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Dmitry Zaitsev A Few More Useful 8-valued

Logics for Reasoning with

Tetralattice EIGHT4

Abstract. In their useful logic for a computer network Shramko and Wansing generalize

initial values of Belnap’s 4-valued logic to the set 16 to be the power-set of Belnap’s 4. This

generalization results in a very specific algebraic structure — the trilattice SIXTEEN3

with three orderings: information, truth and falsity. In this paper, a slightly different

way of generalization is presented. As a base for further generalization a set 3 is chosen,

where initial values are a — incoming data is asserted, d — incoming data is denied,

and u — incoming data is neither asserted nor denied, that corresponds to the answer

“don’t know”. In so doing, the power-set of 3, that is the set 8 is considered. It turns

out that there are not three but four orderings naturally defined on the set 8 that form

the tetralattice EIGHT4. Besides three ordering relations mentioned above it is an extra

uncertainty ordering. Quite predictably, the logics generated by a–order (truth order)

and d–order (falsity order) coincide with first-degree entailment. Finally logic with two

kinds of operations (a–connectives and d–connectives) and consequence relation defined

via a–ordering is considered. An adequate axiomatization for this logic is proposed.

Keywords: Generalized truth values, Dunn–Belnap logic, Shramko–Wansing logic, bilat-

tice, trilattice, tetralattice, first-degree entailment

1. Preliminaries

Recently in a series of papers [17, 18, 19] Yaroslav Shramko and Heinrich
Wansing highlighted the importance of generalizing the very notion of a truth
value. This approach has been originated in an early work by J. Michael
Dunn [8, 9] and developed further for a computer reasoning paradigm by
Nuel D. Belnap [6, 7]. It rests essentially on a fundamental idea that any
sentence can be treated as true, false, neither true nor false, as well as both
true and false. The resulting (generalized) four values can be represented as
the elements of power-set of the set of the classical two values.

It was Matthew Ginsberg [15] who introduced the concept of a bilattice,
an algebraic structure combining two (complete) lattices and a negation op-
erator serving as a lattice homomorphism. Ginsberg also indicated that the
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four values mentioned above constitute the simplest bilattice (sometimes
called FOUR2) with distinct logical and information ordering relations. Bi-
lattices have been intensively studied by Melvin Fitting, Arnon Avron and
some others, see, e.g. [3, 4, 5, 11, 13, 14].

Shramko and Wansing [17] make use of what they call a generalized
truth value function — a mapping from the sentences of our language into
the subsets of some basic set of truth values. In this way the generalized
truth values are modeled as the result of an application of the generalized
truth value function. The first stage of generalization (on the basis of clas-
sical truth values) gives us exactly the Dunn-Belnap four valued logic. But
Shramko and Wansing go further and put forward the collection of useful 16
values (suitable for reasoning within a computer network) to be a power-set
of the Belnap’s four values set. It turns out that the set 16 forms what can
naturally be called a trilattice (SIXTEEN3, cf. [16]) with three partial
orderings: in information, truth and falsity.

In the present paper I employ a similar way of generalization but ap-
plied to a different set of initial values. These values result from a certain
reconsideration of the Belnap’s “told values” and “marked values”. In fact,
my point of departure is Kleene’s “logic of uncertainty” rather than classical
truth values. Consequently we arrive at the set of eight generalized truth
values which, as I believe, may be regarded even more natural, as far as the
intuitive perspective is concerned.

The motivation for this generalization will be clarified in detail in Sec-
tion 2. In Section 3, I introduce on this ground a new algebraic structure —
tetralattice EIGHT4, which combines four different ordering relations de-
fined independently: information ordering, truth ordering, falsity ordering,
and uncertainty ordering. In Section 4 some useful logics generated on this
algebraic basis are considered and adequately axiomatized.

