures of X, (iii) if X = (X1 ◦X2), then X and
all substructures of X1 and X2 are substructures of X. By X[Y ] we denote
a formula structure X with a distinguished substructure Y , and by X[Z] -
the substitution of Z for Y in X. Sequents are formal expressions X → A
such that A ∈ Tp1, X ∈ STR1. The Gentzen-style axiomatization of the
calculus NL1 employs the axioms:

(Id) A → A (1R) Λ → 1

and the following rules of inference:

(1L)
X[Λ] → A

X[1] → A
,

(•L)
X[A ◦ B] → C

X[A • B] → C
, (•R)

X → A; Y → B

X ◦ Y → A • B
,

(\L)
Y → A; X[B] → C

X[Y ◦ (A\B)] → C
, (\R)

A ◦ X → B

X → A\B ,

(/L)
X[A] → C; Y → B

X[(B/A) ◦ Y ] → C
, (/R)

X ◦ B → A

X → A/B
,

(CUT)
Y → A; X[A] → B

X[Y ] → B
.

For any system S we write S � X → A if the sequent X → A is derivable
in S.

The algebraic models of NL1 are unital residuated groupoids . A unital
residuated groupoid is a structure M = (M,≤, ·, \, /, 1) such that (M,≤) is
a poset , (M, ·, 1) is a groupoid with unit 1, satisfying a · 1 = a, 1 · a = a for
all a ∈ M , and \, / are binary operations on M satisfying the equivalences :

(RES) ab ≤ c iff b ≤ a\c iff a ≤ c/b

for all a, b, c ∈ M . Every residuated groupoid fulfills the following mono-
tonicity laws:

(MON) if a ≤ b then ca ≤ cb and ac ≤ bc

(MRE) if a ≤ b then c\a ≤ c\b, a/c ≤ b/c, b\c ≤ a\c, c/b ≤ c/a
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for all a, b, c ∈ M . A model is a pair (M, µ) such that M is a unital
residuated groupoid and µ is an assignment of elements of M to atoms. One
extends µ for all formulas :

µ(1) = 1, µ(A • B) = µ(A) · µ(B),

µ(A\B) = µ(A)\µ(B), µ(A/B) = µ(A)/µ(B).

and formula structures:

µ(Λ) = 1, µ(X ◦ Y ) = µ(X) · µ(Y ).

A sequent X → A is said to be true in the model (M, µ) if µ(X) ≤ µ(A).
In particular a sequent Λ → A is true in (M, µ) if 1 ≤ µ(A). One can prove
the following property for formula structures:

(MON − STR) if µ(Y ) ≤ µ(Z) then µ(X[Y ]) ≤ µ(X[Z]).

3. NL1 with assumptions

Let Γ be a set of sequents of the form A → B, where A,B ∈ Tp1. By
(1L), (•L), (•R) and (CUT), every sequent is deductively equivalent in NL1
to a sequent A → B. By NL1(Γ) we denote the calculus NL1 with the
additional set Γ of assumptions. NL1 is strongly complete with respect
to unital residuated groupoids , i.e. the sequents provable in NL1(Γ) are
precisely those which are true in all models (M, µ) in which all sequents
from Γ are true. Soundness is easily provable by induction on derivations in
NL1(Γ). Completeness follows from the fact that the Lindenbaum algebra
of NL1 is a unital residuated groupoid.

In general, the calculus NL1(Γ) does not possess the standard subformula
property, since (CUT) is a legal rule in this system. Thus, we take into
consideration the subformula property in some extended form. Hereafter,
we always assume that T is a set of formulas closed under subformulas and
such that 1 ∈ T , and all formulas appearing in Γ belong to T . By a T -
sequent we mean a sequent X → A such that A and all formulas appearing
in X belong to T . Now, we can reformulate the subformula property as
follows: every T -sequent provable in NL1(Γ) has a proof in this system such
that all sequents appearing in this proof are T -sequents.

To prove the subformula property for NL1(Γ) we will use special models,
namely unital residuated groupoids of cones over given preordered unital
groupoids. Let (M,≤, ·, 1) be a preordered unital groupoid, that means,
it is a unital groupoid with a preordering (i.e. a reflexive and transitive
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relation), satisfying (MON). A set P ⊆ M is called a cone (or: a downset)
on M if a ≤ b and b ∈ P entails a ∈ P . Let C(M) denotes the set of cones
on M . The cone I and the operations ·, \, / on C(M) are defined as follows:

(M1) I = {a ∈ M : a ≤ 1}
(M2) P1P2 = {c ∈ M : (∃a ∈ P1, b ∈ P2) c ≤ ab}

(M3) P1\P2 = {c ∈ M : (∀a ∈ P1) ac ∈ P2}
(M4) P1/P2 = {c ∈ M : (∀b ∈ P2) cb ∈ P1}.

The structure (C(M),⊆, ·, \, /, I) is a unital residuated groupoid. It is
called the unital residuated groupoid of cones over the given preordered
unital groupoid.

Let M be the set of all formula structures whose all atomic substructures
belong to T and Λ ∈ M . If a sequent X → A has a proof in NL1(Γ) consisting
of T -sequents only, we write: X →T A. First, we define a relation ≤b on M .
X ≤b Y is read: X directly reduces to Y . The definition of this relation is
as follows:

Y [Z] ≤b Y [Λ] if Z →T 1,

Y [Z] ≤b Y [A] if Z →T A,

Y [A • B] ≤b Y [A ◦ B] if A • B ∈ T.

A preordering ≤ on M is defined as the reflexive and transitive closure
of the relation ≤b. Then X ≤ Y iff there exist Y0, . . . , Yn, n ≥ 0 such that
X = Y0, Y = Yn and Yi−1 ≤b Yi, for each i = 1, . . . , n. X ≤ Y is read: X
reduces to Y .

Clearly, (M,≤, ◦, Λ) is a preordered unital groupoid (with unit Λ). More-
over, we have the following fact.

Fact 3.1. If Y →T A and X ≤ Y , then X →T A.

Proof. Assume Y →T A and X ≤ Y . Then, there exist Y0, . . . , Yn, n ≥ 0
such that X = Y0, Y = Yn and Yi−1 ≤b Yi, for each i = 1, . . . , n. We proceed
by induction on n. For n = 0, X = Y0 = Y and of course, X →T A. For
n = 1, we have X ≤b Y . We consider three cases according to the definition
of ≤b.

(1) X = X[Z], Y = X[Λ], Z →T 1. Applying (1L) to X[Λ] →T A we
get X[1] →T A. By (CUT) from the last sequent and Z →T 1 we have
X[Z] →T A.

(2) X = X[Z], Y = X[B], Z →T B. Then, we get X[Z] →T A, as a
conclusion of (CUT) from premisses X[B] →T A and Z →T B.
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(3) X = X[B •C], Y = X[B ◦C]. Then, we get X[B •C] →T A applying
(•L) to X[B ◦ C] →T A.

For n > 1, we have X = Y0 ≤b Y1 and Y1 ≤ Yn = Y . By induction
hypothesis, Y1 →T A. Applying the same argument as for n = 1 we get
X →T A.

Corollary 3.2. X ≤ A (resp. X ≤ Λ) iff X →T A (resp. X →T 1).

Proof. The ’if’ direction is an immediate consequence of the definition of
≤. To prove the ’only if’ direction, assume X ≤ A (resp. X ≤ Λ). Using
(Id) (resp. (1R)) and Fact 3.1, we get X →T A (resp. X →T 1).

Next, we take into consideration the residuated groupoid of cones
C(M) = (C(M),⊆, ·, \, /, I) over (M,≤, ◦,Λ). An assignment µ on C(M) is
defined by setting:

µ(p) = {X ∈ M : X →T p},
for all atoms p. By Fact 3.1, µ(p) is a cone.

Fact 3.3. For all A ∈ T , µ(A) = {X ∈ M : X →T A} .

Proof. We proceed by induction on A. For A = 1, µ(1) = {X ∈ M : X ≤
1} = {X ∈ M : X →T 1}, by Corollary 3.2. The further proof is analogous
to that of Lemma 1 in [3]; we recall it for the sake of completeness.