2. Told values, marked values, and reported values

Consider Belnap’s four valued computer receiving information from different
independent sources. The sources may assert or deny something and the
computer has to process the incoming information to use it as the base
for correct reasoning. An important feature of this information exchange
is that the computer must be able to operate properly even if it receives
inconsistent information or no information at all. The founding father of
“useful four-valued logic” clarifies this as follows: “We want to suggest a
natural technique for employment in such cases: when an item comes in as
asserted, mark it with a ‘told True’ sign, and when an item comes in denied,
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mark with a ‘told False’ sign” [2, p. 510]. Thus, there are two basic “told
values” serving as special marks for incoming data. But there are also two
other situations possible, which have to be taken into account and marked
separately, the situations of incomplete and inconsistent information. This
approach leads to the four well-known possibilities of how the computer can
deal with the information at hand: mark it with T (just “told True”), mark
it with F (just “told False”), mark it with N (no “told” values), or mark it
with B (both “told True” and “told False”). Let us call the (generalized)
truth values corresponding to these four possibilities “marked values”.

In summary, there are two “told values” corresponding to the ways the
data arrives in from the sources, and there are four “marked values”, by
which the computer, being in a cognitive situation different from that his
sources find themselves in, marks the data. However, as far as the sources of
information concerns, such a representation still appears not quite adequate.
One may indeed wonder why the sources — human beings or artificial intel-
ligence — have to keep silence when they do not know the correct answer.
As rational agents, they definitely are to report consistent data, but why
must they know answers to all questions, while even Belnap’s computer may
sometimes fail to provide relevant information (N)?

If we go further and permit the sources not to hide the lack of knowledge,
but explicitly express it, it seems natural to extend the set of “told values” by
an extra value — “told don’t know”. Such an enrichment of the told values
set will highlight the ambiguity of value N, moreover, it will inevitably lead
to the conclusion that the set of “marked values” should be re-defined as
well. Here are two short arguments in favor of this.

First, the question arises — whether we should distinguish between the
following two situations. In the first situation the computer deals with some
statement A, which was not discussed with sources earlier and the informa-
tion on which appears just missing in the database. In the other situation
computer considers a statement A, on which the source — being aware of its
content — has not been able to report anything certain, finding it problem-
atic (has refrained from an answer or answered “I do not know”). Within
standard four-valued interpretation this particular situation is simply im-
possible. If we do not extend the set of “told values”, the latter situation
remains absolutely indistinguishable from the first one. In both cases in
reply to the inquiry the computer will answer N, which seems to be a short-
sighted stance.

Next, one may ask whether the situation when two independent sources
both tell the computer that a statement is true is the same as the situation
when one source claims it is true but another says that he does not know?
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For a standard Belnap’s computer these situations again appear identical.
However, one should distinguish, e.g., the case when the computer knew
nothing about A and a source has “opened his eyes” from the case when
we knew that A was true and another source has confirmed this. In other
words, in the latter case, the honest computer must mark the statement
as “definitely true”, whereas in the former — with something like “proba-
bly/most likely true”. Thus, in this way we get two values “True”, however
of a different “degree of truth”.

These arguments support an insight that if we want to model the situa-
tion of information exchange more adequately, we have to consider an extra
“told value”, but also reconsider the set of “marked values”. In order to
avoid misleading associations and terminological confusion I introduce the
notion of a “reported value”. An essential difference of “reported values”
from “told values” is that in former case an item may come in as

• asserted (report YES), mark it with a sign;

• denied (report NO), mark it with d sign;

• uncertain (report DON’T KNOW), mark it with u sign.

These “reported values” constitute the set of initial values 3 = {a,d,u}.
It is natural to define truth ordering on this set as it is shown in Figure 2 to
form a lattice THREE1.

���

d u a

t
�

Figure 1. Lattice THREE1

If we define an inversion operation (−3) as −3d = a, −3a = d, −3u = u,
we get exactly the base for Kleene’s logic.