Let A = B•C. Then µ(A) = µ(B•C) = µ(B)◦µ(C). Assume X ∈ µ(A).
There exist Y ∈ µ(B), Z ∈ µ(C) such that X ≤ Y ◦ Z. By the induction
hypothesis, Y →T B, Z →T C, whence Y ◦ Z →T B • C, by (•R). Using
Fact 3.1, we have X →T A. Now, assume X →T A. By Corollary 3.2,
X ≤ A. By the induction hypothesis and (Id), B ∈ µ(B), C ∈ µ(C). Hence,
B ◦C ∈ µ(A). Using the definition of ≤, we get A ≤ B ◦C, hence X ≤ B ◦C
which yields X ∈ µ(A).

Let A = B/C. Then µ(A) = µ(B)/µ(C). Assume X ∈ µ(A). By the
induction hypothesis and (Id), we get C ∈ µ(C). Hence X ◦ C ∈ µ(B).
Using the induction hypothesis once more, we have X ◦ C →T B. Thus
X →T A, by (/ R). Now, assume X →T A. Let Y ∈ µ(C). By the induction
hypothesis, Y →T C. Using (CUT) to this sequent and (B/C) ◦ C →T B,
we get (B/C) ◦ Y →T B, which means A ◦ Y →T B. By (CUT) again, we
have X ◦Y →T B. By the induction hypothesis, X ◦Y ∈ µ(B), which yields
X ∈ µ(A). The case A = B\C is treated in a similar way.

Fact 3.4. Every sequent provable in NL1(Γ) is true in (C(M), µ).
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Proof. It suffices to show that each assumption from Γ is true in (C(M), µ).
Assume that A → B belongs to Γ. It yields A →T B. We need to show that
µ(A) ⊆ µ(B). Let X ∈ µ(A). Then, X →T A. By (CUT), we get X →T B,
which yields X ∈ µ(B).

Lemma 3.5. The system NL1(Γ) possesses the extended subformula property.

Proof. Let X → A be a T -sequent provable in NL1(Γ). By Fact 3.4, it is
true in the model (C(M), µ), i.e. µ(X) ⊆ µ(A). Since X ∈ µ(X), we have
X ∈ µ(A). But it yields X →T A.

Hereafter we assume that Γ and T are finite. A sequent is said to be
basic if it is a T -sequent of the form Λ → A, A → B, A ◦ B → C. We
describe an effective procedure which produces all basic sequents derivable
in NL1(Γ).

Let S0 consist of Λ → 1, all T -sequents of the form (Id), all sequents
from Γ, and all T -sequents of the form:

1 ◦ A → A, A ◦ 1 → A, A ◦ B → A • B,
A ◦ (A\B) → B, (A/B) ◦ B → A.

Assume Sn has already been defined. Sn+1 is Sn enriched with all se-
quents resulting from the following rules:

(S1) if (A ◦ B → C) ∈ Sn and (A • B) ∈ T , then (A • B → C) ∈ Sn+1,

(S2) if (A ◦ X → C) ∈ Sn and (A\C) ∈ T , then (X → A\C) ∈ Sn+1,

(S3) if (X ◦ B → C) ∈ Sn and (C/B) ∈ T , then (X → C/B) ∈ Sn+1,

(S4) if (Λ → A) ∈ Sn and (A ◦ X → C) ∈ Sn, then (X → C) ∈ Sn+1,

(S5) if (Λ → A) ∈ Sn and (X ◦ A → C) ∈ Sn, then (X → C) ∈ Sn+1,

(S6) if (A → B) ∈ Sn and (B ◦X → C) ∈ Sn, then (A◦X → C) ∈ Sn+1,

(S7) if (A → B) ∈ Sn and (X ◦B → C) ∈ Sn, then (X ◦A → C) ∈ Sn+1,

(S8) if (A ◦B → C) ∈ Sn and (C → D) ∈ Sn, then (A ◦B → D) ∈ Sn+1.

Clearly, Sn ⊆ Sn+1 and all sequents in Sn are basic for all n ≥ 0. We
define ST as the join of this chain. ST is a set of basic sequents, hence it
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must be finite. It yields ST = Sk, for the least k such that Sk = Sk+1, and
this k is not greater than the number of basic sequents. Of course, ST is
closed under the rules (S1)-(S8). The rules (S1), (S2), (S3) are in fact (•L),
(\R), (/R) restricted to the basic sequents, and (S4)-(S8) describe the use
of (CUT) with the same restriction.

Fact 3.6. The set ST can be constructed in polynomial time.

Proof. Let n be the cardinality of T . There are n, n2 and n3 basic sequents
of the form Λ → A, A → B and A ◦ B → C, respectively. Hence, we have
m = n3 + n2 + n basic sequents. The set S0 can be constructed in time
O(n2). To get Si+1 from Si we must close Si under the rules (S1)-(S8). For
the rules (S1)-(S3) it can be done in at most m2 · n steps for each rule. For
example, to close Si under (S1) we must check if (A ◦ B → C) ∈ Si and
(A • B) ∈ T which needs at most m and n steps, respectively. The sequent
A • B → C is added to Si+1 only if it does not belong to this set. To check
this fact the next m steps are needed. To close Si under the rules (S4)-(S8)
at most m3 steps are needed. Hence, we can get Si+1 from Si in time O(m3)
The least k such that ST = Sk is not greater than m. So, we can construct
ST from T in time O(m4) = O(n12).

We take into consideration the system whose axioms are all sequents
from ST and whose only inference rule is (CUT). This system we denote by
S(T ). It is clear that every proof in S(T ) consists of T -sequents only.

If in a proof in S(T ) of some sequent X → A only sequents without
empty antecedents are used as premises of (CUT), the length of all sequents
in this proof is not greater than the length of X → A. But it does not hold if
we allow in (CUT) the premises of the form Λ → A. Therefore we introduce
another system S(T )− whose axioms are all sequents from ST and whose
only inference rule is (CUT) with premises without empty antecedents. This
restricted (CUT) is denoted by (CUT+).

Lemma 3.7. For any sequent X → A, S(T ) � X → A iff S(T )− � X → A.

Proof. The ’if’ direction is evident. To prove the ’only if’ direction we
show that S(T )− is closed under (CUT), i.e.

(*) If S(T )− � X → B and S(T )− � Y [B] → A, then S(T )− � Y [X] → A.

Assume S(T )− � X → B and S(T )− � Y [B] → A. If X �= Λ, then
S(T )− � Y [X] → A by the definition of S(T )−. Assume X = Λ. Then the
sequent X → B is of the form Λ → B and S(T )− � Λ → B, which means



On the Complexity of NL with Unit 9

that Λ → B is an axiom of S(T )−. To prove (*) we proceed by induction
on derivations of the second premise: Y [B] → A. If Y [B] → A is an axiom
of S(T )−, then (Y [B] → A) ∈ ST . By (S4) or (S5), (Y [Λ] → A) ∈ ST

which yields S(T )− � Y [Λ] → A. Assume that Y [B] → A is a conclusion of
(CUT+). Then, Y [B] = Z[Y ′] and, for some C ∈ T , S(T )− � Y ′ → C and
S(T )− � Z[C] → A. We consider the following cases.

(1) B is contained in Y ′. Then Y ′ = Y ′[B]. Let Y ′[B] �= B. By the
induction hypothesis, (*) holds for Λ → B and Y ′[B] → C, so S(T )− �
Y ′[Λ] → C. Since Y ′[B] �= B, we have Y ′[Λ] �= Λ. Using (CUT+), we
get S(T )− � Z[Y ′[Λ]] → A, which means S(T )− � Y [Λ] → A. Now, let
Y ′[B] = B. By the induction hypothesis, (*) holds for Λ → B and B → C, so
S(T )− � Λ → C. Using the induction hypothesis to Λ → C and Z[C] → A,
we get S(T )− � Z[Λ] → A, which means S(T )− � Y [Λ] → A.

(2) B and Y ′ do not overlap. Then B is contained in Z and does not
overlap C in Z. We write Z[C] = Z[B, C]. By the assumption, we have
Y ′ �= Λ. By the induction hypothesis, (*) holds for Λ → B and Z[B, C] → A,
so S(T )− � Z[Λ, C] → A. By (CUT+), S(T )− � Z[Λ, Y ′] → A, which means
S(T )− � Y [Λ] → A.

Corollary 3.8. Every basic sequent provable in S(T ) belongs to ST .

Proof. We proceed by induction on proofs in S(T )−. Assume that X → A
is a basic sequent derivable in S(T )−. If X → A is an axiom of S(T )−, then
(X → A) ∈ ST . If X → A is a conclusion of (CUT+) then X �= Λ. We
consider two cases.