Now we can reconsider the set of “marked values” by way of generaliza-
tion in the sense of Shramko and Wansing. Namely, by taking the power-set
of the set 3 we naturally arrive at the set 8:

1. N = ∅ 5. TU = {a,u}

2. T = {a} 6. FU = {d,u}

3. F = {d} 7. B = {a,d}

4. U = {u} 8. BU = {a,d,u}.
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The difference between values U and N as well as between B and BU is
quite remarkable. U means that an information source cannot report any-
thing certain about the data, where N as before is the sign of no information
at all. One may reckon that N means that the computer does not know,
whereas U means that the source does not know, which turns to be more
informative answer (in the later case the computer knows that the source
does not know). Correspondingly, the information top is presented by BU,
whereas B is just a contradiction.

3. Tetralattice EIGHT4

Thus, we have eight values and it is the structure of generalized truth values
that makes it possible to define four independent orders: a–order, d–order,
u–order, and i–order to receive a 4-dimensional multilattice.

Definition 3.1.
Let

xa = {y ∈ x | a = y}, xu = {y ∈ x | u = y}, xd = {y ∈ x | d = y},
x−a = {y ∈ x | a �= y}, x−u = {y ∈ x | u �= y}, x−d = {y ∈ x | d �= y}.

Then

x �a y iff xa ⊆ ya and y−a ⊆ x−a,
x �d y iff xd ⊆ yd and y−d ⊆ x−d,
x �u y iff xu ⊆ yu and y−u ⊆ x−u,
x �i y iff x ⊆ y.

An algebraic structure that results as a combination of four complete lat-
tices 〈8,�a〉, 〈8,�d〉, 〈8,�u〉, 〈8,�i〉 is the tetralattice EIGHT4.
The structure of tetralattice EIGHT4 is presented by a Hasse diagram in
Figure 2. Because of visual effects the axises are drawn rather tentatively
and the best way to catch the idea of the 4-dimensional lattice is to observe
its four projections as they are presented in next figure (Figure 3).

Notably, tetralattice EIGHT4 preserves the Belnap’s lattice FOUR2

ordering relations.

There are straightforward and easy-to-test properties of meets and joints
associated with �a and �d:
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Figure 2. The tetralattice EIGHT4

Proposition 3.1.

(1) a ∈ x ∩a y ⇔ a ∈ x and a ∈ y

d ∈ x ∩a y ⇔ d ∈ x or d ∈ y

u ∈ x ∩a y ⇔ u ∈ x or u ∈ y

(2) a ∈ x ∪a y ⇔ a ∈ x or a ∈ y

d ∈ x ∪a y ⇔ d ∈ x and d ∈ y

u ∈ x ∪a y ⇔ u ∈ x and u ∈ y

(3) a ∈ x ∩d y ⇔ a ∈ x or a ∈ y

d ∈ x ∩d y ⇔ d ∈ x and d ∈ y

u ∈ x ∩d y ⇔ u ∈ x or u ∈ y

(4) a ∈ x ∪d y ⇔ a ∈ x and a ∈ y

d ∈ x ∪d y ⇔ d ∈ x or d ∈ y

u ∈ x ∪d y ⇔ u ∈ x and u ∈ y

Define several inversion operations (−⊗) with negation-like properties:

(1) −⊗ −⊗x = x (2) x �⊗ y ⇒ −⊗y �⊗ −⊗x,where ⊗ ∈ {a,d,u, i}.
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Figure 3. The tetralattice EIGHT4: four projections
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Definition 3.2.

c −ac −dc −uc −ic

T FU B TU TU

TU U F T T

B F T U U

BU N N N N

N BU BU BU BU

U TU FU B B

F B TU FU FU

FU T U F F

It can be easily demonstrated that the following definition of −u via −a

and −d holds: −a −d −ax = −d −a −dx = −ux. Keeping in mind the
coincidence of −i with −u the latter condition means that two inversion
operations (and corresponding negations) are sufficient and the rest can be
introduced by definition.

For inversions, the following proposition can be put forward.

Proposition 3.2.