(1) X = B. There exists a proof such that B → A is a conclusion
from premises B → C and C → A. Since proofs in S(T )− consist of T -
sequents only, B → C and C → A are both basic sequents. By the induction
hypothesis, (B → C) ∈ ST and (C → A) ∈ ST . By (S6) or (S7), (B → A) ∈
ST .

(2) X = B ◦C. There exists a proof such that B ◦C → A is a conclusion
of (CUT+) with premises of the form: (B ◦ C → D, D → A) or (B → D,
D ◦ C → A) or (C → D, B ◦ D → A). By the induction hypothesis
these sequents belong to ST . By (S6), (S7), (S8) , in each case, we get
(B ◦ C → A) ∈ ST .

Now, we formulate an interpolation lemma for S(T ).
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Lemma 3.9. (i) If S(T ) � X[Y ] → A, Y �= Λ, then there exists D ∈ T such
that S(T ) � Y → D and S(T ) � X[D] → A. (ii) If S(T ) � X[Λ] → A, then
S(T ) � X[1] → A; it means that D = 1 for Y = Λ.

Proof. The proof of (i) is analogous to that of Lemma 2 in [3]. Assume
S(T ) � X[Y ] → A and Y �= Λ. We proceed by induction on proofs in S(T ).

Assume, that X[Y ] → A is an axiom of S(T ). If Y = X, then (X[Y ] →
A) = (X → A) = (Y → A). We set D = A. Then (Y → D) = (Y → A)
and (X[D] → A) = (A → A). By the assumption of the lemma, we have
S(T ) � Y → A and S(T ) � A → A, since (A → A) ∈ ST . If Y �= X, then
X[Y ] = B ◦ C and Y = B or Y = C. Hence D = B or D = C, respectively.

Assume, that X[Y ] → A is a conclusion of (CUT+). Then X[Y ] = Z[Y ′],
Y ′ �= Λ, and for some B ∈ T , S(T ) � Y ′ → B and S(T ) � Z[B] → A. The
following cases are considered.

(1) Y is contained in Y ′. Then Y ′ = Y ′[Y ]. By the induction hypothesis,
there exists D ∈ T such that S(T ) � Y → D and S(T ) � Y ′[D] → B.
Using (CUT) with the premises Z[B] → A and Y ′[D] → B we get S(T ) �
Z[Y ′[D]] → A, which means S(T ) � X[D] → A.

(2) Y ′ is contained in Y . Then X[Y ] = X[Y [Y ′]] = Z[Y ′] and Z[B] =
X[Y [B]]. By the induction hypothesis, there exists D ∈ T such that S(T ) �
Y [B] → D and S(T ) � X[D] → A. Using (CUT) with the premises Y ′ → B
and Y [B] → D we get S(T ) � Y [Y ′] → D.

(3) Y and Y ′ do not overlap. Then Y is contained in Z[B] and does not
overlap B in Z[B]. We write Z[B] = Z[B, Y ]. By the induction hypothesis,
there exists D ∈ T such that S(T ) � Y → D and S(T ) � Z[B, D] → A.
Using (CUT) with the premises Y ′ → B and Z[B, D] → B we get S(T ) �
Z[Y ′, D] → A, which means S(T ) � X[D] → A.

Now, we prove (ii). Assume S(T ) � X[Λ] → A. We consider three cases.
(1) X[Λ] = Λ. Then Λ → A is a basic sequent derivable in S(T ). By

Corollary 3.8, (Λ → A) ∈ ST . By the construction of ST , (A◦1 → A) ∈ ST .
Applying (S4) we have (1 → A) ∈ ST , which means S(T ) � X[1] → A.

(2) X[Λ] = X[Λ ◦ Z], Z �= Λ. By (i), there exists D ∈ T such that
S(T ) � Z → D and S(T ) � X[Λ◦D] → A. Since D ∈ T , (1◦D → D) ∈ ST .
By two applications of (CUT), using Λ◦D = D, we get S(T ) � X[1◦Z] → A.

(3) X[Λ] = X[Z ◦ Λ], Z �= Λ. Similar to the previous case.

Lemma 3.10. For any T -sequent X → A, X →T A iff S(T ) � X → A.