(1) a ∈ −ax ⇔ a /∈ x (2) a ∈ −dx ⇔ u /∈ x

d ∈ −ax ⇔ u /∈ x d ∈ −dx ⇔ d /∈ x

u ∈ −ax ⇔ d /∈ x u ∈ −dx ⇔ a /∈ x

This algebraic basis allows one to define syntactically and semantically
an unified logical framework. In doing so first consider language Lad with
connectives ∧a,∨a,∼a,∧d,∨d,∼d. A valuation function ν can be defined as
the map from the set of propositional variables into 8, extended to compound
formulas by the following conditions:

Definition 3.3.

ν(A ∧a B) = ν(A) ∩a ν(B); ν(A ∧d B) = ν(A) ∩d ν(B);
ν(A ∨a B) = ν(A) ∪a ν(B); ν(A ∨d B) = ν(A) ∪d ν(B);
ν(∼aA) = −aν(A); ν(∼dA) = −dν(A).

Typically, truth (a) and falsity (d) orderings are interpreted as compo-
nents of the so called logical order. That is why this paper centers mainly
on both of these orderings. The next section presents some useful logics
generated by them.
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4. The logics of a–order and d–order

To establish logic over the tetralattice EIGHT4 the latter should be equip-
ped with an appropriate entailment relation.

The first in line is the logic generated by a-algebraic operations. Syntax
of this logic is presented by language La with connectives ∧a,∨a,∼a.

Definition 4.1. For arbitrary formula of La,

A |=a B iff ∀ν(ν(A) �a ν(B))

Proposition 4.1. The logic FDEa
a , where the superscript indicates the type

of language and the subscript indicates the type of consequence relation, is
exactly Efde.

Hereinafter Efde means the first-degree fragment of relevant logic R (or
E). The proof is trivial just because 〈8,�a〉 is famous M0, that is a charac-
teristic matrix for tautological entailment axiomatized by Efde [1, §18.8].

If we take language Ld (∧d,∨d,∼d) with the following definition of
d–variant of entailment relation

Definition 4.2. For arbitrary formula of Ld,

A |=d B iff ∀ν(ν(B) �d ν(A))

we again (remember — “first-degree everywhere” [18, p. 413–419]) get the
same result:

Proposition 4.2. The logic FDEd

d
is exactly Efde.

And 〈8,�d〉 once again coincides with M0.

My next task will be to construct a logical system which combines within
a joint framework the logical connectives generated by both orderings �a and
�d. To that effect consider language Lt

ad
with connectives ∧a, ∨a, ∼a, ∧d,

∨d, ∼d and propositional constant t. I employ t for the sake of completeness
proof, moreover, its introducing is justified by the idea that some generally
invalid derivations can be quite legitimate under the assumption of reasoning
within a complete and consistent theory. By means of this constant we can
define a syntactical counterpart of a generator of principal prime filter (truth
filter on M0) as the set {A : t � A}.

The valuation function ν assigns now BU to t and satisfies Definition 3.3.
The entailment relation is defined by means of Definition 4.1 extended on
the whole language Lt

ad
.
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I formulate next a consequence system FDEad
a in a natural for relevant

logic way as a pair (Lt
ad

,�) where � is a consequence relation for which the
following deductive postulates hold:

A1. A ∧a B � A
A2. A ∧a B � B
A3. A � A ∨a B
A4. B � A ∨a B
A5. A ∧a (B ∨a C) � (A ∧a B) ∨a C
A6. A ∧d (B ∨d C) � (A ∧d B) ∨d C
A7. A ∧a B � A ∧d B
A8. A ∨d B � A ∨a B
A9. ∼a∼aA � A
A10. A � ∼a∼aA
A11. ∼d∼dA � A
A12. A � ∼d∼dA
A13. t � ∼aA ∨a A
A14. ∼d∼a∼dA � ∼a∼d∼aA
A15. ∼a∼d∼aA � ∼d∼a∼dA
A16. ∼d(A ∨a B) � ∼dA ∨a ∼dB
A17. ∼dA ∧a ∼dB � ∼d(A ∧a B)

R1. A � B,B � C/A � C
R2. A � B,A � C/A � B ∧a C
R3. A � C,B � C/A ∨a B � C
R4. A � B/∼aB � ∼aA
R5. A � B, t � ∼dA /t � ∼dB
R6. t � A ∧d B /t � A ∧a B
R7. t � A ∨a B /t � A ∨d B

Recalling Definition 3.2 one could define the negation corresponding to
u–ordering (∼uA) just as ∼a∼d∼aA. Note, however, that neither ∼d∼aA �
∼a∼dA nor ∼a∼dA � ∼d∼aA are theorems of FDEad

a .