Proof. Recall that X →T A means that X → A has a proof in NL1(Γ)
consisting of T -sequents only. The ’if’ direction is obvious, since for all
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sequents (X → A) ∈ ST , we have X →T A, by the construction of ST .
The T -sequents which are axioms of NL1(Γ) belong to S0. Thus, to prove

the ’only if’ direction it suffices to show that all inference rules of NL1(Γ),
restricted to T -sequents, are admissible in S(T ). This is obvious for (CUT).
Let us consider (1L). By Lemma 3.9, (1L) is admissible in S(T ).

Other rules are treated as in [3]. Let us consider (/L). Assume S(T ) �
X[A] → C, S(T ) � Y → B and (A/B) ∈ T . We have ((A/B)◦B → A) ∈ ST ,
so it is an axiom of S(T ). By two applications of (CUT) we get S(T ) �
X[(A/B) ◦ Y ] → C. Let us consider (/R). Assume S(T ) � X ◦ B → A and
(A/B) ∈ T . By Lemma 3.9, there exists D ∈ T such that S(T ) � X → D
and S(T ) � D ◦ B → A. Since D ◦ B → A is basic, then it belongs to ST

(Corollary 3.8). By (S3) we have (D → A/B) ∈ ST . So, S(T ) � X → A/B,
by (CUT). For rules (\L) and (\R) the argument is dual. Let us consider
(•L). Assume S(T ) � X[A ◦ B] → C and (A • B) ∈ T . By Lemma 3.9,
there exists D ∈ T such that S(T ) � A ◦ B → D and S(T ) � X[D] → C.
(A ◦ B → D) ∈ ST as a basic sequent provable in S(T ), and consequently
(A • B → D) ∈ ST , by (S1). Using (CUT) we get S(T ) � X → C. Let us
consider (•R). Assume S(T ) � X → A, S(T ) � Y → AB and (A • B) ∈ T .
We have (A ◦ B → A • B) ∈ S0. So, S(T ) � X ◦ Y → A • B, by two
applications of (CUT).

Theorem 3.11. NL1(Γ) is decidable in polynomial time.

Proof. Let Γ be a finite set of sequents of the form C → D. It suffices to
show the thesis for sequents B → A.

Let n be the number of logical constants and atoms occurring in B → A
and Γ. As T we take the set consisting of 1, all subformulas of formulas
appearing in B → A and Γ. Since the number of subformulas of any formula
is equal to the number of logical constants and atoms in it, T has at most
n + 1 elements and we can construct it in time O(n2). By Lemma 3.5,
NL1(Γ) � B → A iff B →T A. By Lemma 3.10, B →T A iff S(T ) � B → A.
Since B → A is basic, then S(T ) � B → A iff (B → A) ∈ ST . Consequently,
NL1(Γ) � B → A iff (B → A) ∈ ST . By the proof of Fact 3.6, the size of
ST is at most O(n3) and ST can be constructed in time O(n12). Hence, the
total time of deciding if NL1(Γ) � B → A is O(n12).

For any type A ∈ Tp1, a Lambek categorial grammar (based on the
system NL1(Γ)) with distinguished type A is a quadruple G = (VG,NL1(Γ),
A, f), where VG is a nonempty finite lexicon (alphabet), f is a mapping such
that for all v ∈ VG, f(v) ⊂ Tp1 and f(v) is a finite set. For a formula
structure X, by s(X) we denote the string of formulas which arises from X
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by dropping all occurrences of ◦ and the corresponding parentheses. The
language L(G,A), generated by G, is defined as the set of all nonempty
strings v = v1 . . . vn over the alphabet VG such that there exists a sequent
X → A derivable in NL1(Γ), such that s(X) = A1 . . . An and Ai ∈ f(vi) for
all 1 ≤ i ≤ n.

A context-free grammar is a quadruple G = (NG, VG, SG, RG) such that
NG and VG are disjoint, nonempty and finite sets, SG ∈ NG, and RG is a
finite set of expressions of the form A → v, where A ∈ NG, v ∈ (NG ∪ VG)∗.
We refer to NG, VG, SG and RG as the set of nonterminal symbols, the set
of terminal symbols, the initial symbol and the set of production rules of G
respectively. We say that a string w is directly derivable from a string v in
G (write v ⇒G w) if there exist strings r, s, t and rule A → s in RG such
that v = rAt, w = rst. We say that a string w is derivable from a string v
in G (write v ⇒∗

G w) if there exists a sequence (v0, . . . , vn) such that n ≥ 0,
v0 = v, vn = w and vi−1 ⇒G vi, for all i = 1, . . . , n. The language L(G)
generated by G is defined as the set of all strings v ∈ V ∗

G such that SG ⇒∗
G v.