Some extra theorems clarify the properties of connectives:

t.1. ∼a∼dA �� ∼d∼a∼d∼aA
t.2. ∼d∼aA �� ∼a∼d∼a∼dA
t.4. ∼d∼a(A ∧d B) � ∼d∼aA ∨a ∼d∼aB
t.5. ∼d∼aA ∨a ∼d∼aB � ∼d∼a(A ∧d B)
t.6. A ∧a (B ∨d C) � (A ∧a B) ∨d C
t.7. A ∧d (B ∨a C) � (A ∧d B) ∨a C
t.8. ∼d (A ∧d B) ��∼d A∨d ∼d B.
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Now let us prove the semantic adequacy, starting with soundness.

Theorem 4.3. For any A,B ∈ Lad: If A � B, then A |=a B

To prove this theorem we should demonstrate that all deductive postu-
lates are valid and inference rules preserve validity. It is mainly a routine
check which is left to an interested reader as an exercise.

The core idea of the completeness proof is very close to that used by
Shramko and Wansing in [17] and, in turn, is similar to the Henkin-style
proof modified for first-degree relevant logic.

Define a canonical model in terms of theories. As usually, a theory is
a set of formulas closed under consequence relation and a–adjunction. A
theory α is a–prime iff the following condition holds: if A ∨a B ∈ α, then
A ∈ α or B ∈ α. Hereinafter for the sake of simplicity a–prime theories will
be referred just as prime theories. In what follows a special kind of theories
will be used — t-theories which contain constant t. Note that every t-theory
α is a–complete (that is either A ∈ α or ∼aA ∈ α) and a–consistent (that
is not both A ∈ α and ∼aA ∈ α).

Now define for any t-theory α two sets of formulas:

α� = {A | ∼dA ∈ α},
α� = {A | ∼d∼a∼dA ∈ α}.

Lemma 4.1. Let α be a t-theory and let α� and α� are defined as above.
Then:
(1) α� is a theory and α� is a theory;
(2) ∼dA ∈ α� iff A∈ α and ∼d∼a∼dA ∈ α� iff A∈ α;
(3) α� is prime iff α is prime and α� is prime iff α is prime.

Proof. Consider only �-clauses, for � the proof is analogous.
(1) Let A � B and A ∈ α�. Then, by definition of α�, ∼dA ∈ α and hence,
by R5, ∼dB ∈ α, that is B ∈ α�. Assume A ∈ α� and B ∈ α�. Then,
by definition of α�, ∼dA ∈ α and ∼dB ∈ α. Hence, ∼dA ∧a ∼dB ∈ α
and, by A17, ∼d(A ∧a B) ∈ α, that is (A ∧a B) ∈ α�. (2) ∼dA ∈ α� iff
∼d∼dA ∈ α, by definition of α�, that is equivalent (by A11, A12) to A ∈ α.
(3) (⇒) Let α is not prime and show α� is not prime. That α is not prime
means that there are A and B, A ∨a B ∈ α and A /∈ α and B /∈ α. Then,
by (2), ∼d(A ∨a B) ∈ α� and ∼dA /∈ α� and ∼dB /∈ α�. Hence, applying
A16, ∼dA ∨a ∼dB ∈ α�, that is α� is not prime. (⇐) For the converse, by
assuming that α� is not prime one obtains ∼d(A ∨a B) ∈ α and A /∈ α and
B /∈ α, what, by A16 again, provides α is not prime.
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In what follows Lindenbaum’s Lemma will be used, establishing the fact
that for any A,B ∈ Lt

ad
: if A � B, then there exists a prime theory χ such

that A ∈ χ and B /∈ χ.

Now, for α being a t-theory a canonical valuation να can be defined
as follows:

a ∈ να(p) ⇔ p ∈ α

d ∈ να(p) ⇔ ∼d∼ap ∈ α

u ∈ να(p) ⇔∼d p /∈ α

να(t) = BU ⇔ t ∈ α.

Next, we have to show that the canonical valuation so defined can be
extended to an arbitrary formula.

Lemma 4.2. Let να be canonical valuation. Then for any A ∈ Lt
ad

:

a ∈ να(A) ⇔ A ∈ α

d ∈ να(A) ⇔ ∼d∼aA ∈ α

u ∈ να(A) ⇔ ∼dA /∈ α.

Proof. To prove this lemma apply (simultaneous) induction on the length
of a formula. I consider here only clauses with negations and d-conjunction,
other cases being analogous.

Let A = ∼aB and the lemma holds for B.

Ad a. a ∈ να(∼aB) ⇔ a /∈ να(B) (proposition 3.2)

⇔ B /∈ α (inductive assumption)

⇔ ∼aB ∈ α (a–completeness, a–consistency).

Ad d. d ∈ να(∼aB) ⇔ u /∈ να(B) (proposition 3.2)

⇔ ∼dB ∈ α (inductive assumption)

⇔ ∼d∼a∼aB ∈ α (A14, A16, t.1).

Ad u. u ∈ να(∼aB) ⇔ d /∈ να(B) (proposition 3.2)

⇔ ∼d∼aB /∈ α (inductive assumption)

Let A = ∼dB and the lemma holds for B.

Ad a. a ∈ να(∼dB) ⇔ u /∈ να(B) (proposition 3.2)

⇔ ∼dB /∈ α (inductive assumption)
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Ad d. d ∈ να(∼dB) ⇔ d /∈ να(B) (proposition 3.2)

⇔ ∼d∼aB /∈ α (inductive assumption)

⇔ ∼a∼d∼aB ∈ α (a-completeness, a-consistency)

⇔ ∼d∼a∼dB ∈ α (t.1)

Ad u. u ∈ να(∼dB) ⇔ a /∈ να(B) (proposition 3.2)

⇔ B /∈ α (inductive assumption)

⇔ ∼d∼dB /∈ α (A11, A12)

Let A = B ∧d C and the lemma holds for B and C.

Ad a. a ∈ να(B ∧d C) ⇔ a ∈ να(B) and a ∈ να(C) (proposition 3.1)

⇔ B ∈ α and C ∈ α (inductive assumption)

⇔ B ∧a C ∈ α (theory definition)

⇔ B ∧d C ∈ α (⇒ by A7, ⇐ by R6)

Ad d. d ∈ να(B ∧d C) ⇔ d ∈ να(B) or d ∈ να(C) (proposition 3.1)

⇔ ∼d∼aB ∈ α or ∼d∼aC ∈ α (ind. assumption)

⇔ ∼d∼aB ∨a ∼d∼aC ∈ α (prime theory def.)

⇔ ∼d∼a(B ∧d C) ∈ α (⇒ by t.5, ⇐ by t.4)

Ad u. u ∈ να(B ∧d C) ⇔ u ∈ να(B) and u ∈ να(C) (proposition 3.1)

⇔ ∼dB /∈ α and ∼dC /∈ α (inductive assumption)

⇔ ∼dB ∨a ∼dC /∈ α (prime theory definition)

And finally, ∼dB∨a∼dC /∈ α ⇒ ∼dB∨d∼dC /∈ α (by A8) ⇒ ∼d(B∧dC) /∈
α (by t.8);∼d(B∧d C) /∈ α ⇒ ∼dB∨d∼dC /∈ α (by t.8) ⇒ ∼dB∨a∼dC /∈
α (by R7).