Theorem 3.12. If G1 is a Lambek categorial grammar based on the system
NL1(Γ), then for any A ∈ Tp1 there is a context-free grammar G2, such
that L(G1, A) = L(G2) and the transformation of G1 into G2 can be done
in polynomial time with respect to the size of G1.

Proof. Let Γ be a finite set of sequents of the form B → C and A ∈ Tp1.
Fix a Lambek grammar G1 based on the system NL1(Γ). Let Tp1(G1) be
the set of types B, for which there is v ∈ VG1 , such that B ∈ f(v). The
set Tp1(G1) is finite. Let T be the set of all subformulas appearing in A,
in formulas from the set Tp1(G1) and in formulas appearing in Γ. We also
assume 1 ∈ T . The context-free grammar G2 = (NG2 , VG2 , SG2 , RG2) is
defined as follows:

VG2 = VG1 = V, NG2 = T, SG2 = A,

RG2 = {B → v : v ∈ VG2 , B ∈ f(v)} ∪
∪ {B → C : B,C ∈ NG2 , NL1(Γ) � C → B} ∪
∪ {B → CD : B, C,D ∈ NG2 , NL1(Γ) � C ◦ D → B}.

To establish that the languages generated by the grammars G1 and G2 co-
incide, first we prove that L(G1, A) ⊂ L(G2). Suppose v1 . . . vn ∈ L(G1, A).
According to the definition of L(G1, A) there is a formula structure X such
that NL1(Γ) � X → A, s(X) = A1 . . . An and Ai ∈ f(vi), for all 1 � i � n.
By the construction of G2, (Ai → vi) ∈ RG2 , for all 1 � i � n, i.e.
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A1 . . . An ⇒∗
G2

v1 . . . vn. Thus it suffices to prove that A ⇒∗
G2

A1 . . . An.
By the definition of T , X → A is a T -sequent. Using the extended sub-
formula property we have X →T A. In view of Lemma 3.7 and Lemma
3.10, X → A is S(T )−-derivable. An induction on the length of a S(T )−-
derivations shows that if S(T−) � X → A then A ⇒∗

G2
A1 . . . An. As-

sume that X → A is an axiom of S(T )−. If X = A1, A1 ∈ T , then
(A → A1) ∈ RG2 , which means A ⇒∗

G2
A1. Using a similar argument for

X = A1 ◦A2, A1, A2 ∈ T we get A ⇒∗
G2

A1A2. Now, assume that X → A is
a conclusion of (CUT+). Then X = X[Y ], where s(Y ) = AiAi+1 . . . Ak,
1 ≤ i ≤ k ≤ n, and (CUT+) is applied to Y → B and X[B] → A,
where B ∈ T and s(X[B]) = A1 . . . Ai−1BAk+1 . . . An. By the induction
hypothesis, A ⇒∗

G2
A1 . . . Ai−1BAk+1 . . . An and B ⇒∗

G2
Ai . . . Ak. Hence

A ⇒∗
G2

A1 . . . An.
The inclusion L(G2) ⊂ L(G1, A) is easy. Every derivation of A ⇒∗

G2

A1 . . . An can be treated as a derivation of X → A in S(T )−, for some X
such that s(X) = A1 . . . An.

It remains to prove that the transformation of G1 into G2 can be done in
polynomial time with respect to the size of G1. Let n be the number of logical
constants and atoms in A, Γ and Tp1(G1). Then the set NG2 = T , defined
above, has at most n+1 elements and can be constructed in time O(n2). The
number of production rules of the form B → v equals the cardinal number
of the set Tp1(G1) and do not exceed n. The remaining production rules are
the reversed sequents from the set ST . By the proof of Theorem 3.11, the
construction of this set can be done in time O(n12). Hence the total time of
construction of the context-free grammar G2 is O(n12).
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