Moreover for a completeness proof we need another lemma. First recall
some basic notions from a lattice theory. A non-empty set F of elements of
a lattice L is a filter iff (1) if x, y ∈ F , then x∩ y ∈ F and (2) if x ∈ F , then
x∪ y ∈ F . A prime filter is a filter satisfying (3) if x∪ y ∈ F , then x ∈ F or
y ∈ F . A filter T on lattice L is called truth filter iff it is consistent (there
is no x ∈ L such that both x ∈ T and −x ∈ T ) and complete (for all x ∈ L,
either x ∈ T or −x ∈ T ). A filter [θ) is a principal filter (generated by the
singleton θ) iff [θ) is a set of all γ such that θ � γ, where � is the given
lattice ordering on L.

Lemma 4.3. A ∈ χ, where χ is a prime theory, iff να(A) �= FU, for any
prime t-theory α.
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Proof. (⇒) Let (1) A ∈ χ, where χ is a prime theory, but (2) να(A) =
FU, for some prime t-theory α. Consider a complete lattice 〈8,�a〉. Let
[θ) stands for principal filter generated by θ. Then obviously there are three
distinct prime principal filters in 〈8,�a〉 (distinct means here that not one
of them is contained in another) - [BU), [F) and [U). Filter [FU), which
coincides with 〈8,�a〉, is not prime because it is not proper. Keeping in
mind Lemma 4.1 and definition of canonical valuation, we may state the
following, for any prime t-theory α, (3):

a ∈ να(A) ⇔ A ∈ α ⇔ να(A) ∈ [BU)

a ∈ να(∼a∼d∼aA) ⇔ A ∈ α� ⇔ να(∼a∼d∼aA) ∈ [F)

a ∈ να(∼d A) ⇔ A ∈ α� ⇔ να(∼d A) ∈ [U).

(3) allows to define a map h from a set of prime filters into a set of prime
theories as follows: h([θ)) = χ ⇔ ∀A(να(A) ∈ [θ) ⇒ A ∈ χ). Then
h([BU)) = α,
h([U)) = α�,
h([F)) = α�.
Assumption (2) means that A/∈ α and A/∈ α� and A/∈ α�. Hence h([BU))�=
χ �= h([U)) �= h([F)), and χ is not prime theory, that contradicts (1). Thus,
να(A) �= FU.

(⇐) Can be proved precisely the same way. Assume να(A) �= FU, by
(3), applying h show A ∈ χ, where χ is a prime theory.

Theorem 4.4. For any A,B ∈ Lt
ad

: If A |=a B then A � B.

Proof. Assume (1) A |=a B and A � B. Then, by Lindenbaum lemma, (2)
there is a prime theory χ such that A ∈ χ and B /∈ χ. Consider a canonical
valuation να on α to be some prime t-theory. Then να(A) ≤ να(B). From
(2), by lemma 4.3, να(A) �= FU and να(B) = FU. Hence, να(A) � να(B)
— a contradiction.

5. Conclusion: summary and future work

In this paper, I proposed a different basis for generalized truth values than
that of Shramko and Wansing’s. To my mind, the set 3 looks more natural
and intuitively acceptable for such a basis because it corresponds better
to a common-sense representation of an information exchange. It should
be mentioned that Shramko and Wansing [18] discussed the possibility of
generalizing Kleene’s logic although with very different formal consideration.
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The tetralattice EIGHT4 is a new example of a multilattice with four
complete and independent orderings. Three logics generated by this alge-
braic structure and considered in the paper are either the same first-degree
entailment or (in the case of language Lad) its relevant generalization.

Surprisingly, the uncertainty ordering relation has fallen short of form-
ing a converse of information ordering. It is typical to define the concept of
information via uncertainty, or vagueness. However in this paper the notion
of uncertainty seems to be used in a different sense. Definitely the interrela-
tion between increasing of information and decreasing of uncertainty needs
further examination and clarification.

Another problem is to axiomatize the logic with at least two consequence
relations. My guess is that logic in the language Lad with d–consequence re-
lation will coincide with presented above logic FDEad

a up to the connectives
subscripts. Meanwhile, the question as to how logic Lad

ad
should be treated

remains unanswered.
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